UDK621.3:(53+54+621+66), ISSN0352-9045 Informacije MIDEM 37(2007)1, Ljubljana

IMPLEMENTATION OF NON-INTRUSIVE FAULT DETECTION
IN EMBEDDED CONTROL SYSTEMS

Domen Verber, Matej Sprogar', Matjaz Colnari¢

University of Maribor Faculty of Electrical Engineering and Computer Science,
Maribor, Slovenia

Key words: embedded control systems, fault management, fault detection, monitoring cells, evolutionary computing.

Abstract: Paper presents fault detection in embedded control systems by the so-called monitoring cells. The basic idea is to monitor input/output
variables and internal states of systems, processes or sub-processes by using acquired and built-in knowledge about the normal behavior in order to
detect abnormalities. Paper gives the detailed architecture and the operation of the monitoring cells. The concept is applicable even if only a limited
knowledge about the control system is available. In such cases the proposed automated learning of the monitoring function can be used. In the second
part, two different implementations of the monitoring cell are presented. The first one uses discrete analogue devices and a field programmable gate
array. The second is based on the programmable system-on-a-chip devices.

Izvedba neintruzivne detekcije napak v vgrajenih
krmilnih sistemih

Kjuéne besede: vgrajeni krmilni sistemi, ravnanje z napakami, detekcijanapak, nadzorme celice, evolucijsko ucenje.

lzvleéek: Clanek predstavija detekcijo napak v vgrajenih sistemih s tako imenovanimi nadzornimi celicami. Osnovna ideja je nadzor vhodno/izhodnih
spremenljivk in notranjih stanj sistemov, procesov in podprocesov z uporabo pridoblienega in vgrajenega znanja o normainem obnasanju in z namenom
prepoznati nepravilnosti. Clanek podrobno predstavija arhitekturo in delovanje nadzornih celic. Koncept je uporaben tudi, kadar je na razpolago le
omejeno poznavanje krmilnega sistema. V taksnih primerih se lahko uporabi predlagano avtomatsko uéenje nadzorne funkcije. V drugem delu sta pred-
stavijeni dve razliéni izvedbi nadzorne celice. Prva uporablja diskretne analogne enote in programirljiva FPGA vezja, druga pa temelji na programirljivih

sistemnih na Cipu (pSoC).

Introduction

Embedded control systems are rapidly becoming the in-
visible mind behind most modern appliances. Their major
spread could be observed even in safety critical environ-
ments, where failures can have serious or even fatal con-
sequences. However, highly dependable programmable
embedded systems for safety critical applications still lack
proper scientific treatment. Controllers must be (besides
being dependable) flexible in order to cut production costs.
Flexibility (achieved mainly by programmability), however,
is in conflict with dependability.

Faults in programmable control systems are unavoidable.
Fault management as a discipline is embracing four types
of techniques /7/: (a) fault avoidance is preventing faults
in the design phase; 1(b) fault removal is attempting to find
faults before the system enters service (testing); (c) fault
detection is finding faults during system service and mini-
mizing their effects, and (d) fault tolerance is allowing the
system to operate correctly even in the presence of faults.
A number of competent authors elaborated this area, for
example /5, 1/.

Failure in a system can be handled for example by redun-
dancy, diversity, reconfiguration etc. Firstly, however, it must
be detected. For detection some sort of a dependable
monitoring subsystem must be used that detects abnor-
malities and triggers appropriate corrective actions. Be-
cause of complexity, safety related issues of the system
should be designed, evaluated and implemented independ-
ently and in parallel with the functional part; the same is
with fault detection - to achieve it, a monitoring compo-
nent called monitoring cell (MC) is introduced to supervise
the control function. Early in the development of the sys-
tem each MC is considered as an abstract object. Later
on, the MCs are implemented as hardware and/or soft-
ware components. Paper presents a MC concept for em-
bedded control systems implemented in hardware either
using discrete components with field programmable gate
array (FPGA) or programmable system-on-chip (PSoC).

The MC must detect run-time faults, which are the most
difficult to discover because they are a consequence of
an unpredictable event or chain of events. One way to
detect them is to observe whether the system’s states are
within reasonable limits at all times. To recognize what is

1 Partially supported by Ministry of Higher Education, Science and Technology of Republic of Slovenia by the post-doctoral

project grant no. Z2-6398-0796-04

23

Informacije MIDEM 37(2007)1, str. 23-30

D. Verber, M. Sprogar, M. Colnari¢:

Implementation of non-intrusive fault detection in embedded control systems

“normal” we propose to observe the system during normal
operation by recording all inputs, outputs and internal states
which are believed to affect system's future behavior. Based
on these recordings a machine learning technique can be
used to learn the normal behavior. Evolutionary algorithms
(EA), for example, are one suitable paradigm for this task

/3/.

Section 2 explains the concept of the fault detection by
monitoring cells. The detailed description of their opera-
tion is given in the Section 3. A method for establishing the
monitoring function using machine learning is described
in Section 4. Finally, Section 5 gives two case-studies of
MC implementation.

Detecting faults by monitoring cells

A typical present day control system consists of physical
process components, sensors, actuators, distributed com-
pUters with communication networks, and a lot of software.
Examples are control systems in industrial plants, nuclear
reactors, avionics, etc. The size and complexity of such
systems increases every year and so does the probability
of a fault in one of the many components.

A control system can usually be divided into a set of well-
defined sub-processes or tasks, running on a processing
resource called control cell, each performing a specific
control function. Atask takes its inputs from sensors and/
or from the results of other processes, produces results
that can be used by other tasks, and controls the control-
led system through actuators. Tasks are triggered by syn-
chronous or asynchronous events.

Causes for faults in such systems are either hardware or
software related; additionally the input and output signals
may not comply with functional specifications of the sys-
tem alsc causing faulty behavior. In hard real-time systems,
improper temporal behavior is also considered a fault. An-
other, not so obvious reason for errors are temporal incon-
sistencies of the signals; e.g. the signals’ changes can be
too steep, frequency of events can be to high, etc.

The basic task of a monitoring cell is to monitor the validity
of input x and output y values and (possibly) the internal
states m of the control process. As a result, the correct-
ness c is reported to a higher fault management layer that
will handle the detected fault. If feasible, additional diag-
nostics parameter d can also be provided.

The control cell under surveillance must have physically
accessible input and output signals. Since it can imple-
ment any (sub) process, it is important to identify control
functions with clear and explicit relations between the in-
put and output signals. The monitored control cell is con-
sidered a gray box with defined external functional behav-
ior and with at least partly known internal structure, which
is observable through its obtainable internal states. There
are several reasons for that decision:

24

- The monitored component is not necessarily a black
box and this knowledge can reveal additional and more
accurate information about any faulty behavior.

- White box can be too complex. If chosen, it would be
necessary to implement the monitor cell physically in-
side the original software and hardware to limit the
communication problems. That, however, would be
too intrusive and would increase the complexity and
reduce the performance of the control part, what is
counterproductive.

- White box implementation on the same resources
would introduce another central point of failure.

- Clear separation between the control and monitoring
function simplifies the design; both functions can be
done separately and by different designers with di-
verse competence enhancing the dependability to
some extent.

If the control function is a component with a well defined
behavior but unknown internal structure, it can as well be
taken as a black box. We propose to physically separate
the control part and the monitoring cell, i.e. to employ sep-
arate hardware. While it may be more expensive, it pro-
vides much more competent implementation of the above
guidelines. Also, complexity is kept lower by partitioning
of the functions.

To allow for the gray box implementation, both input and
output digital and analogue signals, as well as the internal
states need to be observable. There is a number of possi-
bilities for the latter: either they are made accessible via
standard parallel or serial interfaces at the control cell, or
another feature of contemporary processors is made use
of, like JTAG boundary scan testing and in-system program-
ming /4/ or a concept similar to “background debugging
mode” high-speed clocked serial debugger interface by
the CPU32 Motorola family.

Monitoring cell should be by orders of magnitude less com-
plex than the control cell and should produce as little inter-
ference with the control environment as possible. it should
be built from simple and robust components with low prob-
ability of failure. The consequence could be that the com-
plexity of monitoring functions may be limited (e.g. no float-
ing point arithmetic, etc.). This limitation, however, can be
of advantage: because of the simplicity such a system couid
be formally verified and possibly certified by a certification
authority.

When an abnormality is detected by a monitoring cell, the
diagnostic mechanism will attempt to acquire as many de-
tails as possible. The error or a failure together with possi-
ble description will be coded in the diagnostic signal and
mediated to the upper layers of fault management system
where appropriate actions will be taken by, e.g., re-config-
uration manager. This, however, is beyond the scope of
this paper.

D. Verber, M. Sprogar, M. Colnari¢:

Implementation of non-intrusive fault detection in embedded control systems

Informacije MIDEM 37(2007)1, str. 23-30

Evaluation of the monitored signals

As shown in Figure 1, the control function F operates on
input values x and accessible internal states m {(if any) to
produce output values y. It is assumed that it operates in
discrete time in a PLCHike fashion. It acquires its inputs at
a specific point in time t and after some delay produces
the results and updates the internal states. During this time
no new inputs can be evaluated.

(e N

(o))

MC (E)

control function (F)

Fig. 1. Concept of the Monitoring cell.

By enumerating the time intervals, the notion of time can
be reduced into discrete (integer) values as shown in (1),
where F represents the control function.

(y(t + 1), mit + 1)) = F(x(t), mt)), te IN (1

The MC acquires the current inputs at the beginning of the
cycle at the instant t; at the same time the inputs x are read
by the control function. At the end of the cycle (what is
also the start of the next cycle) at instant t + 7 (when out-
puts of the system are produced) the output y and internal
state m of control function are read and the final evalua-
tion of the subsystem is performed by MC. The MC effec-
tively performs the function E defined by (2).

E((), m(t), x(t + 1), m(t + 1), yt + 1)) (2)

Note that the function E can operate on both new and old
instances of x and m, what allows for early detection of
discrepancies on the inputs and internal states at the in-
stantt+ 7.

MC operates on three groups of inputs - x, m, y, the former
two in instances t and t + 7. These are the values actually
available to MC for evaluation. To simplify further discus-
sion all inputs are called signals s;; thus, function (2)
can be rewritten as E(s(t)).

To simplify the analysis and the implementation, the evalu-
ation function E can be decomposed into a set of simpler
evaluation tests Epart that evaluate parts of the system. At
the end the partial evaluations are combined to produce
the final result. If any of the sub-evaluations Epart indicates
an illegal state of the system, the final result should also be
noted as illegal.

A minimalist evaluation function E checks the integrity of
individual signals. The information on their basic proper-
ties is acquired from the system specifications, technical
documentation or similar sources. This way at least infor-
mation on the data ranges - valid and invalid values of dif-
ferent signals - is extracted. In certain cases this is the
only step that can be performed.

Using this information a simple classification of a signal
into a legal or illegal class can be made. However, it is not
always possible to find a sharp boundary between valid
and invalid states. Additional buffer zones should be intro-
duced where the validity of the signals can not be deter-
mined. This is the foundation of the partial evaluation func-
tion E; that determines correctness ¢; of the signal s;.

ci = Ei(s)
ci € C={valid, invalid, undetermined}

This enables a simple validation of each signal. For exam-
ple, any invalid input value can be detected (possibly from
a faulty sensor) and/or illegal output can be detected and,
consequently, prevented.

However, a more thorough validation of the system should
be performed to make sure that outputs are consistent with
the inputs. For this, the properties of transformation func-
tion F of the system must be known. If there is enough
knowledge about the system behavior, analytical methods
can be used.

Theoretically, it is possible to observe all possible combi-
nations of signals, although such analysis is very complex.
Instead, a partial signal dependency analysis can be per-
formed, where the correlation between different pairs of
signals (s, s;) is determined. For correlated pairs further
analysis and simplification is plausible. Based on this, func-
tion Ej can be constructed.

cij = Ey(si, 8),j cye C

|f the correlation of pairs of signals is unsatisfactory, a com-
bination of three or more signals can be attempted.

Establishing the monitoring function

The monitoring function is sometimes impossible to create
analytically (for example when the details of the” control
system’s operation are unknown). One solution is to use
machine learning (ML) to find it. Unlike analytical construc-
tion, ML is based on the recorded operation of the control
cell — the control cell is observed during an interval of valid
operation to produce a learning set L of instances (points
in the search space S), every instance representing the
input signals s to the MC. The decision models created by
both ML and analytical approach are in turn used to deter-
mine the correctness ¢ of any signal s. MC must deter-
mine whether a currently occurring signal instance s be-
longs to the space of known valid instances in L or not—a
classification / clustering problem. The MC's processing

25

Informacije MIDEM 37(2007)1, str. 23-30

D. Verber, M. Sprogar, M. Colnarié:

Implementation of non-intrusive fault detection in embedded control systems

limitations prevent the use of complex models to discover
the overlapping of current instance with L.

The decision model must divide the search space S into
disjoint sub-spaces — clusters. Cluster is a small group of
signals of the same type. The created clusters shouid hold
the samples from the learning set and represent the valid
sub-space; the sub-space out of cluster(s) is holding invalid
points. The main problem is that clusters are computation-
ally difficult to create and use. Consider the learning set in
Fig. 2: the clustering is easily done by a human. However,
significant computing power is needed to create and use
this oddly looking region as a classification model. Moreo-
ver, the number of clusters is also unknown making the
clustering process even more difficult.

YA

a3

Fig. 2. Learning set enclosed in a human-drawn
Clustering region together with a bounding
hyper-cube.

Hyper-cubes

The simplest and fastest monitoring function for the MC
implemented in primitive hardware uses clusters in the
shape of orthogonal hyper-cubes; a hyper-cube is limited
by two opposing hyper-planes in every dimension. To avoid
the troublesome creation and optimization of n-hyper-cubes
a simple two-value (s;, s;) analysis Is preferred. Since each
component pair (s;, s;) is evaluated separately, a separate
discretization of s is possible in the context of sj and vice-
versa. Such partitioning exploits the correlations between
the parameters. The bounding hyper-cube (dash-dot rec-
tangle in Fig. 2) is defined by the ranges of the values —
the lower and upper limit are the simplest validation stand-
ards.

A completed model partitions the search space into dis-
joint sub-spaces with an outer bounding hyper-cube. The
configuration of hyper-cubes is done off-line prior to em-
ploying the MC because sufficient processing power must
be available to determine their size and position. The max-
imum number of hyper-cubes available for testing is de-
fined by the MC’s hardware. The whole process is an opti-
mization task of maximizing the hyper-cubes while keep-

26

ing the error to a minimum. Figure 3 shows one possible
partitioning of the learning samples using three hyper-cubes
H1.3 covering all learning samples in L; the dashed regions
inside Hi yet outside L are this model’s error.

Constructing the hyper-cubes

The construction of hyper-cubes is based solely on the
learning set. Unfortunately the learning set does not in-
clude all possible signals of the control cell. Even more, it
does not contain a single invalid signal. It is impossible to
collect all valid/invalid signals in advance or else the fault-
detection itself would be unnecessary.

Invalid points are the only measure of error when creating
hyper-cubes inside the bounding hyper-cube. If the algo-
rithm is not given a human-drawn clustering region, it has
to establish the cluster(s) by itself. The trivial hyper-cube
which includes all points in L is the bounding hyper-cube
itself. If the criteria are advanced to exclude invalid space,
this space must first be recognized. In general it is impos-
sible to assert whether a point in space is valid or not; if it is
“close enough” to any existing valid point it could be valid,
too. The question is how far is close enough.

First solution is to optimize for the smallest sub-space
which includes whole L. Effectively, this method will cre-
ate several positive hyper-cubes that together constitute a
positive sub-space V'=nH;inside the bounding cube (see
Fig. 3).

S/A

H;

H;

e NN
Sy

oy

Fig. 3. One possible partitioning of the search space.

Second solution is the inverse of the first: negative hyper-
cubes inside the bounding hyper-cube yet without com-
mon points with L are created. This scenario is shown in
Fig. 4, where the three hyper-cubes X123 are positioned at
the corners of the bounding hyper-cube to constitute the
negative hyper-space V.

Any signal instance out of the bounding cube is always
classified invalid. Also invalid are all pointsinside V', all other
points can be valid. The optimization goal of both V* and V'
is to minimize the errors made by the clustering model.

D. Verber, M. Sprogar, M. Colnaric:

Implementation of non-intrusive fault detection in embedded control systems

Informacije MIDEM 37(2007)1, str. 23-30

sik
X3 X
X2
Sy -
S;

Fig. 4. Learning set fully outside of the negative hyper-
space V'=)"Xi.

This single criterion optimization can be solved using a
number of ML techniques, for example with evolutionary
algorithms.

Evolutionary algorithms

The process of biological evolution by natural selection can
be viewed as procedure for finding better solutions to some
externally imposed problem of fitness?. Given a set of so-
lutions (the initial population of individuals), selection re-
duces that set according to fitness, so that solutions with
higher fitness are over-represented. A new population of
solutions is then generated based on variations (mutation)
and combinations (recombination) of the reduced popula-
tion. Sometimes the new population will contain better
solutions than the original. When this sequence of evalua-
tion, selection, and recombination is repeated many times,
the set of solutions (the population) will generally evolve
toward greater fitness /2/.

Usually the evolutionary algorithms can be outperformed
(EAs are rather slow) by the field-specific algorithms. For
the purpose of optimization, however, EAs are excellent.
Similar EA techniques differ in the implementation details
and the nature of the particular problem. To optimize the
MC’s hyper-cubes all EA techniques are applicable; the
most straightforward are genetic algorithms (GA, /3/) and
differential evolution (DE, /6/).

For the negative model V', EAs need a fitness function that
favors larger hyper-spaces V without valid signals. The sim-
plest raw fitness function (5) divides the size of the hyper-
space | V| with the error f{V), which is simply the count®
of signals inside V.
- 14
V)=
SV c)41 (5)

For the positive model V¥, however, the fitness function
must favor smaller V* and penalize any (valid) signals out-
side V*. Again, higher values are better.

sy ISI=1VT
T = ey

Example

An example result is shown in figure 5. For the simplicity
only two variables (an input and an output) are used. The
observed control cell has non-linear logarithmic charac-
teristic. The learning algorithm was differential evolution
(DE) employing positive fithess model V* (8), 30.000 iter-
ations and default DE values for other settings. DE was
used off-line to produce four hyper-cubes that included
42 distinct two-dimensional signals with a 12 bit resolu-
tion. In this example the depicted positive model V' is bet-
ter than the V' model because the points are relatively well
aligned.

4000 |
3500 F
3000 |
2500 F .-
2000 f
1500 ¥
1000 r

500 f

0 N N N . resagasanis g g -

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 5. A positive model of four hyper-cubes for 2 non-
linear signals.

Implementations of the MC

MC can be implemented in several ways. If original appli-
cation code is available and can be modified, the MC can
be implemented as a set of monitoring routines that run
together with the control software on the same processing
resources. After the input is acquired, the pre-evaluation
routine is called. It evaluates the individual signals, quanti-
fies them and stores them for later assessment. Similarly,
post-evaluation routine is called before output is produced.

2 Anequivalent term ulility can be used in place of fitness.

3 € (X)isthe cardinal number |F| of set F, where F={s;se€ L ns e X}

27

Informacije MIDEM 37(2007)1, str. 23-30

D. Verber, M. Sprogar, M. Colnaric:

Implementation of non-intrusive fault detection in embedded control systems

Additionally it also checks for proper mappings between
inputs and outputs. The main disadvantage of this approach
is that modifying the original code may distort the temporal
characteristic of the system. Also changing of the original
application is rarely possible. Because of this, this approach
was not taken in the research.

Higher degree of dependability and agility can be achieved
by using dedicated hardware solutions. Continuous reduc-
tion of prices for the hardware makes this approach eco-
nomically feasible. The monitoring device should run in two
different modes of operation. In the first mode it measures
and records the input and output signals. These measure-
ments are consequently used as a learning base for the
off-line construction of the monitoring function. In the sec-
ond mode of operation it actually monitors the control sys-
tem. By using the same device for both sampling and eval-
uation any differences between measurement and moni-
toring hardware can be eliminated.

The conceptual diagram of MC monitoring hardware im-
plementation is shown in Figure 6. Signals from the con-
trol system s are connected to a set of registers (imple-
mented as two-stage FIFO buffers) that hold their current
value s(t) and the previous values s(t-1). Analogue and
numeric values are processed by the quantization blocks
(labeled Q in the Figure 8). Each guantization block trans-
forms the input into corresponding discrete value in order
to simplify the evaluation. These transformations are de-
termined by the off-line learning phase (see 4). Signals s
may also contain some internal states m of the control sys-
tem. For the hardware implementation of MC, however,
special access points must provide current values of inter-
nal states.

5_ »>
5 .,
g8 v »| EVALUATION ;
T35 - E}_ > LOGIC)
=0 2l P
i =
e
| J— s < Il
m I
e — ‘ -
< SEQUENCER
v T
Synchronisation
signals

Fig. 6. Implementation of the monitoring cell.

To observe the dynamics of the signal, the block Asit)
compares new and previous values and calculates the dif-
ference producing additional information for the evaluation.

Parallel to the execution of the monitoring function certain
physical characteristics of the control cell hardware can

28

be observed allowing for detection of any abnormalities
{e.g. increased temperature or current consumption). It is
also possible to validate temporal properties of the ob-
served process using simple watchdog timers.

Components of the MC are synchronized with a simple
sequencer according to external synchronization signals
that indicate the beginning of each execution cycle. If no
such explicit signal exists, it can be derived from other sig-
nals (e.g., from control lines of I/O devices). Signals like
reset, power-save, etc. should also be considered to de-
termine the system’s current mode of operation — the mon-
itoring logic is not applicable in all modes.

The outputs ¢ and d are generated by the evaluation logic.
Mostly, ¢ is just a status that alerts for the (potential) fault in
the system. In most cases ¢ can be determined by using
pure digital logic. For diagnostic output d, which gives more
detailed information about the cause of the fault, more
complex logic may be required.

Implementation of MC with discrete
components

in the fist case study, a solution with discrete analogue
devices, FPGA chip and a simple microcontroller is ex-
plained. For the A/D conversion 12 bit A/D converters
ADS7841 with serial communication interface were used.
The FPGA was Spartan-lle with 3072 programmable slic-
es and 8 KB of dedicated memory blocks. This hardware
was used in other experiments /8/.

The monitoring logic for one of the analogue signals is
shown in Figure 7.

RANGE
COMPARATORS

v — T

' A
' '

STATE : : : :
MACHINE : : . |
j 7 Ev ue
LOGIC

......................

Fig. 7. Discrete monitoring logic for a single analogue
signal.

First, the analogue signal is acquired by A/D converter and
captured using simple state machine automaton. The state
machine periodically generates control signals that trigger
A/D conversion and, after conversion is done, reads the
result. By utilizing FPGA device, it was possible to imple-
ment a number of state machines that are working in paral-
lel, each serving a single A/D interface. To limit the number
of wires needed for the communication, the A/D convert-
ers with serial communication protocol were used. From
the 12 bits provided by the A/D device only the upper six
were used. Similarly, the discrete digital signals are ac-
quired periodically by other state machines.

D. Verber, M. Sprogar, M. Colnarié:

Implementation of non-intrusive fault detection in embedded control systems

informacije MIDEM 37(2007)1, str. 23-30

To compensate for the delays between input and outputs,
and to evaluate the dynamic characteristic of the signals,
each sample goes through a simple two-stage FIFO buff-
er. Later, both stages are available for the evaluation.

The basic evaluation is performed by a set of range com-
parators, each testing if the input value is within the prede-
termined range. The results from this and other evaluation
channels are then combined with simple Boolean evalua-
tion logic, which is implemented as a truth table inside the
dedicated memory blocks of the FPGA — the status sig-
nals are interpreted as a memory address containing the
appropriate output. The output ¢ states if all signals are in
the valid ranges; output d is a vector designating validity of
individual inputs. All constants for the range comparators
and the content of the memory blocks are generated off-
line and may be changed only by the full reprogramming of
the FPGA device. For the implementation of evaluation logic
for a single evaluation channel with a four range compara-
tors approximately 150 slices are used.

For the communication with the fault management system,
a simple 8 bit microcontroller is used. It is also needed for
the initialization of the MC at start-up, for initial data acqui-
sition, and later for the debugging and diagnostic. Itis pos-
sible to transfer the microcontroller into the FPGA; howev-
er, some functionality (e.g. enhanced debugging) is lost.

Implementation of MC with
programmable SoC

The above solution requires separate analogue circuits for
the analogue signal manipulation. Nowadays, more com-
pact and low cost novel technology with programmable
system-on-chip is available. Those chips integrate a mi-
crocontroller and configurable blocks of analogue and dig-
ital logic. In the case study the PSoC CY8C29466 Mixed
Signal Array is used. PSoC is a trademark for a family of
programmable SoC devices from Cypres. PSoC devices
include configurable blocks of analogue and digital logic,
as well as programmabile interconnects. Additionally, a fast
CPU, Flash program memory, SRAM data memory, and
configurable 1/0O ports are included. The analogue part is
composed of dozen configurable blocks, each allowing
the creation of complex analogue functions like A/D and
D/A converters, comparators, filters, amplifiers, etc. More
complex functions are implemented by combining several
primitive cells. The digital part is composed of several dig-
ital blocks. Each block is an 8-bit resource that can be
used alone or combined with other blocks to form 8, 16,
24, and 32-bit peripherals. The capabilities of those blocks
are greater than its counterpart in typical FPGA device and
may be configured as counters and timers, PWMs, differ-
ent serial communication interfaces etc. CPU has full con-
trol over the configuration of the analogue and digital blocks.

The conceptual diagram of the MC evaluation logic with
PSoC is shown in Figure 8. Each channel consists of a
Programmable Gain Amplifier (PGA) and a six bit Succes-

sive Approximation Register (SAR) A/D converter. The PGA
allows for adapting to different signal levels. This way low-
voltage signals can be observed. To observe quantities
larger than 5V, an off-chip voltage divider is required. By
using the six bit A/D converter, the guantification was in-
cluded in the conversion. Other possible implementations
of A/D conversion with the PSoC device exists, however,
they are either slower or consume more analogue cells.
The hardware provides four analogue data acquisition chan-
nels that can be expanded to eight by using the also pro-
vided two-way analogue multiplexers. The digital part of
the device allows up to sixteen bit of discrete data acquisi-
tion. Although it was possible to implement buffering and
preliminary signal evaluation with digital cells on the de-
vice, they were implemented in software because of vari-
ous limitations of the digital part.

Y

[] A/D

v

Fig. 8. Logical organization of a single analogue
acquisition channel with PSoC.

The evaluation logic is executed by the microprocessor. It
is implemented as a series of tests that check the inclu-
sion of a variable in hyper-cubes. The hyper-cubes are pre-
pared off-line and are loaded to the device during the ini-
tialization phase. The solution used by FPGA (i.e., the
implementation with truth tables in memory blocks) would
use more memory than is available.

Comparison of different
implementations of MC

The solution with discrete analogue devices is somewhat
more flexible and robust. It can use different kinds of A/D
converters to accommodate various kinds of signals. In
addition, the external A/D converters are usually much less
sensitive to the voltage overloads. The main benefit of us-
ing this approach is the speed because multiple monitor-
ing channels and evaluation logic in the same device can
be constructed. The sampling, guantization and evalua-
tion for different signals occur in parallel. If the evaluation
logic is simple enough, the execution cycle can be inrange
of several micro-seconds. This is much shorter than the
time needed forthe A/D conversion. Therefore, it is possi-
ble to evaluate the signals from one execution cycle dur-
ing the acquisition of the signals from the next one. The
drawback of this solution is the price. The estimated price
for the parts used in the experiments is more than 30 eu-
ros and it increases with each additional A/D converter. In
contrast the programmable SoC solution can cost (for up
to the 4 analogue channels) less than 5 euros.

29

Informacije MIDEM 37(2007)1, str. 23-30

D. Verber, M. Sprogar, M. Colnari¢:

Implementation of non-intrusive fault detection in embedded control systems

The solution with programmable SoC devices is much more
compact and requires less supporting components than
the previous one. However, apart from the A/D conver-
sion, all of the processing of data is performed with the
microprocessor. This impacts the execution time because
all evaluations must be done sequentially. For example,
for the configuration where two analogue signals were
observed and evaluated with four regions (like in the figure
6), the execution time of the evaluation was 83 microsec-
onds (with 24MHz system clock). On the other hand the
typical A/D conversion takes only 25 microseconds. There-
fore the evaluation can not be performed in parallel with
the conversion. If more dimensions are needed, the exe-
cution time increases accordingly. This is in contrast to the
first approach where additional variable have almost no
impact to the execution time due the parallel nature of the
execution.

The case studies use only simple evaluation functions al-
though more complex regions than the hyper-cubes could
be used that require higher mathematical operations. The
FPGA is unsuitable for such calculations, the PSoC how-
ever, is powerful enough to implement them (e.g., it has
two dedicated fast 8 by 8 bit multipliers).

Conclusions and future work

Inthe paper a concept of monitoring cell for supervision of
the plausibility of a control function is presented. Knowing
(or having learned) the normal behavior of the control func-
tion, one can detect abnormal behavior of input and out-
put signals, internal states, dynamics, and coarse behav-
ior of the output function with respect to the inputs in the
previous time instance. For situations where the control
function is not known in details, the automatic process
based on the machine-learning principles is proposed. The
sample's of signals acquired from the longer period of time
are analyzed and categorized into a set of multi dimension-
al regions. Two different solutions for MC implementation
are described. The proposed devices can be relatively
easily applied in variety of existing control systems. The
first solution is appropriate when short response times are
required. Due to the multiprocessing nature of evaluation
logic used, the execution time is almost independent of
the number of signals observed. However, the solution is
relatively expensive, harder to implement and can be used
only with simple evaluation functions. The approach with
programmable SoC devices is more compact, simpler to
construct and more appropriate for more sophisticated
evaluation functions. However, because the main process-
ing is done in software, the reaction times are much fong-
er. The ideal solution would be the combination of both
approaches: programmable mixed signal SoC device with
large FPGA on a single chip. To our knowledge, there is

30

no commercially available device of such kind on the mar-
ket yet.

In the future work, other classification models will be con-
sidered, possibly more powerful yet of similar complexity
as the hypercubes. Part of the research is focused on
utilizing genetic programming (GP) because it is capable
of directly producing the control function of the monitoring
cell. The idea is to find appropriate set of functions that are
easy enough to be implemented on simple hardware and
yet good enough to appropriately describe the valid con-
trol signals. The other part of the research is focused on
the implementation of those functions. The final goal is to
include a machine-learning algorithm inside the monitor-
ing device where evaluation function can be determined
dynamically and might adapt to different operation modes
of the system.

References

/1/ L.H. Chiang, E.L. Russell, and R.D .Braatz. Fault Detection and
Diagnosis in Industrial Systems. Springer, 2001.

/2/ D.W. Hillis. Co-evolving parasites improve simulated evolution
as an optimization procedure. Physica D, 42:228-234, 1990.

/3/ J.H. Holland. Adaptation in natural and artificial systems. The
University of Michigan Press, Ann Arbor, M1, 1975.

/4/ 1149.1 IEEE. Test Access Port & Boundary Scan Architecture.
|IEEE, New York, 1990.

/5/ R.Isermann. Fault Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance. Springer, 2005.

/6/ K. Price and R. Storn. Differential evolution: A simple evolution
strategy for fast optimization. Dr. Dobbs Journal of Software Tools,
22(4):18-24, 1997.

7/ Neil Storey. Safety-Critical Computer Systems. Addison-Wesley
Longman, 1996.

/8/ D. Verber, B. Lent, and W.A. Halang. Firmware support for dis-
junctive dataflow driven distributed control applications. In Z.
Bradag, F. Zezulka, M. Polanski, and V., Jirsik, editors, Proceed-
ings of IFAC workshop on programmable devices and embed-
ded systems PDeS 20086, pages 84-89, 2006.

Domen Verber, Matej Sprogar, Matjaz Colnari¢
University of Maribor Faculty of Electrical Engineering
and Computer Science, Smetanova 17, 2000 Maribor,
Slovenia

domen.verber@uni-mb.si

Prispelo (Arrived): 10.08.2006 Sprejeto (Accepted): 30.03.2007

