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ABSTRACT

A novel estimator for estimating the mean length of fibres is proposed for censored data observed in square
shaped windows. Instead of observing the fibre lengths, we observe the ratio between the intensity estimates
of minus-sampling and plus-sampling. It is well-known that both intensity estimators are biased. In the current
work, we derive the ratio of these biases as a function of the mean length assuming a Boolean line segment
model with exponentially distributed lengths and uniformly distributed directions. Having the observed ratio
of the intensity estimators, the inverse of the derived function is suggested as a new estimator for the mean
length. For this estimator, an approximation of its variance is derived. The accuracies of the approximations
are evaluated by means of simulation experiments. The novel method is compared to other methods and
applied to real-world industrial data from nanocellulose crystalline.

Keywords: Boolean model, exponential length distribution, line segments, mean length, minus-sampling,
nanocellulose crystalline, plus-sampling, ratio of estimates, variance.

INTRODUCTION

Fibrous structures are common in natural objects
such as muscle fibres and wood fibres. Currently,
increasing research efforts have been directed to
isolation, production and characterization of novel
nanocelluloses, being fibrous structures in nanoscale.
Nanocellulose can be used in food, pharmaceutical,
and medical industries, which explains the importance
of those new materials. Nanocelluloses may be
classified in three main subcategories: microfibrillated
cellulose (MFC), bacterial nanocellulose (BNC) and
nanocrystalline cellulose (NCC) (Klemm et al., 2011),
of which the latest one is of our interest (Fig. 1).

Rod-shaped NCC, also known as whiskers, is
prepared from natural cellulose by acid hydrolysis.
The morphology and dimensions of the whiskers
depend on the native cellulose source, hydrolysis
time and temperature. The analysis of particle
size distribution of nanocellulose is needed mainly
for two purposes: to compare and learn about
different isolation/production mechanisms and certain
applications may require more specific information
about size distribution of nanocellulose. Using high-
resolution microscopy techniques such as atomic force
microscopy (AFM) (Pöhler et al., 2010) together with

image processing techniques (Kärkkäinen et al., 2012),
the information on the structure of nanocellulose can
be obtained (Fig. 1). In the current work, our objective
is to introduce an estimation method for the mean
length of whiskers observed in nanoscale.

Fig. 1. An image of rod-shaped NCC particles with
identified and coloured whiskers. The size of the image
is 5 µm×5 µm.

In practice, the spatial system of fibre-like
objects is observed through a bounded observation
window (Fig. 1). When estimating the individual
model parameters such as the intensity, the mean
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number of objects per unit area or the fibre length
distribution, their estimators are often degraded by
edge effects: censoring effect and spatial sampling bias
(Baddeley, 1999). Censoring happens if the lengths
of fibres can only be observed inside the observation
window. Spatial sampling bias results from an “unfair”
sampling, i.e., the longer fibres are sampled more
probably than the shorter ones. Examples of unfair
sampling rules are plus-sampling and minus-sampling.
In plus-sampling, the fibres hitting the observation
window are sampled, whereas in minus-sampling only
the fibres lying completely in the observation window
are sampled (Miles, 1974).

The biases of plus-sampling and minus-sampling
can be tackled by weighting the observations, which
results in Horvitz-Thompson type estimators (Miles,
1974; Baddeley, 1999). The use of (weighted) minus-
sampling requires that the observation window is large
enough when compared to individual fibre length, i.e.,
every segment must fit in the observation window
(Baddeley, 1999, p. 50).

Alternatively, unbiased sampling rules such as the
associated point rule can be used (Miles, 1978). Then,
the fibres having their associated point (for example
the northern end) in the window are sampled.

Note that both the weighted plus-sampling and
the associated point rule assume that the parts of
fibres lying outside of the observation window can be
recorded.

The idea of the present paper is to introduce an
alternative method for estimating the mean length of
the fibres by using the ratio of two biased intensity
estimators, based on plus- and minus-sampling. There
is no need for the measurement of lengths, only
the ratio of these two intensity estimators is needed.
Therefore this method can be useful especially in
such cases, where we cannot see outside the sampling
window, and the data contains censored lengths. When
using minus-sampling, we, however, require that the
observation window is large enough.

The novel estimator of the mean length is a
function of the ratio. In our work, the function is
determined for the Boolean model (Matheron, 1972;
1975) of line segments. We also need to make
assumptions about the line segments: the direction
distribution is assumed to be uniform and the length
is modelled by the exponential distribution, which is a
common choice in industrial processes.

When compared to our previous paper (Niilo-
Rämä and Kärkkäinen, 2011), we further determine
the approximate analytical variance of the estimator.
The accuracy of the method is evaluated analytically

and with simulation experiments, where the intensity
of the Boolean model and the mean length of fibres
are varied. Further, the method is compared to other
methods and applied for estimating the mean length of
nanocrystalline cellulose (Fig. 1).

DATA DESCRIPTION AND IMAGE
PROCESSING

The nanocrystalline cellulose was prepared from
ground Whatman 541 ashless filter paper (Kontturi
et al., 2007). Sample preparation for atomic force
microscopy (AFM) was conducted by spin-coating
(Kontturi et al., 2007; Ahola et al., 2008) to
achieve a uniformly scattered fibril layer. In spin
coating, solid films are prepared from a dissolved
or dispersed substance by removing the solvent with
high-speed spinning. The substrate used in our study
was a commercial silicon oxide wafer (pieces with
size ∼ 1 cm2), which was cleaned by rinsing with
MilliQ-water and placed into UV-ozonator. Firstly,
cellulose nanocrystal suspension was diluted to the
concentration of approximately 0.005 m-%. Secondly,
suspension was spin-coated with a speed of 4000 rpm
for 30 s. Finally, the substrate was carefully rinsed
to remove unattached fibrils and oven-dried (80◦C,
10 min). The samples were stored in desiccator before
imaging. Images were taken with Nanoscope IIIa
multimode scanning probe microscope from Digital
Instruments Inc at Aalto University. The images were
scanned in tapping mode in air. The size of the images
was 5 µm × 5 µm, see an example in Fig. 1.

For analyzing the structure of individual whiskers
in the obtained image, a set of image processing
techniques needs to be performed in order to form
a pixel sequence for each whisker. In the image
processing the image was first filtered using bandpass
filter (Gonzalez and Woods, 2002) and median filter
(Nisslert et al., 2007) in order to reduce noise.
Second, the image was binarized using isodata
thresholding (Ridler and Calvard, 1978). Then, the
image was dilated to remove small particles and
finally skeletonized (Gonzalez and Woods, 2002). The
following steps of the image processing are described
in more detail in Kärkkäinen et al. (2012). Starting
from the skeletonized image, each pixel point of the
image was first categorized into one of four classes:
background point, end point, branch-intersection point
and normal skeleton point with a given rule. Second,
some detached but close intersection areas were
merged in order to form real physical intersection
areas. Short connecting parts of whiskers and also
intersection areas without any connected part of
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whiskers were removed. Then, in a certain intersection
area a weight for each pair of whiskers was calculated,
having a low value in the case of similar curvatures
and different directions of the whiskers. The pair with
the lowest weight was connected to form a single
whisker in favour of straighter and longer whiskers.
The whiskers with random colours are illustrated in
Fig. 1.

THE BOOLEAN MODEL

Let us consider a marked point process Ψ =
{xi,Ki}, where the locations {xi} follow a point
process in R2 and the marks {Ki} are random compact
sets in R2. A germ-grain model with germs {xi} and
grains {Ki} (Hanisch, 1981) is the union

Ξ =
⋃

i

(xi +Ki) .

The germ-grain model is assumed to be stationary, in
which case we can define a “typical” grain K0, which
is a random closed set. Its distribution Q is the mark
distribution of Ψ on the space K of compact sets in R2

(Stoyan et al., 1995, p. 216; Chiu et al., 2013).

In this work, we assume that {xi} form a stationary
Poisson point process in R2 with intensity λ and Ki is a
line segment with random length Li and angle Ai from
common distributions fL(l) and fA(α), respectively.
The line segments are independent of each other
and, further, independent of the points. This type of
model is called a Boolean model (Matheron, 1972).
In addition, we assume that the line segments are
separable.

THE RATIO ESTIMATOR

Next we introduce a novel method for estimating
the mean length of line segments observed in a square
shaped observation window W, which is a convex
and compact set in R2. The idea is to use the ratio
of two biased intensity estimators in the estimation
of the mean length of the segments (Niilo-Rämä and
Kärkkäinen, 2011).

MINUS- AND PLUS-SAMPLING

Let us first recall the basic results of minus-
and plus-sampling when estimating the intensity of a
stationary germ-grain model with separable segments
{Xi = xi + Ki}. Without loss of generality, we can
assume that W is a unit square.

When using plus-sampling, the estimator of the
intensity λ is the number of fibres hitting W, i.e.,
#{i : Xi ∩W 6= /0}. The expectation of the estimator
is obtained by the Campbell-Mecke theorem (cf.
Baddeley, 1999),

E [#{i : Xi∩W 6= /0}]

= E

[
∑

i
1(Xi∩W 6= /0)

]

= λE0
[∫

R2
1((K0 + x)∩W 6= /0)dx

]
= λE0 [|W ⊕ Ǩ0|

]
, (1)

where E0 is the expectation with respect to Q and

W 7→W ⊕ Ǩ0 = {x ∈ R2 : (K0 + x)∩W 6= /0}

is the dilation of W , and | · | denotes the surface area.
Consequently, using minus-sampling, the expected
number of fibres included in W is given by

E [#{i : Xi ⊂W}] = λE0 [|W 	K0|] , (2)

where

W 7→W 	K0 = {x ∈ R2 : (K0 + x)⊂W}

is the erosion of W . Instead of having λ on the right-
hand sides of Eqs. 1 and 2, we are dealing with
sampling biases E0

[
|W ⊕ Ǩ0|

]
and E0 [|W 	K0|] . Our

target is to calculate both of them and use their ratio in
the estimation of the mean length of the segments.

CONSTRUCTION OF THE ESTIMATOR
Let us assume a Boolean model with line segments

having a random length L ∼ Exp(1/θ) with E[L] =
θ and a random direction A ∼ U [0,2π) with the
horizontal axis. In addition, the length and the
direction are assumed to be independent of each other.
Using our assumptions, we derive P(Xi ⊂W |Xi∩W 6=
/0), the conditional probability that a line segment Xi
is included in W given it hits W , i.e., a line segment
sampled using plus-sampling would also be sampled
in minus-sampling. Finally, we relate this conditional
probability to the mean length of the segments with a
given length density.

Mathematically, the conditional inclusion
probability of a line segment conditional on hitting
the window equals the ratio of the expected sample
sizes of minus- and plus-samplings:

P(Xi ⊂W |Xi∩W 6= /0) =
E[#{i : Xi ⊂W}]

E[#{i : Xi∩W 6= /0}]
. (3)

Using Eqs. 1 and 2, we obtain from Eq. 3

P(Xi ⊂W |Xi∩W 6= /0) =
E0[|W 	K0|]
E0[|W ⊕ Ǩ0|]

. (4)
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The left-hand side of Eq. 4 can be estimated from the
data with the ratio of the intensity estimates of minus-
and plus-sampling. In order to use that, we need to
calculate the right side of Eq. 4 and its relation to the
length distribution.

Recall that W is a unit square. With a fixed length
l and a direction α, the area for the erosion can be
written in the form

|W 	K0|= 1(l|sinα| ≤ 1)1(l|cosα| ≤ 1)
× (1− l|cosα|)(1− l|sinα|)

and for the dilation

|W ⊕ Ǩ0|= 1+ l|cosα|+ l|sinα| .

Next, let us assume that the direction and the length
are random, with density functions fA(α) and fL(l),
respectively. In that case, W 	 K0 and W ⊕ Ǩ0 are
random compact sets. Then, the expected area for the
erosion can be given by

E0[|W 	K0|] =
∫
K
|W 	K0|dQ(K0)

=
∫

∞

0

∫ 2π

0
fL(l) fA(α)(1− l|cosα|)+

× (1− l|sinα|)+ dα dl . (5)

The solution of the integral in Eq. 5 is not available in
closed form but can be approximated by

E0[|W 	K0|]≈
∫

∞

0

∫ 2π

0
fL(l) fA(α)(1− l|cosα|)

× (1− l|sinα|)dα dl . (6)

This approximation is quite accurate when l is small
enough (Fig. 2 and the simulation examples later).
Applying some algebra and properties of trigonometric
functions, the right-hand side of Eq. 6 yields

∫
∞

0
fL(l)dl− 4

π

∫
∞

0
l fL(l)dl +

1
π

∫
∞

0
l2 fL(l)dl

= 1− 4
π
E[L]+

1
π
E[L2] . (7)

For the dilation we are able to calculate the accurate
expectation, which is

E0[|W ⊕ Ǩ0|] =
∫
K
|W ⊕ Ǩ0|dQ(K0)

=
∫

∞

0

∫ 2π

0
fL(l) fA(α)(1+ l|cosα|+ l|sinα|)dα dl

= 1+
4
π
E[L] . (8)

Recall that L∼Exp(1/θ) with E[L] = θ , in which case
E[L2] = 2θ 2. Combining Eqs. 6–8, we can write Eq. 4
as a function of θ :

P(Xi ⊂W |Xi∩W 6= /0)≈
1− 4θ

π
+ 2θ 2

π

1+ 4θ

π

=: p(θ) . (9)

Note that we are now dealing with a unit square,
i.e., |W | = 1. The estimation method is, however, not
restricted to unit squares, as we can adjust θ , which is
actually the ratio of the mean length of the fibres and
the length of the window side. The ratio of Eq. 9 can
be used for all sizes of squared observation windows if
we can assume the restriction θ ≤ 1. Then, the function
p(θ) is continuous and strictly monotonic.

In practice, when having a realization of a line
segment process, we get an estimate p̂ for the
inclusion probability p(θ) by counting the ratio of
number of segments lying completely inside W and
number of segments intersecting W (assuming that the
denominator is greater than zero). Then the estimator
of θ is obtained by using the inverse function p−1 , i.e.,

θ̂ = p−1(p̂) . (10)
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Fig. 2. The graph of the function p(θ) (solid line)
together with a scatter plot of simulated inclusion
ratios using different values between 0.1 and 1.0 for
θ and the intensity λ = 30 for line segments.

APPROXIMATE VARIANCE OF
THE ESTIMATOR

Next we are going to derive the theoretical variance
of the inclusion ratio estimator. The assumptions
are the same as before, i.e., a Boolean model with
intensity λ , exponentially distributed fibre lengths and
uniformly distributed directions.

150



Image Anal Stereol 2014;33:147-155

When estimating the mean length of the fibres
we first have to estimate the theoretical inclusion
probability p(θ) from our sample. To be more precise,
the estimator is

p̂ =
N−
N+

1(N+ > 0)+ p1(N+ = 0) ,

where N− is the number of fibres lying completely
inside our window (sample size using minus-
sampling) and N+ is the number of fibres hitting
the window (sample size plus-sampling) and p is the
probability shown in Eq. 3. Then

Var[p̂] = Var
[

N−
N+

1(N+ > 0)
]

+ p2Var [1(N+ = 0)]

+2pCov
[

N−
N+

1(N+ > 0),1(N+ = 0)
]
.

(11)

Using the law of total variance, the first term of the
sum on the right-hand side of Eq. 11 can be written as

E
[

Var
[

N−
N+

1(N+ > 0)
∣∣∣∣N+

]]
+Var

[
E
[

N−
N+

1(N+ > 0)
∣∣∣∣N+

]]
.

Since
[
N−
∣∣N+

]
∼ Bin(N+, p), this equals

E
[

N+p(1− p)
N2
+

1(N+ > 0)
]
+Var

[
pN+

N+
1(N+ > 0)

]
= p(1− p)E

[
1(N+ > 0)

N+

]
+ p2

(
E
[
1(N+ > 0)2]−E [1(N+ > 0)]2

)
.

Now N+ ∼ Poisson(λ+), where λ+ = λE0
[
|W ⊕ Ǩ0|

]
,

the expected sample size of plus-sampling (Eqs. 1, 8).
Since E [1(N+ > 0)] = P(N+ > 0) = 1−e−λ+ , the first
term of Eq. 11 reduces to

p(1− p)E
[

1(N+ > 0)
N+

]
+ p2e−λ+(1− e−λ+) .

Applying similar computations, the second term of
Eq. 11 equals p2e−λ+(1− e−λ+) and the third term of
Eq. 11 equals −2p2e−λ+(1− e−λ+). Hence

Var[p̂] = p(1− p)E
[

1(N+ > 0)
N+

]
. (12)

As λ+ → ∞ and p = p(θ), by using the delta
method (Davison, 2003), we obtain the asymptotic

variance of the mean length estimator θ̂ = p−1(p̂)

Var
[
θ̂
]
≈
(

1
p′(θ)

)2

Var [p̂]

=

(
16θ 2 +8πθ +π2

8θ 2 +4πθ −8π

)2

p(1− p)

× E
[

1(N+ > 0)
N+

]
. (13)

The expectation factor in Eqs. 12 and 13 is given by

E
[

1(N+ > 0)
N+

]
= e−λ+

∞

∑
k=1

λ k
+

k!k

= λ+E
[
(1+N+)

−2]
= 2F2(1,1;2,2;λ+)exp(−λ+)λ+ ,

where

kF̀ (a1, . . . ,ak;b1, . . . ,b`;λ+)

:=
∞

∑
n=0

Γ(a1 +n) . . .Γ(ak +n)
Γ(a1) . . .Γ(ak)

× Γ(b1) . . .Γ(b`)
Γ(b1 +n) . . .Γ(b`+n)

λ n
+

n!

is the generalized hypergeometric function. In the
numerical computations we have used the expansion

E
[
N−1
+ 1(N+ > 0)

]
'

m

∑
k=1

(k−1)!
λ k
+

+O(λ
−(m+1)
+ )

as λ+→ ∞, given in Jones and Zhigljavsky (2004).

SIMULATION EXPERIMENTS

The estimator θ̂ = p−1(p̂) and the theoretical
formula for its variance, Eq. 13, are based on
approximations. Therefore, we examined the accuracy
of the estimator and the analytical approximation
of its variance by simulation experiments using R-
software (R Core Team, 2013). With the same
model assumptions as before, we simulated 10 000
realizations of a Boolean line segment model in a
unit square using four different intensities (λ = 20,
λ = 30, λ = 50 and λ = 100) and three different mean
lengths (θ = 0.1, θ = 0.2 and θ = 0.5). From these
realizations we computed the empirical means and
standard errors and also the theoretical approximations
for the standard errors of the estimator using the square
root of Eq. 13 (Tables 1–4).

According to Tables 1–4, the inclusion ratio based
estimator seems to work quite accurately. As was
expected, the bias is small, as is the variance, when the
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intensity is large and the line segments are short. This
means that the observation window should be chosen
to be large enough in order to obtain an unbiased
estimator for θ with a tolerable standard error.

Table 1. Simulation results using intensity λ = 20.

λ = 20 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.1018 0.2039 0.5233

empirical S.E. (θ̂ ) 0.0487 0.0726 0.1868
theoretical S.E. (θ̂ ) 0.0471 0.0692 0.1299

Table 2. Simulation results using intensity λ = 30.

λ = 30 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.1012 0.2012 0.5009

empirical S.E. (θ̂ ) 0.0389 0.0571 0.1366
theoretical S.E. (θ̂ ) 0.0381 0.0560 0.1055

Table 3. Simulation results using intensity λ = 50.

λ = 50 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.1002 0.1994 0.4880

empirical S.E. (θ̂ ) 0.0294 0.0560 0.1055
theoretical S.E. (θ̂ ) 0.0294 0.0432 0.0807

Table 4. Simulation results using intensity λ = 100.

λ = 100 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.0990 0.1984 0.4826

empirical S.E. (θ̂ ) 0.0207 0.0308 0.0563
theoretical S.E. (θ̂ ) 0.0206 0.0302 0.0571

REAL DATA

The novel method was applied to the processed
nanocrystalline cellulose image (Fig. 1). From the
image 794 fibres were detected, 757 of them lying
completely inside the window, i.e., not touching the
edge. As seen in Fig. 3, the assumption about the
exponential length distribution seems to hold quite
well. Only the portion of very short fibres seems to be
too small, this might be due to the fact that some of the
shortest existing fibres (< 1 pixel in the image) were
not detected.
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Fig. 3. Histogram of the measured fibre lengths in
the nanocrystalline cellulose image together with the
graph of the exponential distribution (solid line) with
parameter θ = 9.57.

The estimated inclusion probability was p̂ =

757/794 = 0.9534. Further, using the inclusion ratio
based estimator, the obtained estimate for the mean
length was θ̂ = 0.0188. The approximated standard
error was 0.0032. Scaled to the image size, the
estimated mean length was about 9.57 pixels (0.09 µm)
and the standard error 1.67 pixels (0.02 µm).

For comparison purposes, the mean length of fibres
identified from the picture was 0.0210, that is about
10.70 pixels (0.11 µm). The standard error of the
sample mean estimator was 0.0006, which is about 0.3
pixels (< 0.01 µm).

Next we made simulations using those parameter
values estimated from the real data, i.e., λ = 773
(estimated using the associated point rule) and θ =

0.0210 (see an example in Fig. 4). Using the
novel method for 10 000 realizations, the following
results were obtained: sample mean(θ̂) = 0.0207 and
empirical S.E.(θ̂) = 0.0032, which agrees with the
analytically computed standard error.
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Fig. 4. Simulated realization of a line segment process
with intensity λ = 773 and mean length θ = 0.0210.

COMPARISON WITH OTHER
METHODS

We compared our novel method with two
approaches. First, we used a stereological approach,
where the fibre system is intersected with sampling
lines. In the isotropic case, we have a stereological
formula (Mecke and Stoyan, 1980)

LA =
π

2
PL ,

where LA is the expected total fibre length per unit area
(in our case LA = λθ ), and PL is the expected number
of intersection points with fibres per unit length of a
sampling line in any direction.

Now the estimator for PL is, for example, the
number of intersection points between the fibres and
the boundary of the sampling window W , divided by
the length of the boundary ∂W . Then the unbiased
estimator for the total length in W is

L̂ =
π

2
P̂L|W | .

Further, an estimator for the mean fibre length
suggested by the anonymous referee is

θ̂ =
2L̂
Q

, (14)

where Q is the number of all endpoints of fibres in W .
When using the associated point rule (Miles, 1978), the
expected number of northern points of segments lying
inside the observation window is λ |W |. Consequently,

the expected value for the number of all end points Q
is 2λ |W |. It can be shown that the estimator of Eq. 14
is ratio-unbiased.

Eq. 14 is also applied when the total fibre length
is measured from known fibre lengths in the image of
real data and in simulation experiments.

For the real data, with the stereological approach,
the obtained estimate for the mean length was 10.01
pixels (0.10 µm), whilst with the total length based
estimator, the estimate was 11.55 pixels (0.11 µm).

SIMULATION EXPERIMENTS
For comparison purposes, we made some

simulation experiments and estimated the mean length
using the two alternative estimators.

With chosen parameter values, the simulation
results show that the mean length estimator based on
the total length measure (Tables 6 and 8) has smaller
standard error than the ratio estimator (Tables 2 and
4). In Tables 5 and 7, where stereological approach is
used, we obtained approximately the same accuracy
as with the ratio estimator (Tables 2 and 4). These
methods are both based on indirect measurement of the
total length.

Table 5. Simulation results using intensity λ = 30 and
stereological estimator

λ = 30 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.0995 0.2000 0.5006

empirical S.E. (θ̂ ) 0.0385 0.0548 0.0956

Table 6. Simulation results using intensity λ = 30 and
total length based estimator

λ = 30 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.0999 0.2000 0.4984

empirical S.E. (θ̂ ) 0.0179 0.0353 0.0816

Table 7. Simulation results using intensity λ = 100 and
stereological estimator

λ = 100 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.0992 0.1989 0.4990

empirical S.E. (θ̂ ) 0.0204 0.0425 0.0739

Table 8. Simulation results using intensity λ = 100 and
total length based estimator

λ = 100 θ = 0.1 θ = 0.2 θ = 0.5
sample mean (θ̂ ) 0.0998 0.1996 0.4980

empirical S.E. (θ̂ ) 0.0097 0.0265 0.0632
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Furthermore, we made 10000 simulations using
the estimated parameter values of the nanocellulose
data, i.e., intensity λ = 773 and mean length θ =
0.0210. For the total length based estimator we
obtained sample mean 0.0209 with sample S.E.
0.0007. For the stereological estimator, the sample
mean was 0.0207 and the sample S.E. 0.0033, which
are almost exactly the same as with the ratio estimator.

CONCLUSION

A novel estimation method for the mean length
of line segments was proposed together with accuracy
studies. Moreover, the method was applied to
nanocrystalline cellulose being currently material of
great interest in industry.

Classically, the mean length of line segments
observed in an observation window has been estimated
using such methods as weighted minus- or plus-
sampling. Assuming a Boolean model, we introduced
an alternative method based on the ratio of the random
sample sizes of plus- and minus-samplings. The novel
estimator is a function of the ratio. We determined
the function for the Boolean model of line segments
with an exponential length distribution and a uniform
direction distribution and further the approximate
variance of the estimator. The method is approximate
as well as the obtained theoretical variance of the
estimator. Therefore, the accuracy of the inclusion
ratio based estimator was evaluated both theoretically
and by simulations, which gave promising results.

The method was also compared to the estimators
based on the stereological approach and the
total length measurement. The novel method was
comparable with the stereological estimator which
is based on indirect measuments as our method.
An advantage of our method is that we have an
approximate formula for the variance. The methods
based on the exact length measurements had smaller
variance in simulation experiments with chosen
parameter values and in real data, if the formula is
available.

Besides the variance, other advantages of the novel
method may be the following: it is simple and requires
possibly less work since there is no need to measure the
lengths of individual segments. This is especially an
advantage, when the exact identification of segments is
challenging, but the ratio may be easily available. As a
disadvantage, it should be noted that the novel method
is based on the minus-sampling and therefore it is
required that the observation window is large enough
when compared to the individual fibre length. In that
case, the censoring effect is handled automatically.

The expansion of the method for other length
and direction distribution models may be one of the
challenges in the future. In addition, the method
could possibly be generalized into objects or sampling
windows with different shapes as considered in this
work.
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