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Abstract

Celestial 4-configurations are a class of highly symmetric geometric configurations of
points and lines in the plane in which 4 points lie on each line and 4 lines pass through each
point (that is, they are (n4) configurations). The set of isometries of the plane that map
a configuration to itself (that is, the symmetries of the configuration) partition the points
into orbits, called the symmetry classes of points, and likewise the symmetries of the con-
figuration partition the lines into orbits as well, forming the set of symmetry classes of
lines. Celestial 4-configurations have the property that two lines from each of two sym-
metry classes of lines pass through each point, and two points from each of two symmetry
classes of points lie on each line; a celestial 4-configuration with k£ symmetry classes is
called k-celestial. Celestial configurations may be classified as being trivial, systematic, or
sporadic. Previously, three non-trivial classes of 3-celestial 4-configurations were known.
This paper presents a number of new systematic families of celestial 4-configurations, in-
cluding 16 new 3-celestial families, four 4-celestial families, and three classes of h-celestial
configurations for infinitely many values of h, although it does not provide a complete clas-
sification.
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1 Introduction

A 4-configuration is a collection of points and straight lines, typically in the Euclidean or
projective plane, so that each point has four lines passing through it and each line has four
points lying on it; such configurations are often referred to as (n4) configurations, when the
number n of points and lines of the configuration is to be emphasized. If the configuration
has non-trivial geometric symmetry, that is, if there exists a nontrivial isometry of the
plane that maps the configuration to itself, then we say the configuration is symmetric,
and the points and lines of the configuration may be partitioned into symmetry classes of
points and of lines (i.e., the maximal orbit of a point under the symmetry group forms the
symmetry class of that point, and similarly in the construction of the symmetry classes of
lines). This usage of the word “symmetric” follows Griinbaum [14, p. 16] in reserving
the word “symmetric” to refer to geometric properties of configurations. In other places in
the literature (e.g. [7]), the word symmetric has been used to refer to (ny) configurations,
which are ‘symmetric’ in the numbers of points and lines; again following Griinbaum, we
shall call such configurations balanced, and reserve the use of ’symmetric’ to emphasize
geometric symmetry properties. If the number n of points and lines is relevant, we refer to
an (ny) configuration.

A 4-configuration is celestial if it has two points from each of two symmetry classes
lying on each line and two lines from each of two symmetry classes of lines passing through
each point; if there are h total symmetry classes of points and lines, we refer to an h-
celestial 4-configuration. Figure 1a shows an example of a 3-celestial 4-configuration with
21 points and lines: each point has two lines from each of two symmetry classes (indicated
by color) passing through it, and each line has two points from each of two symmetry
classes of points (again indicated by color) lying on it. Note that not all symmetric 4-
configurations are celestial, however; Figure 1b shows a (204) configuration with three
symmetry classes of points and lines, with the property that one symmetry class of lines
(shown in green) is incident with points from all three symmetry classes of points.

(a) A (214) 3-celestial 4-configuration. (b) A non-celestial (20,4) 3-astral
4-configuration, first shown in [13].

Figure 1: Examples of symmetric 4-configurations.

There has been a fair amount of investigation of 4-configurations in the past 20 years,
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beginning with Griinbaum and Rigby’s 1990 discovery of an intelligible way of presenting
a (214) configuration [15]; this is the configuration shown in Figure la, which is the ce-
lestial 4-configuration with the fewest number of points and lines. In 2003, Marko Boben
and TomaZ Pisanski introduced a class of highly symmetric configurations that they called
polycyclic configurations which had rotational symmetry [8]. Celestial 4-configurations
formed an important class of examples discussed in that paper.

Initial investigation into the classification of symmetric 4-configurations initially fo-
cused on astral configurations [1, 11] which have two symmetry classes of points and
lines, two lines from each of two symmetry classes passing through each point, and two
points from each of two symmetry classes lying on each line; that is, they are 2-celestial
configurations. General celestial 4-configurations continued to be investigated as well [12],
and a number of axioms were developed associating to each celestial configuration a con-
figuration symbol (usually, several equivalent symbols). Given a potential configuration
symbol, it is straightforward to determine if it corresponds to a configuration by verifying
whether the axioms are satisfied. For this reason, celestial 4-configurations form the most
well-understood class of 4-configurations and serve as building blocks for several other
classes of configurations; for examples, see [2, 3, 4, 5, 6] (in some of those references,
celestial configurations are referred to as k-astral configurations). However, despite their
utility and the fact that there are concrete rules governing their existence, there has been
very little work done in classifying h-celestial 4-configurations for h > 2.

The most comprehensive description of celestial configurations occurs in Branko Griin-
baum’s recent monograph Configurations of Points and Lines [14]. In Section 1.5 of that
reference, Griinbaum defines h-astral configurations to be configurations which have h
symmetry classes of points and h symmetry classes of lines. We follow this usage. Unfortu-
nately, in Sections 3.5 — 3.9 of the same reference, he refers to what we are calling celestial
4-configurations as “k-astral” configurations, and all of his discussion of k-astral configura-
tions in those sections refers to celestial configurations only. However, there are very nice
classes of 4-configurations that are k-astral (they have k& symmetry classes of points and
lines) but not k-celestial; for example, see Figure 1b, in which one of the symmetry classes
of lines is incident with points from three different symmetry classes of points (rather than
points from only two symmetry classes of points). In this article, we use the term k-astral
to refer to a configuration with k symmetry classes of points and lines, whether celestial or
not, and the term k-celestial to refer to a k-astral 4-configuration with the added property
that every line contains two points from each of two symmetry classes and every point has
two lines from each of two symmetry classes passing through it.

Following [14], celestial configurations are divided into three broad classes (discussed
in more detail below): (1) trivial configurations; (2) systematic configurations, of which
there are three known classes, and (3) sporadic configurations, which are non-trivial and
(provably) non-systematic.

In this paper, we present a number of new families of systematic celestial 4-configura-
tions. This answers affirmatively the following open question from Griinbaum [14, Section
3.7]: “Do there exist any other systematic families [of 4-celestial configurations] besides
the ones listed above?” and also the open exercise 8, “Find some systematic families for
[4-celestial] configurations other than the ones that arise from an h-celestial configuration
with i < k by insertion of matched pairs”.
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2 Celestial configurations

The theory of celestial configurations has been developed over the past 20 years. The first
known published pictures of celestial configurations appeared in [15] and as examples in
a paper by Marusi¢ and Pisanski [17], as well as in the paper on polycyclic configurations
by Boben and Pisanski [8]; the configurations as a class were introduced by Griinbaum
in unpublished course notes for a course on configurations [9]. The particular case of
2-celestial 4-configurations, also simply known as astral 4-configurations (in general, an
(nq) configuration is astral if it has | 21" | symmetry classes of points and lines, so a 4-
configuration is astral if it has 2 symmetry classes of points and lines), was considered
in [1, 2, 8, 10, 11]; these configurations were completely classified in [1], with a more
intelligible proof provided in [14, Section 3.6].

The most complete treatment of celestial 4-configurations, using the current terminol-
ogy and approach, appears in Griinbaum’s recent monograph on configurations, Configu-
rations of points and lines [14, Section 3.5-3.8]. We follow his treatment in the following
presentation (although, again, all his discussion in those sections refers to celestial config-
urations as k-astral configurations).

Every h-celestial (n4) configuration may be represented by a configuration symbol

m#(s1,t1; 82, t2; .. .5 Sh, th),

where £ is the number of symmetry classes of points, n is the total number of points in the
configuration, m = 7 is the number of points in each symmetry class, and the s; and ;
give the instructions for constructing the configuration geometrically.

Given points P and () and lines ¢; and /5, denote the line containing P and Q as PV )
and the point of intersection of lines ¢; and ¢5 as /1 A {o. If wp, w1, ..., wy,—1 form the
vertices of a regular convex m-gon, labelled cyclically, then a line of span s with respect
to the w; is any line of the form w; V w;y, and given the set of all lines L; = w; V w;4
of span s with respect to w;, the t-th intersection of the span s lines is the set of points
L; NL;_;.

Given a configuration symbol m#(s1,t1; S2,t2; . .. ; S, tn), which is known to corre-
spond to a configuration, that is, given a valid configuration symbol, the corresponding
configuration may be constructed as follows.

1. Construct the vertices of a regular convex m-gon and label them cyclically as

(v0)os (V0)1, -+, (V0)m—1,

and collectively as vg. (Typically, (vg); = (005 (2’”) sin (2 )) so that the points
Vg lie on the unit circle.)

2. Construct all lines of span s; with respect to the vy and label them collectively as
Ly; in particular, (Lo); = (vo)i V (V0)its, -

3. Construct a second set of points v as the ¢1-st intersection of the span s; lines Lg;
that iS, (’01)7; = (LO)i A (LO)i—tl-

4. In general, lines L;_; are lines of span s; with respect to the points v;_1, so that
(Lj-1)i = (vj—1): V (vj_1)iys,;» and points v; are the ¢;-th intersection of the lines
Ljfl, so that (’Uj)i = (Ljfl)i AN (Ljfl)i,tj.
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For the configuration symbol corresponds to a valid configuration, the points with label vy,
(that is, the tj-th intersections of the lines L;,) must correspond, as a set, to the points with
label vg, so that the construction closes up. That is, for the construction to be valid, the
points vy, constructed at the last step should have the same radius as the points vg, they
should have the same “angle”—the angle between point (v, )o and (vp)o should be an even
multiple of -, and all sets of points and lines generated by the algorithm should be distinct.
In addition, we want to avoid “extra incidences”, where lines constructed in a certain step
accidentally pass through points constructed several steps back.

(a) symbol 10#(4, 3;1,2;1,3) (b) symbol 10#{1,3;1,3;4,2}

Figure 2: Two different 3-celestial 4-configurations. In each case, the points vy and lines
Ly are blue, the points v; and lines L; are red, and the points v, and lines Lo are green.

(A1)

Consequently, a configuration symbol m+#(s1,t1;. . . ; sp, tp) with sequence (s1,t1;. . .
i Sh, tr) is valid if it satisfies the following four axioms:
h
. .1 . .
(Even condition) The quantity 3 Z(sl — t;) is an integer.
i=1

(A2)

(A3)

This condition ensures that after following the configuration construction steps, the
angle of the last set of points constructed coincides with the angles of the original set
of points (rather than being offset by a factor of ).

(Order condition) No adjacent symbols in the sequence, taken cyclically, are equal:
thatis, s; # t; # s;y1 fori =1,...,h — 1 and sy, # ), # s1.

This condition ensures that all symmetry classes of lines and points constructed are
distinct.

h h
ST t;m
Cosine condition Ccos ( ! ) =]]cos| 2=

This condition ensures that the radius of the last set of points constructed is equal to
the radius of the original set of points.

Thus, satisfying (A1) and (A3) ensures that the points vy and the points v, coincide
as sets.
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(A4) (Substring condition) No subsequence s,,tp;...;8q OF tp;Spt1,...; 84, g may be
completed to a sequence sy, tp;...;8¢,@ 0r @, tp; Spt1,- - -; Sq, tg Which satisfies the
previous rules (i.e., corresponds to a valid smaller configuration).

This is a technical condition to prohibit lines or points having extra, unwanted inci-
dences.

Given a valid configuration symbol, any sequence formed with entries taken alternately
without replacement from the set S = {s1,82,...,5,} and the set T = {¢1,...,tx}, or
vice versa, will satisfy axioms (A1) and (A3); if they are ordered so as to satisfy axioms
(A2) and (A4), then the new configuration symbol will also be valid. For example, the
configuration shown in Figure 2a, with symbol 104(4, 3;1,2;1,3) has sets S = {4,1,1}
and T = {3,2,3}. If we construct the configuration symbol 10#{1, 3;1, 3; 4,2}, which
satisfies axioms (A1) — (A4), the corresponding configuration also exists; see Figure 2b.

A valid configuration cohort refers to any symbol

m#S; T

where the multisets .S and T satisfy axioms (A1) and (A3), for which there exists a sequence
with entries alternately from S and T satisfying axioms (A2) and (A4). (Note that we
explictly allow S and T to have repeated elements, but the order of the elements in the
sets S and T is irrelevant.) If |S| = |T'| = h, we may occasionally refer to an h-cohort;
in this case, corresponding configurations are h-celestial. Given a cohort, every sequence
with entries taken alternately from .S and 7', or from 7" and then from S, which satisfies
(A2) and (A4) will correspond to a valid configuration symbol. Thus, in trying to classify
celestial configurations, it is easier to classify configuration cohorts.

2.1 Classification of cohorts

If S = T, then the corresponding cohort is necessarily valid. Configuration cohorts of
the form m#5S; S are called trivial. Some cohort sets fall into an infinite family. For
example, the 2-celestial cohorts have been completely classified: there is one infinite fam-
ily 6g#{3¢ — p,p}; {2¢,3¢ — 2p}. A cohort which is a member of an infinite family
is called systematic. Cohorts which are provably neither systematic nor trivial are called
sporadic; for example, there are 15 sporadic 2-celestial cohorts [1],[14, Section 3.6]. Con-
figurations whose corresponding cohorts are trivial/systematic/sporadic are also called triv-
ial/systematic/sporadic.

Definition 2.1. An (h + j)-cohort symbol
Mm#{s1, 82, ..., Sh, a1, a2, ..., a; }; {t1, ta, ..., tp, a1, a2, ..., a; }
is reducible if and only if
m#{s1, 82, ..., sp}; {t1,t2, ..oy th}
is a valid h-cohort symbol.

A cohort which is not reducible is called primitive.
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2.2 Determining valid cohorts

In order to classify cohorts, it is useful to be able to generate, for a given h and m, a list of
all valid h-cohorts m#S;T.

Theorem 2.2. Given cohort symbol

m#{s1,...,sn};{t1,. .., tn}

with h > 2, the symbol violates (A2) (that is, every possible configuration sequence has at
least two adjacent entries that are equal) if and only if there exists a € S N'T that appears
at least h times in the list (s1, 82, ...,8h,t1,t2,...,tp).

Proof. [<] Leta € SN T be an element repeated x times in the sequence
(817 82,y Sh, tla t27 ceey th)7

and assume « > h. Let X count the number of times a appears in .S. To form a valid config-
uration symbol, it must be possible to construct a configuration sequence (s1, t1; S2, t2; . . . ;
S, tn), relabelling the subscripts as necessary, so that no two adjacent elements are equal
(with s; and ¢, considered to be adjacent). We may place all of the elements of .S into
the sequence (in the appropriate slots) first. Then all positions adjacent to one of the as
that have been placed from S cannot be filled with one of the (x — X)) as from 7. The
placement that eliminates the fewest possible positions for the as in T is to place all the as
from S adjacent to each other in this way: (a,t1;a,to;...;a, tx; Sx41,tX 415 - Sh, th)s SO
that there are h — (X + 1) slots in which as from T could be placed (since there are (X +1)
slots ¢; which are blocked by the as). However, there are (z—X) > (h—X) > (h—X —1)
as which need to be placed, a contradiction.
[=>] Assume every element in S N T appears fewer than h times in the sequence

(817827 .. '7Shat17t27 cee ath)a

and let a be the element in S N T" which appears the most times in that sequence.
Case 1: SNT = (). Then

{s1,t1;52,t25...58n,tn}

is a valid configuration sequence.
Case 2: SNT # (). Then there exists a € S NT which appears x < h times in the list
(81,82, .y Shy t1, 2, ..., tp) . Suppose a appears X times in .S. Then

{a,t5a,t2;5 .. 5a,tx;8X 11,0, 85X 42,05+ 3 Sz, @3 Sz 15 tot1; -5 Shytn}
is a valid configuration sequence. O
Corollary 2.3. If SNT = {a}, then m#{s1, S2,...,8n,a};{t1,t2, ..., tn,a} is reducible
to m#{s1,82,...,8n};{t1,t2, .., tn}.

Corollary 2.4. If m#S;T is a (h + 1)-cohort and {a,b} C S NT in which one of a or b
appears at least h times in the list (S1,82, -, Shy Sha1,t1,t2, -y th, thae1) then m#S; T
is not reducible.

Proof. Suppose a appears at least once, and b appears at least h times. Attempt to reduce
m#S; T by removing one of the pairs of a’s. The resulting cohort is not valid, by Theorem
2.2. O
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2.3 2-celestial configurations

2-celestial configurations have been completely classified (see [1] and [14, Section 3.6]).

There is one infinite cohort:

and 15 sporadic cohorts, shown in Table 1, plus disconnected multiples.

6q#{3q — p, p}; {2q,3q — 2p}

Table 1: Sporadic 2-celestial cohorts

30#{7,1};{6,4}
304{12,2}; {11,7}
304{14,6}; {13,11}
304{12,6};{10,10}
304#{14,4}; {12,12}

304{11,1};{10,6}

304{13,7}; {12,10}
30#{872}’3 {676}’

304{13, 1}: {12, 8}

12#{13,1}; {12, 6}
424{18,6}; {17,11}

42#{19,5}; {18,12}

60#{22,2}, (21,9)

60#1{27,3}, {26, 14}

60#{25,5},{24,12}

In determining the list of all valid h-cohorts for a given h, the challenging axiom to
verify is clearly (A3), since determining when products of sines or cosines are rational,
or more generally, of solving trigonometric diophantine equations, is extremely challeng-
ing. The proof of the complete classification of 2-celestial configurations presented in [14],
which is considerably less complex than that presented in [1], used results of Gerald Myer-
son [18] which determined all rational products of three and four sines of rational angles,
and, more importantly for the current problem, determined all rational solutions to

sin(may) sin(mas) = sin(rxs) sin(ray)

which may be converted into the corresponding product of cosines using a simple trigono-
metric identity.

3 New systematic families

A fairly recent article by Miklés Laczkovich [16] apparently provides results on solutions
to

sin(7p1) sin(7py) sin(mps) = sin(mqy) sin(mgz) sin(gs),
but its results are somewhat inexplicit and inaccessible for our current purposes.

For the remainder of this article, we will present known systematic families of h-
celestial configurations—mostly for h = 3,4—which have been found primarily by ad
hoc methods of analyzing lists of valid cohorts. For h = 3,4 data were found by an ex-
haustive computer search using Mathematica. Essentially, for each m, we ran a simple
incrementing loop on the discrete parameters

m
1§t3§t2§t1§83§82§81§5
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which for each choice of discrete parameters checked whether it is trivial and whether
it satisfies (A1), (A2) (using Theorem 2.2), and (A3); the expensive part of this process
is checking the cosine condition. We collected all symbols that pass these tests. Then,
using Corollaries 2.3 and 2.4 and the fact that all 2-celestial configurations are known, we
eliminated reducible configurations. Finally, in the case of 3-cohorts, we removed already-
classified configurations. This left us with reasonably clean, sorted lists of all unclassified
configurations for a given m. The generating Mathematica notebook and raw data are
available athttps://sites.google.com/a/alaska.edu/lwberman/, as well
as lists of celestial configurations that are still unclassified. Production of the data was the
main content of one of the author’s [AB] Summer Fellows project at Ursinus College in
2009. We have generated data for 3-configurations for all m < 120 and for 4-configurations
for m < 64.

Traditionally, in the discussion of symbols for cohorts and configurations, the parame-
ters s; and ¢; are chosen to be less than m /2. However, in the description of infinite families
of cohorts, it is often helpful to allow the parameters to take on larger values; we consider
the geometry of the configuration construction to determine the appropriate way to reduce
the symbol.

Suppose a regular m-gon has all diagonals of span s. Then a diagonal of span s and of
span —s = m — s mod m correspond to the same line. Reflecting over a diameter gives a
different diagonal, but of the same span. We define the standard form of a symbol element
s to be a number s’ with 1 < 5" < % computed by doing the following:

1. First, take the absolute value of s
2. Then, reduce s modulo m.
3. If s > %, replace s with m — s; otherwise, s is already between 1 and %

In the presentations of the infinite families, the spans in question are not, typically, given in
standard form, although the list of valid cohorts is generated in standard form (that is, we
restrict the values of s; and ¢; to be positive and less than %).

4 3-celestial families

A number of years ago, one of the authors [LWB] found the following systematic cohorts
of 3-celestial configurations (which were unpublished until their discussion in [14, Section
3.7]):

® 2¢#{q—p,p,q—2r};{q—r,7,q - 2p}
e 3¢#{q+p,a—p,p}:{¢ q,3p}
o 10g#{5q — p, 2p,p}; {5q — 4p, 4q,2q}

At the time, these families appeared to be exhaustive for 3-celestial configurations
m#S,T where m was not divisible by 6, and there was a conjecture that there were no
other cohorts for such m. Very little was known about classification of 3-celestial config-
urations when m was divisible by 6: one systematic family for m = 6q was listed in [14,
Section 3.7], but this family, m#{3q — p, r, p}; {3¢ — 2p, 2q, r}, is reducible to the known
family of 2-celestial configurations.
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Subsequent computer experiments have revealed the existence of six 3-celestial cohorts
for m = 70. These have not yet been explained. In addition, there is a single unclassified
cohort for m = 105. These are listed in Table 2. Both 70 and 105 are divisible by 35, which
raises the unexpected possibility that there is an infinite family for m divisible by 35, but
no such family is known. (It is not unreasonable that an infinite family of the form m =
35q would not have any entries for ¢ = 1; for example, the infinite family of 2-celestial
configurations does not have any entries for ¢ = 1, since there are no configurations with
m = 6.)

Table 2: Unclassified cohorts for m = 70 and m = 105.

m =170
{24,14,4}; {20,19,9}
{28,12,2}; {27,13,10}
{29,10,1}; {26, 16, 14}
{30,17,3}; {28,22,8}
{33,23,20}; {32, 28,18}
{34,14,6}; {31,30,11}

m =105

{45,30,15}; {42, 35,21}

However, a number of new systematic families of 3-celestial cohorts have been found
in the case when m is divisible by 6, discussed in Section 5.1, below.

5 3-celestial cohorts when m is divisible by 6

51 m = 6q

For m divisible by 6, the following families are known.

Family 1: 6¢#{2q,q — p,3p}; {29 —p,q+2p,pl,p=1,...,2¢ -1
Family 2: 6¢#{3q — p,2p,p};{2¢,2¢,3¢ — 4p},p=1,..,q—1

Family 3: 6q#{2¢ + p,q —2p.p};{2¢.q +p.3pl.p=1,...,2¢ -1
Family 4: 6¢#{3q — 3p,2p,p}; {3¢ —4p,q+p,q—p},p=1,2,...,3¢—1
Family 5: 6¢#{q + 2p,q — 2p,p};{¢ +p,q—p,3p},p=1,...,3¢ -1
Family 6: 69#{3q — p,6p,p};{3q¢ — 4p,2q + 2p,2q — 2p},p=1,..., L%J
Family 7: 69#{2p,3p,3q — 3p}; {3¢ —4p,q — 2p,q+2p},p=1,..., L%J -1
Family 8: 6¢#{3q — 2p,q — 2p,q + 2p}; {2¢,3q9 — 3p,3p},p=1,..., Lg—ij
Family 9: 6g#{3q — 3p,6p,3p}; {q + 4p,3¢ — 4p,q —4pl.p=1,..., 3]

Verification of the validity of these families proceeds by verifying the cosine condition,
using standard trigonometric identities: the identity cos(a) cos(b) = 3 (cos(a+b)+cos(a—
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b)) is especially useful. For example, to see that Family 1 works, note that in the cosine
condition, if ¢ = gr—q,

LHS = cos(2q¢) cos((q — p)o) cos(3pe)
= cos (g) cos((q — p)¢) cos(3pe)

_ %cos((q — p)¢) cos(3pg)

= 1 (cos((a — p+ 3p)) + cos(((q — p) ~ 39)6)

1 1
= cos((a +2p)¢) + 7 cos((q — 4p)9)-
On the other hand,

RHS = cos((2q — p)¢) cos((q + 2p)¢p) cos(pe)
= [cos((2q — p)@) cos(p)] cos((q + 2p)¢)

= - (cos((2¢ —p +p)¢) + cos((2¢ — p — p)¢)) cos((q + 2p)¢)

(c0s (327 + cost(2a - 20)0) ) costla + 20)0)

<; + cos((2q — 2p)q{))> cos((q + 2p)¢)

cos((q + 2p)9) + % cos((2q — 2p)¢) cos((q + 2p)¢)

cos((q + 2p)¢) + i (cos (36(]¢;T> + cos((q — 4P)¢))

ol Bl Bl Bl R Bl N Bl R

cos((q +2p)¢) + 0 + i cos((g — 4p)9),

so the cosine condition is satisfied. In practice, it is easier to let a computer algebra system
verify the cosine condition.
Consider all m < 120 which are divisible by 6 but not 12, that is,

m = 18, 30,42, 54, 66, 78, 90, 102, 114.

For m = 18,54,78,102,114 these nine families completely exhaust the experimentally
derived configurations. For m = 30, 42,90 we expected that there would be additional
configurations, because these are values of m which yielded sporadic 2-celestial configu-
rations, and this expectation was fulfilled.

Surprisingly, there is a collection of cohorts for m = 66, given in Table 3, in addition
to the cohorts have already been identified as 2¢, 3¢ and 6q cohorts, which do not seem
to be part of a systematic infinite family. However, they do satisfy the following family
description:

664{24p, 12p, 6p}; {11 + 6p,11 4+ 3p,2-11 —3p}, p=1,...,10

and
66#4{24p, 12p, 6p}; {11+ 6p,2- 11,11 — 6p}, p=1,...,5
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Table 3: The unexpected 3-celestial cohorts for m = 66.

m = 66

{24,12,6}; {19,17,14}
{24,12,6}; {22,17,5}
{24,18,12}; {23,17,16}
{24,18,12}; {23,22,1}
{25,8,5}; {24,12,6}
{28,5,1}; {24,18,12}
{30,12,6}; {25,22,19}

{30,12,6}; {29, 19, 4}
{30,18,6}; {29,20,13}
{30,18,6}; {29,22,7}
{31,7,2}; {30, 18,6}
{31,22,13}; {30,24, 18}
{31,23,10}; {30,24, 18}
{32,13,1}; {30,24,18}

{30,12,6}; {26, 25,7}

These cohorts, along with the 2¢, 3¢ and 6q cohorts, exhaust the data for m = 66 but they
do not appear to obviously generalize to an additional 6q family.

52 m =12¢q

For 3-celestial configurations with m divisible by 12, in addition to the 6¢ families dis-
cussed in the previous section, there are three known 12¢ families:

o 12q#{5q,3p,q}; {4 + p,4¢ —p,pt.p=1,...,2¢ - 1
e 12¢9#{5q,q,6q — 4p};{6q — p.2p,p},p=1,...,3¢ 1
o 12¢#{5¢,6q — 4p,q};{6qg — 2p,3q +p,3¢ —p}t.p=1,...,¢— 1
The 2q, 3q,6q and 12¢q families completely exhaust the known data for all m < 120
except for the following cases.
e m = 66, 70, 105: conjectured sporadic cohorts (the 66 family is “classified” but does
not appear to generalize)

e m = 30,60, 90,120: there are four known 30q families (see below), but there are
more systematic families yet to be found.

e m = 42,84: almost certainly there are systematic families, but none have been found
yet.

53 m = 30,42, 60

These are very complicated. Note that for 2-celestial configurations, sporadic configura-
tions exist precisely when m = 30,42, 60. Thus additional families, and probably addi-
tional sporadic cases, are to be expected for these values.

Known familes for m divisible by 30 are the following.

e 30g#{15q — p,10q, p}; {15 — 2p, 12q,6q}
e 30¢#{15q — p,12q,p}; {15¢ — 2p, 13¢, 7q}
e 30g#{15q — p,6q, p}; {15¢ — 2p,11q,q}
e 30g#{12¢q,6q, 3p}; {10g + p,10q — p, p}

These are not exhaustive.
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6 4-celestial families

The situation with 4-celestial configurations is considerably less well-understood than the
3-celestial configurations. A few infinite families have been discovered, for m divisible by
2, 3, 6, 10, but the data suggest that the complete story is not yet known.

In particular, unlike the case of 2-celestial and 3-celestial configurations, there are a
few known 4-celestial configurations for prime m. A single cohort exists for m = 17, and
there are two cohorts for m = 61. These are listed in Table 4.

Table 4: Known 4-celestial cohorts for prime m.

m =17
{87 4’ 2’ 1}’ {7’ 6? 57 3}
m = 61

{28,24,8,1};{26,21,19,17}
{29,25,24,8}; {28,27,21, 18}

Like the case for 3-celestial configurations, we discovered some systematic families of
4-celestial configurations; these families have two parameters in addition to g.

e 2q#{q —p,p,2p,q — 4r};{q —r.r,2r,q — 4p}

e 3q#{q+p,q—p,p,3r};{qg+r,q—r.r3p}

e 6g#{p,q+2p,q+2r,2¢ — p}y;{3p,q —r,q —p,2q + 1}
e 10q#{p,5q — p,7,5q¢ — r};{2q,4q,5q — 2r,5q — 2p}

Howeyver, these are far from exhaustive.

7 Other families
7.1 The general case where m = 2q

We found a single family of systematic 2¢*!-celestial configurations for even m:

QQ#{Q 2y 2p7 4p7 ey Qkilpa q— 2kr}; {q -nr, 2T7 47", ey 2}{717‘3 q— ka} (71)

Note that the previously-known 3-celestial family with m divisible by 2, mentioned
in Section 4, is the case £k = 1 of this family, and the 4-celestial case where £ = 2 is
mentioned in Section 6.

We require the following lemma, whose proof is a straightforward induction on k; the
base case is the trigonometric identity

sin(260) = 2sin(0) cos()

in the case where 6 = %

Lemma 7.1. If k,r, m are positive integers, then

. (riﬂ) b . (TT 20y 2l ok—1lpm
sin = 2%gin (—) cos cos -+ COS .
m m m m m
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To see that the family in (7.1) works, it suffices to show that the cosine condition is

satisfied. Note that
((q—p)ﬂ) e (m)
cos | ——— | =sin | —
m 2q

o (2) - (25).

Interpreting the left-hand cohort as a product of cosines and simpifying, we see that

LHS = cos ((q—mp)ﬂ> |:COS (%) cos ((2%)72) cos ((43;1)#) ...k
28 p)mw — 2%
cos <<mp>ﬂ cos <<qm>)
) rl:f o ((Qip)ﬂﬂ . ((ri)ﬂ>
=0 m m

1 ok ok
= o1 sin ( p7r> sin (( r)ﬂ) (applying Lemma 7.1)

and

[l

<]

=
N

=
3 \?

m

Since the left-hand and right-hand cohorts are symmetric in p and r, the right-hand cohort

also simplifies to
1 . (@) . [((2Fp)7
Zh=1 SiR ( - ) sin ( -

so the entire cohort satisfies (A3), the cosine condition.

7.2 The general case where m = 10q

Case 1: 4 | h. There is an infinite family of 4j-celestial 4-configurations when m =
10g and h = 47, of the form

10g#{p1, .., p2;,5¢ — p1,...,5¢ — p2; };
{2¢,...,2¢q,4q,...,4q9,5¢ — 2p1,...,5q — 2p2;}. (7.2)
J J
The 4-celestial family mentioned in Section 6 is the case j = 1.

To see that this family satisfies the cosine condition, let ¢ = %q and note that in the
left-hand side, for each ¢, the pair

1

cos((50 ~ o)) cos(pd) = 5 (cos (587 ) 4 cos((30 — 2000 )

= % cos((5q — 2p;)9),
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so the entire left-hand side of the cosine condition becomes
2j 2j | Y
() H cos((5q — 2p;)¢) = T 1—[1 cos((5q — 2p;) ).
=
On the other hand, note that in the right-hand side, we have Hfi 1 cos((5g — 2p;)9)

already. Finally, note that each of the j pairs
6gm n 4qm
cos | — cos | —
10q 10q

o () (12)-

oos () con ()]
( (1—¢5)+i(1+¢3))
(

!
4

Thus, the entire right-hand side equals fi 1 cos((bg — 2p;) @), so the cosine condition
is satisfied.
Case 2: 3 | h. A similar infinite family exists when m = 10q and 3 | h: if h = 3j, then

e N

Bl o= N N— N

10g#{p1,2p1,5q — 2p1, ..., p;,2p;,5q¢ — 2p;},
{2q,4q,5q — 4p1,...,2q,4q,5¢ — 4p;} (7.3)

is a 3j-celestial infinite family. Again, the 3-celestial family discussed in Section 4 is the
case j = 1.

The proof is similar to the previous family. Each right-hand triple {2¢,4q, 5¢ — 4p;}
becomes a multiplicand i cos((5q —4p;)¢) in the cosine condition. On the other side, each
left-hand triple {5¢ — p, p, 2p} becomes

[cos((5g — p)¢) cos(pd)] cos(2pg) = [cos (W) + cos((bg — 2p)q§)} cos(2pg)

10q

cos((bg — 2p)¢) cos(2pe)

(; (COS (?(q;qr) + cos((5q — 4p)¢))>

= 7 c0s((5¢ — 4p)¢).

=N = N = N

so the cosine condition is satisfied using any number of appropriate triples in the cohorts.

8 Open questions for the classification of celestial 4-configurations

Despite these classification results, there is clearly a lot about celestial configurations that
is poorly understood.
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Question 8.1. Are the 3-celestial cohorts for m = 70, m = 105 sporadic, or are they
members of an infinite family?

Question 8.2. Identify more systematic families of 3-celestial configurations for m divisi-
ble by 30, 42, 60. Are there systematic families for m = 90, m = 120 that are not multiples
of smaller families? (Compare the situation for m = 6q and m = 12¢; there are families
for m = 12q that are different from the smaller 6¢ families.)

Question 8.3. What’s going on with the “sporadic family” of 3-celestial cohorts found for
m = 667 Does it generalize?

Question 8.4. In [16], M. Laczkovich discussed methods for identifying all rational solu-
tions
sin(mpy ) sin(mp2) sin(mps) = sin(mwq ) sin(mga) sin(mgs).

If all solutions to this equation were known, then, using techniques similar to the classifica-
tion of 2-celestial configurations, it should be possible to classify all 3-celestial configura-
tions. However, Laczkovich’s results are not presented in an obviously accessible way for
this purpose. How can his results be used to classify 3-celestial configurations, or at least
to identify new families?

For m < 120, there are no 3-celestial configurations for prime m. However, there is
one 4-celestial cohort with m = 17, and there are two 4-celestial cohorts for m = 61.

Question 8.5. Are there any 3-celestial configurations for prime m or prime powers m?
Are there other 4-celestial configurations for prime m? prime powers?

Question 8.6. Identify new systematic families of 4-celestial configurations, especially for
m divisible by 6.

Question 8.7. Given a known family, is there a general technique to apply “cosine trick-
ery” to produce a different family that has related parameters? That is, from a single in-
finite family, are there a number of “combinatorially related” infinite families that can be
produced?

Question 8.8. For h = 3 and h = 4, systematic families for m = 2¢, 3¢ and 10q have
been identified. Two of these (m = 2q and m = 10q) correspond to infinite families for
infinitely many h. Is there a corresponding infinite family of h-celestial configurations for
m = 3q? Are there infinite families of h-celestial configurations for m = 2¢ when h is not
a power of 2? Are there more infinite families when m = 10¢?

9 Data

Raw data is available at

https://sites.google.com/a/alaska.edu/lwberman/.

It was produced using Mathematica.
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