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Abstract 

In this paper, which follows a recent field of research started by Tukey 
(1977), a class of indices of skewness is introduced, based on a symmetric 
set of quantiles. Two kinds of normaisation are proposed, leading to 
different indices, called VCS (Ventile Coefficient of Skewness) and VIS 
(Ventile Index of Slewness), respectively. The sample distribution of both 
indices is studied by a Monte Carlo simulation. Two extended indices of 
skewness (ECS and EIS) are proposed, having interesting inferential 
properties. Finally, an application to national data of 27 E.U. countries is 
presented, with a brief comment of the results. 

. 

1 Introducing the problem 

The most known and successful index of skewness ever proposed is surely 
Pearson’s γ, defined as the ratio of the third central moment to the cube of 
standard deviation. However, the most recent research lines about skewness do 
follow a quantile pattern. Such an approach, having the aim to define robust, 
efficient and user-friendly indices of shape (skewness and kurtosis) has been 
followed by several Authors, such as Tukey (1977), Antille et al. (1982), Hoaglin 
et al. (1985), Mac Gillivray (1986), Kappenman (1988), Arnold and Groeneveld 
(1995), Groeneveld (1998), Wang and Serfling (2005). In two recent papers 
(Brizzi, 2000 and 2002), we proposed and studied a class of indices of shape 
(skewness and kurtosis) based on letter values, which are symmetric quantiles 
whose analysis gives a particular stress to tails. In the present study, we do 
propose a class of indices of skewness which are built by taking into account all 
the sample body, the center as well as the tails. With this aim, we are intended to 
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use a set of symmetric quantiles; we will develop a class of indices, study the 
corresponding sample distribution and give an example by calculating new indices, 
referred to a set of geographical and socio-economic variables, considering 
updated national data of E.U. countries. 

2 Ventile-based indices of skewness 

Let  Y  be a quantitative variable, discrete or continuous, let  y1, y2, .., yn  be the set 
of data we have to analyse. Denote with y(1), y(2), .., y(n) the same data, arranged in 
non-decreasing order, and let C(k) be the k-th centile of the same data. We could 
consider every set of quantiles, even the whole set of 99 centiles, but it would 
belogically weak to calculate such a number of statistics on sample data, especially 
if the set is not so large. On the other side, focusing our analysis on a reduced set 
quartiles or deciles) would surely lead us to throw away too much of sample 
information; we have to find a compromise between simplicity and precision: 
therefore, we will propose here a ventile-based approach. 

From the arranged data y(1), y(2), .., y(n), we can easily determine nineteen 
sample ventiles, which correspond to the centiles C(5), C(10),…, up to C(95). We will 
denote the j-th ventile by V(j), following  the usual convention to put: 
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As a simple example, we have, for a sample size n = 25. The 19 ventiles are 

the following order statistics:  
y(2),   y(3),   y(4) ,  [y(5)+y (6)] /2,   y(7) ,   y(8),   y(9),  [y(10)+y (11)] /2,   y(12) ,   y(13) (median),  
y(14),  [y(15)+y (16)] /2,   y(17) ,   y(18) ,   y(19) ,  [y(20)+y (21)] /2,   y(22) ,   y(23) ,   y(24). 
 

Now, if we take the average of the 19 ventiles, we derive the Ventile Average 
(VA), a robust estimator of the population mean, belonging to the class of L-
statistics (see Hampel et al., 1986). Analogously, we can calculate, directly on 
ventiles, some indices of dispersion, such as ventile standard deviation (VSD) and 
ventile absolute deviation about the median (VAD), respectively given by: 
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We will use these ventile-based statistics in the standardizing procedure, 

described later. Following the same approach proposed in Brizzi (2000), we can 
arrange the ventiles in symmetric couples, considering the median apart and take 
their midvalues: 
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Following Tukey (1977), we will call these values “midsummaries” If the 
sample is perfectly symmetric, the midsummaries are all equal. Otherwise, if the 
data are positively (negatively) skewed, the midsummaries would have an 
increasing (decreasing) trend. We can then consider the slope of a least-squares 
straight line interpolating the midsummaries as an index of skewness. Since the 
values defined in (2.4) depend on the level of magnitude (or unit of measurement) 
of the data, it is useful to standardize them in order to allow a wider comparison. 
We suggest two distinct criteria of standardization, based on VSD and VAD, 
respectively: 
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If we consider couples of values (t(i), u(i)), where t(i) = i/10, and plot them on 

the plane, we can plot a graphical representation of the skewness of our dataset. 
Moreover, if we interpolate these points with a straight line, using the standard 
least squares method, the slope may be a suitable index of skewness; we call it 
Ventile Coefficient of Skewness, defined by: 
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Considering that t(i) values are not random at all, we can rewrite the VCS as a 
linear combination of u(i) values, and precisely: 
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If we do the same with the points (t(i), w(i)), and take the slope of the standard 
least squares interpolating line,  we can define another index of skewness, called 
here the Ventile Index of Skewness (VIS). The formal expression is: 
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As well as VCS, also the index VIS may be rewritten as a linear combination 
of standardized midsummaries: 
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The indices VCS and VIS may be applied directly on theoretical distributions, 

since their definition is univocal; this was not possible when using letter values, 
because the definition of the indices depended on the size n. If we apply the new 
indices to a “classic” positively skewed model, such as negative exponential, we 
may determine the level of skewness of the distribution itself, thus fixing a 
reference value, which helps us for an easier interpretation of the indices proposed. 
The standardizing procedures (2.5) and (2.6) make the indices invariant by linear 
transformation, and we have then “unique” exponential values of VCS and VIS, 
regardless of the exponential parameter λ. These “typically exponential” values of 
the indices are: VCS= 1.016, VIS= 1.327.  Being the value of VCS very near to 
one under an exponential distribution, the same index becomes easier to interpret: 
a value of 0.5, say, indicates almost a half of the skewness corresponding to an 
exponential model. Moreover, due to the use of ventiles as source of the data 
information, the statistics VCS and VIS can also be applied to heavy-tailed models 
like Cauchy or Pareto. Being the Cauchy distribution symmetrical, both the indices 
are equal to zero; for what concerns Pareto distribution, we have represented some 
values in Table 1: 
 

Table 1: Ventile-based indices of skewness under a theoretical Pareto model (κ=1, α 
variable).  

    
Nr. of 
finite   

αααα    moments  VCS VIS 

1 0 1.557 2.963 
1.5 1 1.469 2.414 
2 1 1.391 2.135 
3 2 1.288 1.859 
4 3 1.228 1.723 

5 4 1.189 1.642 
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3 Application: The series of prime numbers  

We have applied the indices of skewness above defined to a particular “natural” 
set of values, taken from arithmetics: the set of prime numbers less than N, and 
studied the behavior of skewness as N increases.  

We have then tried to compare the “classic” moment-based index of skewness 
(Pearson’s γ) with the ventile-based indices, on the set of prime numbers less than 
N, for some values of N from 100 to 50,000. We have reported, in Table 2, for 
each limit value N, some interesting statistical features: the number N*  of prime 
numbers in the set, the coverage fraction of prime numbers (N*/N), the values 
taken by the indices γ, VCS and VIS and the ratio VIS/VCS. 

Table 2: Moment- and Ventile-based indices of skewness applied to prime numbers. 

ΝΝΝΝ    N* 
 

N* / N 
 
γγγγ VCS VIS 

 
VIS/VCS 

100 25 0.250 0.230 0.206 0.238 1.155 

300 62 0.207 0.167 0.176 0.201 1.142 

500 95 0.190 0.162 0.169 0.195 1.154 

1000 168 0.168 0.155 0.171 0.197 1.152 

3000 430 0.143 0.128 0.159 0.184 1.157 

5000 669 0.134 0.124 0.139 0.161 1.158 

10000 1229 0.123 0.111 0.127 0.146 1.144 

25000 2762 0.110 0.100 0.115 0.132 1.148 

50000 5133 0.103 0.095 0.108 0.125 1.157 

 

Looking at the table, we notice that there is an evident decreasing trend of 
skewness, with some little oscillation (the series of prime numbers, as usual, has 
often “weak” regularities). The tendency is almost perfectly similar by considering 
all the indices shown; sometimes may happen, for small changes, that a decrease 
of γ corresponds to an increase of ventile-based indices and vice versa (look the 
values for N=500, N=1000). On the other side, the indices VCS and VIS do 
always move in the same direction, and their ratio results to be approximately 
constant (about 1.15).  It may be also interesting to observe that the values of VCS 
and VIS are not far from corresponding γ values. 

4 Sample distribution and inference 

The indices VCS and VIS may be also used within a test of hypothesis regarding 
population symmetry; if we want to check their performance as test statistics, we 
need to know – or to estimate – the sample distribution of the above mentioned 
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indices. The sample distribution of VCS and VIS has been studied by a Monte 
Carlo simulation., performed with “GAUSS” statistical package, under some 
typical hypotheses on population distribution, corresponding to different levels of 
skewness.  

If we have to deal with unimodally distributed data, the indices of skewness 
may be used as  “quick test statistics” for checking normality. Therefore, we have 
simulated the sample distribution under the hypothesis of  normality; being the 
indices independent by linear transformation, we considered a standard normal 
distribution. We have simulated then, for each sample size considered (ranging 
from n=15 to n=75), 100,000 samples taken form a standard normal population, 
computing the values of VCS and VIS. We have represented, respectively in Table 
3 (VCS) and Table 4 (VIS), the main features of the sample distribution of the 
ventile-based indices: 
 

Table 3: Sample distribution of VCS under the hypothesis of standard normality. 

n Average St.Dev. 
Centiles: 
      1.st    2.nd     5.th 

    
95.th 

    
98.th 

    
99.th 

15 0.0003 0.4483 -1.003 -0.902 -0.740 0.737 0.899 1.004 
18 0.0011 0.4243 -0.952 -0.851 -0.696 0.702 0.859 0.956 
25 -0.0003 0.3687 -0.842 -0.750 -0.612 0.606 0.748 0.834 
30 0.0002 0.3343 -0.763 -0.679 -0.550 0.549 0.676 0.760 
35 -0.0016 0.3087 -0.712 -0.629 -0.509 0.508 0.628 0.704 
45 0.0008 0.2794 -0.635 -0.565 -0.461 0.462 0.572 0.640 
60 -0.0001 0.2388 -0.548 -0.488 -0.393 0.392 0.485 0.548 
75 -0.0012 0.2168 -0.502 -0.446 -0.358 0.356 0.441 0.497 

 

Table 4: Sample distribution of VIS under the hypothesis of standard normality. 

 

n Average St.Dev. 
Centiles: 

1.st    2.nd     5.th 
    

95.th 
    

98.th 
    

99.th 
15 0.0015 0,5827 -1.358 -1.196 -0,958 0,955 1,197 1,363 
18 0.0015  0.5618 -1.303 -1.150 -0,921 0,929 1,160 1,306 
25 -0.0003 0.4614 -1.082 -0.950 -0,763 0,758 0,947 1,074 
30 0.0002 0.4177 -0.969 -0.858 -0,686 0,683 0,855 0,969 
35 -0.0020 0.3865 -0.904 -0.795 -0,637 0,633 0,791 0,895 
45 0.0011 0.3451 -0.796 -0.702 -0,567 0,570 0,710 0,800 
60 -0.0002 0.2943 -0.682 -0.605 -0,484 0,482 0,600 0,683 
75 -0.0015 0.2670 -0.624 -0.553 -0,440 0,438 0,546 0,616 

 
The simulated sample distributions of VCS and VIS, under a Gaussian model, 

are approximately symmetric about zero, and the standard deviation is almost 
linearly proportional to n . Since the inequality VAD < VSD holds from well 
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known minimum properties, it is not surprising that VIS (whose standardization is 
based on VAD) has a larger standard deviation, and tail centiles more distant to 
zero, than VCS. 

We have then calculated the power of VCS and VIS, as test statistics, against a 
slightly (positively) skewed alternative (Rayleigh distribution), and against a 
strongly skewed one (negative exponential distribution): for each sample size we 
have simulated 100,000 samples from a Rayleigh (and then Exponential) 
distribution and calculated the indices of skewness, checking how many samples 
did overtake the tail centiles under normality. We have doner the same with 
Pearson index (γ) as a test statistic, comparing the “old” index with the “new” 
ones.  In Table 5 we have reported the main results. 

Table 5: Power of the indices g, VCS and VIS under Rayleigh and Exponential model. 

 Signif.  Rayleigh   Exponential  
n Level Gamma VCS VIS Gamma VCS VIS 

15 0.05 18.45% 18.32% 18.84% 67.51% 74.05% 73.25% 

 0.01 5.33% 5.17% 5.71% 40.25% 50.31% 50.06% 

18 0.05 21.57% 21.70% 21.46% 76.67% 82.57% 81.71% 

 0.01 6.57% 6.45% 6.64% 49.80% 62.62% 62.19% 

25 0.05 28.51% 21.57% 21.16% 89.24% 84.04% 83.22% 

 0.01 9.08% 6.76% 6.48% 67.74% 65.14% 63.72% 

30 0.05 33.13% 26.11% 25.95% 94.11% 91.26% 91.78% 

 0.01 11.96% 9.00% 8.92% 78.67% 77.68% 76.55% 

35 0.05 37.91% 29.94% 30.08% 96.86% 95.26% 94.86% 

 0.01 13.61% 10.79% 10.79% 84.88% 86.01% 85.11% 

45 0.05 46.26% 32.13% 31.63% 99.17% 97.07% 96.82% 

 0.01 19.94% 12.04% 12.22% 94.54% 90.30% 89.60% 

60 0.05 58.74% 42.19% 41.73% 99.91% 99.51% 99.44% 

 0.01 27.96% 18.74% 18.26% 98.81% 97.73% 97.39% 

75 0.05 69.16% 48.70% 48.05% 99.93% 99.62% 99.56% 

 0.01 37.26% 23.56% 23.13% 99.79% 99.27% 99.18% 

In Table 3, we have evidenced in bold the maximum power resulting for every 
combination of alternative distribution, sample size and significance level. 
 

Looking at Table 5, we notice that the new indices (VCS and VIS) are more 
powerful than γ just for small values of n, whereas the “classic” index γ performas 
much better for larger values. If we compare the ventile-based indices by means of 
power, the performances are very similar. For an exponential alternative, VCS is 
always more powerful than VIS, but the difference is not relevant. In order to 
increase the power, we propose in the next chapter the “extended” ventile-based 
indices. 
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5 Extended indices of skewness 

The indices VCS and VIS are robust, because they do not consider at all what 
happens in the tails; for instance, if the sample size is 75, three data from each tail 
are “dumb”, as they do not have any influence on the indices value. On the other 
side, this trimming procedure reduces the power of the indices as test statistics. If 
we want to give back some meaning to the tail values, and to increase the power of 
the related test of skewness, we can define an extended index of skewness 
corresponding to each ventile-based index, by adding a further midsummary as the 

extremes midvalue: 
2

)()1(
)10(

nyy
M

+
=  . This “new” midsummary may be 

standardized by (2.5) or (2.6), thus extending the series of points representing the 
skewness. Since this last point covers all the sample, it is quite natural to put the 
corresponding abscissa t(10) = 1. 
 

Table 6: Sample distribution of ECS and EIS under the hypothesis of normality. 

n Average St.Dev. 
Centiles: 
      1.st    2.nd     5.th 

    
95.th 

    
98.th 

    
99.th 

ECS            
15 -0.0014 0.4142 -0.927 -0.833 -0.686 0.678 0.828 0.922 
18 -0.0029 0.3897 -0.876 -0.789 -0.648 0.639 0.783 0.872 
25 0.0008 0.3240 -0.737 -0.656 -0.534 0.534 0.658 0.733 
30 0.0005 0.2978 -0.680 -0.605 -0.490 0.491 0.605 0.679 
35 0.0012 0.2790 -0.635 -0.563 -0.458 0.461 0.570 0.643 
45 0.0001 0.2466 -0.562 -0.501 -0.407 0.407 0.504 0.568 
60 0.0011 0.2179 -0.500 -0.443 -0.357 0.361 0.446 0.501 
75 0.0007 0.1991 -0.458 -0.407 -0.328 0.327 0.407 0.458 

EIS            
15 -0.0014 0.5305 -1.244 -1.090 -0.875 0.866 1.087 1.234 
18 -0.0038 0.5080 -1.178 -1.047 -0.842 0.830 1.039 1.175 
25 0.0010 0.4109 -0.957 -0.842 -0.677 0.676 0.847 0.958 
30 0.0006 0.3776 -0.878 -0.774 -0.621 0.622 0.775 0.878 
35 0.0017 0.3543 -0.821 -0.723 -0.580 0.584 0.731 0.833 
45 0.0002 0.3136 -0.725 -0.643 -0.516 0.518 0.646 0.733 
60 0.0015 0.2784 -0.646 -0.570 -0.455 0.461 0.574 0.649 
75 0.0010 0.2554 -0.595 -0.526 -0.419 0.420 0.526 0.595 

The sample distributions above represented may be used for defining a 
statistical test for checking the null hypothesis of symmetry. 
 

Applying the standardization (2.5) we derive the extended coefficient of 
skewness (ECS), defined as (2.7), just adding a point; ECS may be written, like 
VCS, as a linear combination of u(i)’s: 
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On the other side, applying the standardization (2.6) we derive the extended 
index of skewness (EIS), defined as (2.9). The EIS may be expressed as: 
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Once defined these extended indices, we have performed again a simulation, in 
order to study the sample distribution of VCS and VIS: 

Looking at Table 7, we can observe that the extended indices (ECS, EIS) are 
more powerful than γ, for every sample size considered and for both the 
alternatives proposed. The difference seems to be more relevant when considering 
a reduced significance level (α=0.01). When considering the exponential 
alternative and a large sample size, the indices are almost equally powerful, since 
in such conditions the power is very near to one. 
 

Table 7: Power of the indices ECS and EIS under Rayleigh and Exponential model: 
power percentage and comparison with γγγγ . 

  Rayleigh   Exponential   

n 

 
Level 
of αααα 

 
 

ECS EIS 

ECS 
(γγγγ = 
100) 

EIS 
(γγγγ = 
100) 

 
 

ECS EIS 

ECS 
(γγγγ = 
100) 

EIS 
(γγγγ = 
100) 

15 0.05 20.71% 20.86% 112.25 113.06 78.84% 77.23% 116.78 114.39 

 0.01 5.93% 6.16% 111.26 115.57 57.63% 55.26% 143.16 137.27 

18 0.05 24.58% 24.25% 113.95 112.42 86.60% 85.38% 112.96 111.36 

 0.01 7.73% 7.82% 117.66 119.03 69.52% 67.43% 139.60 135.41 

25 0.05 30.49% 30.26% 106.94 106.14 94.37% 93.69% 105.75 104.99 

 0.01 10.96% 10.94% 120.70 120.48 84.28% 82.40% 124.41 121.64 

30 0.05 36.89% 36.00% 111.35 108.66 97.54% 97.09% 103.65 103.17 

 0.01 14.51% 14.28% 121.32 119.40 91.89% 90.61% 116.80 115.17 

35 0.05 42.27% 41.84% 111.50 110.37 98.99% 98.73% 102.20 101.94 

 0.01 17.43% 17.36% 128.07 127.55 95.74% 94.73% 112.79 111.60 

45 0.05 52.11% 51.09% 112.65 110.44 99.78% 99.71% 100.62 100.55 

 0.01 24.98% 24.52% 125.28 122.97 98.82% 98.46% 104.52 104.15 

60 0.05 65.39% 63.82% 111.32 108.65 99.99% 99.98% 100.08 100.07 

 0.01 37.83% 36.09% 135.30 129.08 99.88% 99.82% 101.08 101.02 

75 
0.05 

75.28% 73.41% 
108.85 106.15 99.999

% 
99.998

% 
100.01 100.01 

 
0.01 

48.44% 45.79% 
130.01 122.89 99.988

% 
99.980

% 
100.20 100.19 
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6 Application to national data of E.U. countries 

Finally, this ventile-based methodology has then been applied to a dataset of 
national data referred to the 27 countries of E.U. We have chosen a set of eight 
geographical and socio-economic variables for this application. The variables, 
labaled form X1 to X8,  are: area (in squared kms), population (thousands of 
resident people), income per capita, life expectation at birth (years), 
unemployment rate (in %), diffusion of Personal computers and mobile phones. 
Finally, we considered also the value of HDI (Human Development Index), a 
recently-defined index trying to give a normalised measure to human welfare, used 
since 1990 by the United Nation Development Programme. According to last 
evaluations, the highest HDI value in the world is 0.963 (Norway), while the 
lowest is 0.298 (Sierra Leone). In Table 8 we reported the ventile-based statistics 
and Pearson’s index of skewness (γ), in order to make some comparisons. 
 

 Table 8: Ventile-based statistics and Pearson’s γ for national data of E.U. countries. 

Variable  VA VSD VCS VIS ECS EIS γγγγ    

Area (sq.kms) 
 

X1 155188.7 150072.1 1.324 1.798 1.358 1.845 
 

1.049 
Population 
(.000) 

 
X2 16279.6 19004.5 1.469 2.267 1.712 2.643 

 
1.505 

Income  per cap.   
(EUR) 

 
X3 

18527.5 10726.5 0.302 0.338 -0.934 -1.072 

 
 

0.846 

Life expectation 
 

X4 77.00 2.72 -1.118 -1.465 -1.018 -1.334 
 

-0.653 
Unemployment 
Rate (%) 

 
X5 7.94 2.59 0.410 0.582 0.719 0.804 

 
1.442 

Pers.Computer 
(x1000 people)  

 
X6 362.95 184.80 0.310 0.359 0.759 1.078 

 
0.275 

Mobile phones 
(x1000 people) 

 
X7 962.05 135.91 0.407 0.520 0.354 0.411 

 
0.532 

H.D.I. (‰)  
 

X8 900.58 43.07 -0.814 -0.934 0.428 0.546 
 

-0.679 
Source of data: “Calendario Atlante 2007”, Istituto Geografico De Agostini, Novara. 
  

Looking at Table 8, we can point out many important things. First of all, we 
can use a complete set of ventile statistics (average, standard deviation, skewness) 
as a brief picture of the behaviour of EU countries with respect to the variables 
considered here. Focusing our attention on skewness, we can easily notice that all 
the indices considered are concordant (positive or negative). Moreover, we can 
make three kinds of comparison between indices: 
 

a) VCS/VIS against Gamma. The most relevant differences are registered for 
X3,  X4, X5.  For two of them (X3 and X5) γ value is markedly higher; this 
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fact can be explained with the presence of a small number of outliers and 
the robustness of VCS/VIS with respect to them. For X4 , γ value markedly 
lower, and this may be explained (although less clearly) with the low 
variability of X4 itself. 

b) VCS against VIS. The latter index has always a higher value, due to the 
different kind of normalisation (VAD is always lower than VSD). For some 
variable the difference is very relevant, especially for X2 , which is the  
variable with the highest level of variability (the only one having VSD > 
VA) and the highest level of skewness, with respect to all indices. 

 
c) ECS/EIS against VCS/VIS. The values of extended indices are sensibly 

different to corresponding non-extended ones when considering variables 
X3  and X5. Once again, this is likely due to the presence of outliers 
(Luxembourg for income, Poland and Slovakia for Unemployment rate), 
whose effect is reduced (or totally eliminated) by robust indices VCS/VIS, 
while is kept by extended indices, including the extreme midsummary 
M(10). However, as stated before, the extended indices are to be considered 
more as a test statistic than an exploratory tool. 

7 Final comments 

The indices VCS and VIS, introduced and developed here, are simple, robust  and 
easy to interpret statistics, suitable for checking the skewness of a set of data, as 
well as the extended indices ECS and EIS are a powerful tool for making inference 
about symmetry. The indices, as pointed out in this paper, may be used even for 
evaluating data coming from heavy tailed distributions. This method for defining 
indices, developed here for ventiles, could be easily generalised to other sets of 
symmetric quantiles (deciles, centiles or whatever else). We have considered, in 
this study, that ventiles may be a possible compromise between simplicity and 
precision; nonetheless, any other choice is undoubtedly worth of attention. It 
would be interesting, in a further research, to make a comparison between the 
performances of indices resulting from each choice of quantiles, and to compare 
all them with γ and other existing indices of skewness. 
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