
ELEKTROTEHNIŠKI VESTNIK 79(4): 153-156, 2012

ERK 2012 CONFERENCE ISSUE

Simulation Model for Ant-Based Control Algorithm in Wireless

Mesh Networks

Erik Pertovt, Kemal Alič, Aleš Švigelj, Mihael Mohorčič

Institut "Jožef Stefan”, Jamova cesta 39, 1000 Ljubljana, Slovenija

E-pošta: erik.pertovt@ijs.si

Abstract
In this paper, we present implementation of the ant-

based control algorithm (ABC) for load balancing in

connection-oriented routing in the wireless mesh

network (WMN) using the OPNET Modeler simulation

tool. We investigate the time required for the initiali-

zation phase of the ABC algorithm within which the

shortest path is found as well as network topologies

with a different number of nodes and different number

of neighbours per node. The resuts show that the

algorithm initialization time increases with the number

of nodes and decreases with the number of neighbours

per node.

1 Introduction

In communication networks, heuristic/agents-based

routing algorithms can be used to implement the

adaptive routing functionalities capable of making the

routing aware of dynamic changes of the network rather

than being oblivious to them [1]. In this context, several

routing algorithms have been developed inspired by the

behaviour of the ant colonies and most of them are

summarized in [2, 3]. Ants are social insects that

collaboratively perform complex tasks, which can not

be performed by one particular ant itself. In simulations,

ants/agents are produced in the form of packets, which

are used for network optimization and management.

 In this paper, we present the implementation of the

main reference ant optimization algorithm for

connection-oriented networks, named Ant-based control

(ABC) [1, 4, 5], in OPNET Modeler [6] simulation

environment with some additional functionalities that

can be used as an option. The algorithm is implemented

in our network coding simulation model, presented in

[7, 8]. We demonstrate the performance of the

simulation model through the investigation of the

initialization phase of the algorithm in wireless mesh

network (WMN), which represents an underlying study

for our work on routing being aware of network coding

opportunities in WMNs. In the initialization time, the

algorithm has to find, as quick as possible, the shortest

paths in the sense of the minimum hop count from all

nodes to all nodes, as Dijkstra optimal routing algorithm

does, which is used as a reference. Several simulation

runs are performed with different network topologies to

evaluate the performance of ABC algorithm.

2 Ant Algorithm

In [1, 4, 5], the ABC algorithm was introduced as the

first ant optimization algorithm applied to a routing

problem. It was used to balance the network traffic of

telephone calls in a telecommunication network. The

purpose of ants in the ABC algorithm is to find paths

with little hops and nodes with spare capacity.The paths

are then used as routes to establish new connections.

2.1 Algorithm description

Ants are generated and lauched from all the nodes in the

network at every simulation time step of the simulation,

synchronously. The destination of each ant is randomly

selected. Ants select their next node based on the

pheromone tables located in the nodes. In pheromone

tables, pheromone values represent probabilities with

which ants select the next node. Higher the probability

is, higher the chance of the node selection.

 When an ant traverses a link between nodes A and B

in the direction from A to B, it “lays” on it pheromone,

which will be used by ants moving in the opposite

direction of the pheromone laying ant, i.e. from node B

to A. Pheromone laying is applied in the algorithm as

ants updating the pheromone tables. When the ant from

source node S travelling from node A to the next node

B, reaches node B, it updates that part of the pheromone

table of node B that concerns ants with destination S

travelling from node B to A. The updating is done in

such a way that the probability of choosing node A as

the next node by ants with destination S is increased,

while the probabilities of choosing other possible next

nodes from node B is decreased. The increase and

decrease of pheromone values (applied in the form of

probabilities) is done according to equations in [1, 4, 5].

In the equations, pheromone decay (which corresponds

to the pheromone evaporation in reality) is applied as a

function of ant hops representing the ant age. In

correspondence to this, ants which traversed many hops,

will deposit less pheromone resulting in lower increase

of corresponding probabilities. It means that paths with

more hops will be selected with lower probability as the

routes for connections.

 For considering the degree of node congestion, ants

are virtually delayed at nodes as a function of the node

spare capacity. Lower the percentage of spare capacity,

greater the delay at the node and later the update of the

pheromone table by ants, which has for the consequence

that the node will be selected with lower probability as

part of the routes for connections.

 Routing tables are built based on the pheromone

(ant-decision) tables. For a destination D, next node B is

selected at node A if pheromone value for B in

pheromone table in node A is greater than for other

neighbours of A concerning destination D.

154 PERTOVT, ALIČ, ŠVIGELJ, MOHORČIČ

 In one type of the algorithm, there is also a minority

group of ants which select their next node randomly to

prevent blocking problem by extreme node congestion

or node failure, and to keep suddenly appearing better

routes to be discovered more rapidly.

2.2 Initialisation

Before network operation begins and connection

requests are placed in the network, routes from each

source node to each destination node in the network

have to be discovered by ants in the initialization phase.

 At the beginning, all the pheromone tables are

initialized with equal probabilities for neighbour nodes,

meaning that each first ant in each node will select its

next node among the neighbours with equal probability.

Ants are not virtually delayed, as there is still no

connection traffic in the network. The only influence on

the routing are thus pheromone tables in the nodes. As

pheromone tables are updated by ants as described

above, the shortest paths (i.e. the minimum hop count)

from sources to destinations will be discovered. As

shown in [4], this scheme really tends to produce the

shortest paths and gives a good enough result within the

fixed period of the initialization phase time compared to

a deterministic optimal algorithm as Dijkstra.

3 Implementation of the Ant Algorithm in

OPNET

The ABC algorithm was implemented as ANT module

in OPNET Modeler [6] simulation environment [7, 8]

with all the algorithm functionalities. The state diagram

of the implementation is presented in Figure 1. In

addition, different types of the algorithm were

introduced, which are desribed in Section 3.1.

In the ANT module, the red state represents the idle

state, where the module waits for one of the interrupts.

There are six main transitional states: (i) init state takes

care of the algorithm parameters initialisation at the start

of the simulation run; (ii) New ANT state creates and

lauches new ants; (iii) Route ANT state receives ants

coming from neighbouring nodes, updates pheromone

tables based on the received ants pheromone

information, virtually delays ants based on the

percentage of the node’s spare capacity, and selects the

next node for ants; (iv) Update Route state updates

routing tables based on pheromone tables every time

pheromone tables are updated; (v) Write Hops state

computes the instantaneus shortest paths from sources

to destinations based on routing tables created by ants

every time step during the algorithm initialisation phase;

(vi) Hops Dijkstra state compares the shortest paths (i.e.

optimal paths) found by Dijkstra to the corresponding

shortest paths found by ants during the algorithm

initialisation phase.

3.1 Propagation delay and ants dying

In our simulation, the ant movement from node to node

is not determined by the simulation time steps. The time

an ant is sent from a node to its neighbour is determined

by the time the ant is waiting in the node’s queue. In

addition, we add to the present ABC algorithm some

other functionalities as optional representing different

types of the original algorithm.

 In the first type of the ABC algorithm, we consider

that an ant dies if it has performed a specific number of

hops on the path. It means that ants which do not find

their destination within a predefined number of hops are

eliminated from the network. These ants are inefficient

and do not really contribute to finding the shortest paths.

All other functionalities are preserved from the ABC

algorithm, presented above. We denote this type of the

ABC algorithm as ABCdie.

 In the second type of the ABC algorithm, besides all

the ABC algorithm functionalities, we consider also

propagation delay on the links between the nodes. This

type of ABC algorithm considers the real network

scenario case, where ants require the propagation time

to travel on wireless links. We denote this type as

ABCprop. The main property ABCprop introduces is

that shorter links are preferable than longer links. On

longer links, packets require more time to propagate

through wireless medium and, therefore, there is more

chance that they get lost, and vice versa.

 The third type of the ABC algorithm comprises all

the ABC algorithm functionalities and all additional

functionalities introduced in ABCdie and ABCprop. It is

denoted as ABCdie&prop.

4 Performance Evaluation of the

Initialization Phase

We conduct several simulation runs of ABC algorithm

in OPNET simulation model of WMN, presented in [7,

8]. In this section, we present selected parameters in

simulations and simulation results. In particular, we are

interested in the time required by the initialization phase

of the ABC algorithm to find the shortest paths which

correspond to the shortest paths found by Dijkstra in the

number of hops on the paths. In [1, 4, 5], the time

required for the initialization is assumed to be fixed. In

ABC paper [4], authors only test if the initialization

phase of the algorithm finds paths close to the minimum

number of hops as Dijkstra does. Moreover, they

Figure 1. The state diagram of ABC OPNET Implementation.

SIMULATION MODEL FOR ANT-BASED CONTROL ALGORITHM IN WIRELESS MESH NETWORKS 155

performed simulation runs for a synchronized wired

telecommunication network while, in our case,

simulated networks are configured to present

nonsynchronized WMNs.

4.1 Simulation parameters

In this paper, only the performance of the initialization

part of the ABC algorithm is investigated, thus only the

simulation parameters relevant for the initialization

phase of the algorithm are discussed in the following.

 We performed several simulation runs and

investigate the required initialization time of ABC

algorithm to find paths with the minimum number of

hops in dependence of: (i) different number of nodes

and different number of neighbours per node, and (ii)

different types of the algorithm used during the

simulation runs.

 We assume that all wireless network nodes are the

same and have identical configuration, representing

homogeneous network. Each node is given a random

location within a given area. Node locations remain the

same in all simulation scenarios. Neighbour selection is

mainly based on the node positions. For the simulation

purposes all the links are symmetrical 1Mbit/1Mbit and

are ideal, meaning that no packets get lost during

transmissions. In Figure 2, a network topology with 30

nodes each having 5 neighbours is presented. All other

generated networks look similar. Wireless connections

established between neighbours, which are represented

in the network topology as wireless links, are

graphically presented with dashed lines between nodes.

Table 1. Parameters of simulation runs.

Task Type Parameter Attrib.

Ant creation all Time period 0.01 s

Ant pheromone

laying config.
all

d 0.08

c 0.005

Ants dying
ABCdie

ABCdie&prop

10-30 nodes 15 hops

40-70 nodes 20 hops

In Table 1, the used parameters for the corresponding

task and type of ABC algorithm are summarised. The

time period of ants creation in nodes is presented in

seconds; this time has to be increased after the

initialization phase to reduce the network overhead.

This parameter is used in all types of the algorithm.

Parameters for updating ants routing tables are

presented without units and are also used in all types of

the algorithm. The parameters affect equations,

presented in [1, 4, 5], for calculating the amount of

pheromone laying on a specific link. The number of

hops required that an ant dies is presented in hops for

networks with different number of nodes and is used

only in ABCdie and ABCdie&prop.

4.2 Simulation results

In the following, the time required to find the shortest

paths, in terms of the minimum number of hops, by ants

is investigated. Four types of ABC algorithm

implementations are investigated: (i) ABC, (ii)

ABCprop, (iii) ABCdie, and (iv) ABCdie&prop. The

results of the initialization time are presented for

networks with 10, 20, 30, 40, 50, 60, and 70 nodes with

4, 5, 6, 7, and 8 neighbours per node. All the results are

presented in Table 2. The time is presented in seconds.

Table 2. Times of ABC initialization phase.

Case Neigh.
Nodes

10 20 30 40 50 60 70

ABC

4 0.8 18.4 29.5 54 77 323 352

5 1.4 10.3 20.8 24 258 249 312

6 1.2 16.5 30 50 62 149 142

7 0.5 6.2 9.4 23 45 73 133

8 0.8 9 9.9 24 38 68 167

ABC

die

4 1.2 16.4 33.1 70 91 143 309

5 1.1 6.8 19.1 48 70 123 196

6 0.5 11.1 18.8 47 81 126 129

7 0.5 7 14.7 32 38 98 180

8 0.3 7.9 8.4 31 62 80 110

ABC

prop

4 1.3 10.6 54 53 144 294 462

5 2.9 11.5 15.9 56 201 113 136

6 0.5 10.1 20.9 59 94 91 130

7 0.5 5.5 13.6 32 55 90 105

8 0.4 5.9 9.2 25 66 89 121

ABC

die&

prop

4 1.2 10.6 56.8 36 143 148 390

5 1.1 8.2 30.2 34 54 127 237

6 0.5 12.4 15.3 76 60 132 166

7 0.3 4.8 11 27 57 85 110

8 1.3 7.6 7.1 21 40 87 157

The initialization time in dependency of the number of

nodes in the network for different number of neighbours

per node for the ABC algorithm is depicted in Figure 3.

The higher the number of nodes in the network, the

greater the initialization time (as expected), and the

lower the number of node neighbours, the greater the

initialization time. The latter is due to the fact that in

networks with less node neighbours the diameter of the

network and average hop count to other nodes are

greater. Thus, ants need to travel more time to achieve

the desired results. Similar conclusions can be drawn for

other types of ABC.

 However, there are also cases where the

initialization time for the network with more nodes is

Figure 2. Network topology with 30 nodes and 5 neighbours

per node.

156 PERTOVT, ALIČ, ŠVIGELJ, MOHORČIČ

smaller than for the network with fewer nodes. Similar,

the initialization time for the network with fewer

neighbours per node can be in some cases smaller than

for the network with more neighbours per node. This is

because of the reinforcement learning algorithm used by

ants, which comprises also the random part of

pheromone laying. An ant selects the next hop (i.e. one

of the neighbours of the node at which the ant is located

at the moment) based on the probabilities in the

pheromone table; higher the probability value of the

neighbour, higher the chance to be selected as ant’s next

hop. But this also means that the node’s neighbours with

lower values in the pheromone table can be also

selected as next hop, only that with lower probability.

Thus, this randomness which is introduced through the

probabilities is the cause of deviation in some cases

from the expected behaviour.

 Similar as above, initialization time in dependency

of the number of neighbours per node in the network for

all four types of ABC algorithms for the network with

20 and 70 nodes is investigated in Figure 4. Please note

different time scales in both graphs. It can be seen that

times change when ABCprop is used compared with

ABC. In the first case, ants require the propagation time

to travel from a node to a node, while in the second case

it is assumed that the time for travelling on links

between nodes is zero. There is no tendency of the

simulation time to be greater or lower in one of the

cases. When ABCdie algorithm is used, times tend to be

smaller compared with ABC, as the ants which are not

efficient and do not find their destinations after 15 or 20

hops are eliminated from the network. However, there

are also cases when ABCdie does not perform better.

Again, this is because of some randomness of the

reinforcement learning algorithm. In some cases, it is

better to leave all ants in the network to learn but it is

difficult to predict which cases are these.

5 Conclusion and future work

In this paper, we have described the implementation of

the ABC [1, 4, 5] algorithm in the OPNET Modeler [6]

simulation environment. We have implemented the

algorithm in our network coding simulation model [7, 8]

for WMNs. The time of the initialization phase required

to find the shortest paths by ants, in terms of the

minimum number of hops, is investigated for different

types of ABC algorithm. The required initialization time

increases with the number of nodes in the network and

decreases with the number of neighbours per node, as

expected. However, the additional functionalities of the

ABCdie and the ABCprop tend to decrease the

initialization time, which is favourable for routing.

As a further work, we will adapt the ABC algorithm

for adaptive and dynamic routing that is aware of

network coding opportunities in WMNs.

Literature

[1] R. Schoonderwoerd, “Collective intelligence for

network control,” M.S.c Thesis, Delft University of

Technology, May 1996.

[2] M. Dorigo, G. Di Caro, L. M. Gambardella, “Ant

Algorithms for Discrete Optimization,” Artificial Life,

5(2), pp. 137-172, 1999.

[3] M. Farooq, G. A. Di Caro, “Routing Protocols for Next

Generation Networks Inspired by Collective Behaviors

of Insect Societies: An Overview,” Swarm Intelligence

(Natural Computing Series), Springer, pp. 101-160,

2008.

[4] R. Schoonderwoerd, O. Holland, J. Bruten, “Ant-Like

Agents for Load Balancing in Telecommunication

Networks,” in Proceedings of the First Int. Conf. on

Autonomous Agents, pp. 209-216, ACM Press, 1997.

[5] R. Schoonderwoerd, O. Holland, J. Bruten, L.

Rothkrantz, “Ant-based load balancing in

telecommunications networks,” Adaptive Behavior,

5(2), pp. 169–207, 1996.

[6] OPNET web page, available at http://www.opnet.com/,

retrieved July 2012.

[7] K. Alic, E. Pertovt, and A. Svigelj, “Simulation

Environment for Network Coding,” IEEE Jordan

Conference on Applied Electrical Engineering and

Computing Technologies 2011 (AEECT 2011) Amman,

Jordan, 2011.

[8] K. Alic, E. Pertovt, A. Svigelj, “Network coding

simulation model in OPNET Modeler,” OPNETWORK

2012, Washnigton, NW, USA, August 2012.

Figure 4. Initialization time in dependency of the number of

neighbours per node for different types of ABC algorithm with

20 and 70 nodes in the network.

4 5 6 7 8
0

5

10

15

20

Number of neighbours per node

In
it
ia

liz
a
ti
o
n
 t

im
e
 (

s
)

Number of nodes: 20

ABC

ABCdie

ABCprop

ABCdie&prop

4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

500

Number of neighbours per node

In
it
ia

liz
a
ti
o
n
 t

im
e
 (

s
)

Number of nodes: 70

ABC

ABCdie

ABCprop

ABCdie&prop

Figure 3. Initilization time in dependency of the number of

nodes in the network for different number of neighbours per

node for ABC algorithm.

10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Number of nodes

In
it
ia

liz
a
ti
o
n
 t

im
e
 (

s
)

Type: ABC

4 neighbours per node

5 neighbours per node

6 neighbours per node

7 neighbours per node

8 neighbours per node

