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Abstract

The problem of perturbing an analytic disc with boundary in a CR-submanifold
of C" is considered. A theorem by Globevnik on the perturbation by analytic
discs along maximal real submanifolds of C" is generalized and used in various
applications: (i) it is proved that every energy functional minimizing disc in C”
with free boundary in a Lagrangian submanifold of C" and all partial indices
greater or equal to —1 is holomorphic, (ii) a new proof and a generalization of
a result by Pang on the Kobayashi extremal discs is given, (iii) perturbations of
analytic varieties with boundaries in a totally real torus in C? fibered over the
unit circle @D are considered. Also, some results by Baouendi, Rothschild and
Trepreau on the family of analytic discs attached to a CR-submanifold of C* of

a positive CR-dimension are globalized.
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1. Introduction

Given an analytic disc in C* with boundary in a generating CR-submanifold
M C C", one would like to describe the family of all nearby analytic discs in C*
attached to M. This problem is the object of a considerable research in the re-
cent years. The following list of authors and their papers related to the problem
is not at all meant to be complete : Alexander [Ale2]|, Baouendi, Rothschild
and Trepreau [Bao-Rot-Tre], Bedford [Bed1l, Bed2], Bedford and Gaveau
[Bed-Gav], Eliashberg [Eli], Forstneri¢ [For2, For3], Globevnik [Glo1, Glo2],
Gromov [Gro], Y-G.Oh [Oh1, Oh2|, Tumanov [Tuml]|.

The technique of perturbing an analytic disc with boundary in a given mani-
fold has found several applications in the problems of the analysis of several com-
plex variables. T'wo, probably the most known problems, where this technique
can be used, are the problem of describing the polynomial hull of a given set in
C" and the problem of extending CR-functions from a given CR-submanifold
of C" into some open subset of C". Recently has J.Globevnik in his paper
[Glo1], which was inspired by the work [For2| by F.Forstneri¢, found very ele-
gant sufficient conditions on a given analytic disc p with boundary in a maximal
real submanifold M of C* which imply finite dimensional parametrization of all
nearby holomorphic discs attached to M.

To each, not necessary holomorphic, disc p with boundary in a maximal

real submanifold M C C" one associates n integers kq, ..., k, called the partial
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indices of the disc p. Their sum k := k; +- - -+ k,, is called the total index of the
disc p. A part of Globevnik’s work [Glo1] is the theorem in which he proves
that if the pull-back bundle p*(T'M) of the tangent bundle T'M is trivial and
if all partial indices of the disc p are greater or equal to 0, then there exists an

n + k dimensional parametrization of all nearby discs of the form
p + analytic disc

with boundary in M. Later we proved that Globevnik’s theorem extends in the
same form to the case where the pull-back bundle p*(T'M) is non-trivial. The
final version of the result was given by Y-G.Oh in [Oh1], where the Globevnik’s
result is generalized, but using a different approach, to the case where all partial
indices are greater or equal to —1 and arbitrary pull-back bundle p*(T'M). This
theorem, together with the papers [For2, For3| by Forstneri¢, represents the
starting point of the present thesis and is reproved in its most general known
form, using only Forstneri¢’s and Globevnik’s technique, in section 5, Theorem
1.

The present work is organized as follows. Section 2 introduces the notation
and terminology we use throughout the work. In section 3 the maximal real
bundle over the unit circle 9D C C and its partial indices are defined, and in
section 4 some computations of the partial indices of a maximal real bundle over
0D are given. As already mentioned, in section 5 we reprove the generalized ver-

sion of Globevnik’s theorem using his and Forstneri¢’s technique of perturbing
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analytic discs with maximal real boundary conditions. In the following sections
we give some applications of Theorem 1.

In section 6 we apply Theorem 1 to the problem of perturbing analytic va-
rieties with boundaries in a totally real torus in C? fibered over the unit circle
0D C C. In section 7 we consider energy functional minimizing discs in C"
with Lagrangian boundary conditions and prove that the condition that all par-
tial indices of the disc p are greater or equal to —1 implies that the disc p is
in fact holomorphic. Section 8 considers stationary discs which are, following
Slodkowski [Slo4], related to the problem of describing the polynomial hull of
a fibration over the unit circle 9D with the fibers in C" and to the problem of
finding Kobayashi extremal discs through a given point in an open set in C".
Using Theorem 1 again, we reprove and generalize a result by Pang, [Panl],
on the Kobayashi extremal discs. In the next section we give several examples
which show that the immediate generalization of the continuity method to de-
scribe the polynomial hull of a set fibered over the unit circle with fibers in
C™, n > 2, as used by Forstneri¢, [For3], in the case of one dimensional fibers,
is even in some relatively simple cases impossible. In the last section we first
extend Globevnik’s results to the case of analytic disc attached to a generating
CR-submanifold of C" and then also generalize some results by Baouendi, Roth-
schild and Trepreau, [Bao-Rot-Tre], to large analytic discs with boundaries in

a generating CR-submanifold of C".



2. Notation and terminology

Let D = {z € C;|z|] < 1} and let 0D denote the unit circle in C, the
boundary of D. If K is either D or D, and 0 < a < 1, we denote by C%*(K)
the Banach algebra of Holder continuous complex-valued functions on K with

finite Lipschitz norm of exponent «

fl@) = fly
||f||a - Sup|f| -+ sup Lo(cﬂ < 00 .
TEK z,y€K |:L‘—y|
TFY

For every m € NU {0} we also define the algebra

C™UK) = {f € C" | fllma = D 1D flla < o0} .

lil<m

The subalgebra of the real-valued functions from C™(K) will be denoted by
Cp*(K).

Let A(D) denote the disk algebra and let A(OD) = {f|op; f € A(D)}. We
define

A™(D) = C™*(D) N A(D)
and
A™(QD) = C™*(0D) N A(0D) .
Note that if f € A(D), then f € A™%(D) if and only if f|sp € A™*(OD),
[Gol].
We will also need some other not so standard function spaces. Let r(£), & €

0D \ {1}, denote the principal branch of the square root, i.e., the complex
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plane is cut along the positive real line and r(—1) = i. Let & be the space
consisting of the real continuous functions on 0D \ {1} with the property that
a continuous function g on @D \ {1} is in £ if and only if there exists an odd

function g, in Cg"*(0D), i.e., go(—=&) = —go(§), £ € D, such that

9(8) = 9o(r(§)) (£ €ID\{1}) .

In other words, this is the space of continuous functions g on 9D\ {1} such that

a) there exist the limits

(1) lim g(e”) and  lim g(e)

0—0t 0—2m—

which we denote by g(1%) and g(17), respectively, and are related by the
equation
g(1") +9(17) =0,
b) the function

_J 9@ ; ImE=0
2) 9O = { M5k T e 2
is in CT*(AD).
Obviously £x"* is an R-linear space and for the norm on it we take

19llm.a == 1Hgllma (g€ E) -

So Ex* is a Banach space that is via H isometrically isomorphic to the closed

subspace of odd functions in Cz"*(0D).

Remark. Another equivalent description of the space £"" can be given in
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terms of Fourier series. Namely, each element ¢ € £.°% has a unique expension
) R

of the form

Z Ckei(2k+1)9/2

k=—o00

where the sum

represents the Fourier series of some odd function g, € Cg"*(9D). We will refer

to ¢, k € 7Z, as the Fourier coefficients of the function g.

One can define a Hilbert transform T on &Z"*. Let T, be the standard

harmonic conjugate function operator on Cy"*(9D). Then
T: & — &
is defined by
Tg=H 'T,Hg (g€é&"").

Note that T, takes the subspace of odd functions in Cy"*(9D) into itself. Thus

for every g € £ the function
H(9+iTg):=Hg+iHTg=Hqg+iT,(Hg)

is an odd function on 0D from the space A™*(0D). We denote the space of

functions of the form

g+iTg (g€ &)



7
by A™*. Observe that all functions from the space A™ are of the form r(&) f(§)
for some f € A™*(0D). Observe also that since for any two functions ¢ and h

from £ the following identity holds

(Hg)(&)(HR)(&) = g(")h(&?) (£ € OD),

the product of two functions from &£"* gives a function in Cg"*(0D), and the
product of two functions of the form g + iHg, g € &, gives a function in
A™(9D).

The spaces we will most often consider are the finite products of the spaces
C2*(dD) and £3*. A product with n factors will be denoted by &,, where o
is an n-vector with 0’s and 1’s as its entries. The entry 0 on the j-th place
represents the space Cp®(0D) as the j-th factor and the entry 1 on the j-th
place means that the j-th factor is the space Eﬂ%a. By analogy we also define
the spaces A, which are the products of finitely many copies of A%*(9D) and
Ade,

We extend the definition of the Hilbert transform in a natural way (com-
ponentwise) to the space £,. We denote the extension by 7,. It is a bounded
linear map from &, into itself and it has the property that the vector function

v + iT,v belongs to the space A, for every v € £,. We also define the map

H,: & — (CR*(OD))"
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which is defined as the identity map on each factor Cp*(0D), and is defined as

the map (2) on each factor 3%
3. Maximal real bundles over the circle

Let L be a maximal real subspace of C", i.e., its real dimension is n and
L@®iL = C". To any such maximal real subspace L one can associate an R-linear
map R; on C”, called the reflection about L, given by

z=x+itr—x—ix (x,z €L),
where z = x + 2 is the unique decomposition of z into the sum of vectors from
L and L. The mapping
R, :C" —(C"

is an R-linear automorphism of C" which is also C-antilinear, i.e., Ry (iv) =
—iRp(v) for every v € C". The reflection about the maximal real subspace
R™ C C* will be denoted by R,. Note that in the standard notation R, is just
the ordinary conjugation on C" and that for any n x n complex matrix A the

following identity holds
A= R,AR, .

LEMMA 1. Let L be a maximal real subspace of C* and let x4,...,x, be any
set of vectors spanning L. Let A := [x1,...,x,] be the matriz whose columns

are the given vectors x;, j =1,...,n, and let B := AA~'. Then

B =RLR, .
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Moreover, the matriz B does not depend on the basis of L, i.e., B remains the

same even if a different basis for L is selected, and
B=B"1, |detB| =1 .

Remark. In the above lemma n x n matrices A and B are identified with

C-linear automorphisms of C" in the standard basis.

Proof. Observe that A is a C-linear automorphism of C" which maps R" onto

L. Consider the following composition of automorphisms of C”
S:=R,AT'R, A .

Then S is a C-linear automorphism of C* which equals to the identity on R".

Since R” is a maximal real subspace of C", S is the identity on C", and hence
RA'=A"'R; .

Finally, since

B=AA"1=AR,A'R, ,
we get
B=AA"'R,R, = R.R, .

The rest is obvious. [ |

The following definition is taken from [Glo1], see also [For2].
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DEFINITION 1. Let L = {Lg & € OD} be a real rank n subbundle of the
product bundle D x C* of class C™*. If for each & € dD the fiber L¢ is a

mazimal real subspace of C", the bundle L is called mazximal real.

Example. A very important example of a maximal real bundle over 0D one
gets in the following case. Let M be C? maximal real submanifold of C* and let
p: 0D — M be a C? closed curve in M. Then the pull-back bundle p*(T'M),
where T'M is the tangent bundle of the submanifold M, is a maximal real bundle

over 0D of rank n.

It is known, see [Vek1], that for every closed path B in Gl(n,C) of class

C%? one can find holomorphic matrix functions
Ft:D — Glin,C) , F :C\D — GI(n,C)
of class C%* and n integers k; > ky > --- > k, such that

B=F"(§AEF (§) (£€0D),

where
g0 . .0
0 &2 0o ... 0
G I
0 ... ... 0 &

The matrix A will be called the characteristic matriz of the path B. One can
prove that under the condition k; > --- > k,,, the characteristic matrix A does

not depend on the factorization of the matrix function B of the above form, see
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[Vek1], [Glol], [Cla-Goh]| for more details. The integers ki, ..., k, are called

the partial indices of the path B, and their sum
k=k+--+k,

is called the total index of the matrix function B.

DEFINITION 2. Let L be a mazimal real bundle over the unit circle 0D.

The partial indices of the Gl(n,C) closed path
(3) By : § — RLERO

of class C%*, are called the partial indices of the bundle L and their sum is

called the total index of L.

Remarks.

1. Observe that Definition 2 makes sense even if the bundle L is not trivial.

2. The total index of a closed path p on a maximal real submanifold M C C”
is also called the Maslov index of p.

3. As we will see, in the case where all partial indices satisfy the condition
kj > —1, j =1,...,n, the characteristic matrix A(§) carries all important

information about the bundle L, see also [Glo1], [Oh1].

Although Globevnik in [Glol] works only with the trivial bundles over the

circle 0D, Lemma 5.1 in [Glo1] still applies and one can conclude
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LEMMA 2. The C%® closed path in Gl(n,C)
By :{+—— R, R, (£€0D)

can be decomposed in the form

BL(§) = OOAOE) " ((caD),

where the map © : D — Gl(n, C) is of class C** and holomorphic on D, i.e.,

the n x n matriz © is in A% (D)™™,

Let the total index k£ be an even integer. Then one can split the matrix A as

A(§) = QE)QE)™" (€ D),

where Q(&) is a closed real analytic path in GI(n,C). See [Glol] for details.
Fix £ € 0D and select any basis x1, ..., x, of the fiber L¢. Let A :=[z4,...,2,]

be the matrix whose columns are the vectors x;’s. Then

By(§) = AAT = 0(6)Q(£)(0(HQ(E))
and so
AT'O(6)Q(6) = A18(9Q(F) -
Thus the invertible n x n matrix
U:=AT'0()Q(¢)
is real and therefore the columns of the matrix ©(£)Q(£) = AU span the fiber

L¢ for each £ € 0D. Together with a Globevnik’s observation, see also [For2],

one concludes



13

COROLLARY 1. A mazimal real bundle L over 0D is trivial if and only if

its total index is an even integer.

According to [Bot-Tul, every real vector bundle over 0D of rank n is either
trivial or isomorphic to the direct sum of a trivial bundle of rank n — 1 and
the Mobius bundle. Since the trivial bundle case was discussed in details in
[Glo1], one would only have to consider the non-trivial bundle case. But since
our approach to the problem does not “see” the difference between the trivial
bundle case and the non-trivial bundle case, we will still consider both cases.
Let L be a rank n maximal real C%® vector bundle over 0D. Let ky > ky >

- > k, be its partial indices and let

g0 ... 0

ko
Mo=| 0 0 0
0 ... ... 0 ¢

As we already know the C%* closed path in GI(n, C)
By :§{~— Ry R, (§€0D)
can be decomposed in the form
BL(§) = O(AE)O) T (£ €0D)

for some © : D — Gl(n,C) of class C®* and holomorphic on D. The charac-

teristic matrix A can be decomposed further as

A=A2= AT,
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where
ki
£+ 0 0
0 &% 0 0
Ao(f) =
0 0 &%

Here £% stands for £™ if k = 2m and for Emr(&) if k =2m+ 1. We will refer to
A, as the square root of the characteristic matrix A and we say that the matrix

function
E— O(HA(E) (£€0D)

represents the normal form of the bundle L . To the C%% closed path By in
Gl(n,C) we also associate the corresponding Banach space &, we will work with,

see section 2 for the definition. The n-vector o is defined as

0 :=(k;ymod?2,...,k, mod?2) .

COROLLARY 2. If all partial indices of a maximal real bundle L are non-
negative, then there exists an nxn matriz function A(€), € € 0D, with the rows
from the space A, and such that its columns X1(§), ..., X, (§) span the fiber L¢

for every € € OD.

Remark. For £ = 1 the above statement still makes sense in terms of the limits

(1) when £ # 1 approaches to 1.
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4. Some computations

Let (-, -) denote the standard inner product on C". Let L be a maximal real
subspace of C". By iL we denote the maximal real subspace of vectors of the
form iv, v € L, and by L* the maximal real subspace of vectors perpendicular
to L, i.e., a vector u € C" is perpendicular to L if and only if Re(u,v) = 0 for
every v € L. We recall that R; denotes the C-antilinear reflection about the

maximal real subspace L and that the matrix By, is given as the product Ry R,.

LEMMA 3.

a) Let L be a mazimal real subspace of C". Then

and
R, =-R., =R, , B, =-B..

b) Let L = {L¢; & € 0D} be a mazimal real bundle over the circle 0D. Then
the following holds :
1. The partial indices of the bundles L and il are the same.
2. The bundles L, iL and L* are trivial if and only if one of them is

trivial.
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Proof. Let Ar, A;r and A; . denote matrices whose columns span the subspaces

L,iL and L*, respectively. Then
A, =1A;, and Re(AjA;.)=0.
Hence
B, = AiLE = —Bj,

and

Bpi= A ATl = (ALY TAVA AT = — B

Part (a) is proved. Part (b) is now a trivial consequence of part (a) and Corollary

1. H

Remark and an example. One should notice that the indices of the normal

bundle L+ are not always the same as the indices of L, e.g., if the matrix function

(v )

then its partial indices are 1 and —1, but on the other hand the partial indices

BL is

of Bt are all 0. Of course, one also has to check that B, = B, . |

LEMMA 4. Let L, be any (trivial or non-trivial) mazimal real bundle of rank
n over the circle 0D and let A,(€), £ € D, be a C* path in GL(n,C) which

represents the normal form of the bundle L,.
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1. Let L be a mazimal real bundle of rank n+ 1 whose fibers are spanned by

the columns of the matriz

(9 O
a=(1h)

where g 1s a nonzero function from the space Eg,moaz with the winding

ko

number =2,

ko € Z, and v is any vector function from (E,moaz)™ If
ki, ...,k are the partial indices of the bundle L, and if kj—k, > =1, j =

1,...,n, then the partial indices of the bundle L are
ko ki, ky .

2. Let L be a mazximal real bundle of rank n+ 1 whose fibers are spanned by

the columns of the matriz

A(E) = ( gifg) A00(€)> ’

where v is a vector function from the space (A%*(OD))"™. If ky, ..., ky, are
the partial indices of the bundle L,, then the partial indices of the bundle

L are

2 k1 k.

Proof.

1. Let B, = A,A;!. Then

BT =, g 5,

[e)
N——
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Once we find a solution (a,b) € (A%*(9D))"*! of the equation
a(€) ) k < a(§) )

4 B L) =& € 0D
o O3 )= (5 ) €eom)
such that the function a extends as a nonzero holomorphic function on D the
first part of the lemma will be proved.

Since the winding number W (g) is %0, the function g can be written in the

form

9(6) = p(&)Er?"® (¢ € D),

where p is a positive function of class C%* and h belongs to the space A»*(0D).
Let a := €. Then the first equation in (4) is solved and the second equation

has the form

1 — _
(5) 5(1} — B,0)e" + Bob = £ .

Let ®AD-T be the normal splitting of the path B, and let
dlyv=v , d=p.
Multiplying (5) by ® ! from the left-hand side yields
1 N AT ek
E(V—Ay)e +AB=E0.

Thus for each 5 =1,...,n we have the equation

1 —
Sy = €07 + £M B = €0
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After dividing by £%/? and rearranging the terms, the problem we are trying to

solve is to find holomorphic functions 3; € A»*(9D), j =1,...,n, such that

Z(kj—ko)/2 L —k;/2
Im(¢ Bi(&) = —=&" (&) =0 (£ €aD).
p(€)
But this problem is equivalent to the problem of finding real functions u;, j =
L,...,n, from the space Eu; k,)moaz such that the function
i 1 —ko/2
/Bé‘ :g(k] kO)/ZU'g + é. ]/'é_
i©) i) (3 ©

extends holomorphically to D. Since k; —k, > —1, j = 1,...,n, such functions

is indeed possible to find, namely, let

L k2
@5 vi(€))

where T is the Hilbert transform on the space Eu; k,)moda2-2- Let B,(§) =

u; =1iT(

A,(€)A,(€) L, € € D. Then
—52

T L 0
1(6) = AT = ( e i) me ) €S0

In this form it is easy to check that the vectors

—1

0= () w e©-c(;5) €eom

solve the Hilbert boundary value problem

T(§) =B(§)P27(§) (£€0D),

and that 2 is the order of zero of the function ®~ at the infinity. |

Example. The following example shows that in the case (1) of Lemma 4 one
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really needs some assumptions on the partial indices of the matrix function A4,

and the winding number of the function g.

£ 0

i 1)
& 0
%€ 1

and one can easily check that 2 is not one of its partial indices. Moreover, both

If A is the matrix

then the matrix B, = AA-! is

partial indices are 1. |

The next lemma shows that a fiber preserving diffeomorphism of D x C"
which is holomorphic on each fiber and biholomorphic as a mapping from D x C"

into itself does not change partial indices of a maximal real fibration over 0D.

LEMMA 5. Let
® : DxC"—DxC"
Q (& 2)— (€ 0(&,2))

be a C%*(D,CY(C")) fiber preserving diffeomorphism of D x C* such that the
function ¢(&,-) is holomorphic for each & € D and the mapping ® is a biholo-
morphism of D x C". Let L be a mazximal real bundle over 0D. Then the partial

indices of the maximal real bundles L and Z,

L¢:= D, ®(€,0)L¢ (€ € dD) ,
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are the same.

Proof. Let
P(&) :==D,®(,0) (£€D).

The C%* matrix function P is holomorphic on D and, since ® is a diffeomor-

phisms of D x C", invertible on D. Also,

Bi(€§) = P(E)BLP1(E) (£€aD),

where B, and Bj are the corresponding Gl(n, C) closed paths (2) of the bundles
L and Z, respectively. Since as soon as the partial indices are ordered, the
characteristic matrix A of the path B; does not depend on the factorization of

Bj; of the form

By = FTAF~ |
where
F*:D—GIl(n,C) and F~:C\D — Gi(n,C)
are holomorphic, the proof of the lemma is completed. |

5. Perturbation by analytic discs

The problem we consider in this section is the following.

Problem. Given a smooth map

{r— M(§) (£edD),
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where each M (), & € 0D, is a maximal real submanifold of C*, and a smooth
map

p:0D — C"
such that p(¢) € M (&) for each ¢ € dD, find all smooth maps ¢ : D — C*,

holomorphic on D, which are close to the zero map and satisfy the condition

(p+)(§) e M(§) (£€dD).

This problem was also considered by Globevnik, see [Glo1, Problem 1.2], for
the orientable bundle case, and by Forstneri¢ in C?, [For2|. See also the paper
[Oh1] by Y.-G. Oh. The arguments we use in this section closely follow those
used by Globevnik in [Glo1] and Forstneri¢ in [For2], and so not every detail
will be given.

The smoothness of the Problem will be C%* for some fixed « € (0,1). That

is :

a) The map p: 9D — C" is of class C%~.

b) For each £, € 0D there a neighbourhood U, C 0D of &,, there is an open
ball B;, C C" centered at the origin and maps p§°, ..., pb from the space
C%(Ug,,C*(Bg,)) such that for each £ € Ug, we have

L M(&) N (p(€) + Be,) = {z € p(&) + Be,; p*(&,2 = p(€)) = 0, j =
1,...,n},

2. p°(,0)=0,7=1,...,n,

3. 0.0 (6, 2) A--- NDLple(€,2) £ 0 for all z € Be,.
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An object of the above form will be called a C%® mazimal real fibration over
the unit circle 0D with C? fibers.

Obviously each maximal real fibration over 9D induces a maximal real vector

bundle over 0D, i.e., the bundle

U €} x TheoM(©)

€€oD

and hence it makes sense to talk about the partial indices and the total index

of a maximal real fibration over 0D. We define them as the indices of the
corresponding maximal real vector bundle.

Let B : 9D — GL(n,C) be the corresponding C%* closed path in GL(n,C)

defined by the map (3) which factors as

(6) B(¢) = 2(AE)271(E) = A (§)AT'(E) (€D,

where A,(£) stands for ®(£)A,(£). The n x n matrix A4,(£) has the property
that for each £ € 0D its columns span the tangent space T}, M (£) and that its
rows belong to the space &,.

One would also like to get a set of defining functions for the family M (&)

which would reflect the splitting (6).

LEMMA 6. There exist an r, > 0 and functions

p} € Cg*(0D,C*(B,,)) (1<j<n)
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such that for every odd partial index k; the function pj has the property

pi(=¢,2) = =pj(&,2)  ((§,2) € 0D X By,) ,
and such that for the functions
pi(&,2) == { p?(?”
7 P (&
the following holds

a) M) N (p(&) +B,,) ={z € p(&) + B,;pj(§,2—p&) =0, =1,...,n},
b) O.p1 A+ AND.p, #0 on dD x B,,.

Proof. For each point 6, € [0, 27] it is easy, using the definition of a maximal
real fibration over D and some linear algebra, to find a neighbourhood Uy, C R
of 6, and functions pj,_, ..., py, from C**(exp(Uy,), C*(B,,)) such that for each

€ € exp(Uy,) we have

M(€) N (p(€) + By,) = {2 € p(€) + Br,i pp, (€, 2 = p(€)) = 0,5 = 1,...,n}

and

Ipy,

D (¢,0) 1= 2(i4, (€)= —2i(@ 1)'A,

Vzpt% (67 0) =2

where pg, = (pg,, -, pj,). Here exp(Uy,) denotes the open set {e;6 € Uy, } C
0D. By the compactness we select a finite subcover {U;} of the interval [0, 27].
We may even assume, without loss of generality, that each of the points 0 and

27 is covered only once, and that for the sets of defining functions py and po,
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one has
po(e”,2) = pl (e, 2)
for every j such that the partial index k; is an even integer and
ph(e”, 2) + pho(e”,2) =0

for every j such that k; is an odd integer. Let {x;} be a smooth partition of

unity on [0, 27] subordinated to the cover {/;}. We define
p(e”, z) == ZXj(e)paj (€”,2) .
J

For r, > 0 small enough the above function p satisfies the required properties.
Of course, the properties of the component functions p; for such subscripts j
that the partial index k; is an odd integer, follow from the fact that the j-th
column of the matrix A, changes its sign when the argument arg(¢) runs from 0
to 2. Finally, for a subscript j such that the partial index £; is an even integer,
we define the function p? to be the function p;, and for a subscript j such that
k; is an odd integer we define the function p? as Hep(-,z). Here H is the map

(2) defined in section 2. |

Using the vector notation we define
F:& x& — &,

as

F(u,v) := p(-, Ao(u +i(v + iT,v))) .
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Observe that F' is well defined and that is of class C!, see [Glo1l, Lemma 6.1].

Observe also that if a pair (u,,v,) € €, X &, solves the equation
F(u,v) =0,

then the boundary of the disc p+ A,(u,+1(v,+i7T,v,)) lies in the given maximal

real fibration, i.e., for each £ € 0D we have

(&) + Ao(&) (uo(&) + i(0o(&) + i(T5v0)(€))) € M(E) -

The rest is completely standard. First one should use the implicit mapping
theorem in Banach spaces, [Car|, for the mapping F' and the space &, to get a
parametrization of all, not necessary holomorphic, nearby discs with boundaries
in the maximal real fibration {M (§)}¢con.

Let Op denote the matrix whose columns are the coefficients of the (0, 1)

forms dpy, ..., 0p,. For each £ € D we have

gp(ga 0)*140(5) - Z]n y

where I, denotes the n X n identity matrix. Then the partial derivative of F
with respect to v at the point (0,0) € &, x &,, applied to a function v € &,, is

in the matrix notation given by

(DyF(0,0))r)(&) = 2Re(Ip(&, 0)" A, (&) (iv (&) — (Tov)(€))) = —2v(§)

for every £ € 0D. Hence the partial derivative of the mapping F' with respect

to variable v is an invertible linear map from the space &, into itself. So the
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implicit mapping theorem in the Banach spaces gives neighbourhoods V; and

Vy of 0 € &,, and a unique C' mapping
p:Vi—V,
such that on Vi x V4
F(u,v) =0 if and only if v = ¢(u) .

Finally one would like to select from the above family of all possible closed
C™* curves in the maximal real fibration {M (&) }¢cap near p, those which bound

a suimn

p + analytic disc .

This is the point where one can effectively use the normal form of the maxi-
mal real bundle p* (T, M (£)), £ € 0D, over the circle 9D. And this is also the
point where one should assume that all partial indices of p*(T'M) are greater or
equal to —1. For the final argument one should first observe that for the case
when all partial indices of the maximal real bundle p*(T'M) are greater or equal

to —1, the vector function
Ao(v +iT,v)

extends holomorphically to D for every v € &£,. For the nonnegative partial
indices this follows immediately but for the partial indices which equal to —1
the above claim follows from the fact that for any odd partial index £; the

function v; + iT'v; is of the form r(£)g9(¢) for some function g? € A»*(dD).



28

So the condition for the vector function
E— Ao(u+i(v+iT,v))(&) (£ €0D)

to extend holomorphically to D is in the case k; > —1, j = 1,...,n, equivalent

to the condition that the vector function

§— Ao (§u(§) (€€ D)

extends holomorphically to D. To detect all possible u's which have the above

property one has to find all vector functions a € (A%>*(0D))" such that on D

ANa=a,
ie,forallj=1,...,n
¥a;(6) = a;(§)  (€€0D).
For each partial index k; = —1 there is only one solution of the above equation,

namely, a; = 0. For k; > 0 one gets k; + 1 dimensional parameter family of
solutions. A parametrization ¥ of all functions u € &, such that the vector

function A,u extends holomorphically to D is for each component function u;

given by
kj/2

(7) U;(to, .., ty)(€) == to + Re() _(tasmt + it,)€?)
s=1

in the case the partial index %; is an even integer and by
k, 1)/2

(8) \Ijj (t[), Ce ,t . Z t25 + Zt25+1 (§)25+1)

s=0
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in the case k; is an odd integer. See [Glo1] for more details. Hence, altogether

one has

> (kj+1) Zk +Y 1= "k—-> l+n=k+n

k;j>0 k;j>0 k;j>0 k; <0

parameter family of solutions of the Problem.

THEOREM 1. Let M(§) C C*, £ € dD, be a C®* mazimal real fibration

over the unit circle 0D with C? fibers and let
p:0D — C"
be a C%% closed path in C* such that

p(§) € M(§) (£€0D).

If all partial indices of the maximal real fibration M (), & € D, along the path
p are greater or equal to —1 and the total index of p is k, then there is an open
neighbourhood U of 0 € R"*  an open neighbourhood W of p in (C**(0D))"
and a map
U:U— (C*(0D))"

of class Ct such that

1) ¥(0) = p,

2) for each t € U C R the map ¥ (t) — p extends holomorphically to D,

3) \Ij(tl) 7£ \Ij(tg) fOT’ tl 7£ tg,
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4) if p € W satisfies the condition p(§) € M(§), & € 0D, and is such that

p—p extends holomorphically to D, then there ist € U such that VU(t) = p.

Remark 1. The above theorem was first proved by Forstneri¢ in [For2] in
the case where the ambient space is C?. Next, it was proved by Globevnik
[Glol] in C" for the case where the pull-back bundle p*(T'M) is trivial and
where all partial indices are nonnegative. Later I observed that Forstneri¢’s
and Globevnik’s tehnique also works in the case when the pull-back bundle is
nontrivial but the indices are still nonnegative. In the meantime the Problem
was, although in a little bit different context, solved by Y-G.Oh [Oh1] who
noticed that the partial indices can be even taken to be greater or equal to —1.
The above theorem thus also includes his observation but in the context of the
Forstneri¢’s and Globevnik’s tehnique to tackle the Problem. For more on the
history of the Problem, partial results and applications one should also check
the papers by Alexander [Ale2], Bedford [Bed1, Bed2], Bedford and Gaveau
[Bed-Gav], Eliashberg [Eli], Gromov [Gro].

Remark 2. Asin [Glo1, Theorem 7.1] one could also add to the above theorem
perturbations of a maximal real fibration over the unit circle and the condition
that in the case where all partial indices are greater or equal to 1, the set of the

centers W(t)(0) — p(0), t € U, contains an open set in C".
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6. Analytic varieties over the disc

Let M be a maximal real submanifold of C". The problem we consider in

this section is a very special case of the following general question :

Given M and V' C C" \ M, a purely one-dimensional analytic subvariety with
boundary in M, can one “find and describe” all purely one-dimensional analytic

subsets in C" \ M that are near V' 7

Let n = 2 and let 7 : C> — C be the projection on the first coordinate
plane m : (§,2) — & Let T C 0D x C be a compact, connected, totally real
two-dimensional submanifold of C? of class C? such that for each & € 9D the

fiber

Te={2€C(£2) €T}
is the union of ¢, ¢ € N, simple closed curves in C whose polynomial hulls are
pairwise disjoint. Observe that 7 is a totally real embedded torus in C?.

In our setting M C C? will be a finite disjoint union of totally real tori

fibered over the unit circle 9D C C x {0} C C?, i.e.,

k
M=]JT;
j=1
where 71,7, ..., Tr are pairwise disjoint totally real tori in 0D x C. Thus each
fiber

M ={2€C;(&2) € M}
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is a finite pairwise disjoint union of ¢ = q; + - - - + ¢ Jordan curves Jg, . Jg.
For V, a purely one-dimensional analytic subset of C* \ M, we assume that

is a g-sheeted analytic variety over D, i.e.,

a) V C D x C is given by a Weierstrass polynomial of degree ¢
V={(&2)€e€DxC2z"+a (27" + -+ a,(&) =0},
where ay, as, ..., a4 are in the disc algebra A(D),

b) VﬂJg%@foreveryjzl,Q,...,k and every £ € dD.

Observe that by a theorem of Cirka, [Cir], ai, ..., a, are also in A> °(D).
Given M and V as above one can construct a compact connected maximal
real manifold M in C*! and an analytic disc V with boundary in M in the

following way :
Each fiber M N7~ 1(¢), € € dD, is the disjoint union of ¢ Jordan curves
Jg, j=1,...,q Let T := J§ x --- x J¢ € C?. We define the map

o:C7 —

(215---52¢) > (S1,---,5q)

where
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Observe that ® is a proper map from C? into itself and that its Jacobian deter-

minant is
Jo(z) = det(D®(2)) = [ [ (2 — =) -
j>t
By the assumptions on the manifold M, i.e., the curves Jg, j=1,...,q, are

pairwise disjoint, the ¢g-dimensional tori 7¢, £ € 0D, do not intersect the branch
locus of the map @, i.e., the set of points in C? where Js(2z) = 0. Moreover, by
the same reason and since the coefficients of a polynomial uniquely, up to the
order, determine its zeros, @ is injective on each 7. The image of 7; under ®
is denoted by 7NT§ and is a maximal real g-torus in C? of class CZ.

We define
M= J{ =T

£€dD

Since locally, over some arc I C dD, M is given as the image of Ueer{&} x T¢

under the map
CxC! — CxC?
(& 2) — (5 2(2))

and since the component functions of the maps ®, are symmetric in their argu-
ments, M is a maximal real compact connected manifold in C¢*! fibered over
D of class C2.

By an assumption on V' the points in the fiber V N 7~!(£) represent exactly

one point in 7¢. The mapping ® maps each of them into '72 Since V' is given
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by a Weierstrass polynomial and since ®, is given by elementary symmetric
functions of its arguments, one concludes that the boundary of V' is mapped
into the boundary of an analytic disc in C¢*! attached to M. Moreover, this
disc is given as the graph of an analytic disc in C? which takes & € 0D into 7NT§

One also observes that the varieties over D with boundaries in M which
satisfy the above conditions are in one to one correspondence with the graphs
of the analytic discs in €C? which map & € 0D into 7~g Namely, a basis of
symmetric functions in ¢ arguments z;,...,%, can be given either with the
functions sy, ..., s, or with the symmetric functions which one gets through the
Vieta formulae. So the problem of finding and describing all analytic varieties
with boundaries in M near to the given analytic variety V' with boundary in M
is now translated to the problem of finding all analytic discs with boundaries in

M close to the given one.

Remark and an example. Although the fibers 7~g of the manifold M are
maximal real ¢-dimensional tori, the manifold M itself is not necessary a q + 1-
dimensional torus as the following example shows :

Let the manifold M be given by

M :={(£,2) €0D x C;|2* —¢| = %}
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and the variety V by the equation z? —¢ = % Then the pull-back of the tangent
bundle of the 3-dimensional totally real manifold M C C? along the graph of

the associated analytic disc is not trivial. Thus M is not a 3-torus. |

We denote by p : 0D — C? the corresponding analytic disc whose graph
has boundary in M and by p' its derivative. Fix &, € 0D. Since the curves
Jg, j=1,...,q, £ € 0D, are pairwise disjoint, one can, locally near &,, order
the roots of the Weierstrass polynomial defining the variety V. Let a;(§) €
Jg, (8 € Jg denote its roots. Also, to each root (&), 7 =1,...,q, £ €
0D, there corresponds a unique unit outer normal 7;(§) to the curve Jg CCat
the point o;(&). Using local parametrization of M, definition of the manifold

M, and the above notation, a matrix A whose columns span T(gya(g))ﬂ can be

written as
~ 13 0
A_<i§p’(§) ia(ﬁ)T(&)) ’
where
1 1 1
g =| e
af™'(€) ol ()
and
Tl(f) 0 0
o= 0 oYt
0 o 00 (8

Thus if one defines B(€) = a(&)7(€)(a(€)7(€))~" and B(£) = /NX?, £ €

0D, then the proof of Lemma 4 part 2 implies that one of the indices of the
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Gl(qg + 1,C) closed path B equals 2 and the remaining ¢ indices are given by
the Gl(q,C) closed path B.

COROLLARY 3. The total index k, of the closed path B 1is given by

q
ko =2W([[ ) + W([ (e = )?)
7=1 >t
where W (g) denotes the winding number of a function g € C(0D) with no zeros.
Proof. The total index k, is also given as the winding number of the deter-
minant det(B). Using the special form of the matrix B and the fact that the
matrix « is the Van der Mond matrix the corollary follows immediately. One

should also recall that the winding number of the product of two functions

equals to the sum of the winding numbers of its factors. |

Results from the previous section and [Glo1] now imply

PROPOSITION 1. If all partial indices of the Gl(q,C) closed path B are

a) (Existence) greater or equal to —1, then near V there is a k, + q + 3
parameter family of analytic varieties with boundaries in M. Moreover,
iof each partial index of B is at least 1, then the family of analytic varieties
with boundaries in M that are near V contains an open subset of C2.

b) (Nonezistence) negative, then there is a neighbourhood of V in C? such
that in this neighbourhood the variety V' s the only analytic variety with

boundary in M.
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COROLLARY 4. A necessary condition that all partial indices of the Gl(q, C)
closed path B are positive, and thus the union of the family of analytic varieties

with boundaries in M close to the variety V contains an open subset of C?, is

QW(H )+ W([ [(es —a)’) 2 ¢

>t
Proof. A necessary condition that a family of nearby varieties with boundaries
in M contains an open set of C? is that all partial indices are greater or equal

to 1. So the total index k, has to be greater or equal to q. |

Example. Let the manifold M be given by
2 oy _ 1
M= {(6,2) €D x G| — €] = )

and the variety V' by the equation z* — & = 5. The normals to the fibers of M

at the boundary of V' are given by

Therefore W(r;) = —1, j = 1,2, and W(ay — 1) = 1, and our necessary
condition to have a lot of nearby analytic varieties with the boundary in M
fails. One can also calculate the partial indices for this example. They are 2, 0

and —2. [ |
7. Minimal discs with free boundaries

Let M C C" be a C? manifold and let p : D — C" be a disc of class C'**

with boundary in M, i.e., p : 0D — M. By the energy of the disc p we mean
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the Dirichlet integral of p

Bp) = [ [VoPdudy.
The maps which minimize the energy functional are of a special interest in the
Riemannian geometry, namely, any map with boundary in a submanifold M
which minimizes energy E in a certain homotopy class [p(0D)] € G C m (M),

also minimizes the area functional
0 0
P /\ op dxdy

A= [ [ENG

in G, see [Nit] and [Ye2] for more details. The advantage of the energy func-

tional F with respect to the area functional A is that the first is only conformal
invariant but the latter is invariant under any diffeomorphic change of coordi-
nates.

Let (r,0) denote the polar coordinates on the unit disc D. It is well known,
see e.g., [Jag], [Lew]|, [Ye2], that any solution p of the Euler-Lagrange equations
for the energy functional F with free boundary in the manifold M must satisfy

the following conditions:

a) All component functions of the mapping p are harmonic in D, and

b) %(5) L TyeyM for every £ € OD.

In our case, where the ambient space is C”, it is quite easy to check the above

statement :

Let py, t € (—1,1), denote a one-parameter family of maps from the unit disc
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D C C into C™ which all take the unit circle 9D into the submanifold M. Let

0

. Pt

ot =7

t=0

Observe that the vector 7 is tangent to M along p,(0D). For every such variation

n Stokes’ theorem for the pair (D,dD) implies

d

EE(pt)

o
8D 87"

nde .

= —/ Ap, - ndxdy +
=0 D

t

A necessary condition on a disc p, with boundary in M to be an energy func-
tional minimizer with free boundary in M is the vanishing of the first variation

of E at p,, i.e.,
d

&E(Pt)

and the above statement on energy functional minimizers easily follows.

=0,

t=0

Since p: 0D — M we also have

Op
5¢®€E@M

on 0D. Combining both conditions we conclude

Op

0
56 L5

- © (o).

Since p is harmonic on the unit disk D it can be written in the form
p=f+79
for some holomorphic vector functions f and g from (A%%(D))". The condition

on p to be minimal can be written as

dp

Re(22(6), L)) = 0
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and so

Re(¢f'(€) +£9'(6), i f(§) —i&g'(§)) =0 (£ € 9D).

A short calculation shows

Im&*(f'(€),9'(€)) =0

for every £ € 0D. But the function

F(§) =&X{f'(€),9'(€)) =0 (£€0D)
extends holomorphically to D and so F(€) is a constant function. Since F'(0) =

0, one concludes that

(1(€),9©) = D_ £i(&)gj(€) =0

for every £ € OD.

COROLLARY 5. Let p be a complex function p : D — C of the class C™*.
If either of the discs
FG:D— C*,
where
Fz) = (2p(2),
G(z) = (Zp(2),
is minimal for some submanifold M in C?, then the function p is either holo-

morphic or antiholomorphic. In particular, M can be a totally real torus in C?

fibered over the unit circle OD.
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Proof. Let us assume that the disc F(z) = (z,p(z)) is minimal for some
submanifold M. Then the corresponding holomorphic discs f and g are of the

form
f(2) = (z,a(2)) and g(z) = (0,b(2))
for some holomorphic functions a and b from A“*(D). The above argument
then implies
a ()b (z) =0
for every z € D. Thus at least one of the functions a and b has to be a constant

function. In the case the disc G(z) = (zZ,p(z)) is minimal, the proof is similar.

We would like to use the special normal form of the pull-back bundle to

investigate the energy functional minimizers with boundaries in a Lagrangian

submanifold M C C" of class C?.

PROPOSITION 2. Let L be a mazimal real n-dimensional vector bundle over
OD of class C™ such that every fiber L¢, € € 0D, is a Lagrangian subspace of
C", and let By be the C% closed path in Gl(n,C) which represents L. Then :

a) By = B! so the matriz By (€) is unitary for every £ € OD.
b) B! = By, and conversely, if for a mazimal real bundle L over dD one has
B! = By, then the bundle L is Lagrangian, i.e., each fiber is a Lagrangian

subspace of C".
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c¢) Let n, denote the number of partial indices of the bundle L which are
greater or equal to —1. Then there are n X n, and n X (n — n,) dimen-
stonal matriz functions X andY, respectively, with entries from the space

A%(QD) such that the columns of the matriz function
(X, Y]A,

span the fiber L¢ for each & € OD. Moreover, X'Y =0 on 0D. Here A,

is the square root of the corresponding characteristic matriz A.

Remark. In the case n, is n (resp. 0) the matrix Y (resp. X) does not exist.

Proof. Since the fibers of the bundle L are Lagrangian subspaces of C", the
bundles iL and L+ are the same. Lemma 3 implies B, = B;, and then also, by
Lemma 1, Bi = B;'. This proves (a) and the first part of (b). To prove the
reverse implication of part (b) one should observe that if A is any n X n matrix

whose columns span L, for some { € 0D, then
AAT = Bi(6) = By(§) = AT A = (A7) 714"
So
A*A = A"A = A*A
and the matrix A*A is a real n X n matrix. Hence

Re((iA)*A) = 0
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and so the columns of the matrix iA are perpendicular to the columns of the
matrix A. Part (b) is proved.

To prove part (c) we use the factorization of the matrix function By,
By, = ®AD T,

for some map ® : D — Gl(n,C) from A%(D)"". We define ¥ := (®~!)* and
by part (b) we also have
Bp = UAU-T,
Let
O =1[D,P] and U =[U;, Uy
be the block notation of the matrix functions ® and ¥ such that the matrices
®, and ¥, have dimensions n X n,. Since
U =o' (e N =1, ,
we get
o=,
and so
P, =0.
This means that the columns of the matrix ®; are orthogonal to the columns

of the matrix W,, and so the matrix
[(bla \112]

is invertible. We set X := ®, and Y := W, and the proof is finished. |
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The proof of part (c) of the above proposition also implies

COROLLARY 6. Let L be a Lagrangian vector bundle over 0D of class C*®,
let By, be the corresponding C% closed path in Gl(n,C) and let A be its char-

acteristic matriz. Then the characteristic matriz of the Gl(n,C) closed path

§ — Br(§)

is A.
Remark. Statement (c) of the above proposition does not hold for an arbitrary
maximal real vector bundle over the 0D. As a counterexample one can take the

bundle whose matrix B is given by

_521
(0 ZQ>'

It is easy to check that the partial indices of B are 2 and —2 and that there are

no nontrivial holomorphic functions a,b € A%*(dD) which satisfy the equation

(¥ 4)(38)¢(8)
0 £ b(¢) b(€)
|
Henceforth M will denote a C? Lagrangian submanifold in C* and p: D —

C" will be an energy functional stationary disc of class C1® with boundary in

M, i.e., the first variation of the energy functional E at p is 0. We recall that
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the pair (r, ) represents the polar coordinates on D. Then one has

dp 1 /0p .0p
e =5 (0 +i%0)

and
_0Op 1 (0p Op
ce =5 (3o - i)

for every & € 0D. Since the disc p is attached to the manifold M, the vector

op
00

%(f) is perpendicular to M at p(§) for each £ € OD.

(€) is tangent to M at p(§) for each € € 0D. Since p is minimal, the vector

Let A, denote the matrix constructed in part (c) of Proposition 2. Since M
is a Lagrangian submanifold of C* we get

0D B
Re(id"5/(£)) =0,

and since the first variation of the energy functional E at p vanishes, we have

LoD
Re(4'22() = 0.
Thus for each £ € 0D we get
_ 0 0
Re(€4;(§)5-(€) =0 and  Re(§4;(§)5-(€) = 0.

Since p = f + g for some vectors f, g from AY*(0D)", we have

(9) Re(€A5(6)g'(€)) =0 and  Re(€A3(6)/'(€) =0.

Since also 4, = [X, Y]A, where the matrices X and Y have holomorphic exten-

sions into D and are “orthogonal” to each other, i.e., Y'X = 0, we first conclude
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that
X'¢ =0 and Y'f'=0,
and finally
f'=Xh and ¢ =Yk

for some vector functions h € (A%*(D))" and k € (A%*(D))" ™. For these
results we used only one part of each equation in (9). The rest, together with

the above equalities, implies
Re(EAJX*Xh) =0 and Re(EA,Y*YEk)=0,

where A} and A; are the n, X n, and the (n — n,) x (n — n,) dimensional

matrices, respectively, such that
AF 0
v=(% 5 )

Re(—iAZA,) =0

Since

on 0D, the matrices
AFX*XAS and AY*YA;

are real and invertible. Thus

Re(€A; (§h(€) =0 and  Re(¢X, (k&) =0

for every & € 0D. This proves the following theorem.
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THEOREM 2. Let M be a C? Lagrangian submanifold in C* and let p =
f+79, f,g € (Ab(OD))", be the energy functional stationary disc of class CH*
with boundary in M. Let n, denote the number of partial indices of the path
p(0D) C M which are greater or equal to —1, and let X andY be the n X n, and
n x (n—mn,) dimensional holomorphic matrices given by part (¢) of Proposition
2. Then there exist vector functions h € (A%*(0D))" and k € (A% (dD))" ™

such that

Re(AF(EN(E)) =0 and  Re(A;(§K(E)) =0 (§€aD),
and

f'=Xh and ¢ =Yk.

Remark. In the case n, equals n (resp. 0) one part of the above conlusion is

empty, namely, the matrix Y (resp. X) does not exist.

As a simple consequence one has the following

COROLLARY 7. (Hypothesis as above.)

1) If all partial indices of the pull-back bundle p*(T M) are greater or equal
to —1, then p is a holomorphic disc.
2) If all partial indices of the pull-back bundle p*(T M) are less or equal to

1, then p is an antiholomorphic disc.
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8. Stationary discs

Let 98¢, £ € 0D, be a C1* family of strongly pseudoconvex C* hypersur-
faces in C", i.e., there exists a C* (0D, C*(C")) function p = p(&, 2) on D x C*

such that for every & € 0D

a) the hypersurface 0€2¢ equals to the set {z € C*; p(§, 2) = 0,0,p(&, ) # 0}
and

b) the domain {z € C"; p(&, z) < 0} is strongly pseudoconvex.

Let
f:D—C"
be a holomorphic map of class C'b® such that

f(§) € 90 (£ € D).

We will call such f a holomorphic disc in C" with boundary in the family of
strongly pseudoconvex hypersurfaces {0€}ecop. For any such mapping f we

define

usl€) = (e, 1(6))

The following definition seems to be a natural extension of the definition in

[Lem)], see also [Slo4] and [Panl].
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DEFINITION 3. The disc f is said to be stationary if and only if there exists

a OY% positive function p on 0D such that the mapping

§r—p(&)us(§) (£ €0D)

extends as a holomorphic mapping on D with no zeros.

Remark. In the cases considered by Lempert in [Lem]|, by Slodkowski in
[Slo4], and by Pang in [Panl] the geometry of the problem under consideration
implies that if p is a positive C%® function on @D such that the mapping &

p(&) (&) extends holomorphically to D, the extension is nonzero on D.

We recall the Webster’s construction in [Web] where he showed that the natural

embedding of a C? hypersurface ¥ C C" into C* x CP"~! via the map
(10) U:z0— (2,TCY) (2€%)

is maximal real near a point (z,, T %) if and only if the Levi form of ¥ at z,
is nondegenerate. Thus the image of a strongly pseudoconvex hypersurface >
under this natural embedding is always a maximal real submanifold of C* x
CP"~!. Using the natural duality, i.e., the space of complex hyperplanes in C*
is naturally biholomorphic to the space of complex lines in C", observe that
every stationary disc f with boundary in the family of strongly pseudoconvex

hypersurfaces {0 }¢cop, induces an analytic disc

& — (f(&), [1s(8)])
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in C" x CP™ ! attached to the maximal real fibration {¥(9Q¢)}ecop. So it
makes sense to talk about the partial indices of a stationary map, i.e., we define
the partial indices of a stationary map as the partial indices of the induced map.

Notice that to each stationary map f we associate 2n — 1 partial indices.

LEMMA 7. Let h: D — C" be a holomorphic disc of class C*, k > 1, such

that
hME)#0  (£eD).

Then there exist holomorphic discs h?, h3,... h"™ of class C*, k > 1, such that

det(h(€), B(€), .., h"(€) =1 (€ D).

In particular, the vectors h(€), h*(€), ..., h™ (&) are linearly independent for every
£eD.

Remark. The lemma was inspired by Proposition 9 in [Lem)].

Proof. We will prove the lemma by induction on the dimension n. For n =1
the claim is trivial. For n = 2 the lemma follows from the fact that since the
component functions f and g of the mapping h, i.e., h = (f, g), have no common
zeros and since the space A¥(D) of the k times differentiable holomorphic func-
tions on D is a Banach algebra with a unit where the holomorphic polynomials
are dense, then the characterization of the maximal closed ideals in A*(D) as

in the proof of Theorem 18.18 in [Rud1] implies that there exist holomorphic
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functions F and G of class C* such that

FOFE)+9()G(E) =1 (e D).

Then the mapping

ho(€) = (=G(), F(§)) (e D)

is such that det(h(£), hy(€)) = 1 for every € € D.

Let us assume the lemma for n > 2 and we will prove it for n + 1. Let
h : D — C"!' be a holomorphic disc of class C* with no zeros on D. After a
linear change of coordinates in C* one may assume that the first n component
functions of the mapping h have no common zeros on D. This follows since h
can also be considered as a C* mapping from D into CP™ and therefore it can
not be surjective. Let h = (g, h,.1) where g stands for the first n components
of the mapping h. By the inductive assumption one can find g, ..., g, analytic

mappings from D into C" of class C* on D such that

det(g, g2, ..., g0) =1
on D. Now the mappings
b= (;,0)  (G=2....,n)
and
hpyt :=(0,...,0,1)

prove the lemma, for the dimension n + 1. |
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Henceforth let
f:D—C"

be a stationary map for the family of strongly pseudoconvex hypersurfaces
0, £ € 0D, in C*. Therefore there exists a positive function p on 90D of
class OV such that p(§)ps(€), € € D, can be extended as a nonzero holo-
morphic mapping on the disc D. The above lemma for £ = 1 implies that the
function p is essentially unique, i.e., if p; and p, are two real functions on 0D

such that

Pily and P2ty

extend as holomorphic mappings on D with no zeros, then there exists a positive

constant a such that
p2(§) =api(§) (£ €0D).

Observe that here we really need an assumption on the zeros of the maps p;uy,

t = 1,2, namely, e.g., the function
E— Re(€+2)¢ (£€0D)

extends as a holomorhic function on D but the real function p(¢) = Re(§ + 2)
is not constant.

We normalize the map p(&)ur(€), £ € 0D, so that at the point & = 0 the
length of the extended holomorphic vector is 1. The so obtained map we call,

following Pang [Panl] (although our definition differs a little bit from his), the
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dual map of f, and we denote it by f Since fhas no zeros on D, one can use
the above lemma to get a C'' holomorphic frame ]7, ho, ..., hy over D.

We define two fiber preserving diffeomorphisms of D x C* which are holo-
morphic on each fiber and biholomorphic as mappings from D x C" into itself.
Such a diffeomorphism does not change partial indices of a C%® closed path in

a family of totally real submanifolds, Lemma 5. The first one is

D1 : (& 2) — (&2 — f(8))

and the inverse of the second one is
®yl: (€,2) — (6 F(O)n+ Y hi(€)z) -
71=2

The composition ® := ®,0®; is then a C* fiber preserving diffeomorphism such
that in the new coordinates, i.e., after applying ®, the stationary disc f and its

dual fhave extremely simple form, namely,

f(¢&)=0 and f(& =(1,0,...,0) (£€9D).
We still denote the defining function of the family of strongly pseudoconvex
hypersurfaces 08, £ € 0D, by p = p(&, z) and we may assume, without loss of
generality, that g—z({f ,0) =1 for every £ € 0D. Since the hypersurfaces 0 are
strongly pseudoconvex for each £ € 0D, the complex Hessian of the function

p(&,-) is positive definite when restricted to the maximal complex tangent space

of 0Q¢ at the point 0,

TE00 = {2 € Cy = 0} = C* " |
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i.e., the (1,1) minor L,(&) of the complex Hessian of p(,-) represents the Levi

form of the hypersurface 0 at 0. Thus the (n — 1) x (n — 1) matrix function
of class C%“ on &D

§ > Lo()

satisfies the theorem [Lem, Théoreme B| and so there exists an (n—1) x (n—1)

matrix function K,

K:D— GL(n-1,C) ,
of the same smoothness and such that

a) K is holomorphic on D,
b) K*(§)K(¢)

Lo(§) (€ aD).

After using another fiber preserving diffeomorphism on D x C*,

(67 21, Z,) — (57 21y K_l(é-)zl) )

where 2’ stands for (2o,...,2,), one may assume that

f(&) =0, f(§)=(1,0,...,0), L,&§) =1Id (£€09D).

We will now compute the total index of a stationary map. Later on we will
apply the same kind of computation to find all partial indices of a stationary

disc under some geometric assumptions on the family 0Q¢, £ € 0D.
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We denote by I,, the n x n identity matrix and by J,, the (n —1) x n matrix

o 1 0 ... 0
o o0 1 ... 0
o o0 o0 ... 1

The other matrices we need are

B 82p n B an n
wo = (poeten) . @ (o)
and
Ho = JnHJfL .

Since the derivative p,, (£,0) equals 1 for each £ € 9D, the mapping

Ve C o O

a6 paled)
vele) = e e )

is well defined in a neighbourhood of 0D x {0}. Notice that W, restricted to

0Q is just the Webster’s map (10) written in the local coordinates. A short

computation shows
I, 0
o) = () o ewo= ()
Since the columns of the matrix
(ier, JY,iJ})
span the tangent space to 0€)¢ at the point 0 and since for every v € C* we have
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the columns of the matrix

iey Jt iJt
i(JuHer — JoLer) JuHJE + JoLJE i(JuHJE — J,LJb)
span the tangent space to W¢(0€)) at the point (0,0). Using our notation we

can simplify the above matrix as

iJ,Hey, H,+ 1, i(H,—1I, ) )

We compute the determinant of the above matrix by expending along the first

row. We get that the determinant of (11) equals to

. In—l iIn—l
Zdet < Ho"—[n—l i(Ho - n—l) ) ’

We multiply by ¢ the first column and subtract it from the second to get

| I 0
i det < Hy+ Iy —2il, > '

Thus the determinant of the matrix (11) equals to
idet(—2iL,) = idet(—2il, 1) = (=2)" 4"

and we proved the following proposition.

PROPOSITION 3. The total index of a stationary disc f with boundary in

a family of strongly pseudoconvex domains in C* is 0.

To compute the partial indices of this path in the family of maximal real sub-

manifolds {W¥(0€) }¢cap one first has to find the inverse of the (2n—2) x (2n—2)
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matrix

A = In—l iIn—l
o Ho + [n—l i(Ho - [n—l) ’
The inverse is

A—l o 1 In—l - Ho In—l
°o 2 _i(Ho +In71) Z‘[nfl

and so the matrix B, := A,A;! is

_Fo [n—l
Infl - HOFO Ho .

We recall Definitions 3.7 and 3.9 from [Pan1] which in our context are

DEFINITION 4. The family of hypersurfaces 082, & € 0D, is strongly con-

vex along f(OD) if and only if the real quadratic form on C*~!
v — |v]* + Re(H,v - v)

is strongly positive definite. We also say that the family 0S¢, § € 0D, is
strongly convezifiable along a stationary disc f if there exists a fiber preserving
biholomorphism of DxC" such that in the new coordinates the family {0Q¢ }econ

is strongly convex along f(0D).

Remark. Observe that the condition on a family of hypersurfaces to be strongly
convex along f(0D) is slightly weaker than the strict geometric convexity of
hypersurfaces 0€2¢ at f(£) for each £. For example, let the hypersurface 0 for

each £ € D be defined by the equation

p(z1,22) := 2Re(21) + |22|* + 2Re(2]) .
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Then, at the point (0,0), L, = 1 and H, = 0 for every £ € 9D and so this
family of hypersurfaces is strongly convex along the disc f(£) =0, £ € 9D. On

the other hand

p(t+iv/|t] +2t2,0) = 2(t — |t]) — 2t* < 0

for any real number ¢ € R. Hence the domain (2 lies on both sides of the

hyperplane Re(z;) = 0 and can not be convex.

PROPOSITION 4. If 0%%, £ € 0D, is a family of strongly pseudoconvex
hypersurfaces in C* which is strongly convexifiable along a stationary disc f,

then all partial indices of f are 0.

COROLLARY 8. If all hypersurfaces 0, £ € 0D, are strictly geometrically
convez, i.e., the real Hessians of their defining functions are positive definite,

then all partial indices of any stationary disc of this fibration are equal to 0.

Remark. This was the situation studied by Slodkowski in [Slo4] and Lempert

in [Lem)].

Proof.(Proposition) Since the sum of the indices of a stationary map is 0,
it is enough to prove that there are no positive partial indices. Let us assume
that there exists a positive partial index k, of the path B,. By the definition of

partial indices there exist holomorphic discs a and b in C*~!, with no common
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zeros on D, of class C%%, and such that on 0D

5o (09 ) e (1)) ceom).

So for every & € 0D

—H,(€)a(€) +b(&) = &™al(¢) .

We conjugate the above identity and dot it by a to get

—H,(&)a(€) - a(€) + b(€) - a(€) = €7 a(é) - a(é) .

Multiplication by ¢*> and taking the real parts of the equation yield the following

pointwise equation on 0D

(12) Re(£"a(€) - b(€)) = lal” + Re(H,(£*/%a(€)) - ("%a(€))) -

Since the family of hypersurfaces 0€, £ € 0D, is strongly convex along f(9D),
the right hand side of (12) is positive for every fixed £ € D. On the other hand
the function Re(&%a(€) - b(€)), € € D, is harmonic on D and equals 0 at the
point 0. The mean value property for harmonic functions gives a contradiction
to the assumption that there exists a positive partial index of the path B,.

Lemma 4 completes the proof of the proposition. |

Remark. One can easily observe that the proof of the above proposition also
works in the case where the fibers of the fibration 9€)¢, £ € 9D, are only convex
for each ¢ € 0D and strongly convex on a subset with a positive Lebesgue

measure.
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One can observe that in the above proof only the upper part of the matrix
B, was used to derive a contradiction. Next lemma tells us that this was not

just a coincidence.

LEMMA 8. Let a and b be two C** holomorphic discs in C*' such that

(13) —H,(€)a(§) +b(¢) = &™a() (£€dD).

Then the pair (a,b) solves the equation

50 (09 ) e (415)) ceom).
Proof. We recall that
o= (o Sha )

We would like to show that the discs a and b also solve the equation

(14) (Lo — Hy(§)H,(&))a(€) + Ho(€)b(€) = £™b(€) (£ € D).

We rewrite (14) as

—ko

Ho(€)(—Ho(€)a(€) + b(€) — % a(€)) = €% (~Ho(€)a(€) +b(€) — € a(€))

and observe that the part in the parenthesis on the right hand side is exactly the
expression which one gets by conjugating the equation (13). Thus both sides

are zero, and the lemma is proved. |

By a theorem of Vekua [Vekl] we know that if k; is a partial index of

a Gl(n,C) path B , then —Fk; is a partial index of the path (B~')’. This
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fact follows quite easily once one knows that the set of partial indices of a
Gl(n,C) path B is invariant with respect to the factorization of B into the
form FYAF~, where F* and F~ are invertible holomorphic matrices on D and

C* \ D, respectively. In our case, where

_ _Ho ]nfl
Bo = < L — HH, H, ) :
we have that B, = B, ! and so

—1\t __ * _Ho [n—l - HOE
(Bo ) _Bo_ < Infl E )

where we also used the property that H! = H,. Thus if a pair (a, b) of two C**

holomorphic discs solves the equation

50 (09 ) e (48 ) (ceom)

for some k, € Z, then the pair (—ib, ia) solves the equation
; —ib(§) \ _ o [ —10(E)

Hence the partial indices of the matrices B, and B} are the same and we proved

the following

PROPOSITION 5. Ifk, is a partial index of the GI(2n — 2, C) path B,, then

—k, s also a partial index of the path B,.

We recall the definition of a non-degenerate stationary disc from [Pan1] but

in a modified form. See [Pan1] for more details.
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DEFINITION 5. A stationary disc f is said to be non-degenerate if the equa-

tion

BE) + E H,(€)B(€) = &7(§) (£ €0D)

has only the trivial solution in the space (A>*(OD))"" !, i.e., a pair of vector

functions 3 and v from the space (A%*(0D))"~! solves the above equation if and

only if B =~v=0.

PROPOSITION 6. The only possible partial indices of a non-degenerate sta-

tionary disc are 0,1 and —1.

Remark. Note that by Theorem 1 and by an observation by Slodkowski, [Slo4],

this proposition immediately implies Theorem 4.8 from [Pan1].

Proof. Let (a,b) be a nontrivial pair of functions from (A%*(9D))"~! which

solves the problem

no (1)< (48)) €eon

for some k, € N. Then, after the multiplication by EQ, the first n — 1 equations

can be rewritten as

20(¢) = € 7%a(€) + €2H,(€)a(§) (€ D).

We consider two cases.
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1. k, = 2m + 2 for some integer m > 0. The multiplication by Em yields the
equation

§mH2h(€) = (€™ a(§)) + E2Ho(£)(E™a(€))

and the non-degeneracy of the stationary disc implies
a=b=0,

a contradiction.

2. k, = 2m + 3 for some m > 0. Then the multiplication by Em gives

§m2h(§) = €(E™a(§)) + € Ho(§)(Emal(§)) (€ € ID) .

Let 8(€) := €™a(§) and (&) := £™T'b(€). Then the above equation has

the form

§7(§) = €8(€) + E2H,(€) () -

After the multiplication by & we also have

§27(€) = B(§) + E2H,(§)(£6(S)) -

Adding both identities yields

§(€+1)g(&) = (E+ 1) (&) + EHo(E)((E+ 1) (E)) -

Thus, by the non-degeneracy of the stationary disc, the functions 3 and

v are identically 0 and so also
a=b=0,

a contradiction. Lemma 4 finishes the proof of the proposition. |
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9. Examples and counterexamples

Example 1. The first example shows that there exist a real analytic family
of real analytic hypersurfaces in 0D x C" with strongly pseudoconvex fibers
and a family of corresponding stationary analytic discs such that the partial
indices associated to each stationary disc change for some isolated values of the

parameter.

Let
ph(21,2) = 2Re(z1) + a1 + |22 — tRe(€ 25)  ((t,€) € R x OD)

be a two parameter family of strongly plurisubharmonic functions on C?. For
each pair (t,§) € R x 9D the function pg defines in a neighbourhood U{ of
the point (0,0) a strongly pseudoconvex hypersurface ¥ given by the equation
pé(z) = 0. If one restricts the parameter ¢ € R on a compact subset I C R, the
neighbourhoods U}, t € I,£ € 0D, can be chosen uniformly.

It is clear that
pe(0,0) =0
and
9.04(0,0) = (1,0) .

Let M} denote the maximal real submanifold of the complex manifold C* x CP!

which one gets as the image of the strongly pseudoconvex hypersurface Eé by
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the mapping
Uz — (z,[0p6(2)]) -

See the section on the stationary discs and [Web].

Claim. The partial indices of the closed curve
(15) §—(0,0,[1,0]) (£ €0D)

are

a) all 0 for ¢ # £1,
b) 0, N and —N for ¢t = £1.

Proof. A computation in the coordinate chart V' = {(z, [w]) € C* x CP';w, #
0}, similar to the one in the proof of the fact that the total index of a stationary
disc is always 0, gives a matrix A;(£) whose columns span the tangent space
to the maximal real submanifold M{ at the point (0,0,[1,0]), i.e., at the point

(0,0,0) in the coordinates,

1 0 0
A= 0 1 0 (§€0D) .
0 —t€" +1 —i(tf +1)
So we get
-1 0 0
B(&) = AOA@T= [ 0 ¥ 1 (€ cop) .

0 1—1# —tg&"
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By Lemma 4 one of the partial indices is 0 and the rest are given as the partial

indices of the 2 x 2 matrix

teN 1
By (€) ::<1ft2 _tEN> (£ € OD) .

Since the determinant of the matrix By (¢) is identically equal to —1, the sum
of the partial indices is 0. Assume that one of the partial indices is positive,
say k, € N. Then there exists a nonzero pair (a, b) of holomorphic functions on

D, real analytic up to the boundary and such that on the boundary for every
& € 0D one has

(16 s (19 ) = (1) )
Thus
(17) (1 - 2)a(€) — 1€ b(€) = Eb(¢) .
But the left hand side of (17) extends as an antiholomorphic function on D. So
gFoh(€) = constant (£ € OD) .
Since by our assumption k, > 0, the constant has to be 0, and thus
b=0.
Going back to the equation (17) one gets

(1-1)a@) =0 (€€dD).

Thus if t # £1, the function a has to be identically 0, which gives a contradiction

to the assumption k, > 0 and so in the case ¢t # +1 all partial indices of the
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curve (15) are 0. For the case t = 1 one can check that one of the partial indices
is N, namely, the pair of holomorphic functions (1,0) solves the equation (16)
for k = N. The pair of functions (7,0) shows the same for t = —1. Of course,

the second partial index is —N. |

Example 2. Examples 2 and 3 together with Example 1 will show that the
so called continuity method for describing the polynomial hull of a general
hypersurface in 9D x C*, n > 1, with strongly pseudoconvex fibers fails. This
is in contrast with the case n = 1, where the continuity method was successfully
used by Forstneri¢, [For3], to describe the polynomial hull of a totally real torus
fibered over 0D. We will find an isotopy of hypersurfaces ¥;, ¢ € [0,1], in
0D x C? with strongly pseudoconvex fibers which starts at a hypersurface X in
0D x C? whose fibers are Euclidean spheres in C?, is strictly decreasing in the
sense that 3; is included in the domain bounded by the hypersurface 3, for all
T, T < t, and ends with a hypersurface ¥; in 9D x C" with the property that
its polynomial hull is nontrivial but there is no graph of a bounded analytic disc
with boundary almost everywhere in the hypersurface ;. See also Example 3.

Let v be a smooth arc in R? C C? and let f be any smooth nonnegative

function on R? such that

a) the zero set of f and the zero set of the gradient V f are both equal to
and

b) there exists an 7, > 0 such that f(x1,xs) = 23 + 3 for a? + 23 > r2.
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Here the coordinates in R?> C C? are z;,22 and the coordinates in C? are

z1 = 1 + 1y and 29 = x5 + 1yo. For A > 0 we define

pa(z1, 22) = f(x1,m2) + My; + v3) -
Then

a) the zero set of py and the zero set of Vp, are both equal to the arc v and

b) the Levi form of the function p, is

1 < fmll’l + 2)\ fIlIQ )

Lo =30 7 fo 22

where the notation f;,,; stands for the second partial derivative of the
function f with respect to x; and x;, 7,7 = 1, 2.
So if A is large enough, the function py is strictly plurisubharmonic on C?. We
fix such a A and denote the function py by p.

Let x : R — [0,1] be a smooth function whose support is contained in the
interval [—1, (ro +2)?] and which equals 1 on the interval [0, (r, 4+ 1)?]. Also, let
g be a smooth nonnegative function on R such that

1) g(z) =0 for x < 12

2) ¢'(x) > 0 and ¢"(z) > 0 for z > r2,

3) p(2)X'(|z]?) + ¢'(|z]?) > 0 for every z € C2.

For ¢ € (0,1) we define

pe(2) = ex(2[)p(2) + 9(|z]*) (2 €C) .
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If ¢ is small enough, the function p is strictly plurisubharmonic on C? and its

zero set is the arc v. We fix such an € and denote the corresponding function

by p.
Claim. The zero set of the gradient Vp is the arc 7.

Proof. Let 2° = (2§ + iy?, x5 + iy3) be a point where the gradient Vp is zero.

We consider the following three cases :

1. |2°| < r,. Then p = ep in a neighbourhood of the point 2° and thus 2° € 7.
2. [2°| > r, + 2. Then p(z) = g(|2]?) in a neighbourhood of the point z°. Since
g'(z) > 0 for z > 72, we get a contradiction.

3. 1, < |2°| < 1,+2. The y components of the gradient Vp, i.e., the derivatives
of p with respect to y; and y, at the point z equal to

%
Gyj

Therefore, if Vp(2°) = 0, one concludes that since

(2) = 2(Aex(2]*) +ep(2)X (121") + ¢ (1217)y;  (1=12) .

(18) Xex(l2l) +ep(2)x (121) + ¢'(12*) > e(p(2)x'(12[*) + ¢'(|2*)) > 0
on C?, it follows
yW=ys=0.
This, together with the fact that |2°| > r, and our initial assumption (b) on the

function f, implies

fo, (29, 29) =227  and  f,, (2], 29) = 2z .
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The z components, i.e., the derivatives with respect to x; and x5 variables, of

the equation Vp(z°) = 0, together with (18) give

Thus also the assumption r, < [2°] < r, + 2 leads to a contradiction and the

claim is proved. [ |

Thus for every simple arc v in R? C C? we found a smooth parameter family
of strictly pseudoconvex hypersurfaces ¥, t € [0,1], in C? which starts at -,
it is strictly increasing in the sense that for each pair of parameters t < 7 the
hypersurface ¥, is included in the interior of the domain bounded by >, and

which ends at some large Euclidean sphere.

Remark 1. If one is given a smooth family of simple arcs v, £ € 9D, in
R?* C C?, then one can choose a smooth family of smooth functions f¢, £ € 9D,
satisfying the conditions (a) and (b) for each £ € dD. Since the set of parameters
is compact, the functions y and ¢ and the constants A and ¢ can be chosen

uniformly, i.e., independent of the parameter £ € 0D.

Remark 2. The above construction can be applied to any arc v in C? for which

there exists an automorphism ® of C* such that ®(y) C R%.
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We consider the following family of arcs in R? C C2?. Let ; be the semicircle

in R? given by the equation
+rr=1, T9 > 0.
For each £ € 0D we denote by R¢ the map
Re: C — C
defined by

Re(z1, 22) := (€21, 22) -

Observe that R is a linear isomorphism of CZ.

For & € 9D such that 0 < arg(§) < Z or 2F < arg(§) < 2 let

Ye =T -

For the parameters { € 0D such that § < arg(§) < 37” we smoothly perturb

the initial arc v, to get arcs ¢ such that they do not pass through the point
(0,1) but they still pass through the points (1,0) and (—1,0). For instance, for

£ = €' one may take ¢ to be defined by the equation

(1—o(s))a? + a3 = (1—o(s))?, 29 >0,

where ¢ : R — [0, 1) is any smooth function whose support is the interval [7, 37”]

We define

Ve = R se(e) -
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Here by /€ we mean the principal branch of the square root, i.e., v/1 = 1. Since
we have 7¢ = 7; in a neighbourhood of £ = 1 and since the arc 7, is symmetric
with respect to the xs-axis, the family of arcs 7¢, £ € 0D, is smooth. Using
our initial construction for one arc ¥ C R? and Remarks 1 and 2, one gets a
smooth family of hypersurfaces ¥;, ¢t > 0, in 8D x C? such that for each t all
their fibers are strongly pseudoconvex and for ¢ large enough all the fibers of the
hypersurface ¥, are equal to a sphere of a fixed radius v/¢ centered at the point
(0,0). Also, for every pair t,7 € R", ¢ < 7, the hypersurface ¥, is included in

the domain bounded by ..

Remark. Observe that by a theorem of Docquier and Grauert [Doc-Gra) the
above properties of the isotopy ¥;, ¢t > 0, assure that the closures of the fibers

of the domain bounded by ¥; remain polynomially convex for each time ¢.

To finish our example we first observe that since

(\/570)7(_\/570) E;Vﬁ (568D) )

the polynomial hull of ¥; contains the point (0,0,0) for all ¢ > 0. Finally we

prove the following claim.

Claim. For ¢ > 0 small enough there is no graph of a bounded analytic map-
ping F : D — C? whose boundary is almost everywhere with respect to the

Lebesgue measure on 0D contained in the closure of the domain bounded by



73

the hypersurface ¥; C 9D x C2.

Proof. We first prove the claim for

o= J {€&} %7 .

£eoD

Once this is proved the normal family argument and the above remark finish
the proof of the claim.

Let us assume that there is an analytic mapping
(f7 g) :D— (C2

such that

(f(€),9(8)) €7 (ae. £€dD) .

Therefore the imaginary part of the function ¢ is almost everywhere 0 on 0D
and thus ¢ is a constant function, i.e., there is a real number a € [0, 1] such that
g(§) = a for every £ € dD. Since the arcs 7 for § < arg(¢) < 37” do not pass

through the point (0,1) the constant a has to be less than 1. But then

f)*=(1-a"¢ (ae €0D),

which leads to a contradiction. [ |

Example 3. In this example we will construct a smooth family ¥;, t € [0, 1],
of smooth hypersurfaces in 9D x C? similar to the one in the Example 2, i.e.,
Yo = 0D x S* Y(R) for some R > 0, the family is strictly decreasing in the

sense that X, is included in the domain bounded by Y., 7 < ¢, and all the
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fibers ¥, N ({£} x C), € € 0D, are strongly pseudoconvex for each value of the
parameter ¢, but this time we will also have a fixed neighbourhood 0D x B(e,)
of 0D x {(0,1)} included in every domain bounded by ¥, t € [0,1], and there
will be a point in the polynomial hull of ¥; that can not be reached by the
graphs of bounded analytic discs with boundaries almost everywhere in ;.

Let v C R? C C? be the arc
i+ar=1 , 23>0
as in the Example 2. Let X, := v and let
Xe =R Xy .

Since again

(\/570)7(_\/570) EX§ (fE@D) )

it is obvious that the polynomial hull of

Xo=|J{& x Xe

£€dD

contains the point (0,0, 0).

Claim. There is no graph of a bounded analytic disc F' : D — C* whose
boundary is almost everywhere with respect to the Lebesgue measure on 0D

contained in X and which passes through the point (0,0, 0).

Proof. Assume that there is an analytic disc F' = (f,g) whose graph has
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boundary almost everywhere contained in X and such that F'(0) = (0,0). This

implies, similarly as in the Example 2, that

Thus

a contradiction. |
The rest is similar to the Example 2 and thus omitted.

Remark. Examples 2 and 3 were inspired by the example by Helton and
Merino in [Hel-Mer| where they constructed a connected and simply connected
fibration over the unit circle 9D with a nontrivial polynomial hull and such that

there exists no graph of an analytic disc with boundary in the fibration.
10. CR-vector bundles

We begin with a definition.

DEFINITION 6. Let L = {Ls C C™*"; & € 0D} be a real vector bundle over
0D of class C**. If for each & € OD the fiber L¢ is a real vector subspace of
CR-dimension m, the bundle L is called a CR-bundle of CR-dimension m over
the unit circle OD. If, in addition, for each & € OD the fiber L¢ is a generating
subspace of C"*™™ i.e., L¢ +iLe = C*™™ & € 0D, then the bundle L is called

a generating CR-bundle over 0D.
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Remarks.

1. Every maximal real bundle over 0D is a generating CR-bundle with CR-
dimension 0.

2. To each CR-bundle L over the unit circle one can associate a complex
m-dimensional vector subbundle L& C L which is just the bundle of the
maximal complex subspaces of the bundle L, i.e., for each & € 0D the

fiber Léc equals to Le NiLe.

LEMMA 9. Let V be a C' complex vector bundle over 0D such that for each
& € 0D the fiber V¢ is an m dimensional complex subspace of C™*™. Then there
exists a linear change of coordinates in C™*™ such that in the new coordinates
each fiber Vi projects isomorphically onto C™ x {0} C C™™™. Moreover, the set
of invertible (m + n) X (m + n) matrices satisfying this property is open and

dense in Gl(m + n,C).

Proof. We denote by G the set of invertible (m+n) x (m-+n) complex matrices
having the above property. Clearly G is open in Gi(m + n,C). So, to prove
the lemma, we have to show that the complement of G in GI(m + n, C) has no
interior.

Fix {, € 0D. Let A¢, be any (m+n) x m matrix such that its columns form

a basis of the fiber V¢ . We define the mapping

e, : Gl(m +n,C) — C
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®¢, (U) = det([In, 0]U Ag,)

where [I,,, 0] is an m X (m + n) matrix which has the identity matrix in its first
m columns and the 0 matrix in its last n columns. The mapping ®¢, depends

on the matrix A, i.e., on the basis of the fiber V¢ , but the set

does not. The equation
D¢, (U) =0

is algebraic and so Uy, is an algebraic subset of Gi(m + n,C). Hence, locally
the set U, has finite 2((m + n)? — 1) dimensional Hausdorff measure.

Let

U= |J{¢ xU: COD x Gi(m +n,C) .

£eoD

Then, locally again, the 2(m + n)? — 1 dimensional Hausdorff measure of the

set U is finite and so for every compact set K C Gl(m + n,C) we have
Hominy2—1(m(U) N K) < 00
where 7 is the projection
7 :0D x Gl(m +n,C) — Gl(m +n,C) .

Since 7(U) is exactly the complement of the set G, the lemma is proved. |
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Let ¥ C C™™ be a generating CR-subspace of CR-dimension m such that

its maximal complex subspace ©° projects isomorphically onto C™ x {0}.

LEMMA 10. The subspace
S:=YnN {0} xC")
is a mazximal real subspace of {0} x C* and is the only subspace of {0} x C* for

which

»y=x¢qpSs.

Proof. We denote by 7 : C"*" — C™ x {0} the orthogonal projection onto
C™ x {0}. Since 7 projects X¢ isomorphically onto C™ x {0}, we conclude that
for every x € ¥ there exists exactly one vector v € ¢ such that 7(x) = 7(v).
Hence the vector x — v € ¥ is in the kernel of the projection =, i.e., x — v is
in {0} x C". Therefore z — v is in S. The assumption on the projection 7 also

implies

(19) SEn ({0} x €)= {0},

and so S is a totally real subspace of {0} x C" for which
S=xas.

Finally, the subspace ¥ is a generating CR-subspace of C™*™ and thus S is a

maximal real subspace of {0} x C". The uniqueness follows from (19). |
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Let L C 0D x C™ be a generating CR-bundle of the class C%® over the
unit circle and of CR-dimension m. We assume that each fiber Léc, & € 0D,
projects isomorphically onto C™ x {0} C C™*". By Lemma 9 this assumption
can always be realized in the case where the bundle L is of class C'. The above
Lemma 10 implies that there is a unique maximal real bundle £ C 0D x C"

such that for each & € 0D we have

Le=L¢ & Le .

DEFINITION 7. Let L C 9D x C™™ be a generating CR-bundle over 0D of
CR-dimension m whose fibers project isomorphically onto C™ x {0}. We define
the partial indices and the total index of the bundle L as the partial indices and

the total index of the mazimal real bundle L C 0D x C".

We fix &, € 0D. Let N(&,) be any (m + n) x n matrix whose columns span
the real orthogonal complement Léo . Then the equations of the fibers L, and
Lg are

z
w

Re(N*(@)[ ])zo and N*(go)[f;]zo,

respectively. Here z € C™ and w € C". Since we are assuming that each fiber

of the bundle L® projects isomorphically onto C™ x {0} C C™*", the matrix

N(&,) can be written in the following block form

v = | e ]
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where N,(&,) is an invertible n X n complex matrix. The definition of the bundle

L immediately implies that L, is given by the equations
Re(N}(&)w) =0

Therefore the columns of the matrix N,(&,) span the real orthogonal space
L CC.

Let ki, ks, ..., k, be the partial indices of the bundle £ and let A(§) be its
characteristic matrix. Then there exists an n X n invertible holomorphic matrix

function ©, on D such that the columns of the matrix function

Ao(€) :=BOo(E)No(€) (& € OD)

span the fibers of the maximal real bundle £. Here A, denotes the square root
of the characteristic matrix A. Once A, is fixed, there is naturally given basis of
the bundle L+, namely, there is an (m + n) X n matrix function N(€), £ € dD,
whose rows are from the space &,, whose columns for each & € 0D span L},

and such that

N =iAS" .

o

Let F : D — C™™ be an analytic disc with boundary in the generating
CR-bundle L. With respect to the splitting of the space C™™™ the mapping
F is written as (f,g), where f and g are holomorphic maps into C™ and C",

respectively. Since for each £ € 9D the matrix function A,(€) is invertible, the
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mapping g can be written in a unique way in the form
g=A,(u+i(v+iT,v)) (u,ve&,).
Since F' has boundary in the bundle L, the discs f and ¢ satisfy the equation

Re(G(6)F(6) + N3 (§)g(§)) =0 (£ €dD).

Hence, since N} A, equals to ¢/,

Re(G5(6) f(€) + i(u(§) — (Tov)(§)) —v(§)) =0 (£ € D)

and the mapping v is given by the equation
(20) v=Re(Gf) .

If the partial indices of the bundle £ are all greater or equal to —1, then the

product
Ao(v +iT,v)

extends holomorphically to D and so, given a holomorphic disc f in C™, the
equation (20) is also a sufficient condition for the existence of a holomorphic
disc ¢ in C" such that the disc F' = (f, g) has boundary in the bundle L. Even
more, in this case one can find an explicit parametrization of all holomorphic
discs attached to the bundle L with the parameter space R*™* x (A%*(9D))™,
where k is the total index of the bundle £. Namely, for each holomorphic

vector f € (A%*(OD))™ and for each real vector function u € &, such that
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A,u extends holomorphically to D, there exists exactly one holomorphic disc

F = (f,g) attached to L.

Before we consider the nonlinear case let us make a few remarks.

1. Since our choice of a change of coordinates in C™™" involves quite a lot of
freedom, it looks like that one could get, using a different change of coordinates,
also a different set of attached discs to the bundle L. It is quite easy to construct
an example, e.g., the real normal bundle L+ C 0D x C? is given by the matrix
NUY(E) := [Z,ZZ], where different linear changes of coordinates result in different
sets of partial indices of the associated bundle £. But, as already the above
argument shows, as soon as all partial indices of the bundle £ are greater or
equal to —1, we know how to parametrize all holomorphic discs in C™*" with

boundaries in L. Also, the following simple lemma is true.

LEMMA 11. The Banach spaces X = (A%*(0D))™ and R* x X are naturally

1somorphic.

Proof. We define
ViR x X — X
as
W(s,t, f)(&) = (s +it) +£f(§) (£€aD).

It is easy to verify that ¥ is one to one and onto bounded linear map. |
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Since the parameter space of holomorphic discs attached to L is R*™* x
(A%(dD))™, we get that as soon as the CR-dimension of the bundle L is
at least 1, the set of parameters is isomorphic either to (A%%(9dD))™ or to
R x (A%*(0D))™, depending on the codimension n and the orientability of the
bundle L. Observe that L is orientable if and only if the bundle L is orientable
and thus L is orientable if and only if the total index £ is an even integer.
Moreover, in the example of the CR-bundle L C 0D x C?, where its real
normal bundle L' is given by the matrix N!(¢) = [22,52], one can see that it
can also happen that a certain linear change of coordinates can produce only
positive partial indices but some other only negative partial indices. Therefore,
to work on general CR-manifolds, we will have to assume that there exists a
linear change of coordinates in C™*™ such that in the new coordinates each
fiber of the maximal complex tangent bundle along a certain curve projects
isomorphically onto C™ x {0} and the corresponding partial indices are all
greater or equal to —1. Observe that in the case of positive CR-dimension the
condition that all partial indices are negative does not necessary imply, as in the
case of maximal real bundles, that there is no nearby analytic discs attached to

L. See the next remark.

2. The set of discs attached to a generating CR-bundle of a positive CR-
dimension is always parametrized by an infinite dimensional Banach space. Even

in the case where all partial indices of the associated bundle £ are negative we
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will find a subspace of finite codimension in (A%*(9D))™ which is in one to one
correspondence with the analytic discs with boundaries in L.

As it was already seen above, a necessary condition for a disc (f, g) in C™*"

to be attached to the bundle L is
v=DRe(G,f) .

To get all holomorphic discs attached to L the function v should be such that

there exists a mapping u € &, such that
Ay(u+i(v +iT,v))

is the boundary value of a holomorphic disc in C". For each partial index
k; > —1 the dimension of the corresponding set of parameters is k; + 1. But
if k; < —1, then the function u; has to be chosen to be identically 0 and the
sufficient condition on v; to generate a holomorphic disc is that the Fourier
coefficients @(0),@(1),,@([@] — 1) are all equal to 0. Here [z], z € R,

stands for the greatest integer less or equal to x. This condition is equivalent

to the condition

Fis(f) = /0 7reis"Re(wj(Q) - f(0))do =0,

fors=0,1,..., %|kj| — 1 in the case k; is an even integer and for
13 1
s=2,5, . ki —1
22 2

in the case k; is an odd integer. Here w; stands for the j-th row of the matrix

G%. Since the linear functionals Fj, are continuos on the space (A»*(9D))™ in
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the case k; is an even integer and on the space (A%*)™ in the case k; is an odd

integer, the claim is proved.

3. The following example shows that in the nonlinear case some assumptions
on the partial indices are really needed. We already know that this can happen
in the maximal real case, but when the CR-dimension is positive the difference
can be even more striking. Namely, although in the linear model the set of
solutions is always parametrized by an infinite dimensional vector space, it can
happen that the set of local nearby solutions on a CR-manifold is only finite

dimensional.

Example. Let
Mg := {(z,w) € CIm(§w) = |2} (£ €0D) .
Then the disc
§—(0,0) (£ €0D)

is the only analytic disc with boundary in the fibration {M¢}ecop.

Proof. Let (f,g) be an analytic disc with boundary in the fibration {M;}ecop.

Then

Im(€g(€)) = |FE)F (€ € aD)
But

= [Tmstenar= [iseras
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and so f = 0. But then

Im(£g(€)) =0
on 0D and so also g = 0. n

Observe that in the above example the matrix A(€) equals to (0,4€) and thus
the only partial index is —2.
One can also define a 4-dimensional submanifold of C* of CR-dimension 1

with a similar property. Let

M= | {&} x M .

£€oD
Then any holomorphic disc with boundary in M and close to the disc
§— (£,0,0) (£€dD)

is of the form
§—(a(§),0,0) (£€aD),
where @ is an automorphism of the unit disc close to the identity. Thus the
family of such discs is 3-dimensional. n
We consider now the nonlinear case. Let {M(§)}ecop be a family of gener-
ating CR-submanifolds of CR-dimension m in C™*™ and let
p:0D — C™t?

be a map of class C%® such that

p(§) € M(€) (£€aD).



87
We say that the family {M()}¢cap is a C”* generating CR-fibration over the
unit circle 0D with C? fibers if for each &, € dD there are a neighbourhood
Ueg, € 0D of &, an open ball B, C C™*" centered at the origin and maps
p5°, ..., p from the space C%*(Uy,, C*(Bg,)) such that for every £ € U,
1. the CR-submanifold M (&) N (p(§) + Be,) equals to {(z,w) € p(§) +
Be; py (&, (2,w) = p(€) =0, j =1,...,n} ,
2. p7(£,0,0)=0, j=1,...,n, and

3. gz,wp? (ga <, ’UJ) ARERRA gz,wpgo (ga <, ’UJ) 7A 0 on Bfo-

THEOREM 3. Let M(£) C C™™ ¢ € dD, be a C** generating CR-fibration

over the unit circle 0D with C? fibers and CR-dimension m. Let
p: 0D — C™t"

be a C% closed path in C™*" such that

p(§) € M(§) (£€0D).

Assume that there exists a linear change of coordinates in C™*™ such that in

the new coordinate system all mazimal complex subspaces of the generating CR-

bundle
L= |J (g} x ToM(©)

¢€dD
project isomorphically onto the subspace C™ x {0}. Assume also that all partial

indices of the corresponding mazximal real bundle L C 0D x C* are greater or

equal to —1 and that the total index is k. Then there are an open neighbourhood
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U of 0 € R*™* | an open neighbourhood V' of the function 0 in (A>*(0D))™, an

open neighbourhood W of p in (C%*(0D))™™ and a map
UV:.UxV —W

of class C* such that

1) ¥(0,0) =p,

2) for each (t, f) € U x V the map p := V(t, f) — p extends holomorphically
to D and is such that p(§) € M(&) for each & € 0D,

3) W(ty, f) # U(ty, f) for ty # ty from the neighbourhood U and any f € V,

4) if p € W satisfies the condition p(§) € M(), £ € 0D, and is such that
p — p extends holomorphically to D, then there aret € U and f € V such

that U(t, f) = p.

Proof. Since we are assuming that all maximal complex subspaces project
isomorphically onto the subspace C™ x {0}, one can, using the same construction

as in Lemma 6, find a set

p(f, Z,’UJ) = (pl(ga Z,’UJ), s .,pn(g,z,w))

of “global” defining functions for the fibration {M (&) }ecop, i.e., there exist an

r, > 0 and functions

pj € Cp®(0D,C*(B,,)) (1<j<n)
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such that for every odd partial index k; the function p7 has the property

p?(_ga Z,U)) = —p?(f,z,w) ((ga Zaw) € 0D x Bro) )

and such that for the functions

. _ p5(r(€), z,w); kjis odd
p](§7 Z) o { pg(ga Zaw); kj iS even

the following holds

a) M(&) N (p(§) + Br,) = {(z,w) € p(§) + Br,; p; (&, (2,w) = p(§)) = 05 =
NN

b) Oupi A ...0wpp # 0 0n 0D x B,,.
One may also assume that for each £ € 0D one has
(Ouwp)*(€,0,0) = N (€) -

We define

U : (A(QD)™ x &, x E, — &,

(S, u,v)(€) == p(&, £(£), Ao(u +i(v +iTov))(§)) (€ €dD) .
Then for every v € £, and £ € 0D we have
(Dy¥(0,0,0)v)(&) = 2Re(dwp(E,0,0)Ao(&)i(v(§) +i(Tov)(£))) = —2v(E)

and thus the partial derivative of the mapping ¥ with respect to variable v is

an invertible linear map from the space &, into itself. By the implicit mapping



90

theorem one can find a neighbourhood V' of the zero function in (A%*(0D))™,

neighbourhoods W and U of the zero function in &, and a unique mapping
b:UXV —W

such that a triple (f,u,v) € V' x U x W solves the equation

(21) U(f,u,v) =0

if and only if v = ¢ (u, f). Finally one would like to select from the above family
of all possible C%* closed curves in the CR-fibration {M(§)}¢cop near p those

which bound a sum

p + analytic disc .

The rest of the argument is the same as in the proof of Theorem 1. At this
point one should assume that all partial indices of the maximal real bundle £

are greater or equal to —1. In this case the vector function
Ay(v +iT,v)

extends holomorphically to D. This follows from the fact that for any odd
partial index k; the function v; +iT'v; is of the form r(£)g¢(§) for some function
99 € A%(9D). We recall that r(€) represents the principal branch of the square

root v/€. So the condition on the vector function

E— Ao(u+i(v+iT,v))(&) (£ €0D)
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to extend holomorphically into D is in the case where k; > —1, j = 1,...,n,

equivalent to the condition that the vector function

§— Ao (§u(§) (€€ D)

extends holomorphically to D. To find all such functions v € &, one has to find

all vector functions a € (A>*(9D))" such that on 9D

Aa=a,
ie,forallj=1,...,n
ha;(€) = a;(€) (€€ D).
For any partial index k; = —1 the only solution of the above equation is a; = 0

and for k; > 0 one has a k; + 1 dimensional parameter family of solutions.

Hence, altogether one gets a k + n parameter family of solutions. |

The rest of this section was inspired by the work [Bao-Rot-Tre| by Bao-
uendi, Rothschild and Trepreau. See also the paper [Tum]| by Tumanov for
some related results and definitions.

We recall the definition of the conormal bundle of a CR-submanifold M C
C" as given in [Bao-Rot-Tre]. We identify the complex bundle A'°C" of (1,0)
forms on CV with the real cotangent bundle 7*C" as follows. To a real 1-form

I' =Y ¢jdz; +¢jdz; on CV we associate the complex (1,0) form v = 2i Y ¢;dz;
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so that the pairings between the vectors and covectors are related by the identity
(I', X) = Im(y, X)

for all X € T,CV. Under this identification, the fiber of the conormal bundle

¥(M) on a CR-submanifold M at the point p € M is given by
¥,(M) = {y € AY°CY;Im(vy,X) =0, X € T,M} .

If the manifold M is generating, then the conormal bundle can be naturally
identified with the characteristic bundle (T“M)~ of the CR-structure on M. If
locally, near some point p € M, the submanifold M is generating and is given
by the set of equations p = (p1,...,pn) = 0, then the fiber of the conormal

bundle over the point p is given by
. ) 0p; ,
Xy (M) = {Zstap(p) = Zzsja—p;(p);sj eR1<j<n}.
J

From now on let M(§) C C™*™ ¢ € D, be a generating CR-fibration over

the unit circle 9D of class C%® with C? fibers and with CR-dimension m. Let
p:0D — C™

be a C%* curve such that

p(§) e M(€) (£€aD).
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Let V, be the set of all holomorphic discs ¢(§) = (¢1(£),. .., cmin(§)) of class
C%* such that for each £ € 9D the (1,0) form

m-rn

(22) ¢;(€) dz;

j=1

+

belongs to the space X, M (). For each £ € 9D we denote by V,(§) C

YpeyM (&) the subset consisting of all such forms (22),

Vo() = {v € Sy M(£);7 =D _ci(§)dzj,c €V}

Clearly V},(€) is a real linear subspace of ¥, M (§).

Henceforth we will assume that the coordinates in C™*™ can be chosen so
that each maximal complex subspace of the tangent space T, M (), £ € 0D,
projects isomorphically onto C™ x {0}. We recall that this is always possible
in the case the fibration M(£) C C™™ ¢ € 0D, is of at least class Clji.e.,
the defining functions of the fibration belong to the space C*(9D, C?*(B,,)) for
some r, > 0, and the closed path p is of class C'. We also recall that for each

& € 0D the columns of the matrix function

span the fiber of the normal bundle of the submanifold A/ () at the point p(€).
The following characterization of elements of V,(§), £ € 9D, is immediate,

see also [Bao-Rot-Tre|, Proposition 3.6.
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PROPOSITION 7. A covector v = > c;dz; € Tn. \M(&,) belongs to the
subspace V,(&,) if and only if there is a real function s = (s1,...,s,) € &, such
that

L. ¢ =ery ..o, Cman) = 18 [GE NE(&) and

2. the covector function s'[G%, N¥] extends holomorphically to D.

Remark. For any real vector function s € &, for which property (2) holds we

will say that it generates an element from V.

COROLLARY 9. If all partial indices of the associated maximal real fibration
L are greater or equal to 1, then Vl, = {0} and so each of the subspaces V,(§), £ €

0D, is trivial.

Proof.(Corollary) Let A, denote the matrix function whose columns for ev-
ery & € 0D span the fibers of L. Then A, = ©A,, where O is an invertible
holomorphic matrix on D and A, is the square root of the characteristic matrix

A of the maximal real vector bundle £. Then
N =A,07"
and a necessary condition to get an element from V), is that there exists a real
function s € £, such that
s'A,
extends holomorphically to D. But since all partial indices of A are greater or

equal to 1, one concludes that s has to be 0. |
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Since our method gives all nearby analytic discs of class C%® attached to
the CR-fibration M(£) € C™™" ¢ € 9D, only in the case when all partial
indices of the associated maximal real bundle are greater or equal to —1, this
will be the case we will consider from now on. In this case we have already
proved, Theorem 3, that the family of all nearby holomorphic discs, i.e., all
holomorphic discs F € (A%*(0D))™"™ with the property that the disc p + F
is attached to the fibration M(§), £ € 0D, forms a Banach submanifold A of
the Banach space (A%%(dD))™"™. In the case where the CR-dimension of the
fibration is 0, this submanifold is of finite real dimension n + k, where k£ is the
total index of the fibration, but in the case of positive CR-dimension we get an
infinite dimensional submanifold. Also, differentiation of the equation (21) with

respect to u and f at the point (0,0) yields
(Du)o=0 and  (Dyi)f = Re(GLf) .

We recall that v = 1 (u, f) is the solution function of the equation (21) which we
got using the implicit mapping theorem in an appropriate Banach space. Thus
all vectors of the tangent space TyA to the submanifold A at the point 0 are of

the form
(f, Ao(u +i(v +iTov))) ,

where f € (A>*(9D))™, and the functions u,v € &, are such that v = Re(G* f)

and A,u extends holomorphically to D.
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Remark. In the case considered by Baouendi, Rothschild and Trepreau in
[Bao-Rot-Tre| one works only in a neighbourhood of a point on a given CR-
submanifold and so all partial indices of any nearby holomorphic disc attached
to the manifold are 0. It is easy to see that all partial indices of a constant map
are 0. On the other hand, this condition is stable under small perturbations of

the disc, see [Vek2].

PROPOSITION 8. The dimension of the subspace V,(§) C ) (M(£)) does

not depend on £ € 0D, i.e., it is the same for every & € 0D.
Remark. This proposition extends the Proposition 3.6 from [Bao-Rot-Tre].

Proof. We split the space R" into three subspaces
R*" =R" R ¢ R"?

where n; is the number of positive partial indices, n, is the number of partial
indices which equal to 0, and n_; is the number of partial indices which equal to
—1. With respect to this splitting we denote the coordinates on R™ by (q, vy, t).

We recall that every element of the space V), is of the form
is'[G5, N, ]
for some real function s € £,. We also recall that N} = iA>'. Since the first n;

partial indices are positive, any real vector function s from the space &£, which

generates an element in V), must have, by the same argument as in the proof
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of Corollary 9, the first n; coordinate functions identically equal to 0. Because
of this reason, and to simplify the notation, we will assume, and we can do so
without loss of generality, that n; = 0.

Each element of V), is now generated by a real function of the form

(¥, Re(wr(€)))

where y € R", w € C*=! and r(&) is the principal branch of the square root. Let
ko be the dimension of the space V,(1). We will prove that for each £ € 0D the
dimension of the space V,(§) is also k,. Since for each £, € 0D there exists an
automorphism of the unit disc D which takes 1 to 1 and &, to —1, it is enough
to prove the above claim for £, = —1.

Let (y;, Re(w;r(§))), j =1,...,k,, be a set of real functions on 0D which

for each j generate an element of V), and such that the real vectors

(yj, Re(wy)) (G =1,...,k)

are linearly independent. If also the set of vectors

(yj, Re(iw;)) (1 =1,...,k)

is linearly independent, the claim is already proved and we are done. Let us
assume now that this is not the case and that these vectors are not linearly

independent. Then there are real numbers Ay, ..., A\ , not all equal to 0, such
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that
ko
D Ay =0
7j=1
and
ko
Z )\jRe(iwj) =0.
j=1

The second equation is equivalent to

ko
Z )‘jwj =t
7j=1
for some real vector ¢ from R"-'. The way how t is defined immediately implies

that ¢ # 0 and that the real vector function

(0, Re(tr(€)))

generates an element from V). Since ¢ is a real vector, both functions

(0,Re(tr(€))) and  (0,Re(itr(£)))

generate an element from the space V},. This follows from the following claim.

Claim. Let f = u + v, u,v € (Sﬂ%a)", be a vector function such that the
function

§ — Re(r(§))f(§) (£ €0D)
extends holomorphically into D. Then f € (A%*)". In particular, also the
function

£ Re(ir(€))f(€) (£ €9D)

extends holomorphically into D.
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Proof.(Claim) Since the function

§— Re(r(€))f(§) (£ €aD)

extends holomorphically into D, all its negative Fourier coefficients have to
vanish. This implies that for every j € N we have

f=)+f=j-1)=0.

Since we also have

~

j—o0
we conclude that all negative Fourier coefficients of the function f are 0 and the

claim is proved. |

Also, since not all real numbers A;, j =1,...,k,, are 0, we may assume,
without loss of generality, that A\; # 0. We repeat the above argument on the
set of real functions (y;, Re(w;r(€))), 7 = 2,...,k,, and the vector function

(0, Re(itr(£))). If at £ = —1 these vectors are still linearly dependent, one can

find real numbers Xl, e ,Xko, not all equal to 0, such that
~ ko ~
)\llt + Z )\Jw] = tl
=2

for some nonzero real vector t; € R"-1. We observe that it can not happen
that Xg == Xko = 0 since the vectors ¢ and ¢; are real. We also observe

that ¢ and ¢, are linearly independent vectors. Repeating the above argument
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we either stop at the ;™ step, j < k,, or we produce k, linearly independent

vectors which span V,(—1). n

So we can define the defect of the closed curve p in a generating CR-fibration
over 0D with partial indices greater or equal to —1 in the same way as Baouendi,
Rothschild and Trepreau do in [Bao-Rot-Tre|. See Definition 3.5 and Propo-

sition 3.6 in [Bao-Rot-Tre|. See also [Tum].

DEFINITION 8. The defect def(p) of the curve p is defined as the dimension

of the real vector spaces V,(§), &€ € OD.

From now on we will restrict our discussion to the set A, of holomorphic
perturbations of p which leave one of the points, say p(1), on the curve p fixed.
But to prove that the set A, is in fact a manifold, we have to assume that all
partial indices of the path p are nonnegative. See the examples at the end of
this section. Let &,. C &, and (AY*(dD))™ C (A>*(0D))™ be the subspaces

of the functions which are 0 at £ = 1. Let
T, : C*(0D) — Cg“(dD)

be the Hilbert transform which assigns to a function v € C3**(8D) the harmonic
conjugate function v for which v(1) = 0. Since T} does not preserve the subspace
of odd functions in CH%’O‘(GD), there is no natural way of defining an appropriate

Hilbert transform on &, .
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Let k£ be the total index of the associated maximal real bundle £ C 0D x C™.

Then the following lemma holds.

LEMMA 12. A, is a Banach submanifold of the manifold A of the infinite
dimension in the case the CR-dimension of the fibration {M (§)}ecap is positive,

and of real dimension k in the case of maximal real fibration over 0D.

Proof. We define the map

F i (A%(OD)™ x £, X Ep — Eg

F(f, u,0)(€) := p(& £(£), Ao((u + Tov) +i(v + iT5v))(§)) (£ € 0D) .

Here p = (p1, ..., pn) is the set of defining functions of the fibration { M (§)}ecoan
along the path p. Using the implicit mapping theorem as in the proof of Theorem
3 one gets a neighbourhood A of the zero function in (A%*(0D))™, neighbour-
hoods U and V of 0 in &4, and a unique mapping ¢ : N’ X U — V such that
the triple (f,u,v) € N x U x V solves the equation F(f,u,v) =0 if and only
if v =1(f,u).

As we already know a necessary and sufficient condition for any disc from
the above family to be the boundary value of a holomorphic disc is that the
mapping

Ay(u+ T,v)
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extends holomorphically to D. Let ¥(t), t € R*™*, denote the linear parametri-
zation (7), (8) of all real functions u € &, such that A,u extends holomorphically
to D. Thus to extract from the above family of discs A,(u + ip(f,w)) all
holomorphic discs which are 0 at £ = 1, we have to find all functions u € &,

and values t € R™"" which solve the equations

u+Tou(f,u) =¥(t) and Too(f,u)(1) = ¥(t)(1) .

Since all partial indices are nonnegative, the n x (n+ k) matrix D;(W(¢)(1)) |10

has the maximal rank. Since we also have

Dy (u + Top(f, u))| f=0,a=0 = Id ,

one gets, using the implicit mapping theorem again, a unique mapping p from
a neighbourhood of the point (0,0) € (A%*(D))™ x RF into &, such that all

small holomorphic disc (f, g) from (A%%(0D))™ ™ which solve the equation

p(& f(§),9(&)) =0 (§£€0D)
are of the form

(f; Ao(ulf, 8) + i (f, u(f, 5))))
for a unique pair (f, s) from a neighbourhood of the point (0, 0) in (A%*(D))™ x
RF. |

Note that any element of the tangent space Ty.A, is of the form

(f, Ao(u +i(v +iT,v)))
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for some f € (A2%(9D))™, v € &, such that v = Re(G%f), and u € &, such
that A,u extends holomorphically to D and for which one also has u—T,v € &, ...

Henceforth our goal will be to reprove and to generalize Theorem 1 from
[Bao-Rot-Tre|. In fact we can prove the same statement for an arbitrary
closed path p in a generating CR-fibration M (§) C C™t", ¢ € 9D, for which
there exists a linear change of coordinates in C™*" such that the partial indices
of the corresponding maximal real bundle are all greater or equal to 0.

We recall the definition of the evaluation maps F; defined on the manifold
A, see [Bao-Rot-Tre] for more details. See also [Tum]. For every £ € 0D

and F' € A, we define
Fe(F) = (p+ F)(E) .

Then for every § € 0D the derivative F;(0) maps the tangent space Tp.A, into

Tp(&)M(g)-

THEOREM 4. Letp and M(§) C C™™", & € D, be as above. Then for each
£e€edD, £#1, one has

(23) Fe(0)(ToA) = V() -

Proof. We first prove the following partial statement, namely,

Fe(0)(ToAL) CV(6)*
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for each & € 0D. To prove this claim let
(24) (f, Ao(u +i(v +iT,v)))

be an arbitrary element of Ty A,. We recall that f € (A%*(9D))™, that u € &,

that v,u — Tyv € &,, and that also
v=DRe(G.f) .

On the other hand let

(25) UG5, N7

be an element of V. Here u, € &,. Since both vector functions (24) and (25)
extend holomorphically to D, their product also has to extend holomorphically
to D. But on the other hand the multiplication of (24) and (25) yields a purely

imaginary vector function
iul (u — Tyv + Im(GEf)) .

Since the vector function (24) is 0 at £ = 1, the claim is proved.

To prove that in the above inclusion in fact the equality holds it is enough
to prove that the dimension of the space F{(0)(7p.A.) is 2m +n — def(p). Since
for each £ € 0D, £ # 1, one can find an automorphism of the unit disc D which
takes 1 to 1 and & to —1, it is enough to prove the claim for £ = —1. For this

it is enough, since the set of function values {f(—1); f € (A%%(dD))™} already
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spans a 2m-dimensional subspace, to prove that the subspace
{(u = Tyv)(—1);v = Re(G:f), f(—=1) =0, Ayu € (A" (D))", u — T,v € &,.}

has dimension n — def(p).

Denote by n; the number of positive indices and by n, the number of indices
which are equal to 0, and split the space R" correspondingly. For each positive
partial index k; the set of real functions u; such that the function £ — §k1/2uj(§)
extends holomorphically to D and (u; — T'v;)(1) = 0 is at least 1-dimensional.
Thus the proof of the claim will be finished once we prove that the following

subspace of R™
{((u = T,v)(=1);v =Re(G}f), f(-1) =0,u —T,v € &} DR”"

has dimension n — ny; — def(p).

To prove the last claim we will show that for a vector u, € R™ the condition
ul (u —T,v)(=1) =0

for every v € (C2®(@D))™ such that v is given as the last n, component func-
tions of Re(G:f), f(—1) = 0, and every constant vector v € R™ such that

(u—T,v)(1) =0, implies
(0, ue)[G5, NJI(=1) € Vp(—1) .

This will complete the proof of (23). But since every real vector function u, €

&, which generates an element from V), has the first n; coordinate functions



106
identically equal to 0, see the proof of Corollary 9, it is enough to prove the
statement for the case where all partial indices are 0 and n; = 0.

From here on the argument goes very much the same as the one given by
Baouendi, Rothschild and Trepreau in [Bao-Rot-Tre].
We recall that T, denotes the Hilbert transform on (Ax*(8D))" such that

for every v € (AY*(0D))" we have
(T.w)(1) =0 .

Also, since all partial indices are 0, the vector function « is in fact a constant

such that (7,v —u)(1) = 0 and hence
T.,v—u="T,v.
Let u, € R™ be a vector with the property that
up(Tow)(=1) =0

for every v € (Cg®(0D))" such that v = Re(G%f), f(—1) = 0. We recall that
for v € Cp*(0D) and &, € D one has

v(©)(1 - &)
g - 1)(§ - go)

. We denote the vector function u!G* by a. Then for

0

roe) =pvE [T as.,

0

where ¢ stands for e’

every nonnegative integer ¢, every vector z, € C™, and a function f of the form

f(&) = (£ —1)¢"%, (£ €oD)
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one has

‘ T i [*7_ Re(ah(§)f(8)
(26) (ui(T.v))(=1) = PVW/O 2 e o
2 [*"

(27) = (€7 ag(€) 20 — €7 1af (&) zo] dO -

2m Jg
By our assumption the integrals (26) and (27) equal 0 for every nonnegative
integer ¢ and every vector z, € C™. Since one can also take iz, instead of z,,

one gets that

2 2w

— gt (£)dh =0
el
for every nonnegative integer q. The above identity can be written in terms of

Fourier coefficient as
ao(—g—1)=0 (¢=0,1,2,...)

which immediately implies that the real vector u generates an element of V.

The identity (23) is proved. u

For the next theorem we have to assume more regularity on the fibration
{M (&) }¢cop and the closed path p. We assume now that we have a C'* fibration
with C3 fibers, i.e., the fibration is given by a set of real functions from the
space C1*(dD,C?(B,,)), and the closed path p shall be of class C'**. Under
this conditions one can repeat the proofs of Theorem 3 and Theorem 4 in the

C1* category. We recall the definition of the mapping G from [Bao-Rot-Tre).



108

Let
G:TA, — C™
be defined by
0

— F(e")

G(F) := 50 :
6=0

THEOREM 5. Let p and M(§) C C™" £ € 9D, be as above. Then G maps
ToA, into T,ayM(1) and

(28) G(ThA.) =V, (1)*" .

Proof. We first observe that for every F' € Ty A, one has
Re([G5, N3 1F) =0
on 0D. Differentiation with respect to # and setting # = 0 implies that G maps
Ty A, into Tp(l)M(l).
The proof of (28) is quite similar to the proof of (23). The inclusion

G(ToA.) C V(1)

follows as above since the product of any two functions G € V,, and F' € Ty A,

equals to 0,
(29) G'F=0.

Namely, the differentiation of (29) with respect to 8 and setting 6 = 0 yields

) .
G'(1)=-F(e%)] =0.
a9 0=0
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To prove the opposite inclusion in (28) we proceed similarly as in the proof
of (23) and reduce the problem to to the case where all partial indices of the

associated maximal real bundle are 0, and showing the following claim.

Claim. The vector space

0

{5ﬂﬂwmﬂ) v =Re(G5f), f(§) = (€ —1)°€"2,q e NU{0}, 2, € C"}

0=0

has dimension n — def(p).

Proof.(Claim) We are using a similar notation as in the proof of (23). Let
u, € R” be a real n-vector which annihilates the above vector space. Also, let

al be the vector u!G*. We recall that

¢ 0 i0 _ 1 [* Re(ag(§)£(€))
Uo@(T*U)(e No=o = ;/0 wfde
1

27
T / [0l (€)TH 2, + al (€)€eF1z,] db .
0

T
Replacing z, by iz, and adding the identities one gets

27

| d@ertan—o
0

for every nonnegative integer ¢. In terms of Fourier coefficients we have

o(—q¢—1) =0
for every ¢ € NU {0}. Thus the real vector u, generates an element from V.

This finishes the proof of the claim and so also the theorem. |

Remarks and examples. In the case when the partial indices of the path p in
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the generating CR-fibration { M (§) }¢cop are not all nonnegative, the conclusions
in Theorems 4 and 5 are not true even if we consider only the case where all
indices are greater or equal to —1. One problem, of course, occurs if the total
index k£ happens to be negative. Then the number of free parameters is strictly
less than the number of additional equations we have to satisfy. Here we give
two examples in C? for which & > 0 but the conclusions of Theorems 4 and 5

still do not hold.

Example 1. In this example we find a maximal real fibration in C? for which the
set of attached discs passing through the point (0,0) does not form a manifold.

Let the maximal real fibration {A(§)}¢cap be given by the set equations
Im(2£) =0
and
Re(wr(€)) = Re(r(&))Re((2€)?) -
It is easy to check that the partial indices of the path p(§) = 0, £ € 0D, are

2 and —1, and so the total index k equals 1 and the defect of the path p is 1.

Hence the dimension of the spaces
V,(6)" (£€9D)

is also 1.

Claim. The family of holomorphic discs with boundaries in the maximal real
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fibration {M (&) }ecop which all pass through the point (0,0) at £ = 1 is not a

manifold.

Proof.(Claim) Let (z, w) be a holomorphic disc with boundary in the maximal
real fibration {M(§)}ecop and such that (2(1),w(1)) = (0,0). Then from the

first equation
Im(z(£)€) = 0
we get
2(€)€ = w& — 2Re(w) + WE

for some complex number w. The second equation

Re(w(&)r(€)) = Re(r(§))Re((2()8)) (€ € OD)
implies

Re(w(£2)€) = Re(§)Re((2(€)E)?) (£ € OD) .
A short calculation shows that the right hand side of the last equation equals

to

Re(w’€” + (w* — dwRe(w))&” + (2[w]” + 4(Re(w))” — dwRe(w))§) .
Thus

w(§) = '€ + (W — dwRe(w))§ + (2Jw]” + 4(Re(w))” — dwRe(w))
and so one must have

w? + (w? — 4wRe(w)) + (2|w]* + 4(Re(w))? — 4wRe(w)) = 0
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or after division by 2
w? — dwRe(w) + |w]* + 2(Re(w))* =0 .
If we write w = x + 7y, then the imaginary part of the last equation yields
—2xy=0.

Thus the constant w has to be either real or purely imaginary. So the set

of solutions of the above equations is the union of two intersecting curves in

(A%*(@D))? and therefore not a manifold. |

Example 2. Let the maximal real fibration in C? be given by

Im(zr(€)) =0

and

Im(wr(€)) = Re((zr(€))*) -
Then the partial indices of the closed path p(§) =0, £ € D, are 1 and —1 and
so the total index is 0. Also, the defect def(p) is 1 and thus the dimension of the
spaces V;(£), € € 0D, is 1. Let (z,w) be a holomorphic disc with boundary
in the maximal real fibration {M(&)}ccop and such that (z(1),w(1)) = (0,0).

Then from the first equation we get

2(§) = ia(€ — 1)

for some real number a. The second equation now implies

Im(w(&*)€) = Re((ia(¢ — €))*)



113
or
Im(w(€2)€) = 20°Tm(€* — 3¢)
Hence we get
w(§) = 2a*(§ — 3)
which can be 0 at £ = 1 if only if a = 0. Thus we showed that the only
holomorphic disc attached to the fibration {M(§)}ecop and which is passing

through the point (0,0), is the zero disc p.
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