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Abstract. We identify the chiral and angular momentum content for the leading quark-
antiquark Fock component for the ρ(770) and ρ(1450) mesons using a lattice simulation
with chiral fermions. Our analysis shows that in the angular momentum basis the ρ(770)
is a 3S1 state, in accordance with the quark model. The ρ(1450) is a 3D1 state, showing that
the quark model wrongly assumes the ρ(1450) to be a radial excitation of the ρ(770).

1 Introduction

An interesting question in hadronic physics is the origin of spin and distribution
of angular momentum. How the spin of a hadron is generated, and by which
constituents it is carried, is a priori not clear. In the non-relativistic, constituent
quark model [2], which has been quite successful in delivering a classification
scheme for the low-lying hadron spectrum, the spin of a hadron is assigned solely
to its valence quarks. Being an effective classification scheme, it does not care
about foundations in terms of underlying QCD dynamics. Despite its successes
the non-relativistic description clearly has limitations.

In this project we investigate the angular momentum content of the ρ(770)
and ρ(1450) mesons. In the spectroscopic notation n 2S+1lJ the ρ(770) is assigned
to the 1 3S1 state by the quark model. The ρ(1450) is assigned to the 2 3S1 state,
hence being the first radial excitation of the ρ(770). However, this assumption
is by far not clear from the underlying QCD dynamics, and is an output of the
non-relativistic potential description of a meson as a two-body system.

The angular momentum content of the leading quark-antiquark Fock com-
ponents of mesons can in principle be identified by lattice simulations. Studies
like [3], which rely on heavy quarks for the non-relativistic reduction of hadrons,
find good agreement with the quark model classification. However, there is an
alternative approach to project non-perturbative lattice results onto the quark
model assuming ultra-relativistic quarks. Latter method, which is explained and
has been applied in previous studies [4–8], makes use of the chiral-parity group
and an unitary transformation to the 2S+1lJ basis.

Main ingredients to such an investigation are the overlap factors of opera-
tors obtained in lattice calculations. In our study it is crucial that these operators
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form a complete set with respect to the chiral-parity group. From these overlap
factors the chiral content of a state can be identified, and using the unitary trans-
formation also the angular momentum content. Since the chiral properties are im-
portant for such a study, we need a proper lattice fermion discretization, which
respects chiral symmetry. For this purpose we use overlap fermions, which dis-
tinguishes the present study from the previous ones.

2 Method and Simulation

The full details of this study, its methodology and simulation parameters, can be
found in the main paper [1] and references therein. Here we present the idea and
summarize the most important components.

To generate states with ρ quantum numbers (1, 1−−) two different local in-
terpolators can be used, which belong to two distinct chiral representations

JVρ (x) = Ψ̄(x)(τ
a ⊗ γi)Ψ(x) ∈ (0, 1)⊕ (1, 0) (1)

JTρ(x) = Ψ̄(x)(τ
a ⊗ γ0γi)Ψ(x) ∈ (1/2, 1/2)b. (2)

We denote them according to their Dirac structure as vector (V) and pseudotensor
(T) interpolators. In a next step we connect the chiral basis to the angular mo-
mentum basis with quantum numbers isospin I and 2S+1lJ. For spin-1 isovector
mesons there are only two allowed states |1;3 S1〉 and |1;3D1〉, which are con-
nected to the chiral basis by a unitary transformation:

|ρ(0,1)⊕(1,0)〉 =
√
2

3
|1;3 S1〉+

√
1

3
|1;3D1〉 , (3)

|ρ(1/2,1/2)b〉 =
√
1

3
|1;3 S1〉−

√
2

3
|1;3D1〉 . (4)

Note that the operators (1),(2) form a complete and orthogonal basis with respect
to the chiral group. Through the unitary transformation (3),(4) they also form a
complete and orthogonal basis with respect to the angular momentum content.

On the lattice we evaluate the correlators 〈J(t)J†(0)〉. We apply the variational
technique, where different interpolators are used to construct the correlation ma-
trix 〈Jl(t)J†m(0)〉 = C(t)lm. By solving the generalized eigenvalue problem

C(t)lmu
(n)
m = λ(n)(t, t0)C(t0)lmu

(n)
m (5)

the masses of states can be extracted in a standard way. Denoting a(n)l = 〈0| Jl |n〉
as the overlap of interpolator Jl with the physical state |n〉, the relative weight of
the chiral representations is now given by

C(t)lju
(n)
j

C(t)kju
(n)
j

=
a
(n)
l

a
(n)
k

. (6)

We can extract the ratio aV/aT for each state n. Then via the unitary transforma-
tion (3),(4) we arrive at the angular momentum content of the ρmesons.
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Fig. 1. Partial wave content of ρ mesons in dependence of the relative chiral contribution
aV/aT , which are connected via transformation (3),(4).

For any lattice simulation an intrinsic resolution scale is set by the lattice
spacing a. This means that probing the hadron structure with point-like sources
gives results at a scale fixed by the ultraviolet regularization a.

In order to measure the structure close to the infrared region we introduce a
different resolution scale by smearing the sources of the quark propagators. We
use four different smearing widths in this study. The radius σ of a given source
S(x; x0) is calculated by

σ2 =

∑
x(x− x0)

2|S(x; x0)|
2∑

x |S(x; x0)|
2

, (7)

where we define the resolution scale as R = 2σa. The smeared profiles of the
sources used in this study are pictured in Figure 2. The Ultra Wide source does
not resolve details smaller than ∼ 0.9 fm and marks our infrared end, where we
ultimatively extract the resolution scale dependent quantities.
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Fig. 2. Different source profiles. σ is their radius in lattice units.
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3 Results

To study the ratio aV/aT at different resolution scales R we solve the eigenvalue
problem (5) with operators (1) and (2) and four different smearings. Then using
(6) we extract the ratio aV/aT as a function of R. In Fig. 4 we show the ratio aV/aT
at different resolution scales R. We find a clear R-effect for the ratio aV/aT : both ρ
and ρ ′ states are linear dependent on the resolution scale.
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Fig. 3. Normalized eigenvalues and effective masses.
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Fig. 4. aV/aT ratio for different resolutions.

Using now transformations (3),(4) we find:

|ρ(770)〉 =+ (0.998± 0.002) |3S1〉 (8)

− (0.05 ± 0.025) |3D1〉 ,

|ρ(1450)〉 =− (0.106± 0.09 ) |3S1〉 (9)

− (0.994± 0.005) |3D1〉 .

|ρ(1700)〉 =+ (0.99± 0.01) |3S1〉 (10)

− (0.01± 0.12) |3D1〉 .
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The ground state ρ is therefore practically a pure 3S1 state, in agreement with the
potential quark model assumption.

The first excited ρ is, however, a 3D1 state with a very small admixture of a
3S1 wave. The second excited state is almost pure 3S1 state. The latter results are
in clear contradiction with the potential constituent quark model that attributes
the first excited state of the ρ-meson to a radially excited 3S1 state and the next
excited state to a 3D1 state.
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