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Indices of Skewness Derived from a Set of
Symmetric Quantiles: A Statistical Outline with
an Application to National Data of E.U.

Countries
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Abstract

In this paper, which follows a recent field of raseh started by Tukey
(1977), a class of indices of skewness is introdyudmsed on a symmetric
set of quantiles. Two kinds of normaisation are poed, leading to
different indices, called VCS (Ventile Coefficienf Skewness) and VIS
(Ventile Index of Slewness), respectively. The shmgistribution of both
indices is studied by a Monte Carlo simulation. Textended indices of
skewness (ECS and EIS) are proposed, having irtegesnferential
properties. Finally, an application to national alatf 27 E.U. countries is
presented, with a brief comment of the results.

1 Introducing the problem

The most known and successful index of skewness @veposed is surely
Pearson’sy, defined as the ratio of the third central momeémtthe cube of
standard deviation. However, the most recent reteéines about skewness do
follow a quantile pattern. Such an approach, havihg aim to define robust,
efficient and user-friendly indices of shape (skessmeaand kurtosis) has been
followed by several Authors, such as Tukey (1977)tilknet al. (1982), Hoaglin
et al. (1985), Mac Gillivray (1986), Kappenman (1988), Alth and Groeneveld
(1995), Groeneveld (1998), Wang and Serfling (200®) two recent papers
(Brizzi, 2000 and 2002), we proposed and studiedlass of indices of shape
(skewness and kurtosis) based lefter values which are symmetric quantiles
whose analysis gives a particular stress to tais.the present study, we do
propose a class of indices of skewness which ark by taking into account all
the sample body, the center as well as the tailth\Wis aim, we are intended to
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use a set of symmetric quantiles; we will develoglass of indices, study the
corresponding sample distribution and give an eXarmy calculating new indices,
referred to a set of geographical and socio-econowariables, considering
updated national data of E.U. countries.

2 Ventile-based indices of skewness

Let Y be a quantitative variable, discrete or contimydat yi, Yo, ..,  be the set
of data we have to analyse. Denote with), Y2). .., Y¥n) the same data, arranged in
non-decreasing order, and I, be thek-th centile of the same data. We could
consider every set of quantiles, even the wholeo$ed9 centiles, but it would
belogically weak to calculate such a number of stats on sample data, especially
if the set is not so large. On the other side, beg our analysis on a reduced set
guartiles or deciles) would surely lead us to thraway too much of sample
information; we have to find a compromise betweémpdicity and precision:
therefore, we will propose here a ventile-basedapgh.

From the arranged datgi), Vo), .., %n), we can easily determine nineteen
sample ventilesyhich correspond to the centil€gs), Ci10),..., up toCgs). We will
denote the j-th ventile by;, following the usual convention to put:

V(i) =yt , if =11 _h (2.1a)
n 20 n

vi) = Ym TV h_ (2.1b)
2 n 20

As a simple example, we have, for a sample size 25. The 19 ventiles are
the following order statistics:

Yo Y Ya o YertYel 12, Yo, Ye), Yo, [YaorYaul /12, Yaz), Yas (median),
Yaa, [YasytYael 12, Yan, Yasy, Yao)» [YeoytYeul 12, Yoz, Yes), Yea

Now, if we take the average of the 19 ventiles,deeive theVentile Average
(VA), a robust estimator of the population mean, belwgpgo the class of L-
statistics (see Hampadt al, 1986). Analogously, we can calculate, directly on
ventiles, some indices of dispersion, such as lestandard deviation (VSD) and
ventile absolute deviation about the median (VARgpectively given by:

VSD = \/Z_; \2 ~VA)* (2.2)
19
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19
Z |V(i) _V(lO) |
VAD= i=1 (2.3)
19

We will use these ventile-based statistics in thh@ndardizing procedure,
described later. Following the same approach pregas Brizzi (2000), we can
arrange the ventiles in symmetric couples, consmiethe median apart and take
their midvalues:

Vg +V, Vie *Vao Vo Vg

My =Vag' M. =-® @, M = ... M, =—
© =Vao' My 5 @ > © 5

(2.4)

Following Tukey (1977), we will call these values iteummaries” If the
sample is perfectly symmetric, the midsummaries direqual. Otherwise, if the
data are positively (negatively) skewed, the midsumesa would have an
increasing (decreasing) trend. We can then condigerslope of a least-squares
straight line interpolating the midsummaries asimaex of skewness. Since the
values defined in (2.4) depend on the level of nitagie (or unit of measurement)
of the data, it is useful to standardize them idesrto allow a wider comparison.
We suggest two distinct criteria of standardizatidmased on VSD and VAD,
respectively:

U. = M, -VA i=0,1,2,..9 (2.5)
©vsC
Wiy = M(i\)/;g/l ©® i=01,2..9 (2.6)

If we consider couples of valu€g:, u;), wherets = i/10, and plot them on
the plane, we can plot a graphical representatiothe skewness of our dataset.
Moreover, if we interpolate these points with aagiht line, using the standard
least squares method, the slope may be a suitabdkxinf skewness; we call it
Ventile Coefficient of Skewnesigfined by:

_ Cou(t;,u;)
- Var(t,)

VCS (2.7)

Considering that t(i) values are not random ata#, can rewrite the VCS as a
linear combination of u(i) values, and precisely:

18 14 10 6 2 2 18

(2.8)
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If we do the same with the poinfg;, W), and take the slope of the standard
least squares interpolating line, we can definetla@r index of skewness, called
here theventile Index of SkewnegglS). The formal expression is:

_ Cout;, w)
~ Var(t)

VIS (2.9)

As well as VCS, also the index VIS may be rewriteena linear combination
of standardized midsummaries:

vis=18, .14, 10 6 L2 2 18
= 337@ T33e Y33 T 33 T33We "33V T 330

(2.10)

The indices VCS and VIS may be applied directlytbeoretical distributions,
since their definition is univocal; this was notsgible when using letter values,
because the definition of the indices dependedhensizen. If we apply the new
indices to a “classic” positively skewed model, Isuas negative exponential, we
may determine the level of skewness of the distrdyu itself, thus fixing a
reference value, which helps us for an easier pmetation of the indices proposed.
The standardizing procedures (2.5) and (2.6) makeindices invariant by linear
transformation, and we have then “unique” exporantalues of VCS and VIS,
regardless of the exponential parameteiThese “typically exponential” values of
the indices areVCS= 1.016,VIS= 1.327 Being the value of VCS very near to
one under an exponential distribution, the samexnlbecomes easier to interpret:
a value of 0.5, say, indicates almost a half of skewness corresponding to an
exponential model. Moreover, due to the use of Mesitas source of the data
information, the statistics VCS and VIS can alscabelied to heavy-tailed models
like Cauchy or Pareto. Being the Cauchy distribntsymmetrical, both the indices
are equal to zero; for what concerns Pareto distidim, we have represented some
values in Table 1:

Table 1: Ventile-based indices of skewness under a thezakRareto modelkkEl, o

variable).
Nr. of
finite
moments VCS VIS

0 1.557 2.963
1.5 1 1.469 2.414
2 1 1.391 2.135
3 2 1.288 1.859
4 3 1.228 1.723
5 4 1.189 1.642
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3 Application: The series of prime numbers

We have applied the indices of skewness above ééfto a particular “natural”
set of values, taken from arithmetics: the set vimp numbers less thaN, and
studied the behavior of skewnessNasicreases.

We have then tried to compare the “classic” momeaged index of skewness
(Pearson’s)) with the ventile-based indices, on the set ofm@inumbers less than
N, for some values of N from 100 to 50,000. We hasported, in Table 2, for
each limit valueN, some interesting statistical features: the numfyerof prime
numbers in the set, the coverage fraction of primenbers N*/N), the values
taken by the indiceg, VCS and VIS and the ratio VIS/VCS.

Table 2: Moment- and Ventile-based indices of skewnessiafdpgb prime numbers.

N N* N* / N y VCS VIS VIS/VCS
100 25 0.250 | 0.230 | 0.206 0.238 1.155
300 62 0.207 | 0.167 | 0.176 0.201 1.142
500 95 0.190 | 0.162 | 0.169 0.195 1.154
1000 168 0.168 | 0.155 | 0.171 0.197 1.152

3000 430 0.143 | 0.128 | 0.159 0.184 1.157
5000 669 0.134 | 0.124 | 0.139 0.161 1.158
10000 1229 0.123 | 0.111 | 0.127 0.146 1.144
25000 2762 0.110 | 0.100 | 0.115 0.132 1.148
50000 5133 0.103 | 0.095 | 0.108 0.125 1.157

Looking at the table, we notice that there is amdent decreasing trend of
skewness, with some little oscillation (the seroégprime numbers, as usual, has
often “weak” regularities). The tendency is almpstfectly similar by considering
all the indices shown; sometimes may happen, foalsohanges, that a decrease
of y corresponds to an increase of ventile-based isdeced vice versa (look the
values for N=500, N=1000Q. On the other side, the indices VCS and VIS do
always move in the same direction, and their rag@sults to be approximately
constant (about 1.15). It may be also interestsngbserve that the values of VCS
and VIS are not far from correspondipgalues.

4 Sampledistribution and inference

The indices VCS and VIS may be also used withiest bf hypothesis regarding
population symmetry; if we want to check their mgrhance as test statistics, we
need to know — or to estimate — the sample distidouof the above mentioned
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indices. The sample distribution of VCS and VIS tmeen studied by a Monte
Carlo simulation., performed with “GAUSS” statisdic package, under some
typical hypotheses on population distribution, esponding to different levels of
skewness.

If we have to deal with unimodally distributed dathe indices of skewness
may be used as *“quick test statistics” for chegkmormality. Therefore, we have
simulated the sample distribution under the hypsihef normality; being the
indices independent by linear transformation, westdered a standard normal
distribution. We have simulated then, for each si@ngze considered (ranging
from n=15 to n=75), 100,000 samples taken form a standard normauladipn,
computing the values of VCS and VIS. We have repméxd, respectively in Table
3 (VCS) and Table 4 (VIS), the main features of ganple distribution of the

ventile-based indices:

Table 3: Sample distribution of VCS under the hypothesist@ndard normality.

Centiles:

n [ Average St.Dev. 1.st 2.nd 5.th 95.th 98.th 99.th

15 0.0003 0.4483 -1.003 -0.902 -0.740 0.737 0.899 1.004
18 0.0011 0.4243 -0.952 -0.851 -0.696 0.702 0.859 0.956
25| -0.0003 0.3687 -0.842 -0.750 -0.612 0.606 0.748 0.834
30 0.0002 0.3343 -0.763 -0.679 -0.550 0.549 0.676 0.760
35| -0.0016 0.3087 -0.712 -0.629 -0.509 0.508 0.628 0.704
45 0.0008 0.2794 -0.635 -0.565 -0.461 0.462 0.572 0.640
60| -0.0001 0.2388 -0.548 -0.488 -0.393 0.392 0.485 0.548
75| -0.0012 0.2168 -0.502 -0.446 -0.358 0.356 0.441 0.497

Table 4: Sample distribution of VIS under the hypothesistfndard normality.

Centiles:

n | Average St.Dev. 1.st 2.nd 5.th 95.th 98.th 99.th

15 0.0015 0,5827 -1.358 -1.196 -0,958 0,955 1,197 1,363
18 0.0015 0.5618 -1.303 -1.150 -0,921 0,929 1,160 1,306
25 -0.0003 0.4614 -1.082 -0.950 -0,763 0,758 0,947 1,074
30 0.0002 0.4177 -0.969 -0.858 -0,686 0,683 0,855 0,969
35 -0.0020 0.3865 -0.904 -0.795 -0,637 0,633 0,791 0,895
45 0.0011 0.3451 -0.796 -0.702 -0,567 0,570 0,710 0,800
60 -0.0002 0.2943 -0.682 -0.605 -0,484 0,482 0,600 0,683
75 -0.0015 0.2670 -0.624 -0.553 -0,440 0,438 0,546 0,616

The simulated sample distributions of VCS and Mi8der a Gaussian model,
are approximately symmetric about zero, and thendsied deviation is almost
linearly proportional to\/n. Since the inequalitf¢Y AD < VSD holds from well
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known minimum properties, it is not surprising thd6 (whose standardization is
based on VAD) has a larger standard deviation, tamndcentiles more distant to
zero, than VCS.

We have then calculated the power of VCS and V§Seat statistics, against a
slightly (positively) skewed alternative (Rayleighistribution), and against a
strongly skewed one (negative exponential distidnjt for each sample size we
have simulated 100,000 samples from a Rayleigh (&nein Exponential)
distribution and calculated the indices of skewnedgecking how many samples
did overtake the tail centiles under normality. Wave doner the same with
Pearson indexyj as a test statistic, comparing the “old” indexttwthe “new”
ones. In Table 5 we have reported the main results

Table 5: Power of the indices g, VCS and VIS under Rayleagd Exponential model.

Signif. Rayleigh Exponential
n | Level |Gamma VCS VIS | Gamma VCS VIS
15 0.05 18.45% 18.32% 18.84%| 67.51% 74.05% 73.25%
0.01 5.33% 517% 5.71%]| 40.25% 50.31% 50.06%
18 0.05 21.57% 21.70% 21.46%| 76.67% 82.57% 81.71%
0.01 6.57% 6.45% 6.64%| 49.80% 62.62% 62.19%
25 0.05 28.51% 21.57% 21.16%| 89.24% 84.04% 83.22%
0.01 9.08% 6.76% 6.48% | 67.74% 65.14% 63.72%
30 0.05 33.13% 26.11% 25.95%| 94.11% 91.26% 91.78%
0.01 11.96% 9.00% 8.92%| 78.67% 77.68% 76.55%
35 0.05 37.91% 29.94% 30.08%| 96.86% 95.26% 94.86%
0.01 13.61% 10.79% 10.79%| 84.88% 86.01% 85.11%
45 0.05 46.26% 32.13% 31.63%]| 99.17% 97.07% 96.82%
0.01 19.94% 12.04% 12.22%| 94.54% 90.30% 89.60%
60 0.05 58.74% 42.19% 41.73%| 99.91% 99.51% 99.44%
0.01 27.96% 18.74% 18.26% | 98.81% 97.73% 97.39%
75 0.05 69.16% 48.70% 48.05%| 99.93% 99.62% 99.56%
0.01 |37.26% 23.56% 23.13%| 99.79% 99.27% 99.18%

In Table 3, we have evidenced imold the maximum power resulting for every
combination of alternative distribution, sampleesemd significance level.

Looking at Table 5, we notice that the new indi¢¢€S and VIS) are more
powerful thany just for small values of n, whereas the “classiadexy performas
much better for larger values. If we compare thet\e-based indices by means of
power, the performances are very similar. For apoeential alternative, VCS is
always more powerful than VIS, but the differenseniot relevant. In order to
increase the power, we propose in the next chapier‘extended” ventile-based
indices.
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5 Extended indices of skewness

The indices VCS and VIS are robust, because theynatoconsider at all what

happens in the tails; for instance, if the samjite & 75, three data from each tail
are “dumb”, as they do not have any influence om itidices value. On the other
side, this trimming procedure reduces the powethefindices as test statistics. If
we want to give back some meaning to the tail val@ad to increase the power of
the related test of skewness, we can defineeatended index of skewness
corresponding to each ventile-based index, by agldifurther midsummary as the

extremes midvalue: 10 = Yo *Ym  This “new”
2

standardized by (2.5) or (2.6), thus extending gbges of points representing the
skewness. Since this last point covers all the $empis quite natural to put the

midsummary may be

corresponding absciss@o) = 1.

Table 6: Sample distribution of ECS and EIS under the higpsts of normality.

Centiles:
n Average St.Dev. 1.st 2.nd 5.th  95.th 98.th  99.th
ECS
15 -0.0014 0.4142 -0.927 -0.833 -0.686 0.678 0.828 0.922
18 -0.0029 0.3897 -0.876 -0.789 -0.648 0.639 0.783 0.872
25 0.0008 0.3240 -0.737 -0.656 -0.534 0.534 0.658 0.733
30 0.0005 0.2978 -0.680 -0.605 -0.490 0.491 0.605 0.679
35 0.0012 0.2790 -0.635 -0.563 -0.458 0.461 0.570 0.643
45 0.0001 0.2466 -0.562 -0.501 -0.407 0.407 0.504 0.568
60 0.0011 0.2179 -0.500 -0.443 -0.357 0.361 0.446 0.501
75 0.0007 0.1991 -0.458 -0.407 -0.328 0.327 0.407 0.458
EIS

15 -0.0014 0.5305 -1.244 -1.090 -0.875 0.866 1.087 1.234
18 -0.0038 0.5080 -1.178 -1.047 -0.842 0.830 1.039 1.175
25 0.0010 0.4109 -0.957 -0.842 -0.677 0.676 0.847 0.958
30 0.0006 0.3776 -0.878 -0.774 -0.621 0.622 0.775 0.878
35 0.0017 0.3543 -0.821 -0.723 -0.580 0.584 0.731 0.833
45 0.0002 0.3136 -0.725 -0.643 -0.516 0.518 0.646 0.733
60 0.0015 0.2784 -0.646 -0.570 -0.455 0.461 0.574 0.649
75 0.0010 0.2554 -0.595 -0.526 -0.419 0.420 0.526 0.595

The sample distributions above represented may $ed ufor defining a
statistical test for checking the null hypothesispmmetry.

Applying the standardization (2.5) we derive tlegtended coefficient of
skewnesgECS), defined as (2.7), just adding a point, EG&y be written, like
VCS, as a linear combination ofy’s:
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_Co\t,u)_5 4 3 2 1 1 5
ECS=""20 0 =~y Uy +—Uggy F— Uy +— Uy =— U —oom—Ugy  (5:1)
Vart) 1199 1170 117® 1170 1170 117 11 ©

On the other side, applying the standardizatio®)(2ve derive theextended
index of skewnedq&lIS), defined as (2.9). The EIS may be expressed

Eis=Cot. W) _5 4. L3 2 1 1 S (5.2)

—W —W —We +—Wn +—We —— W, —...
vaw) 1189 1279 1170 1770 1170 17@ 7 1170

Once defined these extended indices, we have peeragain a simulation, in
order to study the sample distribution of VCS an&V

Looking at Table 7, we can observe that the extdniddices ECS, EI$ are
more powerful thany, for every sample size considered and for both the
alternatives proposed. The difference seems to ¢ melevant when considering
a reduced significance leve(a=0.01). When considering the exponential
alternative and a large sample size, the indicesabmost equally powerful, since
in such conditions the power is very near to one.

Table 7: Power of the indices ECS and EIS under Rayleigh Exponential model:
power percentage and comparison wjith

Rayleigh Exponential

ECS EIS ECS EIS
Level (y= (y= (y= (v=
n| ofa ECS EIS 100) 100) ECS EIS 100) 100)
15] 0.05 | 20.71% 20.86% 112.25 113.06| 78.84%| 77.23% 116.78 114.39
0.01 | 5930 6.16% 111.26 115.57|57.63%| 55.26% 143.16 137.27

181 0.05 [ 24580 24250 113.95 112.42|86.60%[85.38% 112.96 111.36
0.01 | 773% 7829 117.66 119.03|69.52%|67.43% 139.60 135.41
55] 0.05 [ 30.49% 30.26% 106.94 106.14|94.37%[93.69% 105.75 104.99
0.01 | 10.96% 10.94% 120.70 120.48 | 84.28% | 82.40% 124.41 121.64
30| 0.05 [ 36.89% 36.00% 111.35 108.66 | 97.54%| 97.09% 103.65 103.17
0.01 | 14519% 14 28% 121.32 119.40|91.89%| 90.61% 116.80 115.17
35| 0.05 [ 42 279% 41.84% 111.50 110.37|98.99%[98.73% 102.20 101.94
0.01 | 17.43% 17.36% 128.07 127.55|95.74%| 94.73% 112.79 111.60
45[0.05 [ 52 119 51.099% 112.65 110.44[99.78%| 99.71% 100.62 100.55
0.01 | 24.98% 24 520 125.28 122.97 | 98.82%| 98.46% 104.52 104.15
601 0.05 [ 65.39% 63.820 111.32 108.65| 99.99%[ 99.98% 100.08 100.07
0.01 | 37.83% 36.09% 135.30 129.08|99.88%| 99.82% 101.08 101.02

0.05 108.85 106.15] 99.999| 99.998 100.01 100.01
75 75.28% 73.41% % %
0.01 130.01 122.89| 99.988| 99.980 100.20 100.19

48.44% 45.79% % %
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6 Application to national data of E.U. countries

Finally, this ventile-based methodology has therrbeapplied to a dataset of
national data referred to the 27 countries of BAle have chosen a set of eight
geographical and socio-economic variables for thpplication. The variables,
labaled form X to Xg, are: area (in squared kms), population (thousaoi
resident people), incomeper capita life expectation at birth (years),
unemployment rate (in %), diffusion of Personal paters and mobile phones.
Finally, we considered also the value of HDI (HumBevelopment Index), a
recently-defined index trying to give a normaliseéasure to human welfare, used
since 1990 by the United Nation Development Prognam According to last
evaluations, the highest HDI value in the world0®963 (Norway), while the
lowest is 0.298 (Sierra Leone). In Table 8 we reégarthe ventile-based statistics
and Pearson’s index of skewnegy (n order to make some comparisons.

Table 8: Ventile-based statistics and Pearsonfsr national data of E.U. countries.

Variable VA VSD VCS VIS ECS EIS y
Area (sqg.kms) Xy | 155188.7| 150072.1| 1.324| 1.798| 1.358| 1.845 1.049
Population
(.000) Xz 16279.6| 19004.5| 1.469| 2.267| 1.712| 2.643| 1.505
Income per cap. | X3
(EUR) 18527.5| 10726.5| 0.302| 0.338]| -0.934| -1.072| 0.846
Life expectation | X4 77.00 2.72] -1.118| -1.465]| -1.018| -1.334| -0.653
Unemployment
Rate (%) Xs 7.94 2.59| 0.410| 0.582| 0.719| 0.804| 1.442
Pers.Computer
(x1000 people) | Xe 362.95 184.80| 0.310| 0.359] 0.759| 1.078| 0.275
Mobile phones
(x1000 people) [ Xy 962.05 135.91| 0.407| 0.520| 0.354| 0.411] 0.532
H.D.l. (%o0) Xs 900.58 43.07| -0.814| -0.934| 0.428| 0.546] -0.679

Source of data“Calendario Atlante 2007”, Istituto Geografico Bgostini, Novara.

Looking at Table 8, we can point out many import#rngs. First of all, we
can use a complete set of ventile statistics (agesratandard deviation, skewness)
as a brief picture of the behaviour of EU countrneish respect to the variables
considered here. Focusing our attention on skewnessan easily notice that all
the indices considered are concordant (positivenegative). Moreover, we can
make three kinds of comparison between indices:

a) VCS/VIS against Gamma. The most relevant differanaee registered for
X3, X4 Xs, For two of them(X3; and X) y value is markedly higher; this
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fact can be explained with the presence of a smathber of outliers and
the robustness of VCS/VIS with respect to them. Xgry value markedly
lower, and this may be explained (although lessarty¢ with the low

variability of X, itself.

b) VCS against VIS. The latter index has always a érghalue, due to the
different kind of normalisation (VAD is always lowéan VSD). For some
variable the difference is very relevant, espegidtir X, , which is the
variable with the highest level of variability (ttenly one having VSD >
VA) and the highest level of skewness, with respgedll indices.

c) ECS/EIS against VCS/VIS. The values of extendedcisl are sensibly
different to corresponding non-extended ones whemsidering variables
X3 and Xs. Once again, this is likely due to the presenceouofliers
(Luxembourg for income, Poland and Slovakia for bipéoyment rate),
whose effect is reduced (or totally eliminated)rb¥ypust indices VCS/VIS,
while is kept by extended indices, including thetreme midsummary
M0). However, as stated before, the extended indicescabe considered
more as a test statistic than an exploratory tool.

7 Final comments

The indices VCS and VIS, introduced and developext hare simple, robust and
easy to interpret statistics, suitable for checking skewness of a set of data, as
well as the extended indices ECS and EIS are a galMeol for making inference
about symmetry. The indices, as pointed out in gaper, may be used even for
evaluating data coming from heavy tailed distribus. This method for defining
indices, developed here for ventiles, could be Igaptneralised to other sets of
symmetric quantiles (deciles, centiles or whateslse). We have considered, in
this study, that ventiles may be a possible compsenbetween simplicity and
precision; nonetheless, any other choice is undamlptworth of attention. It
would be interesting, in a further research, to enak comparison between the
performances of indices resulting from each chateuantiles, and to compare
all them withy and other existing indices of skewness.
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