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Abstract
This paper deals with minimal-time smooth trajectory plan-
ning for autonomous mobile systems. The resulting path
is defined piecewise by multiple Bernstein-Bézier motion
primitives that enable continuous velocity and curvature
at the junctions. The solution is found by calculating
travel time along Bernstein-Bézier segments with some
free parameters by applying the optimal velocity profile
algorithm that considers velocity, acceleration and jerk
constraints. The proposed optimization approach was
validated in a simulation environment.

1 Introduction
Path planning algorithms generate a geometric path from
an initial to a final point through pre-defined via-points,
either in the joint space or in the operating space of the
robot. On the other hand, trajectory planning algorithms
assign a time law to the geometric path. There is an in-
creasing demand for robots and automatic machines to
operate while some function is optimized and quite of-
ten the research is focused in time optimization. Path
planning and trajectory planning algorithms are therefore
attracting considerable interest and remain the crucial is-
sues in the field of automation and robotics [1].

Defining the time of via-points progression influences
the kinematic and the dynamic properties of the motion:
the inertial forces and torques depend on the accelerations
along the trajectory, while the vibrations of its mechani-
cal structure are mostly determined by the values of the
jerk. In order to satisfy kinematic feasibility of the vehi-
cle the resulting path should be smooth; it should be real-
izable at high speed and at the same time be harmless for
the robot in terms of avoiding excessive accelerations of
the actuators and vibrations of its mechanical system [1].
Path smoothing is often not integrated in path planning
but is usually done after the optimal path is found, which
requires additional collision checks and can influence the
path optimality. One promising approach would therefore
be finding a smooth path to combine motion primitives in
a path planning phase [2]. The smoothing techniques,
not only limited to sample based planners, rely on using
curves to interpolate or fit the given waypoints.

The first studies to obtain the shortest curvature con-
strained smooth paths consisting of straight lines and cir-
cular arcs were performed by [3], but the resulting tracks

had a discontinuous curvature. This is why the authors in
[4] used Dubins paths and smoothed them with clothoid
arcs. The main advantage of clothoids is the linear change
of their curvature. Unfortunately clothoids are defined in
terms of Fresnel integrals; transcendental functions that
cannot be solved analytically. This fact makes clothoids
difficult to use in real-time applications so that for real-
time motion planning many authors resort to curves with
nonlinear curvature that are easier to compute, for exam-
ple Bézier curves [2]. Other smoothing methods also in-
clude application of cubic, quintic or higher order poly-
nomials [5] and B-splines [6].

This paper presents the results of a study where the
optimal velocity algorithm was validated on fifth-order
Bernstein-Bézier curve segments with continuous veloc-
ity and curvature transitions. The optimal velocity al-
gorithm considers restrictions of speed, radial and tan-
gential acceleration and radial and tangential jerk. The
purpose of the analysis was to determine the travel time
along Bernstein-Bézier motion primitives in order to find
a time optimal corridor-restricted path with the minimum
travel time and to provide a better insight into possible
trajectory planning strategies.

2 Problem statement
Consider the problem of a ground vehicle with a mis-
sion defined by corridor and dynamical constraints in a
two-dimensional free space. Our goal is to develop and
implement an algorithm for generating a trajectory that
satisfies these restrictions.

Let the motion of a particle along a three times con-
tinuously differentiable plane curve C be described as a
function of time t ∈ [0, tf ] by the position vector r(t)
measured from a given fixed origin. Velocity v(t), accel-
eration a(t) and jerk j(t) vectors can be expressed in the
tangential-normal form as:

v(t) = v(t) · T̂ (1a)

a(t) = aT(t) · T̂+ aR(t) · N̂ (1b)

j(t) = jT(t) · T̂+ jR(t) · N̂, (1c)

where T̂ and N̂ are the unit tangent vector and the unit
normal vector, respectively:

T̂(t) =
v(t)

‖v(t)‖
, N̂(t) =

˙̂T(t)

‖ ˙̂T(t)‖
. (2)
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Given a feasible segment of the path, which in our case
is a Bernstein-Bézier curve, the optimization problem is
to find the velocity profile v(t) that reaches the end of the
curve in minimum time in a way that none of the velocity,
acceleration or jerk constraints from Eqs. (3a, 3b, 3c) are
violated:

0 ≤ ‖v(t)‖ ≤ vMAX; ∀t ∈ [0, tf ] , (3a)

a2T (t)

a2TMAX

+
a2R(t)

a2RMAX

≤ 1; ∀t ∈ [0, tf ] , (3b)

j2T (t)

j2TMAX

+
j2R(t)

j2RMAX

≤ 1; ∀t ∈ [0, tf ] . (3c)

The acceleration and jerk constraints are defined in a sim-
ilar way as in [7].

3 Bernstein-Bézier motion primitives
AnN -dimensional, n-th order Bernstein polynomial rn(λ) :
[0, 1]→ RN can be defined as:

rn(λ) =

n∑
i=0

Pi,nBi,n(λ), λ ∈ [0, 1] , (4)

where λ is normalized time (0 ≤ λ ≤ 1), Pi,n ∈ RN is
the i-th control point and Bi,n(λ) is the Bernstein poly-
nomial basis defined as:

Bi,n(λ) =

(
n

i

)
λi(1− λ)n−i, (5)

for all i ∈ {0, . . . , n}. Binomial coefficient is defined as:(
n

i

)
=

n!

i!(n− i)!
. (6)

Letting Pn = [P0,n, . . . ,Pn,n] ∈ RN×(n+1) be the vec-
tor of control points of rn(λ), the Bernstein polynomial
in Eq. (4) can be rewritten in matrix form as:

rn(λ) = Pn


B0,n(λ)
B1,n(λ)
. . .

Bn,n(λ)

 . (7)

In the case when two or three-dimensional Bernstein poly-
nomials are used to describe planar and spatial curves,
Bernstein polynomials are often referred to as Bézier curves.
These curves have useful path planning properties. The
first and the last points of the Bernstein polynomial intro-
duced in Eq. (4) are its endpoints:

rn(0) = P0,n and rn(1) = Pn,n. (8)

TheN -dimensional, n-th order Bernstein polynomial also
lies within the convex hull defined by its control points.
Furthermore, the start and the end of the curve is tangent
to the first and the last section of the convex polygon, re-
spectively (Fig. 1).

drn
dλ

∣∣∣∣
λ=0

= n(P1,n −P0,n), (9)

drn
dλ

∣∣∣∣
λ=1

= n(Pn,n −Pn−1,n). (10)

Other properties of Bernstein polynomials (derivatives,
calculating definite integrals, the de Casteljau’s algorithm,
degree elevation etc.) do not fall within the scope of this
article; more details on this topic can be found in [8].
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Figure 1: Fifth order Bernstein-Bézier curve with its convex
hull (dotted lines). The curve is tangent to the sides of the con-
vex hull, line segments P0P1 and P4P5.

3.1 Merging of motion primitives
For the sake of generality, we consider a merging of two
Bézier curves of different orders, rjnj

(λ) of order nj and
rj+1
nj+1

(λ) of order nj+1, into a spline. The three condi-
tions for continuous first and second derivatives (C2 con-
tinuity) in the junction are:

lim
λ→1

rjnj
(λ) = lim

λ→0
rj+1
nj+1

(λ), (11)

lim
λ→1

drjnj
(λ)

dλ
= lim
λ→0

drj+1
nj+1

(λ)

dλ
, (12)

lim
λ→1

d2rjnj
(λ)

dλ2
= lim
λ→0

d2rj+1
nj+1

(λ)

dλ2
, (13)

This yields the following relations between the control
points of both Bézier curves:

Pj+1
0,nj+1

= Pjnj ,nj
, (14)

Pj+1
1,nj+1

= (1 +
nj
nj+1

)Pjnj ,nj
− nj
nj+1

Pjnj−1,nj
, (15)

Pj+1
2,nj+1

=

(
1 +

nj
nj+1

(
2 +

1 + nj
1 + nj+1

))
Pjnj ,nj

− 2

(
1 +

nj(1 + nj)

nj+1(1 + nj+1)

)
Pjnj−1,nj

+
nj(1 + nj)

nj+1(1 + nj+1)
Pjnj−2,nj

.

(16)

3.2 Path generation
Bézier curves constructed by large numbers of control
points are numerically unstable. For this reason, in path
planning, it is desirable to construct a smooth way by
joining together low degree Bézier curves.

We employed the curves of the fifth order, as this is
the least degree of Bézier curves that can satisfy the re-
quirement for curvature (C2) continuity. The fifth-order
Bernstein -Bézier curve r5(λ) = [x(λ), y(λ)]

T is defined
by six control points Pi,5 = [xi, yi], i ∈ {0, 1, . . . 5}.

r5(λ) = (1− λ)5P0,5 + 5λ(1− λ)4P1,5

+ 10λ2(1− λ)3P2,5 + 10λ3(1− λ)2P3,5

+ 5λ4(1− λ)P4,5 + λ5P5,5. (17)
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The complete path through the corridor consists of sev-
eral Bernstein-Bézier curve sections. According to Eqs.
(14-16) for nj = 5 and nj = nj+1 the first three control
points of the (j + 1)-th Bernstein-Bézier curve rj+1

5 are:

Pj+1
0,5 = Pj5,5, (18)

Pj+1
1,5 = 2Pj5,5 −Pj4,5, (19)

Pj+1
2,5 = 4Pj5,5 − 4Pj4,5 +Pj3,5. (20)

where P ji,n is the i-th control point of j-th curve rj5. The
last control point Pj+1

5,5 is defined by the final position:

Pj+1
5,5 =

[
xj+1
5

yj+1
5

]
. (21)

The expressions for the control points Pj+1
4,5 and Pj+1

3,5

follow from evaluating the first and the second derivative
of rj+1

5 in λ = 1 and setting its values to vspline and
aspline, respectively:

drj+1
5

dλ

∣∣∣∣∣
λ=1

= vspline, (22)

d2rj+1
5

dλ2

∣∣∣∣∣
λ=1

= aspline. (23)

Pj+1
4,5 and Pj+1

3,5 are defined by both the final position and
the final orientation ϕj+1

5 :

Pj+1
4,5 = Pj5,5 − 1

5vspline ·
[
cos(ϕj+1

5 )

sin(ϕj+1
5 )

]
, (24)

Pj+1
3,5 = −Pj5,5 + 2Pj4,5+

+ 1
20aspline ·

[
cos(ϕj+1

5 )

sin(ϕj+1
5 )

]
,

(25)

It should be pointed out that the values of the first and
the second curve derivative in the (j + 1)-th Bernstein-
Bézier curve end point Pj+1

5,5 , vspline and aspline, are not
true speed and tangential acceleration. The notation that
we used simply reflects the analogy.

The flowchart in Fig.(2) describes the general princi-
ple of operation of the proposed trajectory planning al-
gorithm. Corridor consists of m segments and j is the
number of the current segment on which the calculation
is performed: j ∈ {1, 2, . . .m}. The given coordinates
and values of velocity, angle and tangential acceleration
in Pj0,5 according to Eqs.(19-20) also determine the sec-
ond and the third control point of the Bézier curve, Pj1,5
and Pj2,5. The problem is to calculate the three remaining
control points of the Bézier curve along which the travel
time is the shortest. To find the solution, MATLAB’s in-
tegrated function fmincon was used. This is a solver-
based nonlinear optimization approach that finds a min-
imum of a constrained nonlinear multivariable function.
The starting point of the optimization is travel time along
a Bézier curve, given by setting the coordinates, veloc-
ity, angle and tangential acceleration in the final control

point Pj5,5. The control points Pj3,5 and Pj4,5 are deter-
mined according to the Eqs.(24-25). The travel time t
along this Bézier curve is calculated by applying the al-
gorithm that generates the optimal velocity profile. The
function fmincon then iteratively modifies the free pa-
rameters ((x, y), v, ϕ and aT ) in Pj5,5 in a way that the
travel time along the curve decreases until the local min-
imum is found (tMIN in Fig.(2)). This is a basic concept
of the gradient method: from the starting point the op-
timization function at each iteration takes either a direct
(Newton) step or a conjugate gradient step to reach the
local minimum of the cost function. The calculation is
repeated for each segment to finally determine the com-
plete trajectory G1 along the corridor.
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Figure 2: The basic principle of operation of the proposed tra-
jectory planning algorithm.

In order to study the effectiveness of the proposed
method, the time optimal trajectory planning algorithm
is executed in two other versions. In the second version,
minimal travel time tMIN,2seg is calculated along Bézier
curves for two successive corridor segments (for j and
j + 1) and in the third version tMIN,3seg it is calculated
for three successive corridor segments (for j, j + 1 and
j+2). Then, only the control points Pji,5 (i ∈ {0, . . . , n})
of the j-th segment are retained. This procedure is per-
formed on the next segments until the the complete tra-
jectory along the corridor is found: G2 in the second and
G3 in the third version of the algorithm.

4 Simulation results
To demonstrate our trajectory planning method, we de-
signed the problem as follows: compute the time opti-
mal trajectory through the given 6-segment corridor with
the following dynamical restrictions: vMAX = 1.5m/s,
aTMAX

= 2m/s2, aRMAX
= 4m/s2, jTMAX

= 6m/s3



147

and jRMAX
= 8m/s3. On the starting line, the values of

velocity and tangential acceleration are v = 1m/s and
aT = 0.5m/s2. The initial position is [0, 0] and the ini-
tial orientation is set parallel to the corridor center line.

Figure (3) shows the given six segment corridor and
the optimal trajectories Gi, depicted with a thick black
line. The sets of discarded Bernstein-Bézier curves are
depicted with thin grey lines. G1,G2, G3 are calculated
based on knowledge of the shape of the current segment,
two succesive segments and three successive segments,
respectively.

Figure 3: Time optimal trajectory G3 (left). For comparison:
iteration steps in the last three segments for G1 (top right) and
G2 (bottom right).

Table (1) lists the travel times ti at the end of the separate
corridor segments. The evidence from this study proves
that the time optimal trajectory can be determined by our
trajectory planning method. Furthermore, the more suc-
cessive segments are taken into account when performing
the calculation, the lower is the overall minimal travel
time. Table (2) presents some computational properties
of the proposed algorithm: number of iterations per seg-
ment Nit,seg, number of points (per segment) F-count
where the function evaluations took place, and the to-
tal computation time tCOMP. It should be pointed out
that the problem has many constraints and the F-count
can be significantly less than the total number of function
evaluations.

[s] t1 t2 t3 t4 t5 t6
∑6
i=1 ti

G1 1.79 0.80 2.93 2.48 0.96 0.85 9,81
G2 1,75 0,62 2,74 2,41 1,03 0,65 9,20
G3 1,73 0,62 2,75 2,43 1,01 0,64 9,18

Table 1: ti and overall travel time
∑6

i=1 ti for Gi.

Nit,seg F-count tCOMP[s]

G1 25 250 246
G2 13 190 306
G3 19 305 738

Table 2: Computational properties of the proposed algorithm.

The current solutions to the time optimal trajectory
generation problem under kinematic constraints (that in-
clude jerk limitations) exist mainly for robot manipula-
tors, whereas the literature on the same topic in the case
of autonomous vehicles is still scarce. A key problem
with much of the literature is also that the approaches of-
ten do not support Cartesian constraints.

5 Conclusion
This paper presents a trajectory planning algorithm in a
free space that is based on Bernstein-Bézier curves and
considers corridor and dynamical (velocity, acceleration
and jerk) constraints. Bézier curves provide an efficient
way to generate the optimized trajectory and satisfy the
constraints at the same time. The simulation results show
that the minimal travel time through the corridor is the
lowest in the case when three successive corridor seg-
ments are considered in the proposed method.

Despite some limitations, we believe that the results
of this study could be the basis for our future research
on similar receding horizon control methods to generate
real-time optimal trajectories with dynamical restrictions.
In the future, we will also consider a development of a
more sophisticated way to determine whether the calcu-
lated path is within the corridor boundaries. Using higher
order Bézier curves with more free parameters might also
prove to be beneficial.
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