
ELEKTROTEHNIŠKI VESTNIK 79(4): 197-200, 2012

ERK 2012 CONFERENCE ISSUE

Optimization of traffic networks by using genetic algorithms

Aleš Horvat
1
, Aleksandar Tošić

2

Fakulteta za matematiko, naravoslovje in informacijske tehnologije Koper,

Univerza na Primorskem, Glagoljaška 8, 6000 Koper
1
E-mail: ales.horvat@student.upr.si

2
E-mail: aleksandar.tosic@student.upr.si

Abstract

The paper describes a traffic optimization problem and

its solving by using genetic algorithms. To evaluate the

adequacy of individual solutions, a traffic simulator was

built. The paper provides the basis for genetic

algorithms and traffic simulators and presents our

solution in more details. Our traffic simulator was

designed by using an innovative approach that reduces

the simulation time by preserving the amount of data

needed to be processed. The paper also shows

optimization results and plans for our future work.

1 Introduction

The amount of motor vehicles has been increasing over

the years, mostly because of the new technology in

automation. Today cars are relatively cheep and

accessible, which enables most of the population to own

one. Motor vehicles have been around for many years

and most of the traffic networks were built in the past

when the demand was not as high as today. A lot of

research has been done on optimizing the currently

existing networks to provide to users the best service

possible. Most of the solutions are focused on traffic

management systems that simulate the current traffic of

a given network and can predict traffic in near future.

Some of the solutions even offer a way to increase the

flow of the network. Our approach optimizes the

network by changing the type of intersections in the

network to increase traffic flow and decrese cost.

2 Genetic algorithm

Genetic algorithm is a search heuristic that mimics the

process of natural evolution. They consist of adaptive

methods that simultaneously address the crowd of

simple objects, where the units are used to solve search

and optimization problems, or NP-problems. These

algorithms are characterized by the locality, which

means they have tendency to converge towards local

optima, non-hierarchical structure, already mentioned

co-treatment of simple objects and functionality that is

the result of interaction between the facility in question.

Belong to a group of evolutionary algorithms; they are

based on the principles of natural evolution and the laws

of genetics, where the population over several

generations have to develop with the principle of natural

selection and survival of the best [4].

In thir paper we will not go further than this with the

description of the basics of genetic algorithms [1] and

the mathematical background of it [5]. The

implementation of a genetic algorithm for our project

and more details about it are described hereafter.

2.1 Implementation of our genetic algorithm

Our implementation of the genetic algorithm is very

similar to the basic one [3]. In Figure 1 we can see the

pseudo-code of the implementation of our algorithm,

which generates strings (individuals) that are actually

the layout of traffic intersections in our city.

Figure 1: Pseudo-code of our genetic algorithm

As shown in the pseudo-code (Figure 1), at the

initialization of the algorithm we create an initial

population of strings made by one string from the actual

XML file and other “n-1” strings generated randomly.

The next step is to evaluate the first population and save

the performance scores. After that we enter the while

loop where we sort the strings (individuals) inside the

population by their performance score, so we can later

select the best set of parents that are suitable for

generating the descendants in the next phase –

generating the new generation.

198 HORVAT, TOŠIĆ

In the process of generating a new generation, two basic

operations are applied - the crossover and mutation. The

mutation operator has a probability parameter, which is

very important to prevent irretrievable loss of good

solutions in our space search. More information about

these two basic operators will be described in the next

subparagraphs.

After the new generation is made, we need to evaluate it

and sort it by strings’ performance scores. The next step

is to merge our old population and our new generation

and select the best “n” strings, which will live in the

new population.

In our case, the genetic algorithm runs in an infinite

loop until we stop it manually.

2.2 Fitness function

Fitness function is the most important feature of genetic

algorithms, because it gives comparable scores and has

to be implemented for each problem individually.

The role of the fitness function is to assign a

performance score, represented as a numerical value, to

each string (individual) from our population or

generation. The performance score is used to compare

strings and select the best ones from the set of all strings

later on. The rating itself is supposed to represent the

capacity and efficiency of the string (individual).

In our case, the fitness function gets the results from the

evaluator and calculates the average time spent waiting

at intersections of all agents. This is the performance

score of our string (individual). More details about the

evaluator will be described in the next paragraphs.

2.3 Basic operators

In the following subparagraphs we will describe in more

details the basic operators that are present in our genetic

algorithm with appropriate examples.

2.3.1 Reproduction

During the reproduction process, two strings get

selected from the current population (sorted by

performance score) and then two new strings that

belong to the new generation get generated. Of course,

the selection of parents takes into account the

performance scores and that is why we sort the

population before the reproduction process starts. This

is how we guarantee to strings (individuals) with high

scores to be selected more often than those with low

scores, which may not be selected at all.

2.3.2 Crossover

Crossover is a binary operator where two strings

(parents) generate two strings (descendants). These

descendants usually replace their parents, but in our

implementation we do not compare parents with

descendants. We put all strings from the population and

newly generated generation in the same poll and then

take out the best “n” strings, which represent the new

population.

Crossover is performed by selecting two strings

(individuals) and then randomly choose a bit for

crossing, which separates a person or a chromosome

into two parts - the head and tail. Now exchange the

tails between parents and in this way we get two new

strings (descendants), which owns genes from both

parents. This method of crossing is called simple or one-

digit and we can see an example in Figure 2.

Figure 2: Example of crossover operation

The crossover operation can also have a probability

parameter to decide if make a crossover or just leave the

descendants to be same as parents. In our case we

decided to crossover all strings from our population, so

the order of the crossover process is 1.00.

2.3.3 Mutation

Mutation is a unary operator because it receives one

string as an input parameter, but as crossover, it

operates over binary strings. Unlike the crossover

operation, mutation is conducted on descendants. The

execution of mutations is very small (usually order of

0.01 for each gene (bit)). In our case, the order of the

mutation process is 0.01. In Figure 3, we can see the

fourth gene mutated.

Figure 3: Mutation of the fourth gene (1 => 0)

The mutation is responsible for the random exploration

of the search space and to ensure that no item is

excluded from it.

3 Traffic simulator

Traffic simulator is a mathematical modeling of the

traffic networks. Traffic modeling is a vast area of

research that employs many different ways of traffic

simulation, which usually employs rules of behavior for

agents in the traffic. Each agent behaves by the rules of

the traffic simulator and interacts with other agents.

Such solutions are CPU consuming and usually take a

long time to simulate on real data.

Our traffic simulator is used to evaluate the fitness value

of a given network, which represents its effectiveness. It

is also time synchronized, meaning that the main update

loop executes at a given interval, representing 1 second

in real timeline. The update interval can be set before

starting the simulator and also all other time variables

will inherit from it to guaranty the consistency of the

simulation at any given speed. Measuring the time it

takes to execute an update is essential in order to

provide realistic data.

OPTIMIZATION OF TRAFFIC NETWORKS USING GENETIC ALGORITHMS 199

3.1 Traffic network

The traffic network is represented by a graph. The roads

are represented as edges and the intersections with

vertexes. Since roads have directions, it is a directed

graph. Each edge has a direction, a start vertex and an

end vertex. The network is first built from an xml

(Extensible Markup Language) file, which was built

manually according to the data provided by Google

Maps service [2]. The xml file contains all the

information about the current traffic network including

the length of each road and the type of intersections.

3.2 Intersections

Our simulator has three types of intersections. Each of

them is programmed as a set of rules inherited from real

data. To simulate an intersection we used FIFO (first in

first out) queues as our data structure. We decided to

use these queues, because they guaranty that the cars

will be processed in the right order by the rules of

traffic. The number of queues each intersection has

depends on the number of roads leading to the

intersection.

Talking about the updates, intersections are updated

each time the update is called. Intersection updates

depend on the type of intersection, but all of them do

share one chunk of code. All of them start by updating

the time the agents spent waiting in the queue of a given

intersection and immediately after an agent is pulled

from the queue, it gets put through a series of conditions

to determine if it is allowed to continue its path.

3.2.1 Unsignalised intersections

Unsignalised intersections are the most basic type of

intersection. Although it may look basic because it does

not have any light signals, but it makes up by having a

lot of rules, which have to be carefully implemented to

avoid conflicting rules. Conflicting rules could cause the

wrong car to be left to leave the queue or in some cases

even cause a dead lock. A dead lock would mean two or

more agents are waiting for each other to leave the

queue and therefore none of them leave. In a situation

like this, a traffic jam would follow and no agent would

ever be allowed to leave the intersection.

3.2.2 Signalized intersections

Signalized intersections are the simplest to implement.

There are only a few rules that agents need to follow.

The difference between the unsignalised intersections

and signalized intersections is that the signalization

renders many of the traffic rules useless by minimizing

the problem down to two roads instead of 4 or more.

The implementation however is not very different.

When intersections are updated the signalized

intersection checks if it is its time to make a signal

switch and if necessary, performs it. The agents are then

pulled of from the corresponding queues and let back in

the traffic.

3.2.3 Roundabout intersections

Roundabout intersections are very different from the

others. One of the main reasons why, is because the

agent’s rules change. On not-roundabout intersections,

if no higher rule is applicable, the agents always use the

so called right-rule. The right-rule simply states that if

two agents’ paths collide in a given time, then the agent

on the right side takes priority over the other. In

roundabout intersections, this simple rule reverses into a

left-rule. The structure of a roundabout intersection is

actually a simple graph. Queues are kept to determine,

which agent takes priority in a given situation, but after

priority is given the agent does not leave the

intersection, but rather drives through the graph. The

graph is again built of vertexes, which in this case are

slots. These slots are connected with edges that

represent roads inside the roundabout as seen in figure

4.

Figure 4: Example of roundabout slots

A single slot can be occupied by a single agent at a

given time. The number of slots a roundabout

intersection has, is determined by its size. Size of a

roundabout intersection is read from the xml file at the

beginning of the first simulation.

If an agent pulled from the queue is given priority the

neighbor slot is checked. If the slot is occupied the

agent waits, else it occupies it. Agents switch slots as if

the slots were in a rounded list. They switch them until

they reach the slot that is the neighbor to the road it

needs to go to. When such a slot is reached, the agent

leaves the roundabout and continues on its path.

4 Agents

Vehicles in the traffic network are represented as

agents. Each agent is an object with many properties

that can be found in four states in a given time of the

simulation. In this paragraph we will describe our

implementation of agents in more details.

4.1.1 Initialization

The initialization state occurs when the agent still does

not exist in the traffic network. Before the agent is

unleashed into the network it needs a path. There are

many different ways of setting an agent's path, but in

order for the simulation to be realistic an agent needs to

have a realistic path. Thinking about defining paths for

our agents we concluded that each car ends its path on a

parking lot. Our agents inherit this idea and for that

reason all major parking lots are also marked in the xml

file. We also isolated the major roads that lead into the

city and out of the city. Having defined the start and end

point of an agent we check all the intersections on its

path. This was done with Floyd–Warshall [6] algorithm

that generates the shortest path between all vertexes in

200 HORVAT, TOŠIĆ

the Graph. For constructing the shortest path, the road

length was used as distance.

4.1.2 Driving

With the driving state we describe the agent that is on

the road from one intersection to another. To decrease

the CPU consumption we implemented the driving state

as sort of a sleeping state. Because our genetic

algorithm is optimizing only the flow of each

intersection, the roads are not that important. Nothing

that would affect the number of cars that need to pass an

intersection can happen when the agent is in driving

state. When an agent leaves the intersection, the

algorithm calculates the time that the agent needs to get

to the next intersection by taking in consideration the

speed of the agent and the length of the road it will drive

on. The time needed is then mapped into the simulation

time and saved into the agents' object. After the time

variable is passed, it means the agent has reached an

intersection and an update is needed. When in state of

driving, the agents do not consume much CPU.

4.1.3 Inside the intersection

This state describes the behavior of the agents when

they are inside an intersection. Similar to the driving

state, the agents in this state do not consume much CPU

power, since they are inside a queue. When an

intersection is updated, only agents that are first in the

queue get processed at once. It is very important to

update time variables of all the cars inside the queues,

because the time spent waiting on intersections plays an

important role in the fitness function. The data structure

queue was never built for operations on all elements,

instead it performs quick operations on the first element.

The time update was structured to give each agent a

timestamp when entering the intersection state and

another timestamp when leaving it. The difference

between those timestamps is the amount of simulation

time the agent spent waiting in the intersection.

4.1.4 Destination reached

When an agent reaches its destination, it gets removed

from the data structures of the simulator and left for the

garbage collector to clean the object. Just before

removing the agent, the data stored inside the object is

retrieved and remembered till the end of the simulation.

From this data the genetic algorithm can evaluate the

fitness value of the traffic network that was tested.

5 Results

With limited resources and time we could not achieve

the desired number of generations. Our population

consisted of 200 strings (individuals). The frequency of

generating agents was taken from real data of the city of

Koper. The city of Koper is known troughout Slovenia

to be the city with most roundabout intersections.

Measuring the flow of traffic each type of intersection

has, it can be proved that when there is high traffic, the

roundabout proves to have the highest flow. The fact

that Koper is mostly covered with roundabout

intersection means that the optimization level is not

expected to be high. Looking at the results we can see

that even with a few generations there, we reached some

level of optimization. The main roads were mostly left

with roundabout intersections while the less populated

roads were replaced with other types of intersections. In

figure 5 we can see the function that represents the

optimization. Since our fitness function is represented

by the agents' waiting time on intersections, the genetic

algorithm is programmed to minimize the fitness. The

function starts with a significant drop, but soon comes

to a steady low drop, which indicates that the genetic

algorithm ether got stuck in a local minimum because of

the generation size or we are getting close to an optimal

solution.

Figure 5: Results of testing

6 Future work

For future work we are working on new version of the

traffic simulator that will run on a distributed computer

system. This will enable us to test many individuals

generated by the genetic algorithms at once. The system

will work on master-slave concept where the master will

be the genetic algorithm and slaves will be multiple

instances of the traffic simulator. We hope this will

speed up the optimization process immensely. We are

also working on a component that will automatically

generate the initial XML file that represents the actual

layout of traffic intersections in a city. Another goal is

to use different heuristic algorithms to search for the

optimal graph. Genetic algorithms maybe produce good

results but they do not use any additional knowledge in

search of the optimal solutions. We intend to try other

approaches and compare the results.

7 References

[1] Filipič, B.: Genetski algoritmi. Informatica 4/92,

1992.

[2] Google: Google Maps (April 2012),

http://maps.google.com

[3] Neville, M., and Sibley, A.: Developing a Generic

Genetic Algorithm. December 18, 2002.

[4] Sipper, M.: On the origin of environments by

means of natural selection. AI Magazine, 22

(2001): 133-140

[5] Taraneko, A.: Genetski algoritmi. Diplomsko delo,

Maribor 2001.

[6] Warshall Floyd Robert. (June 1962). "Algorithm

97: Shortest Path". Communications of the ACM 5

(6): 345. doi:10.1145/367766.368168.

