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Abstract. The paper presents a new multiplier enabling achievement ofan arbitrary accuracy. It follows the same
idea of number representation as the Mitchell’s algorithm,but does not use logarithm approximation. The
proposed iterative algorithm is simple and efficient and itserror percentage is as small as required. As its hardware
solution involves adders and shifters, it is not gate and power consuming. Parallel circuits are used for error
correction. The error summary for operands ranging from 8-bit to 16-bit operands indicates a very low error
percentage with only two parallel correction circuits.
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Iterativni logaritemski mno žilnik

Povzetek. V članku predstavimo izvedbo logaritemskega
množilnika, ki nam omogoča nastavljivo natančnost. Množilnik
je zasnovan na Mitchellovem postopku množenja in uporabi
logaritemske predstavitve podatkov [1]. Množenje je časovno
zahtevna operacija, poleg tega pa množilniki v primerjaviz
drugimi aritmetičnimi vezji porabijo veliko moči. V kar nekaj
aplikacijah pri digitalni obdelavi signalov, kjer je velika pris-
otnost šuma, pa ne potrebujemo natančnega rezultata mnoˇzenja.
Zato je v teh primerih primernejše logaritemsko množenje[1, 3].
Mitchell je v delu [1] predstavil osnovno idejo in izvedbo
logaritemskega množilnika. Ideja je v tem, da se binarna
števila predstavijo v t. i. logaritemskem zapisu (enačba1)
ter se produkt aproksimira po enačbi 3. Mitchellov postopek
množenja je zapisan v Algoritmu 1. Mitchell je v svojem
delu pokazal, da je največja relativna napaka okrog 11%, rel-
ativna napaka pa 3,8%. V literaturi zasledimo veliko poskusov
izboljšanja natančnosti takega množilnika, največkrat s korek-
cijskimi tabelami, ki zahtevajo precej pomnilnika [2, 3, 4]. V
tem delu predlagamo modificiran postopek množenja, s katerim
izboljšamo natančnost, ob tem pa ne potrebujemo dodatnega
pomnilnika za hranjenje korekcijskih termov. Osnovna ideja je,
da ostanke, ki jih dobimo pri logaritemskem zapisu števil,še
enkrat zmnožimo na enak način ter prištejemo h končnemupro-
duktu kot v enačbi 5. Tako sproti tvorimo korekcijske terme. To
lahko počnemo iterativno ali vzporedno, dokler ne dosežemo
želene največje relativne napake (enačbi 14 in 15). Predla-
gani postopek množenja je prikazan v algoritmu 2. Predlagani
postopek množenja smo implementirali v FPGA čipu. Osnovni
blok množilnika je prikazan na sliki 1. Posamezne korekcijske
terme nato izračunavamo z dodajanjem osnovnih blokov, kot
je to prikazano na sliki 2. Poraba sredstev in moči v FPGA
čipu brez, oz. z dodanimi korekcijskimi termi, je prikazana v
tabelah 1 in 2. Rezultati analize relativne napake (tabeli 3in 4)
pokažejo, da je že s samo tremi korekcijskimi termi, največja
relativna napaka pod 0,5%.
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1 Introduction

Multiplication has always been hardware, time and power
consuming arithmetic operation, especially for large
value operands. This bottleneck is even more emphasized
in digital signal processing applications that involve a
huge number of multiplications. In many signal process-
ing applications the results of arithmetic operations do not
have to be exactly accurate. For example, in signal com-
pression techniques, quantization is usually performed af-
ter cosine or some other transform. Therefore, calculation
of true transform coefficients values is not necessary and
rounded products after multiplication by signal transfor-
mation are acceptable. Also, many digital signal process-
ing systems can deal with an extra noise introduced. In
these signal processing applications, where speed of cal-
culation is more important than accuracy, logarithm num-
ber system (LNS) for multiplication seems to be a suit-
able method. The main advantage of this method is sub-
stitution of multiplication with addition, after conversion
operands into logarithms. But this simple idea has a sig-
nificant weakness: a necessity for approximation of log-
arithm and antilogarithm. Therefore, logarithmic-based
solutions are trade-off between time consumption and ac-
curacy. In the well known Mitchell’s algorithm (MA) [1]
for multiplication in LNS, a higher error is caused due to
the piecewise straight line approximation of the logarithm
and antilogarithm curve. Later, many methods for MA
error correction are introduced with more or less success
[2], [3], [4], [5], [6]. LNS multipliers can be divided into
two categories, one based on methods that use lookup ta-
bles and interpolations and the other based on Mitchell’s
algorithm, even there is a lookup-table approach in some
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of the MA-based methods. MA-based solutions sup-
pressed lookup tables due to hardware area savings. This
paper presents a new iterative solution for multiplication,
where error correction is realized with parallel correction
circuits. It is is organized as follows: Section 2 presents
the basic Mitchell’s algorithm and its modifications with
their benefits and weaknesses, Section 3 describes the
proposed iterative solution, in Section 4 hardware imple-
mentations of the proposed algorithm are discussed, Sec-
tion 5 gives an experimental results overview, and Section
6 is a conclusion.

2 MA-Based Multipliers

A logarithmic number system is introduced to simplify
multiplication, especially in cases when accuracy require-
ments are not rigorous. One of the most significant
multiplication methods in LNS is the Mitchell’s algo-
rithm, which approximates the logarithm with a piecewise
straight line function. MA multiplies two operands by
finding their logarithms, adding them and looking for the
antilogarithm of the sum.

Approximation of the logarithm and antilogarithm is
essential. It is derived from binary representation of num-
bers:

N = 2k(1 +

k−1
∑

i=j

2i−kZi) = 2k(1 + x) (1)

wherek is the characteristic number or place of the most
significant bit with the value of ’1’,Zi is the bit value at
i-th position,x is a fraction or mantissa andj depends
on the number precision. By logarithm of the product
computation,

log2(N1·N2) = k1+k2+log2(1+x1)+log2(1+x2) (2)

log2(1 + x1) is approximated withx1 and the logarithm
of the two number product is expressed as a sum of their
characteristic numbers and mantissas:

log2(N1 ·N2) ≈ k1 + k2 + x1 + x2 (3)

The antilogarithm uses the similar approximation.
The final MA approximation for multiplication, de-

pending on the carry bit from sum of mantissas is given
by:

(N1 ·N2)MA =







2k1+k2(1 + x1 + x2), x1 + x2 < 1

2k1+k2+1(x1 + x2), x1 + x2 ≥ 1
(4)

The sum of the characteristic numbers determines
MSB of the product. The sum of mantissas is added to
complete the final result. The proposed MA-based multi-
plication for the casex1 + x2 < 1 is given in Algorithm

1. MA produces a significant error percentage. The rela-
tive error increases with the number of bits with the value
of ’1’ in the mantissas. The maximum possible relative
error for MA multiplication is some 11% and the average
error is some 3.8%. Mitchell analyzed this error and pro-
posed analytical expressions for error correction. To sum
up, the most significant advantage of MA is simplicity, ef-
ficiency, i.e. non power-consuming. The most significant
disadvantage is a high error percentage.

Algorithm 1 Mitchell’s Algorithm for the casex1+x2 <

1

1. N1, N2: n-bits binary multiplicands,PMA = 0 :
2n-bits approximate product

2. Calculatek1: leading one position ofN1

3. Calculatek2: leading one position ofN2

4. Calculatex1: shift N1 to the left byn− k1 bits

5. Calculatex2: shift N2 to the left byn− k2 bits

6. Calculatek12 = k1 + k2

7. Calculatex12 = x1 + x2

8. Decodek12 and insert ’1’ in that position ofPapprox

9. Appendx12 immediately after this one inPapprox

10. N1 ·N2 = PMA

Numerous attempts have been made to improve the
MA accuracy. Hall [4] derived different equations for
error correction in the logarithm and antilogarithm ap-
proximation in four separate regions, depending on the
mantissa value, reducing the average error to 2%, but in-
creasing complexity of realization. Abed and Siferd [5],
[6] derived correction equations with coefficients that are
power of two, reducing the error and keeping the simplic-
ity of solution. Among many methods that use look-up ta-
bles for error correction in the MA algorithm, McLaren’s
method [2], which uses a lookup table with 64 correc-
tion coefficients calculated in dependence on the mantis-
sas values, can be selected as one with a satisfactory accu-
racy and complexity. A recent approach to MA error cor-
rection reducing the number of bits with the value of ’1’
in mantissas by operand decomposition was presented by
Mahalingam and Rangantathan [3]. The proposed method
decreases the error percentage of the MA by 44.7% on the
average.

3 Proposed Solution

As already mentioned above, the basic disadvantage in
the Mitchell’s algorithm and similar solutions comes from
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logarithm approximation. Therefore, the proposed solu-
tion avoids logarithm approximation and introduces an it-
erative algorithm with various possibilities for maximally
minimizing the errorand getting an exact result. As the
proposed solution is an iterative but not a recursive al-
gorithm, it can be realized with parallel circuits for error
reduction.

From the binary representation of numbers in (1), we
can derive a correct expression for multiplication:

Ptrue = N1 ·N2 = 2k1(1 + x1) · 2
k2(1 + x2)

= 2k1+k2(1 + x1 + x2) + 2k1+k2(x1x2)(5)

The similarity with MA is evident. The error in MA
is caused by neglecting the second term in (5). To avoid
the approximation error, we have to take into account the
bellow relation:

x · 2k = N − 2k (6)

The combination of (5) and (6) gives:

Ptrue = (N1 ·N2) = 2(k1+k2) +

+(N1 − 2k1)2k2 + (N2 − 2k2)2k1 +

+(N1 − 2k1) · (N2 − 2k2) (7)

Let

P0 = 2(k1+k2) + (N1 − 2k1)2k2 + (N2 − 2k2)2k1 (8)

be the first approximation of the product. It is evident that

Ptrue = P0 + (N1 − 2k1) · (N2 − 2k2) (9)

If we approximate the product with

P (0)
approx = P0 (10)

then the proposed method is very similar to MA. Actu-
ally, P0 is equal to the first case in the MA approxima-
tion (4). Mitchell proposed an exact correction term as in
(9), but the logarithm approximation-based multiplying of
the given residues was not sufficient to achieve significant
error decreasing. Avoiding the logarithm approximation
enables parallel error corrections and more accurate prod-
uct. For this reason, an iterative calculation of correction
terms is proposed as follows.

An absolute error after the first approximation is

E(0) = P − P (0)
approx = P − P0 =

= (N1 − 2k1) · (N2 − 2k2) (11)

Note thatE(0) ≥ 0. The two multiplicands in (11)
are binary numbers that can be obtained simply by re-
moving the leading ’1’ in numbersN1 andN2 so we can
repeat the proposed multiplication procedure with these
new multiplicands

E(0) = C(1) + E(1) (12)

whereC(1) is the approximate value ofE(0) andE(1) is
an absolute error when approximatingE(0). The combi-
nation of (9) and (12) gives

Ptrue = P0 + C(1) + E(1) (13)

We can now add the approximate value ofE(0) to
approximate productPapprox as an correction term with
which we decrease the error of approximation

P (1)
approx = P0 + C(1) (14)

If we repeat this multiplication procedure withi cor-
rection terms, we can approximate the product as

P (i)
approx = P0 + C(1) + C(2) + . . .+ C(i) =

= P0 +

i
∑

j=1

C(j) (15)

The procedure can be repeated in order to achieve the
smallest possible, or until at least one of the mantissas
becomes a zero. Then the final result is exact:Papprox =
Ptrue. The number of iterations required for exact result
is equal to the number of bits with the value of ’1’ in the
operand with a smaller number of bits with the value of
’1’. The proposed iterative MA-based multiplication is
given in Algorithm 2.

One of the advantages of the proposed solution is the
possibility to achieve an arbitrary accuracy by selecting a
number of iterations, i.e. a number of parallel correction
circuits.

4 Hardware Implementation

In order to evaluate the device utilization and perfor-
mance of the proposed multiplier, we implemented diffe-
rent multipliers on Xilinx xc3s500e-4fg320 FPGA [7].
We implemented four 16-bits multipliers: a multiplier
with no correction terms, and three multipliers with two,
three and four correction terms, respectively.

4.1 Basic Block

The basic block is the proposed multiplier with no correc-
tion terms. The task of the basic block is to calculate one
approximate product according to Equation 8. The 16-
bit basic block is presented in Figure 1. The 16-bit basic
block consists of two leading-one detector units (LOD),
two encoders, two 32-bit barrel shifters, a decoder unit
and two 32-bit adders. Two input operands are given to
LODs and the encoders. The LOD units are used to re-
move the leading one from the operands, which are then
passed to the barrel shifters. The LOD units include zero
detectors, too. They are used to detect zero operands. The
LOD units and zero detectors are implemented as in [5].
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Algorithm 2 Iterative MA Based Algorithm withi cor-
rection terms

1. N1, N2: n-bits binary multiplicands,P0 = 0 : 2n-
bits first approximation,C(i) = 0 : 2n-bits i correc-
tion terms,Papprox = 0 : 2n-bits product

2. Calculatek1: leading one position ofN1

3. Calculatek2: leading one position ofN2

4. Calculate(N1− 2k1)2k2 : shift (N1− 2k1) to the left
by k2 bits

5. Calculate(N2− 2k2)2k1 : shift (N2− 2k2) to the left
by k1 bits

6. Calculatek12 = k1 + k2

7. Calculate2(k1+k2) : decodek12

8. CalculateP0 : add 2(k1+k2), (N1 − 2k1)2k2 and
(N2 − 2k2)2k1

9. Repeati-times:

(a) Set:N1 = N1 − 2k1 , N1 = N2 − 2k2

(b) Calculatek1: leading one position ofN1

(c) Calculatek2: leading one position ofN2

(d) Calculate(N1 − 2k1)2k2 : shift (N1 − 2k1) to
the left byk2 bits

(e) Calculate(N2 − 2k2)2k1 : shift (N2 − 2k2) to
the left byk1 bits

(f) Calculatek12 = k1 + k2

(g) Calculate2(k1+k2) : decodek12

(h) CalculateC(i) : add2(k1+k2), (N1 − 2k1)2k2

and(N2 − 2k2)2k1

10. P (i)
approx = P0 +

∑

i C
(i)

Figure 1. Block diagram of a basic block of the proposed itera-
tive multiplier.

The barrel shifters are used to shift residues according
to Equation 8. The decode unit decodesk1 + k2, i.e. puts
the leading one in the product. The leading one and two
shifted residues are then added to form the approximate
product. The basic block is used in further implemena-
tions to calculateP0 andC(i).

4.2 Parallel Implementation

We implemented multipliers with parallel correction cir-
cuits. For this purpose, we used the cascade of the basic
blocks. The block diagram of the proposed logarithmic
multiplier with a parallel error-correction circuit is shown
in Figure 2. The multiplier is composed of two basic
blocks of which the first one calculates the first approx-
imation of the product (P0) while the second one calcu-
lates the error correction termC(1).

4.3 Device Utilization

For design entry we used Xilinx ISE 10.1.02 - WebPACK
and design with VHDL. The design was synthetised with
Xilinx Xst Release 10.1.02 for Linux.

Device utilization (the number of slices, number of 4-
input LUTs and number of input-output blocks) for all the
four implemented multipliers is given in Table 1.

Table 1. Device utilization.
Multiplier 4-LUTs Slices IOBs

Basic Block 353 182 96

Basic Block + 1CT 736 381 96

Basic Block + 2CT 1088 577 96

Basic Block + 3CT 1438 751 96
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Figure 2. Block diagram of the proposed multiplier with one
parallel error-correction circuit. The multiplier is composed of
two basic blocks of which the first one calculates the approxi-
mate product while the second one calculates the error-correc-
tion term.

The maximum combinational path delays along with
the total power consumptions for the basic block and the
three parallel implementations are given in Table 2.

5 Error Analysis

In order to evaluate the proposed algorithm, it is is applied
to all combinations of then-bit non-negative numbers.
The error percentage is calculated from the well-known
equation:

Ei =
Ptrue − Papprox

Ptrue

· 100% (16)

For evaluation, the average error percentage value is used:

AE =
1

N

N
∑

i=1

Ei (17)

whereN is the number of multiplications performed. For
example, for the 12-bits numbers, all combinations of the
numbers from 1 to 4095 are multiplied and the average
error percentage is calculated. Error calculation is made
in four cases: without error-correction parallel circuit,
with one parallel correction, with two parallel corrections
and with three parallel corrections. Results from Table 3
present the error percentage rate for various cases. Re-
sults from Table 4 give a more precise view on how the
algorithm can be modified to wanted error percentage.

The obtained results are compared with results from
[3], for neing the latest paper providing a complete
overview of various solutions. Comparing these solu-
tions with other solutions, a similar error table is obtained.
Comparing 8-bit and 16-bit average error percentages, we

can notice that our solution with three iterations outper-
forms others logarithm based-multipliers.

6 Conclusions

In this paper, we investgate and propose a new approach
to improve the accuracy of the Mitchell algorithm-based
multiplication. The approach is based on the iterative cal-
culating of the correction terms. We show that the calcu-
lation of correction terms can be performed parallelly in
hardware.

The iterative approach improves the average error per-
centage and the error rate compared to the basic MA mul-
tiplication. By using only three correction terms, the error
of any multiplication result is less than a 0.5%.

The parallel implementation of the iterative MA mul-
tiplier with only one correction circuit almost doubles the
area required compared to the original MA multiplier, but
the power consumption increases only from 2% (one cor-
rection term) to 16% (three correction terms). This is still
significantly less than the area and power required for a
standard multiplier.

The maximum combinational delay increases by 30-
45% with each added correction circuit. This can be fur-
ther significantly improved by pipelining the three main
stages in the basic block and the correction circuits.
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