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Abstract

The problem of perturbing an analytic disc with boundary in a CR�submanifold

of C n is considered� A theorem by Globevnik on the perturbation by analytic

discs along maximal real submanifolds of C n is generalized and used in various

applications� �i� it is proved that every energy functional minimizing disc in C n

with free boundary in a Lagrangian submanifold of C n and all partial indices

greater or equal to �� is holomorphic� �ii� a new proof and a generalization of

a result by Pang on the Kobayashi extremal discs is given� �iii� perturbations of

analytic varieties with boundaries in a totally real torus in C � 	bered over the

unit circle �D are considered� Also� some results by Baouendi� Rothschild and

Trepreau on the family of analytic discs attached to a CR�submanifold of C n of

a positive CR�dimension are globalized�
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�

�� Introduction

Given an analytic disc in C n with boundary in a generating CR�submanifold

M � C
n � one would like to describe the family of all nearby analytic discs in C n

attached to M � This problem is the object of a considerable research in the re�

cent years� The following list of authors and their papers related to the problem

is not at all meant to be complete � Alexander �Ale��� Baouendi� Rothschild

and Trepreau �Bao�Rot�Tre�� Bedford �Bed�� Bed��� Bedford and Gaveau

�Bed�Gav�� Eliashberg �Eli�� Forstneri
c �For�� For��� Globevnik �Glo�� Glo���

Gromov �Gro�� Y�G�Oh �Oh�� Oh��� Tumanov �Tum��

The technique of perturbing an analytic disc with boundary in a given mani�

fold has found several applications in the problems of the analysis of several com�

plex variables� Two� probably the most known problems� where this technique

can be used� are the problem of describing the polynomial hull of a given set in

C n and the problem of extending CR�functions from a given CR�submanifold

of C n into some open subset of C n � Recently has J�Globevnik in his paper

�Glo��� which was inspired by the work �For�� by F�Forstneri
c� found very ele�

gant su�cient conditions on a given analytic disc p with boundary in a maximal

real submanifold M of C n which imply 	nite dimensional parametrization of all

nearby holomorphic discs attached to M �

To each� not necessary holomorphic� disc p with boundary in a maximal

real submanifold M � C n one associates n integers k�� � � � � kn called the partial
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indices of the disc p� Their sum k �� k�� � � ��kn is called the total index of the

disc p� A part of Globevnik�s work �Glo�� is the theorem in which he proves

that if the pull�back bundle p��TM� of the tangent bundle TM is trivial and

if all partial indices of the disc p are greater or equal to �� then there exists an

n� k dimensional parametrization of all nearby discs of the form

p� analytic disc

with boundary in M � Later we proved that Globevnik�s theorem extends in the

same form to the case where the pull�back bundle p��TM� is non�trivial� The

	nal version of the result was given by Y�G�Oh in �Oh��� where the Globevnik�s

result is generalized� but using a di�erent approach� to the case where all partial

indices are greater or equal to �� and arbitrary pull�back bundle p��TM�� This

theorem� together with the papers �For�� For�� by Forstneri
c� represents the

starting point of the present thesis and is reproved in its most general known

form� using only Forstneri
c�s and Globevnik�s technique� in section �� Theorem

��

The present work is organized as follows� Section � introduces the notation

and terminology we use throughout the work� In section � the maximal real

bundle over the unit circle �D � C and its partial indices are de	ned� and in

section � some computations of the partial indices of a maximal real bundle over

�D are given� As already mentioned� in section � we reprove the generalized ver�

sion of Globevnik�s theorem using his and Forstneri
c�s technique of perturbing
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analytic discs with maximal real boundary conditions� In the following sections

we give some applications of Theorem ��

In section � we apply Theorem � to the problem of perturbing analytic va�

rieties with boundaries in a totally real torus in C
� 	bered over the unit circle

�D � C � In section � we consider energy functional minimizing discs in C
n

with Lagrangian boundary conditions and prove that the condition that all par�

tial indices of the disc p are greater or equal to �� implies that the disc p is

in fact holomorphic� Section 
 considers stationary discs which are� following

Slodkowski �Slo��� related to the problem of describing the polynomial hull of

a 	bration over the unit circle �D with the 	bers in C n and to the problem of

	nding Kobayashi extremal discs through a given point in an open set in C
n �

Using Theorem � again� we reprove and generalize a result by Pang� �Pan���

on the Kobayashi extremal discs� In the next section we give several examples

which show that the immediate generalization of the continuity method to de�

scribe the polynomial hull of a set 	bered over the unit circle with 	bers in

C n � n � �� as used by Forstneri
c� �For��� in the case of one dimensional 	bers�

is even in some relatively simple cases impossible� In the last section we 	rst

extend Globevnik�s results to the case of analytic disc attached to a generating

CR�submanifold of C n and then also generalize some results by Baouendi� Roth�

schild and Trepreau� �Bao�Rot�Tre�� to large analytic discs with boundaries in

a generating CR�submanifold of C n �
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�� Notation and terminology

Let D � fz � C � jzj � �g and let �D denote the unit circle in C � the

boundary of D� If K is either D or �D� and � � � � �� we denote by C����K�

the Banach algebra of H�older continuous complex�valued functions on K with

	nite Lipschitz norm of exponent �

kfk� � sup
x�K

jf j� sup
x�y�K

x��y

jf�x�� f�y�j
jx� yj� �� �

For every m � N � f�g we also de	ne the algebra

Cm���K� � ff � Cm� kfkm�� �
X
jjj�m

kDjfk� ��g �

The subalgebra of the real�valued functions from Cm���K� will be denoted by

Cm��
R

�K��

Let A�D� denote the disk algebra and let A��D� � ff j�D� f � A�D�g� We

de	ne

Am���D� � Cm���D� � A�D�

and

Am����D� � Cm����D� � A��D� �

Note that if f � A�D�� then f � Am���D� if and only if f j�D � Am����D��

�Gol��

We will also need some other not so standard function spaces� Let r���� � �
�D n f�g� denote the principal branch of the square root� i�e�� the complex
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plane is cut along the positive real line and r���� � i� Let Em��
R

be the space

consisting of the real continuous functions on �D n f�g with the property that

a continuous function g on �D n f�g is in Em��
R

if and only if there exists an odd

function go in Cm��
R

��D�� i�e�� go���� � �go���� � � �D� such that

g��� � go�r���� �� � �D n f�g� �

In other words� this is the space of continuous functions g on �Dnf�g such that

a� there exist the limits

lim
����

g�ei�� and lim
�����

g�ei�����

which we denote by g���� and g����� respectively� and are related by the

equation

g���� � g���� � � �

b� the function

�Hg���� ��

�
g���� � Im� � �
�g���� � Im� � �

���

is in Cm��
R

��D��

Obviously Em��
R

is an R�linear space and for the norm on it we take

kgkm�� �� kHgkm�� �g � Em��
R

� �

So Em��
R

is a Banach space that is via H isometrically isomorphic to the closed

subspace of odd functions in Cm��
R

��D��

Remark� Another equivalent description of the space Em��
R

can be given in
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terms of Fourier series� Namely� each element g � Em��
R

has a unique expension

of the form
�X

k���
cke

i��k������

where the sum
�X

k���
cke

i��k����

represents the Fourier series of some odd function go � Cm��
R

��D�� We will refer

to ck� k � Z� as the Fourier coe�cients of the function g�

One can de	ne a Hilbert transform T on Em��
R

� Let To be the standard

harmonic conjugate function operator on Cm��
R

��D�� Then

T � Em��
R

�� Em��
R

is de	ned by

Tg � H��ToHg �g � Em��
R

� �

Note that To takes the subspace of odd functions in Cm��
R

��D� into itself� Thus

for every g � Em��
R

the function

H�g � iT g� �� Hg � iHTg � Hg � iTo�Hg�

is an odd function on �D from the space Am����D�� We denote the space of

functions of the form

g � iT g �g � Em��
R

�
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byAm��� Observe that all functions from the spaceAm�� are of the form r���f���

for some f � Am����D�� Observe also that since for any two functions g and h

from Em��
R

the following identity holds

�Hg�����Hh���� � g����h���� �� � �D��

the product of two functions from Em��
R

gives a function in Cm��
R

��D�� and the

product of two functions of the form g � iHg� g � Em��
R

� gives a function in

Am����D��

The spaces we will most often consider are the 	nite products of the spaces

C���
R

��D� and E���
R

� A product with n factors will be denoted by E�� where �
is an n�vector with ��s and ��s as its entries� The entry � on the j�th place

represents the space C���
R

��D� as the j�th factor and the entry � on the j�th

place means that the j�th factor is the space E���
R

� By analogy we also de	ne

the spaces A� which are the products of 	nitely many copies of A�����D� and

A����

We extend the de	nition of the Hilbert transform in a natural way �com�

ponentwise� to the space E�� We denote the extension by T�� It is a bounded

linear map from E� into itself and it has the property that the vector function

v � iT�v belongs to the space A� for every v � E�� We also de	ne the map

H� � E� �� �C���
R

��D��n
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which is de	ned as the identity map on each factor C���
R

��D�� and is de	ned as

the map ��� on each factor E���
R

�

�� Maximal real bundles over the circle

Let L be a maximal real subspace of C n � i�e�� its real dimension is n and

L	iL � C n � To any such maximal real subspace L one can associate an R�linear

map RL on C n � called the re�ection about L� given by

z � x � i�x 
�� x� i�x �x� �x � L� �

where z � x� i�x is the unique decomposition of z into the sum of vectors from

L and iL� The mapping

RL � C n �� C
n

is an R�linear automorphism of C n which is also C �antilinear� i�e�� RL�iv� �

�iRL�v� for every v � C n � The re�ection about the maximal real subspace

Rn � C n will be denoted by Ro� Note that in the standard notation Ro is just

the ordinary conjugation on C n and that for any n � n complex matrix A the

following identity holds

A � RoARo �

LEMMA �� Let L be a maximal real subspace of C n and let x�� � � � � xn be any

set of vectors spanning L� Let A �� �x�� � � � � xn� be the matrix whose columns

are the given vectors xj� j � �� � � � � n� and let B �� AA��� Then

B � RLR� �
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Moreover� the matrix B does not depend on the basis of L� i�e�� B remains the

same even if a di�erent basis for L is selected� and

B � B�� � jdetBj � � �

Remark� In the above lemma n � n matrices A and B are identi	ed with

C �linear automorphisms of C n in the standard basis�

Proof� Observe that A is a C �linear automorphism of C n which maps Rn onto

L� Consider the following composition of automorphisms of C n

S �� RoA
��RLA �

Then S is a C �linear automorphism of C n which equals to the identity on Rn �

Since Rn is a maximal real subspace of C n � S is the identity on C n � and hence

RoA
�� � A��RL �

Finally� since

B � AA�� � ARoA
��Ro �

we get

B � AA��RLRo � RLRo �

The rest is obvious�

The following de	nition is taken from �Glo��� see also �For���
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DEFINITION �� Let L � fL�� � � �Dg be a real rank n subbundle of the

product bundle �D � C
n of class C���� If for each � � �D the �ber L� is a

maximal real subspace of C n � the bundle L is called maximal real�

Example� A very important example of a maximal real bundle over �D one

gets in the following case� Let M be C� maximal real submanifold of C n and let

p � �D � M be a C� closed curve in M � Then the pull�back bundle p��TM��

where TM is the tangent bundle of the submanifoldM � is a maximal real bundle

over �D of rank n�

It is known� see �Vek��� that for every closed path B in Gl�n� C � of class

C��� one can 	nd holomorphic matrix functions

F� � D �� Gl�n� C � � F� � C nD �� Gl�n� C �

of class C��� and n integers k� � k� � � � � � kn such that

B � F��������F���� �� � �D��

where

���� ��

�
BB�

�k� � � � � � � � �
� �k� � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � �kn

�
CCA �

The matrix � will be called the characteristic matrix of the path B� One can

prove that under the condition k� � � � � � kn� the characteristic matrix � does

not depend on the factorization of the matrix function B of the above form� see
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�Vek��� �Glo��� �Cla�Goh� for more details� The integers k�� � � � � kn are called

the partial indices of the path B� and their sum

k �� k� � � � �� kn

is called the total index of the matrix function B�

DEFINITION �� Let L be a maximal real bundle over the unit circle �D�

The partial indices of the Gl�n� C � closed path

BL � � 
�� RL�Ro���

of class C���� are called the partial indices of the bundle L and their sum is

called the total index of L�

Remarks�

�� Observe that De	nition � makes sense even if the bundle L is not trivial�

�� The total index of a closed path p on a maximal real submanifoldM � C n

is also called the Maslov index of p�

�� As we will see� in the case where all partial indices satisfy the condition

kj � ��� j � �� � � � � n� the characteristic matrix ���� carries all important

information about the bundle L� see also �Glo��� �Oh���

Although Globevnik in �Glo�� works only with the trivial bundles over the

circle �D� Lemma ��� in �Glo�� still applies and one can conclude
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LEMMA �� The C��� closed path in Gl�n� C �

BL � � 
�� RL�Ro �� � �D�

can be decomposed in the form

BL��� � �������������� �� � �D� �

where the map � � D �� Gl�n� C � is of class C��� and holomorphic on D� i�e��

the n� n matrix � is in A����D�n�n�

Let the total index k be an even integer� Then one can split the matrix � as

���� � Q���Q����� �� � �D� �

where Q��� is a closed real analytic path in Gl�n� C �� See �Glo�� for details�

Fix � � �D and select any basis x�� � � � � xn of the 	ber L�� Let A �� �x�� � � � � xn�

be the matrix whose columns are the vectors xj�s� Then

BL��� � AA�� � ����Q��������Q������

and so

A������Q��� � A������Q��� �

Thus the invertible n� n matrix

U �� A������Q���

is real and therefore the columns of the matrix ����Q��� � AU span the 	ber

L� for each � � �D� Together with a Globevnik�s observation� see also �For���

one concludes
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COROLLARY �� A maximal real bundle L over �D is trivial if and only if

its total index is an even integer�

According to �Bot�Tu�� every real vector bundle over �D of rank n is either

trivial or isomorphic to the direct sum of a trivial bundle of rank n � � and

the M�obius bundle� Since the trivial bundle case was discussed in details in

�Glo��� one would only have to consider the non�trivial bundle case� But since

our approach to the problem does not �see the di�erence between the trivial

bundle case and the non�trivial bundle case� we will still consider both cases�

Let L be a rank n maximal real C��� vector bundle over �D� Let k� � k� �
� � � � kn be its partial indices and let

���� ��

�
BB�

�k� � � � � � � � �
� �k� � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � �kn

�
CCA �

As we already know the C��� closed path in Gl�n� C �

BL � � 
�� RL�Ro �� � �D�

can be decomposed in the form

BL��� � �������������� �� � �D�

for some � � D � Gl�n� C � of class C��� and holomorphic on D� The charac�

teristic matrix � can be decomposed further as

� � ��
o � �o���o �
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where

�o��� ��

�
BBB�

�
k�
� � � � � � � � �

� �
k�
� � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � �
kn
�

�
CCCA �

Here �
k
� stands for �m if k � �m and for �mr��� if k � �m� �� We will refer to

�o as the square root of the characteristic matrix � and we say that the matrix

function

� 
�� �����o��� �� � �D�

represents the normal form of the bundle L � To the C��� closed path BL in

Gl�n� C � we also associate the corresponding Banach space E� we will work with�

see section � for the de	nition� The n�vector � is de	ned as

� �� �k� mod �� � � � � kn mod �� �

COROLLARY �� If all partial indices of a maximal real bundle L are non�

negative� then there exists an n�n matrix function A���� � � �D� with the rows

from the space A� and such that its columns X����� � � � � Xn��� span the �ber L�

for every � � �D�

Remark� For � � � the above statement still makes sense in terms of the limits

��� when � �� � approaches to ��
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�� Some computations

Let h�� �i denote the standard inner product on C n � Let L be a maximal real

subspace of C n � By iL we denote the maximal real subspace of vectors of the

form iv� v � L� and by L� the maximal real subspace of vectors perpendicular

to L� i�e�� a vector u � C
n is perpendicular to L if and only if Rehu� vi � � for

every v � L� We recall that RL denotes the C �antilinear re�ection about the

maximal real subspace L and that the matrix BL is given as the product RLRo�

LEMMA ��

a� Let L be a maximal real subspace of C n � Then

RiL � �RL � BiL � �BL

and

RL� � �Rt
L � R�L � BL� � �Bt

L �

b� Let L � fL�� � � �Dg be a maximal real bundle over the circle �D� Then

the following holds �

�� The partial indices of the bundles L and iL are the same�

�� The bundles L� iL and L� are trivial if and only if one of them is

trivial�
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Proof� Let AL� AiL and AL� denote matrices whose columns span the subspaces

L� iL and L�� respectively� Then

AiL � iAL and Re�A�LAL�� � � �

Hence

BiL � AiLA
��
iL � �BL

and

BL� � AL�A
��
L�

� ��At
L�
��At

LAL�A
��
L�

� �Bt
L �

Part �a� is proved� Part �b� is now a trivial consequence of part �a� and Corollary

��

Remark and an example� One should notice that the indices of the normal

bundle L� are not always the same as the indices of L� e�g�� if the matrix function

BL is � �� �
� �

�
�

then its partial indices are � and ��� but on the other hand the partial indices

of Bt
L are all �� Of course� one also has to check that BL � B��

L �

LEMMA �� Let Lo be any �trivial or non�trivial� maximal real bundle of rank

n over the circle �D and let Ao���� � � �D� be a C��� path in GL�n� C � which

represents the normal form of the bundle Lo�
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�� Let L be a maximal real bundle of rank n�� whose �bers are spanned by

the columns of the matrix

A �

�
g �
v Ao

�
�

where g is a nonzero function from the space Ekomod� with the winding

number ko
�
� ko � Z� and v is any vector function from �Ekomod��

n� If

k�� � � � � kn are the partial indices of the bundle Lo and if kj�ko � ��� j �
�� � � � � n� then the partial indices of the bundle L are

ko� k�� � � � � kn �

�� Let L be a maximal real bundle of rank n�� whose �bers are spanned by

the columns of the matrix

A��� �

�
i� �

�v��� Ao���

�
�

where v is a vector function from the space �A�����D��n� If k�� � � � � kn are

the partial indices of the bundle Lo� then the partial indices of the bundle

L are

�� k�� � � � � kn �

Proof�

�� Let Bo � AoA��o � Then

BL � AA�� �
�

g�g �
�v � Bov��g Bo

�
�



��

Once we 	nd a solution �a� b� � �A�����D��n�� of the equation

B���

�
a���

b���

�
� �ko

�
a���
b���

�
�� � �D����

such that the function a extends as a nonzero holomorphic function on D the

	rst part of the lemma will be proved�

Since the winding number W �g� is ko
�
� the function g can be written in the

form

g��� � p����ko��eh��� �� � �D� �

where p is a positive function of class C��� and h belongs to the space A�����D��

Let a �� eh� Then the 	rst equation in ��� is solved and the second equation

has the form

�

g
�v � Bov�e

h �Bob � �kob ����

Let !�!�� be the normal splitting of the path Bo and let

!��v � � � !��b � 	 �

Multiplying ��� by !�� from the left�hand side yields

�

g
�� � ���eh � �	 � �ko	 �

Thus for each j � �� � � � � n we have the equation

�

p
�ko����j � �kj�j� � �kj	j � �ko	j �
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After dividing by �kj�� and rearranging the terms� the problem we are trying to

solve is to 	nd holomorphic functions 	j � A�����D�� j � �� � � � � n� such that

Im��
�kj�ko���

	j���� �

p���
�
kj��

�j���� � � �� � �D� �

But this problem is equivalent to the problem of 	nding real functions uj� j �

�� � � � � n� from the space E�kj�ko�mod� such that the function

	j��� � ��kj�ko���uj��� �
�

p���
�
ko��

�j���

extends holomorphically to D� Since kj�ko � ��� j � �� � � � � n� such functions

is indeed possible to 	nd� namely� let

uj �� iT �
�

p���
�
kj��

�j���� �

where T is the Hilbert transform on the space E�kj�ko�mod���� Let Bo��� �

Ao���Ao������ � � �D� Then

BL��� � A���A����� �
� ��� �

i���v����Bo���v���� Bo���

�
�� � �D� �

In this form it is easy to check that the vectors

!���� �

�
i

v���

�
and !���� � ���

� �i
v���

�
�� � �D�

solve the Hilbert boundary value problem

!���� � B���!���� �� � �D� �

and that � is the order of zero of the function !� at the in	nity�

Example� The following example shows that in the case ��� of Lemma � one



�	

really needs some assumptions on the partial indices of the matrix function Ao

and the winding number of the function g�

If A is the matrix �
� �
i �

�
�

then the matrix BL � AA�� is �
�� �
�i� �

�

and one can easily check that � is not one of its partial indices� Moreover� both

partial indices are ��

The next lemma shows that a 	ber preserving di�eomorphism of D � C n

which is holomorphic on each 	ber and biholomorphic as a mapping fromD�C n

into itself does not change partial indices of a maximal real 	bration over �D�

LEMMA �� Let

! � D � C
n �� D � C

n

! � ��� z� 
�� ��� 
��� z��

be a C����D�C��C n�� �ber preserving di�eomorphism of D � C n such that the

function 
��� �� is holomorphic for each � � D and the mapping ! is a biholo�

morphism of D�C n � Let L be a maximal real bundle over �D� Then the partial

indices of the maximal real bundles L and eL�
eL� �� Dz!��� ��L� �� � �D� �



��

are the same�

Proof� Let

P ��� �� Dz!��� �� �� � D� �

The C��� matrix function P is holomorphic on D and� since ! is a di�eomor�

phisms of D � C n � invertible on D� Also�

B
eL��� � P ���BL���P����� �� � �D� �

where BL and B
eL are the corresponding Gl�n� C � closed paths ��� of the bundles

L and eL� respectively� Since as soon as the partial indices are ordered� the

characteristic matrix e� of the path B
eL does not depend on the factorization of

B
eL of the form

B
eL � F�e�F� �

where

F� � D �� Gl�n� C � and F� � C nD �� Gl�n� C �

are holomorphic� the proof of the lemma is completed�

�� Perturbation by analytic discs

The problem we consider in this section is the following�

Problem� Given a smooth map

� 
��M��� �� � �D� �



��

where each M���� � � �D� is a maximal real submanifold of C n � and a smooth

map

p � �D �� C
n

such that p��� � M��� for each � � �D� 	nd all smooth maps � � D � C
n �

holomorphic on D� which are close to the zero map and satisfy the condition

�p� ����� �M��� �� � �D� �

This problem was also considered by Globevnik� see �Glo�� Problem ����� for

the orientable bundle case� and by Forstneri
c in C � � �For��� See also the paper

�Oh�� by Y��G� Oh� The arguments we use in this section closely follow those

used by Globevnik in �Glo�� and Forstneri
c in �For��� and so not every detail

will be given�

The smoothness of the Problem will be C��� for some 	xed � � ��� ��� That

is �

a� The map p � �D � C n is of class C����

b� For each �o � �D there a neighbourhood U�o � �D of �o� there is an open

ball B�o � C n centered at the origin and maps ��o� � � � � � �
�o
n from the space

C����U�o� C
��B�o�� such that for each � � U�o we have

�� M��� � �p��� � B�o� � fz � p��� � B�o� �
�o
j ��� z � p���� � �� j �

�� � � � � ng �

�� ��oj ��� �� � �� j � �� � � � � n �

�� �z�
�o
� ��� z� 
 � � � 
 �z�

�o
n ��� z� �� � for all z � B�o�



��

An object of the above form will be called a C��� maximal real �bration over

the unit circle �D with C� �bers�

Obviously each maximal real 	bration over �D induces a maximal real vector

bundle over �D� i�e�� the bundle

�
���D

f�g � Tp���M��� �

and hence it makes sense to talk about the partial indices and the total index

of a maximal real 	bration over �D� We de	ne them as the indices of the

corresponding maximal real vector bundle�

Let B � �D � GL�n� C � be the corresponding C��� closed path in GL�n� C �

de	ned by the map ��� which factors as

B��� � !�������!����� � Ao���A��o ��� �� � �D� ����

where Ao��� stands for !����o���� The n � n matrix Ao��� has the property

that for each � � �D its columns span the tangent space Tp���M��� and that its

rows belong to the space E��
One would also like to get a set of de	ning functions for the family M���

which would re�ect the splitting ����

LEMMA 	� There exist an ro 
 � and functions

�oj � C���
R

��D�C��Bro�� �� � j � n�



��

such that for every odd partial index kj the function �oj has the property

�oj���� z� � ��oj��� z� ���� z� � �D � Bro� �

and such that for the functions

�j��� z� ��

�
�oj�r���� z� � kj is odd �
�oj��� z� � kj is even �

the following holds

a� M���� �p��� �Bro� � fz � p��� �Bro� �j��� z� p���� � �� j � �� � � � � ng �
b� �z�� 
 � � � 
 �z�n �� � on �D �Bro�

Proof� For each point �o � ��� ��� it is easy� using the de	nition of a maximal

real 	bration over �D and some linear algebra� to 	nd a neighbourhood U�o � R

of �o and functions ���o� � � � � �
n
�o

from C����exp�U�o�� C��Bro�� such that for each

� � exp�U�o� we have

M��� � �p��� �Bro� � fz � p��� �Bro� �
j
�o
��� z � p���� � �� j � �� � � � � ng

and

rz��o��� �� � �
���o
�z

��� �� �� ��iA��o ����� � ��i�!�����o �

where ��o � ����o� � � � � �
n
�o
�� Here exp�U�o� denotes the open set fei�� � � U�og �

�D� By the compactness we select a 	nite subcover fUjg of the interval ��� ����

We may even assume� without loss of generality� that each of the points � and

�� is covered only once� and that for the sets of de	ning functions �� and ���



��

one has

�j��e
i�� z� � �j���e

i�� z�

for every j such that the partial index kj is an even integer and

�j��e
i�� z� � �j���e

i�� z� � �

for every j such that kj is an odd integer� Let f�jg be a smooth partition of

unity on ��� ��� subordinated to the cover fUjg� We de	ne

��ei�� z� ��
X
j

�j�����j �e
i�� z� �

For ro 
 � small enough the above function � satis	es the required properties�

Of course� the properties of the component functions �j for such subscripts j

that the partial index kj is an odd integer� follow from the fact that the j�th

column of the matrix �o changes its sign when the argument arg��� runs from �

to ��� Finally� for a subscript j such that the partial index kj is an even integer�

we de	ne the function �oj to be the function �j� and for a subscript j such that

kj is an odd integer we de	ne the function �oj as H����� z�� Here H is the map

��� de	ned in section ��

Using the vector notation we de	ne

F � E� � E� �� E�

as

F �u� v� �� ���� Ao�u� i�v � iT�v��� �



��

Observe that F is well de	ned and that is of class C�� see �Glo�� Lemma �����

Observe also that if a pair �uo� vo� � E� � E� solves the equation

F �u� v� � � �

then the boundary of the disc p�Ao�uo�i�vo�iT�vo�� lies in the given maximal

real 	bration� i�e�� for each � � �D we have

p��� � Ao����uo��� � i�vo��� � i�T�vo������ �M��� �

The rest is completely standard� First one should use the implicit mapping

theorem in Banach spaces� �Car�� for the mapping F and the space E� to get a

parametrization of all� not necessary holomorphic� nearby discs with boundaries

in the maximal real 	bration fM���g���D�
Let �� denote the matrix whose columns are the coe�cients of the ��� ��

forms ���� � � � � ��n� For each � � �D we have

����� ���Ao��� � iIn �

where In denotes the n � n identity matrix� Then the partial derivative of F

with respect to v at the point ��� �� � E� � E�� applied to a function � � E�� is
in the matrix notation given by

��DgF ��� �������� � �Re������ ���Ao����i����� �T�������� � ������

for every � � �D� Hence the partial derivative of the mapping F with respect

to variable v is an invertible linear map from the space E� into itself� So the



��

implicit mapping theorem in the Banach spaces gives neighbourhoods V� and

V� of � � E�� and a unique C� mapping

� � V� �� V�

such that on V� � V�

F �u� v� � � if and only if v � ��u� �

Finally one would like to select from the above family of all possible closed

C��� curves in the maximal real 	bration fM���g���D near p� those which bound

a sum

p� analytic disc �

This is the point where one can e�ectively use the normal form of the maxi�

mal real bundle p��Tp���M����� � � �D� over the circle �D� And this is also the

point where one should assume that all partial indices of p��TM� are greater or

equal to ��� For the 	nal argument one should 	rst observe that for the case

when all partial indices of the maximal real bundle p��TM� are greater or equal

to ��� the vector function

Ao�v � iT�v�

extends holomorphically to D for every v � E�� For the nonnegative partial

indices this follows immediately but for the partial indices which equal to ��
the above claim follows from the fact that for any odd partial index kj the

function vj � iT vj is of the form r���goj ��� for some function goj � A�����D��



��

So the condition for the vector function

� 
�� Ao�u� i�v � iT�v����� �� � �D�

to extend holomorphically to D is in the case kj � ��� j � �� � � � � n� equivalent

to the condition that the vector function

� 
�� Ao���u��� �� � �D�

extends holomorphically to D� To detect all possible u	s which have the above

property one has to 	nd all vector functions a � �A�����D��n such that on �D

�a � a �

i�e�� for all j � �� � � � � n

�kjaj��� � aj��� �� � �D� �

For each partial index kj � �� there is only one solution of the above equation�

namely� aj � �� For kj � � one gets kj � � dimensional parameter family of

solutions� A parametrization " of all functions u � E� such that the vector

function Aou extends holomorphically to D is for each component function uj

given by

"j�t�� � � � � tkj���� �� t� �Re�

kj��X
s��

�t�s�� � it�s��
s����

in the case the partial index kj is an even integer and by

"j�t�� � � � � tkj ���� �� Re�

�kj�����X
s��

�t�s � it�s���r���
�s����
�



��

in the case kj is an odd integer� See �Glo�� for more details� Hence� altogether

one has

X
kj
�

�kj � �� �
X
kj
�

kj �
X
kj
�

� �
X
kj
�

kj �
X
kj��

� � n � k � n

parameter family of solutions of the Problem�

THEOREM �� Let M��� � C n � � � �D� be a C��� maximal real �bration

over the unit circle �D with C� �bers and let

p � �D �� C
n

be a C��� closed path in C n such that

p��� �M��� �� � �D� �

If all partial indices of the maximal real �bration M���� � � �D� along the path

p are greater or equal to �� and the total index of p is k� then there is an open

neighbourhood U of � � R
n�k � an open neighbourhood W of p in �C�����D��n

and a map

" � U �� �C�����D��n

of class C� such that

�� "��� � p�

�� for each t � U � R
n�k the map "�t�� p extends holomorphically to D�

�� "�t�� �� "�t�� for t� �� t��



�	

�� if ep � W satis�es the condition ep��� � M���� � � �D� and is such that

ep�p extends holomorphically to D� then there is t � U such that "�t� � ep�

Remark �� The above theorem was 	rst proved by Forstneri
c in �For�� in

the case where the ambient space is C � � Next� it was proved by Globevnik

�Glo�� in C n for the case where the pull�back bundle p��TM� is trivial and

where all partial indices are nonnegative� Later I observed that Forstneri
c�s

and Globevnik�s tehnique also works in the case when the pull�back bundle is

nontrivial but the indices are still nonnegative� In the meantime the Problem

was� although in a little bit di�erent context� solved by Y�G�Oh �Oh�� who

noticed that the partial indices can be even taken to be greater or equal to ���
The above theorem thus also includes his observation but in the context of the

Forstneri
c�s and Globevnik�s tehnique to tackle the Problem� For more on the

history of the Problem� partial results and applications one should also check

the papers by Alexander �Ale��� Bedford �Bed�� Bed��� Bedford and Gaveau

�Bed�Gav�� Eliashberg �Eli�� Gromov �Gro��

Remark �� As in �Glo�� Theorem ���� one could also add to the above theorem

perturbations of a maximal real 	bration over the unit circle and the condition

that in the case where all partial indices are greater or equal to �� the set of the

centers "�t����� p���� t � U � contains an open set in C n �



��

�� Analytic varieties over the disc

Let M be a maximal real submanifold of C n � The problem we consider in

this section is a very special case of the following general question �

Given M and V � C n nM � a purely one�dimensional analytic subvariety with

boundary inM � can one �	nd and describe all purely one�dimensional analytic

subsets in C n nM that are near V #

Let n � � and let � � C � � C be the projection on the 	rst coordinate

plane � � ��� z� 
� �� Let T � �D � C be a compact� connected� totally real

two�dimensional submanifold of C � of class C� such that for each � � �D the

	ber

T� � fz � C � ��� z� � T g

is the union of q� q � N � simple closed curves in C whose polynomial hulls are

pairwise disjoint� Observe that T is a totally real embedded torus in C � �

In our setting M � C � will be a 	nite disjoint union of totally real tori

	bered over the unit circle �D � C � f�g � C � � i�e��

M �
k�

j��

Tj

where T�� T�� � � � � Tk are pairwise disjoint totally real tori in �D� C � Thus each

	ber

M� � fz � C � ��� z� �Mg



��

is a 	nite pairwise disjoint union of q � q� � � � �� qk Jordan curves J�� � � � � � J
q
� �

For V � a purely one�dimensional analytic subset of C � nM � we assume that

is a q�sheeted analytic variety over D� i�e��

a� V � D � C is given by a Weierstrass polynomial of degree q

V � f��� z� � D � C � zq � a����z
q�� � � � �� aq��� � �g �

where a�� a�� � � � � aq are in the disc algebra A�D��

b� V � J j
� �� � for every j � �� �� � � � � k and every � � �D�

Observe that by a theorem of 
Cirka� ��Cir�� a�� � � � � aq are also in A����D��

Given M and V as above one can construct a compact connected maximal

real manifold fM in C q�� and an analytic disc eV with boundary in fM in the

following way �

Each 	ber M � ������� � � �D� is the disjoint union of q Jordan curves

J j
� � j � �� � � � � q� Let T� �� J�� � � � � � Jq

� � C q � We de	ne the map

! � C q �� C
q

�z�� � � � � zq� 
�� �s�� � � � � sq�

where

sp �
�

p

qX
j��

zpj �p � �� � � � � q� �



��

Observe that ! is a proper map from C
q into itself and that its Jacobian deter�

minant is

J��z� � det�D!�z�� �
Y
j	t

�zj � zt� �

By the assumptions on the manifold M � i�e�� the curves J j
� � j � �� � � � � q� are

pairwise disjoint� the q�dimensional tori T�� � � �D� do not intersect the branch

locus of the map !� i�e�� the set of points in C q where J��z� � �� Moreover� by

the same reason and since the coe�cients of a polynomial uniquely� up to the

order� determine its zeros� ! is injective on each T�� The image of T� under !

is denoted by eT� and is a maximal real q�torus in C q of class C��

We de	ne

fM ��
�
���D

f�g � eT� �
Since locally� over some arc I � �D� fM is given as the image of ���If�g � T�
under the map

C � C
q �� C � C

q

��� z� 
�� ���!�z��

and since the component functions of the maps !� are symmetric in their argu�

ments� fM is a maximal real compact connected manifold in C q�� 	bered over

�D of class C��

By an assumption on V the points in the 	ber V � ������ represent exactly
one point in T�� The mapping ! maps each of them into eT�� Since V is given



��

by a Weierstrass polynomial and since !� is given by elementary symmetric

functions of its arguments� one concludes that the boundary of V is mapped

into the boundary of an analytic disc in C
q�� attached to fM � Moreover� this

disc is given as the graph of an analytic disc in C q which takes � � �D into eT��
One also observes that the varieties over D with boundaries in M which

satisfy the above conditions are in one to one correspondence with the graphs

of the analytic discs in C q which map � � �D into eT�� Namely� a basis of

symmetric functions in q arguments z�� � � � � zq can be given either with the

functions s�� � � � � sq or with the symmetric functions which one gets through the

Vieta formulae� So the problem of 	nding and describing all analytic varieties

with boundaries in M near to the given analytic variety V with boundary in M

is now translated to the problem of 	nding all analytic discs with boundaries in

fM close to the given one�

Remark and an example� Although the 	bers eT� of the manifold fM are

maximal real q�dimensional tori� the manifold fM itself is not necessary a q���

dimensional torus as the following example shows �

Let the manifold M be given by

M �� f��� z� � �D � C � jz� � �j � �

�
g



��

and the variety V by the equation z��� � �
�
� Then the pull�back of the tangent

bundle of the ��dimensional totally real manifold fM � C
� along the graph of

the associated analytic disc is not trivial� Thus fM is not a ��torus�

We denote by p � �D �� C
q the corresponding analytic disc whose graph

has boundary in fM and by p	 its derivative� Fix �o � �D� Since the curves

J j
� � j � �� � � � � q� � � �D� are pairwise disjoint� one can� locally near �o� order

the roots of the Weierstrass polynomial de	ning the variety V � Let ����� �
J�� � � � � � �q��� � Jq

� denote its roots� Also� to each root �j���� j � �� � � � � q� � �
�D� there corresponds a unique unit outer normal �j��� to the curve J j

� � C at

the point �j���� Using local parametrization of M � de	nition of the manifold

fM � and the above notation� a matrix eA whose columns span T���a����fM can be

written as

eA �

�
i� �

i�p	��� i��������

�
�

where

���� �

�
BB�

� � � � � �
����� ����� � � � �q���
� � � � � � � � � � � �

�q��
� ��� � � � � � � �q��

q ���

�
CCA

and

���� �

�
BB�

����� � � � � �
� ����� � � � �
� � � � � � � � � � � �
� � � � � �q���

�
CCA �

Thus if one de	nes B��� �� �������������������� and eB��� �� eA eA��� � �
�D� then the proof of Lemma � part � implies that one of the indices of the



��

Gl�q � �� C � closed path eB equals � and the remaining q indices are given by

the Gl�q� C � closed path B�

COROLLARY �� The total index ko of the closed path B is given by

ko � �W �

qY
j��

�j� �W �
Y
j	t

��j � �t�
��

whereW �g� denotes the winding number of a function g � C��D� with no zeros�

Proof� The total index ko is also given as the winding number of the deter�

minant det�B�� Using the special form of the matrix B and the fact that the

matrix � is the Van der Mond matrix the corollary follows immediately� One

should also recall that the winding number of the product of two functions

equals to the sum of the winding numbers of its factors�

Results from the previous section and �Glo�� now imply

PROPOSITION �� If all partial indices of the Gl�q� C � closed path B are

a� �Existence� greater or equal to ��� then near V there is a ko � q � �

parameter family of analytic varieties with boundaries in M � Moreover�

if each partial index of B is at least �� then the family of analytic varieties

with boundaries in M that are near V contains an open subset of C � �

b� �Nonexistence� negative� then there is a neighbourhood of V in C
� such

that in this neighbourhood the variety V is the only analytic variety with

boundary in M �



��

COROLLARY �� A necessary condition that all partial indices of the Gl�q� C �

closed path B are positive� and thus the union of the family of analytic varieties

with boundaries in M close to the variety V contains an open subset of C � � is

�W �

qY
j��

�j� �W �
Y
j	t

��j � �t�
�� � q �

Proof� A necessary condition that a family of nearby varieties with boundaries

in M contains an open set of C � is that all partial indices are greater or equal

to �� So the total index ko has to be greater or equal to q�

Example� Let the manifold M be given by

M �� f��� z� � �D � C � jz� � ��j � �

�
g

and the variety V by the equation z� � �� � �
�
� The normals to the 	bers of M

at the boundary of V are given by

�j��� � �j��� �j � �� �� �

Therefore W ��j� � ��� j � �� �� and W ��� � ��� � �� and our necessary

condition to have a lot of nearby analytic varieties with the boundary in M

fails� One can also calculate the partial indices for this example� They are �� �

and ���

�� Minimal discs with free boundaries

Let M � C n be a C� manifold and let p � D � C
n be a disc of class C���

with boundary in M � i�e�� p � �D � M � By the energy of the disc p we mean



��

the Dirichlet integral of p

E�p� ��
�

�

Z
D

jrpj�dxdy �

The maps which minimize the energy functional are of a special interest in the

Riemannian geometry� namely� any map with boundary in a submanifold M

which minimizes energy E in a certain homotopy class �p��D�� � G � ���M��

also minimizes the area functional

A�p� ��

Z
D

�����p�x
� �p

�y

���� dxdy
in G� see �Nit� and �Ye�� for more details� The advantage of the energy func�

tional E with respect to the area functional A is that the 	rst is only conformal

invariant but the latter is invariant under any di�eomorphic change of coordi�

nates�

Let �r� �� denote the polar coordinates on the unit disc D� It is well known�

see e�g�� �J
ag�� �Lew�� �Ye��� that any solution p of the Euler�Lagrange equations

for the energy functional E with free boundary in the manifold M must satisfy

the following conditions �

a� All component functions of the mapping p are harmonic in D� and

b� �p
�r
��� � Tp���M for every � � �D�

In our case� where the ambient space is C n � it is quite easy to check the above

statement �

Let pt� t � ���� ��� denote a one�parameter family of maps from the unit disc



��

D � C into C n which all take the unit circle �D into the submanifold M � Let

�

�t
pt

����
t��

� � �

Observe that the vector � is tangent toM along po��D�� For every such variation

� Stokes� theorem for the pair �D� �D� implies

d

dt
E�pt�

����
t��

� �
Z
D

�po � � dxdy �
Z
�D

�po
�r

� � d� �

A necessary condition on a disc po with boundary in M to be an energy func�

tional minimizer with free boundary in M is the vanishing of the 	rst variation

of E at po� i�e��

d

dt
E�pt�

����
t��

� � �

and the above statement on energy functional minimizers easily follows�

Since p � �D �M we also have

�p

��
��� � Tp���M

on �D� Combining both conditions we conclude

�p

�r
��� � �p

��
��� �� � �D� �

Since p is harmonic on the unit disk D it can be written in the form

p � f � g

for some holomorphic vector functions f and g from �A����D��n� The condition

on p to be minimal can be written as

Reh�p
�r

����
�p

��
���i � �



�	

and so

Reh�f 	��� � �g	���� i�f 	���� i�g	���i � � �� � �D� �

A short calculation shows

Im��hf 	���� g	���i � �

for every � � �D� But the function

F ��� � ��hf 	���� g	���i � � �� � �D�

extends holomorphically to D and so F ��� is a constant function� Since F ��� �

�� one concludes that

hf 	���� g	���i �
nX

j��

f 	j���g
	
j��� � �

for every � � �D�

COROLLARY �� Let p be a complex function p � D � C of the class C����

If either of the discs

F�G � D �� C
� �

where

F �z� � �z� p�z�� �

G�z� � �z� p�z�� �

is minimal for some submanifold M in C
� � then the function p is either holo�

morphic or antiholomorphic� In particular� M can be a totally real torus in C
�

�bered over the unit circle �D�



��

Proof� Let us assume that the disc F �z� � �z� p�z�� is minimal for some

submanifold M � Then the corresponding holomorphic discs f and g are of the

form

f�z� � �z� a�z�� and g�z� � ��� b�z��

for some holomorphic functions a and b from A����D�� The above argument

then implies

a	�z�b	�z� � �

for every z � D� Thus at least one of the functions a and b has to be a constant

function� In the case the disc G�z� � �z� p�z�� is minimal� the proof is similar�

We would like to use the special normal form of the pull�back bundle to

investigate the energy functional minimizers with boundaries in a Lagrangian

submanifold M � C n of class C��

PROPOSITION �� Let L be a maximal real n�dimensional vector bundle over

�D of class C��� such that every �ber L�� � � �D� is a Lagrangian subspace of

C n � and let BL be the C��� closed path in Gl�n� C � which represents L� Then �

a� B�
L � B��

L so the matrix BL��� is unitary for every � � �D�

b� Bt
L � BL� and conversely� if for a maximal real bundle L over �D one has

Bt
L � BL� then the bundle L is Lagrangian� i�e�� each �ber is a Lagrangian

subspace of C n �
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c� Let no denote the number of partial indices of the bundle L which are

greater or equal to ��� Then there are n � no and n � �n � no� dimen�

sional matrix functions X and Y � respectively� with entries from the space

A�����D� such that the columns of the matrix function

�X� Y ��o

span the �ber L� for each � � �D� Moreover� X tY � � on �D� Here �o

is the square root of the corresponding characteristic matrix ��

Remark� In the case no is n �resp� �� the matrix Y �resp� X� does not exist�

Proof� Since the 	bers of the bundle L are Lagrangian subspaces of C n � the

bundles iL and L� are the same� Lemma � implies Bt
L � BL and then also� by

Lemma �� B�
L � B��

L � This proves �a� and the 	rst part of �b�� To prove the

reverse implication of part �b� one should observe that if A is any n� n matrix

whose columns span L� for some � � �D� then

AA�� � BL��� � Bt
L��� � A��

t
At � �A����At �

So

A�A � AtA � A�A

and the matrix A�A is a real n� n matrix� Hence

Re��iA��A� � �
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and so the columns of the matrix iA are perpendicular to the columns of the

matrix A� Part �b� is proved�

To prove part �c� we use the factorization of the matrix function BL�

BL � !�!�� �

for some map ! � D � Gl�n� C � from A����D�n�n� We de	ne " �� �!���� and

by part �b� we also have

BL � "�"�� �

Let

! � �!��!�� and " � �"��"��

be the block notation of the matrix functions ! and " such that the matrices

!� and "� have dimensions n� no� Since

!t" � !t�!���t � In �

we get 	
!t
�

!t
�



�"��"�� � In

and so

!t
�"� � � �

This means that the columns of the matrix !� are orthogonal to the columns

of the matrix "�� and so the matrix

�!��"��

is invertible� We set X �� !� and Y �� "� and the proof is 	nished�



��

The proof of part �c� of the above proposition also implies

COROLLARY 	� Let L be a Lagrangian vector bundle over �D of class C����

let BL be the corresponding C��� closed path in Gl�n� C � and let � be its char�

acteristic matrix� Then the characteristic matrix of the Gl�n� C � closed path

� 
�� BL���

is ��

Remark� Statement �c� of the above proposition does not hold for an arbitrary

maximal real vector bundle over the �D� As a counterexample one can take the

bundle whose matrix B is given by� ��� �

� �
�

�
�

It is easy to check that the partial indices of B are � and �� and that there are

no nontrivial holomorphic functions a� b � A�����D� which satisfy the equation� ��� �

� �
�

��
a���
b���

�
� �

�
�

a���

b���

�
�

Henceforth M will denote a C� Lagrangian submanifold in C n and p � D�
C
n will be an energy functional stationary disc of class C��� with boundary in

M � i�e�� the 	rst variation of the energy functional E at p is �� We recall that
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the pair �r� �� represents the polar coordinates on D� Then one has

�
�p

�z
��� �

�

�

�
�p

�r
��� � i

�p

��
���

�

and

�
�p

�z
��� �

�

�

�
�p

�r
���� i

�p

��
���

�
for every � � �D� Since the disc p is attached to the manifold M � the vector

�p
��
��� is tangent to M at p��� for each � � �D� Since p is minimal� the vector

�p
�r
��� is perpendicular to M at p��� for each � � �D�

Let Ao denote the matrix constructed in part �c� of Proposition �� Since M

is a Lagrangian submanifold of C n we get

Re�iA�
�p

��
���� � � �

and since the 	rst variation of the energy functional E at p vanishes� we have

Re�A�
�p

�r
���� � � �

Thus for each � � �D we get

Re��A�o���
�p

�z
���� � � and Re��A�o���

�p

�z
���� � � �

Since p � f � g for some vectors f� g from A�����D�n� we have

Re��At
o���g

	���� � � and Re��A�o���f
	���� � � ����

Since also Ao � �X� Y ��o where the matrices X and Y have holomorphic exten�

sions into D and are �orthogonal to each other� i�e�� Y tX � �� we 	rst conclude
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that

X tg	 � � and Y tf 	 � � �

and 	nally

f 	 � Xh and g	 � Y k

for some vector functions h � �A����D��no and k � �A����D��n�no� For these

results we used only one part of each equation in ���� The rest� together with

the above equalities� implies

Re����
o X

�Xh� � � and Re����o Y
�Y k� � � �

where ��
o and ��o are the no � no and the �n � no� � �n � no� dimensional

matrices� respectively� such that

�o �

�
��
o �
� ��o

�
�

Since

Re��iA�oAo� � �

on �D� the matrices

��
o X

�X��
o and ��o Y

�Y ��o

are real and invertible� Thus

Re����
o ���h���� � � and Re����o ���k���� � �

for every � � �D� This proves the following theorem�
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THEOREM �� Let M be a C� Lagrangian submanifold in C
n and let p �

f � g� f� g � �A�����D��n� be the energy functional stationary disc of class C���

with boundary in M � Let no denote the number of partial indices of the path

p��D� �M which are greater or equal to ��� and let X and Y be the n�no and
n� �n� no� dimensional holomorphic matrices given by part �c� of Proposition

	� Then there exist vector functions h � �A�����D��no and k � �A�����D��n�no

such that

Re����
o ���h���� � � and Re����o ���k���� � � �� � �D� �

and

f 	 � Xh and g	 � Y k �

Remark� In the case no equals n �resp� �� one part of the above conlusion is

empty� namely� the matrix Y �resp� X� does not exist�

As a simple consequence one has the following

COROLLARY �� �Hypothesis as above��

�� If all partial indices of the pull�back bundle p��TM� are greater or equal

to ��� then p is a holomorphic disc�

�� If all partial indices of the pull�back bundle p��TM� are less or equal to

�� then p is an antiholomorphic disc�
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�� Stationary discs

Let �$�� � � �D� be a C��� family of strongly pseudoconvex C	 hypersur�

faces in C n � i�e�� there exists a C�����D�C	�C n�� function � � ���� z� on �D�C n

such that for every � � �D

a� the hypersurface �$� equals to the set fz � C n � ���� z� � �� �z���� z� �� �g
and

b� the domain fz � C n � ���� z� � �g is strongly pseudoconvex�

Let

f � D �� C
n

be a holomorphic map of class C��� such that

f��� � �$� �� � �D� �

We will call such f a holomorphic disc in C n with boundary in the family of

strongly pseudoconvex hypersurfaces f�$�g���D� For any such mapping f we

de	ne

�f��� ��
��

�z
��� f���� �

The following de	nition seems to be a natural extension of the de	nition in

�Lem�� see also �Slo�� and �Pan���
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DEFINITION �� The disc f is said to be stationary if and only if there exists

a C��� positive function p on �D such that the mapping

� 
�� p����f��� �� � �D�

extends as a holomorphic mapping on D with no zeros�

Remark� In the cases considered by Lempert in �Lem�� by Slodkowski in

�Slo��� and by Pang in �Pan�� the geometry of the problem under consideration

implies that if p is a positive C��� function on �D such that the mapping � 
�
p������� extends holomorphically to D� the extension is nonzero on D�

We recall the Webster�s construction in �Web� where he showed that the natural

embedding of a C� hypersurface % � C n into C n � C P n�� via the map

" � z 
�� �z� T C

z %� �z � %�����

is maximal real near a point �zo� T
C

zo%� if and only if the Levi form of % at zo

is nondegenerate� Thus the image of a strongly pseudoconvex hypersurface %

under this natural embedding is always a maximal real submanifold of C n �
C P n�� � Using the natural duality� i�e�� the space of complex hyperplanes in C n

is naturally biholomorphic to the space of complex lines in C n � observe that

every stationary disc f with boundary in the family of strongly pseudoconvex

hypersurfaces f�$�g���D� induces an analytic disc

� 
�� �f���� ��f�����



�	

in C
n � C P n�� attached to the maximal real 	bration f"��$��g���D� So it

makes sense to talk about the partial indices of a stationary map� i�e�� we de	ne

the partial indices of a stationary map as the partial indices of the induced map�

Notice that to each stationary map f we associate �n� � partial indices�

LEMMA �� Let h � D �� C n be a holomorphic disc of class Ck� k � �� such

that

h��� �� � �� � D� �

Then there exist holomorphic discs h�� h�� � � � � hn of class Ck� k � �� such that

det�h���� h����� � � � � hn���� � � �� � D� �

In particular� the vectors h���� h����� � � � � hn��� are linearly independent for every

� � D�

Remark� The lemma was inspired by Proposition � in �Lem��

Proof� We will prove the lemma by induction on the dimension n� For n � �

the claim is trivial� For n � � the lemma follows from the fact that since the

component functions f and g of the mapping h� i�e�� h � �f� g�� have no common

zeros and since the space Ak�D� of the k times di�erentiable holomorphic func�

tions on D is a Banach algebra with a unit where the holomorphic polynomials

are dense� then the characterization of the maximal closed ideals in Ak�D� as

in the proof of Theorem �
��
 in �Rud�� implies that there exist holomorphic



��

functions F and G of class Ck such that

f���F ��� � g���G��� � � �� � D� �

Then the mapping

h���� �� ��G���� F ���� �� � D�

is such that det�h���� h����� � � for every � � D�

Let us assume the lemma for n � � and we will prove it for n � �� Let

h � D � C n�� be a holomorphic disc of class Ck with no zeros on D� After a

linear change of coordinates in C
n one may assume that the 	rst n component

functions of the mapping h have no common zeros on D� This follows since h

can also be considered as a Ck mapping from D into C P n and therefore it can

not be surjective� Let h � �g� hn��� where g stands for the 	rst n components

of the mapping h� By the inductive assumption one can 	nd g�� � � � � gn analytic

mappings from D into C n of class Ck on D such that

det�g� g�� � � � � gn� � �

on D� Now the mappings

hj �� �gj� �� �j � �� � � � � n�

and

hn�� �� ��� � � � � �� ��

prove the lemma for the dimension n� ��
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Henceforth let

f � D �� C
n

be a stationary map for the family of strongly pseudoconvex hypersurfaces

�$�� � � �D� in C n � Therefore there exists a positive function p on �D of

class C��� such that p����f���� � � �D� can be extended as a nonzero holo�

morphic mapping on the disc D� The above lemma for k � � implies that the

function p is essentially unique� i�e�� if p� and p� are two real functions on �D

such that

p��f and p��f

extend as holomorphic mappings onD with no zeros� then there exists a positive

constant a such that

p���� � ap���� �� � �D� �

Observe that here we really need an assumption on the zeros of the maps pi�f �

i � �� �� namely� e�g�� the function

� 
�� Re�� � ��� �� � �D�

extends as a holomorhic function on D but the real function p��� � Re�� � ��

is not constant�

We normalize the map p����f���� � � �D� so that at the point � � � the

length of the extended holomorphic vector is �� The so obtained map we call�

following Pang �Pan�� �although our de	nition di�ers a little bit from his�� the



��

dual map of f � and we denote it by ef � Since ef has no zeros on D� one can use

the above lemma to get a C� holomorphic frame ef� h�� � � � � hn over D�

We de	ne two 	ber preserving di�eomorphisms of D � C n which are holo�

morphic on each 	ber and biholomorphic as mappings from D � C n into itself�

Such a di�eomorphism does not change partial indices of a C��� closed path in

a family of totally real submanifolds� Lemma �� The 	rst one is

!� � ��� z� 
�� ��� z � f����

and the inverse of the second one is

!��� � ��� z� 
�� ��� ef���z� � nX
j��

hj���zj� �

The composition ! �� !��!� is then a C� 	ber preserving di�eomorphism such

that in the new coordinates� i�e�� after applying !� the stationary disc f and its

dual ef have extremely simple form� namely�

f��� � � and ef��� � ��� �� � � � � �� �� � �D� �

We still denote the de	ning function of the family of strongly pseudoconvex

hypersurfaces �$�� � � �D� by � � ���� z� and we may assume� without loss of

generality� that �

�z�

��� �� � � for every � � �D� Since the hypersurfaces �$� are

strongly pseudoconvex for each � � �D� the complex Hessian of the function

���� �� is positive de	nite when restricted to the maximal complex tangent space

of �$� at the point ��

T C

� �$� � fz � C
n � z� � �g � C

n�� �



��

i�e�� the ��� �� minor Lo��� of the complex Hessian of ���� �� represents the Levi

form of the hypersurface �$� at �� Thus the �n� ��� �n� �� matrix function

of class C��� on �D

� 
�� Lo���

satis	es the theorem �Lem� Th&eor'eme B� and so there exists an �n�����n���

matrix function K�

K � D �� GL�n� �� C � �

of the same smoothness and such that

a� K is holomorphic on D�

b� K����K��� � Lo��� �� � �D� �

After using another 	ber preserving di�eomorphism on D � C
n �

��� z�� z
	� 
�� ��� z�� K

�����z	� �

where z	 stands for �z�� � � � � zn�� one may assume that

f��� � � � ef��� � ��� �� � � � � �� � Lo��� � Id �� � �D� �

We will now compute the total index of a stationary map� Later on we will

apply the same kind of computation to 	nd all partial indices of a stationary

disc under some geometric assumptions on the family �$� � � � �D�
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We denote by In the n�n identity matrix and by Jn the �n� ���n matrix�
BB�

� � � � � � �
� � � � � � �
� � � � � � � � � � � � � � �
� � � � � � �

�
CCA �

The other matrices we need are

L��� ��

�
���

�zi�zj
��� ��

�n

i�j��

� H��� ��

�
���

�zi�zj
��� ��

�n

i�j��

and

Ho �� JnHJ t
n �

Since the derivative �z���� �� equals � for each � � �D� the mapping

"� � C
n �� C

�n��

"��z� � �z�
�z���� z�

�z���� z�
� � � � �

�zn��� z�

�z���� z�
�

is well de	ned in a neighbourhood of �D � f�g� Notice that "� restricted to

�$� is just the Webster�s map ���� written in the local coordinates� A short

computation shows

�z"���� �

�
In
JnH

�
� �z"���� �

�
�

JnL

�
�

Since the columns of the matrix

�ie�� J
t
n� iJ

t
n�

span the tangent space to �$� at the point � and since for every v � C
n we have

Dz"����v � �z"����v � �z"����v �
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the columns of the matrix�
ie� J t

n iJ t
n

i�JnHe� � JnLe�� JnHJ t
n � JnLJ

t
n i�JnHJ t

n � JnLJ
t
n�

�

span the tangent space to "���$�� at the point ��� ��� Using our notation we

can simplify the above matrix as�
ie� J t

n iJ t
n

iJnHe� Ho � In�� i�Ho � In���

�
�����

We compute the determinant of the above matrix by expending along the 	rst

row� We get that the determinant of ���� equals to

i det

�
In�� iIn��

Ho � In�� i�Ho � In���

�
�

We multiply by i the 	rst column and subtract it from the second to get

i det

�
In�� �

Ho � In�� ��iIn��
�

�

Thus the determinant of the matrix ���� equals to

i det���iLo� � i det���iIn��� � ����n��in

and we proved the following proposition�

PROPOSITION �� The total index of a stationary disc f with boundary in

a family of strongly pseudoconvex domains in C
n is ��

To compute the partial indices of this path in the family of maximal real sub�

manifolds f"��$��g���D one 	rst has to 	nd the inverse of the ��n������n���



��

matrix

Ao ��

�
In�� iIn��

Ho � In�� i�Ho � In���

�
�

The inverse is

A��o ��
�

�

�
In�� �Ho In��

�i�Ho � In��� iIn��

�
and so the matrix Bo �� AoA��o is� �Ho In��

In�� �HoHo Ho

�
�

We recall De	nitions ��� and ��� from �Pan�� which in our context are

DEFINITION �� The family of hypersurfaces �$� � � � �D� is strongly con�

vex along f��D� if and only if the real quadratic form on C n��

v 
�� jvj� �Re�Hov � v�

is strongly positive de�nite� We also say that the family �$�� � � �D� is

strongly convexi�able along a stationary disc f if there exists a �ber preserving

biholomorphism of D�C n such that in the new coordinates the family f�$�g���D
is strongly convex along f��D��

Remark� Observe that the condition on a family of hypersurfaces to be strongly

convex along f��D� is slightly weaker than the strict geometric convexity of

hypersurfaces �$� at f��� for each �� For example� let the hypersurface �$� for

each � � �D be de	ned by the equation

��z�� z�� �� �Re�z�� � jz�j� � �Re�z��� �



��

Then� at the point ��� ��� Lo � � and Ho � � for every � � �D and so this

family of hypersurfaces is strongly convex along the disc f��� � �� � � �D� On

the other hand

��t� i
p
jtj� �t�� �� � ��t� jtj�� �t� � �

for any real number t � R� Hence the domain $� lies on both sides of the

hyperplane Re�z�� � � and can not be convex�

PROPOSITION �� If �$�� � � �D� is a family of strongly pseudoconvex

hypersurfaces in C n which is strongly convexi�able along a stationary disc f �

then all partial indices of f are ��

COROLLARY �� If all hypersurfaces �$�� � � �D� are strictly geometrically

convex� i�e�� the real Hessians of their de�ning functions are positive de�nite�

then all partial indices of any stationary disc of this �bration are equal to ��

Remark� This was the situation studied by Slodkowski in �Slo�� and Lempert

in �Lem��

Proof�
Proposition� Since the sum of the indices of a stationary map is ��

it is enough to prove that there are no positive partial indices� Let us assume

that there exists a positive partial index ko of the path Bo� By the de	nition of

partial indices there exist holomorphic discs a and b in C
n�� � with no common



��

zeros on D� of class C���� and such that on �D

Bo���

�
a���

b���

�
� �ko

�
a���
b���

�
�� � �D� �

So for every � � �D

�Ho���a��� � b��� � �koa��� �

We conjugate the above identity and dot it by a to get

�Ho���a��� � a��� � b��� � a��� � �
ko
a��� � a��� �

Multiplication by �ko and taking the real parts of the equation yield the following

pointwise equation on �D

Re��koa��� � b���� � jaj� �Re�Ho��
ko��a���� � ��ko��a����� �����

Since the family of hypersurfaces �$�� � � �D� is strongly convex along f��D��

the right hand side of ���� is positive for every 	xed � � �D� On the other hand

the function Re��koa��� � b����� � � D� is harmonic on D and equals � at the

point �� The mean value property for harmonic functions gives a contradiction

to the assumption that there exists a positive partial index of the path Bo�

Lemma � completes the proof of the proposition�

Remark� One can easily observe that the proof of the above proposition also

works in the case where the 	bers of the 	bration �$�� � � �D� are only convex

for each � � �D and strongly convex on a subset with a positive Lebesgue

measure�



�	

One can observe that in the above proof only the upper part of the matrix

Bo was used to derive a contradiction� Next lemma tells us that this was not

just a coincidence�

LEMMA �� Let a and b be two C��� holomorphic discs in C n�� such that

�Ho���a��� � b��� � �koa��� �� � �D� �����

Then the pair �a� b� solves the equation

Bo���

�
a���

b���

�
� �ko

�
a���
b���

�
�� � �D� �

Proof� We recall that

Bo �

� �Ho In��
In�� �HoHo Ho

�
�

We would like to show that the discs a and b also solve the equation

�In�� �Ho���Ho����a��� �Ho���b��� � �kob��� �� � �D� �����

We rewrite ���� as

Ho�����Ho���a��� � b���� �koa���� � �ko��Ho���a��� � b���� �
ko
a����

and observe that the part in the parenthesis on the right hand side is exactly the

expression which one gets by conjugating the equation ����� Thus both sides

are zero� and the lemma is proved�

By a theorem of Vekua �Vek�� we know that if kj is a partial index of

a Gl�n� C � path B � then �kj is a partial index of the path �B���t� This



��

fact follows quite easily once one knows that the set of partial indices of a

Gl�n� C � path B is invariant with respect to the factorization of B into the

form F��F�� where F� and F� are invertible holomorphic matrices on D and

C
� nD� respectively� In our case� where

Bo �

� �Ho In��
In�� �HoHo Ho

�
�

we have that Bo � B��
o and so

�B��
o �t � B�

o �

� �Ho In�� �HoHo

In�� Ho

�
�

where we also used the property that H t
o � Ho� Thus if a pair �a� b� of two C���

holomorphic discs solves the equation

Bo���

�
a���

b���

�
� �ko

�
a���
b���

�
�� � �D�

for some ko � Z� then the pair ��ib� ia� solves the equation

B�
o���

� �ib���
ia���

�
� �ko

� �ib���
ia���

�
�� � �D� �

Hence the partial indices of the matrices Bo and B
�
o are the same and we proved

the following

PROPOSITION �� If ko is a partial index of the Gl��n� �� C � path Bo� then

�ko is also a partial index of the path Bo�

We recall the de	nition of a non�degenerate stationary disc from �Pan�� but

in a modi	ed form� See �Pan�� for more details�
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DEFINITION �� A stationary disc f is said to be non�degenerate if the equa�

tion

	��� � ��Ho���	��� � ����� �� � �D�

has only the trivial solution in the space �A�����D��n��� i�e�� a pair of vector

functions 	 and � from the space �A�����D��n�� solves the above equation if and

only if 	 � � � ��

PROPOSITION 	� The only possible partial indices of a non�degenerate sta�

tionary disc are �� � and ���

Remark� Note that by Theorem � and by an observation by Slodkowski� �Slo���

this proposition immediately implies Theorem ��
 from �Pan���

Proof� Let �a� b� be a nontrivial pair of functions from �A�����D��n�� which

solves the problem

Bo���

�
a���

b���

�
� �ko

�
a���
b���

�
�� � �D�

for some ko � N � Then� after the multiplication by �
�
� the 	rst n� � equations

can be rewritten as

��b��� � �ko��a��� � ��Ho���a��� �� � �D� �

We consider two cases�
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�� ko � �m�� for some integer m � �� The multiplication by �
m
yields the

equation

�m��b��� � ��ma���� � ��Ho�����ma����

and the non�degeneracy of the stationary disc implies

a � b � � �

a contradiction�

�� ko � �m� � for some m � �� Then the multiplication by �
m

gives

�m��b��� � ���ma���� � ��Ho�����ma���� �� � �D� �

Let 	��� �� �ma��� and ���� �� �m��b���� Then the above equation has

the form

����� � �	��� � ��Ho���	��� �

After the multiplication by � we also have

������ � 	��� � ��Ho�����	���� �

Adding both identities yields

��� � ��g��� � �� � ��f��� � ��Ho������ � ��f���� �

Thus� by the non�degeneracy of the stationary disc� the functions 	 and

� are identically � and so also

a � b � � �

a contradiction� Lemma � 	nishes the proof of the proposition�



��

	� Examples and counterexamples

Example �� The 	rst example shows that there exist a real analytic family

of real analytic hypersurfaces in �D � C
n with strongly pseudoconvex 	bers

and a family of corresponding stationary analytic discs such that the partial

indices associated to each stationary disc change for some isolated values of the

parameter�

Let

�t��z�� z�� � �Re�z�� � jz�j� � jz�j� � tRe��
N
z��� ��t� �� � R � �D�

be a two parameter family of strongly plurisubharmonic functions on C
� � For

each pair �t� �� � R � �D the function �t� de	nes in a neighbourhood U t
� of

the point ��� �� a strongly pseudoconvex hypersurface %t
� given by the equation

�t��z� � �� If one restricts the parameter t � R on a compact subset I � R� the

neighbourhoods U t
� � t � I� � � �D� can be chosen uniformly�

It is clear that

�t���� �� � �

and

�z�
t
���� �� � ��� �� �

LetM t
� denote the maximal real submanifold of the complex manifold C ��C P �

which one gets as the image of the strongly pseudoconvex hypersurface %t
� by



��

the mapping

" � z 
�� �z� ���t��z��� �

See the section on the stationary discs and �Web��

Claim� The partial indices of the closed curve

� 
�� ��� �� ��� ��� �� � �D�����

are

a� all � for t �� ���
b� �� N and �N for t � ���

Proof� A computation in the coordinate chart V � f�z� �w�� � C � � C P � �w� ��
�g� similar to the one in the proof of the fact that the total index of a stationary

disc is always �� gives a matrix At��� whose columns span the tangent space

to the maximal real submanifold M t
� at the point ��� �� ��� ���� i�e�� at the point

��� �� �� in the coordinates�

At��� ��

�
� i � �

� � �

� �t�N � � �i�t�N � ��

�
A �� � �D� �

So we get

Bt��� � At���At����� �

�
� �� � �

� t�N �

� �� t� �t�N

�
A �� � �D� �



��

By Lemma � one of the partial indices is � and the rest are given as the partial

indices of the �� � matrix

Bo
t ��� ��

�
t�N �

�� t� �t�N
�

�� � �D� �

Since the determinant of the matrix Bo
t ��� is identically equal to ��� the sum

of the partial indices is �� Assume that one of the partial indices is positive�

say ko � N � Then there exists a nonzero pair �a� b� of holomorphic functions on

D� real analytic up to the boundary and such that on the boundary for every

� � �D one has

Bo
t ���

�
a���

b���

�
� �ko

�
a���
b���

�
�����

Thus

��� t��a���� t�
N
b��� � �kob��� �����

But the left hand side of ���� extends as an antiholomorphic function on D� So

�kob��� � constant �� � �D� �

Since by our assumption ko 
 �� the constant has to be �� and thus

b � � �

Going back to the equation ���� one gets

��� t��a��� � � �� � �D� �

Thus if t �� ��� the function a has to be identically �� which gives a contradiction

to the assumption ko 
 � and so in the case t �� �� all partial indices of the



��

curve ���� are �� For the case t � � one can check that one of the partial indices

is N � namely� the pair of holomorphic functions ��� �� solves the equation ����

for k � N � The pair of functions �i� �� shows the same for t � ��� Of course�

the second partial index is �N �

Example �� Examples � and � together with Example � will show that the

so called continuity method for describing the polynomial hull of a general

hypersurface in �D � C n � n 
 �� with strongly pseudoconvex 	bers fails� This

is in contrast with the case n � �� where the continuity method was successfully

used by Forstneri
c� �For��� to describe the polynomial hull of a totally real torus

	bered over �D� We will 	nd an isotopy of hypersurfaces %t� t � ��� ��� in

�D�C � with strongly pseudoconvex 	bers which starts at a hypersurface %� in

�D � C
� whose 	bers are Euclidean spheres in C

� � is strictly decreasing in the

sense that %t is included in the domain bounded by the hypersurface %� for all

�� � � t� and ends with a hypersurface %� in �D � C n with the property that

its polynomial hull is nontrivial but there is no graph of a bounded analytic disc

with boundary almost everywhere in the hypersurface %�� See also Example ��

Let � be a smooth arc in R� � C � and let f be any smooth nonnegative

function on R� such that

a� the zero set of f and the zero set of the gradient rf are both equal to �

and

b� there exists an ro 
 � such that f�x�� x�� � x�� � x�� for x�� � x�� � r�o�



��

Here the coordinates in R
� � C

� are x�� x� and the coordinates in C
� are

z� � x� � iy� and z� � x� � iy�� For � 
 � we de	ne

���z�� z�� � f�x�� x�� � ��y�� � y��� �

Then

a� the zero set of �� and the zero set of r�� are both equal to the arc � and

b� the Levi form of the function �� is

L���� ��
�

�

�
fx�x� � �� fx�x�
fx�x� fx�x� � ��

�
�

where the notation fxixj stands for the second partial derivative of the

function f with respect to xi and xj� i� j � �� ��

So if � is large enough� the function �� is strictly plurisubharmonic on C � � We

	x such a � and denote the function �� by ��

Let � � R � ��� �� be a smooth function whose support is contained in the

interval ���� �r������ and which equals � on the interval ��� �ro������ Also� let

g be a smooth nonnegative function on R such that

�� g�x� � � for x � r�o�

�� g	�x� 
 � and g		�x� � � for x 
 r�o�

�� ��z��	�jzj�� � g	�jzj�� � � for every z � C � �

For � � ��� �� we de	ne

e�
�z� � ���jzj����z� � g�jzj�� �z � C
�� �



��

If � is small enough� the function e� is strictly plurisubharmonic on C
� and its

zero set is the arc �� We 	x such an � and denote the corresponding function

by e��
Claim� The zero set of the gradient re� is the arc ��

Proof� Let zo � �xo� � iyo�� x
o
� � iyo�� be a point where the gradient re� is zero�

We consider the following three cases �

�� jzoj � ro� Then e� � �� in a neighbourhood of the point zo and thus zo � ��

�� jzoj 
 ro � �� Then e��z� � g�jzj�� in a neighbourhood of the point zo� Since

g	�x� 
 � for x 
 r�o� we get a contradiction�

�� ro � jzoj � ro��� The y components of the gradient re�� i�e�� the derivatives
of e� with respect to y� and y� at the point z equal to

��

�yj
�z� � ������jzj�� � ���z��	�jzj�� � g	�jzj���yj �j � �� �� �

Therefore� if re��zo� � �� one concludes that since

����jzj�� � ���z��	�jzj�� � g	�jzj�� 
 ����z��	�jzj�� � g	�jzj��� � ���
�

on C � � it follows

yo� � yo� � � �

This� together with the fact that jzoj � ro and our initial assumption �b� on the

function f � implies

fx��x
o
�� x

o
�� � �xo� and fx��x

o
�� x

o
�� � �xo� �
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The x components� i�e�� the derivatives with respect to x� and x� variables� of

the equation re��zo� � �� together with ��
� give

xo� � xo� � � �

Thus also the assumption ro � jzoj � ro � � leads to a contradiction and the

claim is proved� �

Thus for every simple arc � in R� � C � we found a smooth parameter family

of strictly pseudoconvex hypersurfaces %t� t � ��� ��� in C � which starts at ��

it is strictly increasing in the sense that for each pair of parameters t � � the

hypersurface %t is included in the interior of the domain bounded by %� and

which ends at some large Euclidean sphere�

Remark �� If one is given a smooth family of simple arcs ��� � � �D� in

R
� � C � � then one can choose a smooth family of smooth functions f�� � � �D�

satisfying the conditions �a� and �b� for each � � �D� Since the set of parameters

is compact� the functions � and g and the constants � and � can be chosen

uniformly� i�e�� independent of the parameter � � �D�

Remark �� The above construction can be applied to any arc � in C � for which

there exists an automorphism ! of C � such that !��� � R
� �
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We consider the following family of arcs in R� � C
� � Let �� be the semicircle

in R� given by the equation

x�� � x�� � � � x� � � �

For each � � �D we denote by R� the map

R� � C
� �� C

�

de	ned by

R��z�� z�� �� ��z�� z�� �

Observe that R� is a linear isomorphism of C � �

For � � �D such that � � arg��� � �
�
or ��

�
� arg��� � �� let

�� �� �� �

For the parameters � � �D such that �
�
� arg��� � ��

�
we smoothly perturb

the initial arc �� to get arcs �� such that they do not pass through the point

��� �� but they still pass through the points ��� �� and ���� ��� For instance� for
� � eis one may take �� to be de	ned by the equation

��� ��s���x�� � x�� � ��� ��s��� � x� � � �

where � � R � ��� �� is any smooth function whose support is the interval ��
�
� ��
�
��

We de	ne

e�� �� Rp����� �
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Here by
p
� we mean the principal branch of the square root� i�e��

p
� � �� Since

we have �� � �� in a neighbourhood of � � � and since the arc �� is symmetric

with respect to the x��axis� the family of arcs e��� � � �D� is smooth� Using

our initial construction for one arc � � R� and Remarks � and �� one gets a

smooth family of hypersurfaces %t� t 
 �� in �D � C
� such that for each t all

their 	bers are strongly pseudoconvex and for t large enough all the 	bers of the

hypersurface %t are equal to a sphere of a 	xed radius
p
t centered at the point

��� ��� Also� for every pair t� � � R� � t � � � the hypersurface %t is included in

the domain bounded by %� �

Remark� Observe that by a theorem of Docquier and Grauert �Doc�Gra� the

above properties of the isotopy %t� t 
 �� assure that the closures of the 	bers

of the domain bounded by %t remain polynomially convex for each time t�

To 	nish our example we 	rst observe that since

�
p
�� ��� ��

p
�� �� � e�� �� � �D� �

the polynomial hull of %t contains the point ��� �� �� for all t 
 �� Finally we

prove the following claim�

Claim� For t 
 � small enough there is no graph of a bounded analytic map�

ping F � D � C
� whose boundary is almost everywhere with respect to the

Lebesgue measure on �D contained in the closure of the domain bounded by
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the hypersurface %t � �D � C
� �

Proof� We 	rst prove the claim for

%o ��
�
���D

f�g � e�� �
Once this is proved the normal family argument and the above remark 	nish

the proof of the claim�

Let us assume that there is an analytic mapping

�f� g� � D �� C
�

such that

�f���� g���� � e�� �a�e� � � �D� �

Therefore the imaginary part of the function g is almost everywhere � on �D

and thus g is a constant function� i�e�� there is a real number a � ��� �� such that

g��� � a for every � � �D� Since the arcs e�� for �
�
� arg��� � ��

�
do not pass

through the point ��� �� the constant a has to be less than �� But then

f���� � ��� a��� �a�e� � � �D� �

which leads to a contradiction�

Example �� In this example we will construct a smooth family %t� t � ��� ���

of smooth hypersurfaces in �D � C
� similar to the one in the Example �� i�e��

%� � �D � S�n���R� for some R 
 �� the family is strictly decreasing in the

sense that %t is included in the domain bounded by %� � � � t� and all the
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	bers %t � �f�g� C
n�� � � �D� are strongly pseudoconvex for each value of the

parameter t� but this time we will also have a 	xed neighbourhood �D�B��o�

of �D � f��� ��g included in every domain bounded by %t� t � ��� ��� and there

will be a point in the polynomial hull of %� that can not be reached by the

graphs of bounded analytic discs with boundaries almost everywhere in %��

Let � � R� � C � be the arc

x�� � x�� � � � x� � �

as in the Example �� Let X� �� � and let

X� �� Rp�X� �

Since again

�
p
�� ��� ��

p
�� �� � X� �� � �D� �

it is obvious that the polynomial hull of

X ��
�
���D

f�g �X�

contains the point ��� �� ���

Claim� There is no graph of a bounded analytic disc F � D � C
� whose

boundary is almost everywhere with respect to the Lebesgue measure on �D

contained in X and which passes through the point ��� �� ���

Proof� Assume that there is an analytic disc F � �f� g� whose graph has
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boundary almost everywhere contained in X and such that F ��� � ��� ��� This

implies� similarly as in the Example �� that

g��� � � �� � D� �

Thus

f ���� � � �a�e� � � �D� �

a contradiction�

The rest is similar to the Example � and thus omitted�

Remark� Examples � and � were inspired by the example by Helton and

Merino in �Hel�Mer� where they constructed a connected and simply connected

	bration over the unit circle �D with a nontrivial polynomial hull and such that

there exists no graph of an analytic disc with boundary in the 	bration�

�
� CR�vector bundles

We begin with a de	nition�

DEFINITION 	� Let L � fL� � C m�n � � � �Dg be a real vector bundle over

�D of class C���� If for each � � �D the �ber L� is a real vector subspace of

CR�dimension m� the bundle L is called a CR�bundle of CR�dimension m over

the unit circle �D� If� in addition� for each � � �D the �ber L� is a generating

subspace of C m�n � i�e�� L� � iL� � C
n�m � � � �D� then the bundle L is called

a generating CR�bundle over �D�



��

Remarks�

�� Every maximal real bundle over �D is a generating CR�bundle with CR�

dimension ��

�� To each CR�bundle L over the unit circle one can associate a complex

m�dimensional vector subbundle LC � L which is just the bundle of the

maximal complex subspaces of the bundle L� i�e�� for each � � �D the

	ber LC

� equals to L� � iL��

LEMMA �� Let V be a C� complex vector bundle over �D such that for each

� � �D the �ber V� is an m dimensional complex subspace of C m�n � Then there

exists a linear change of coordinates in C m�n such that in the new coordinates

each �ber V� projects isomorphically onto C m �f�g � C
m�n � Moreover� the set

of invertible �m � n� � �m � n� matrices satisfying this property is open and

dense in Gl�m � n� C ��

Proof� We denote by G the set of invertible �m�n���m�n� complex matrices

having the above property� Clearly G is open in Gl�m � n� C �� So� to prove

the lemma� we have to show that the complement of G in Gl�m � n� C � has no

interior�

Fix �o � �D� Let A�o be any �m�n��m matrix such that its columns form

a basis of the 	ber V�o� We de	ne the mapping

!�o � Gl�m � n� C � �� C



��

by

!�o�U� � det��Im� ��UA�o�

where �Im� �� is an m� �m�n� matrix which has the identity matrix in its 	rst

m columns and the � matrix in its last n columns� The mapping !�o depends

on the matrix A�o� i�e�� on the basis of the 	ber V�o� but the set

U�o �� !���o ���

does not� The equation

!�o�U� � �

is algebraic and so U�� is an algebraic subset of Gl�m � n� C �� Hence� locally

the set U�o has 	nite ���m� n�� � �� dimensional Hausdor� measure�

Let

U ��
�
���D

f�g � U� � �D �Gl�m � n� C � �

Then� locally again� the ��m � n�� � � dimensional Hausdor� measure of the

set U is 	nite and so for every compact set K � Gl�m � n� C � we have

H��m�n�������U� �K� ��

where � is the projection

� � �D �Gl�m � n� C � �� Gl�m� n� C � �

Since ��U� is exactly the complement of the set G� the lemma is proved�



��

Let % � C
m�n be a generating CR�subspace of CR�dimension m such that

its maximal complex subspace %C projects isomorphically onto C m � f�g�

LEMMA ��� The subspace

S �� % � �f�g � C
n�

is a maximal real subspace of f�g� C
n and is the only subspace of f�g� C

n for

which

% � %C 	 S �

Proof� We denote by � � C m�n � C m � f�g the orthogonal projection onto

C m �f�g� Since � projects %C isomorphically onto C m �f�g� we conclude that

for every x � % there exists exactly one vector v � %C such that ��x� � ��v��

Hence the vector x � v � % is in the kernel of the projection �� i�e�� x � v is

in f�g � C n � Therefore x� v is in S� The assumption on the projection � also

implies

%C � �f�g � C
n� � f�g �����

and so S is a totally real subspace of f�g � C
n for which

% � %C 	 S �

Finally� the subspace % is a generating CR�subspace of C m�n and thus S is a

maximal real subspace of f�g � C
n � The uniqueness follows from �����
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Let L � �D � C
m�n be a generating CR�bundle of the class C��� over the

unit circle and of CR�dimension m� We assume that each 	ber LC

� � � � �D�

projects isomorphically onto C m � f�g � C
m�n � By Lemma � this assumption

can always be realized in the case where the bundle L is of class C�� The above

Lemma �� implies that there is a unique maximal real bundle L � �D � C
n

such that for each � � �D we have

L� � LC

� 	 L� �

DEFINITION �� Let L � �D� C m�n be a generating CR�bundle over �D of

CR�dimension m whose �bers project isomorphically onto C m �f�g� We de�ne

the partial indices and the total index of the bundle L as the partial indices and

the total index of the maximal real bundle L � �D � C n �

We 	x �o � �D� Let N��o� be any �m� n�� n matrix whose columns span

the real orthogonal complement L��o� Then the equations of the 	bers L�o and

LC

�o
are

Re�N���o�
	
z
w



� � � and N���o�

	
z
w



� � �

respectively� Here z � C m and w � C n � Since we are assuming that each 	ber

of the bundle LC projects isomorphically onto C m � f�g � C m�n � the matrix

N��o� can be written in the following block form

N��o� �

	
Go��o�
No��o�



�



�	

where No��o� is an invertible n�n complex matrix� The de	nition of the bundle

L immediately implies that L�o is given by the equations

Re�N�
o ��o�w� � � �

Therefore the columns of the matrix No��o� span the real orthogonal space

L��o � C n �

Let k�� k�� � � � � kn be the partial indices of the bundle L and let ���� be its

characteristic matrix� Then there exists an n�n invertible holomorphic matrix

function �o on D such that the columns of the matrix function

Ao��� �� �o����o��� �� � �D�

span the 	bers of the maximal real bundle L� Here �o denotes the square root

of the characteristic matrix �� Once Ao is 	xed� there is naturally given basis of

the bundle L�� namely� there is an �m� n�� n matrix function N���� � � �D�

whose rows are from the space E�� whose columns for each � � �D span L�� �

and such that

N�
o � iA��o �

Let F � D �� C m�n be an analytic disc with boundary in the generating

CR�bundle L� With respect to the splitting of the space C m�n the mapping

F is written as �f� g�� where f and g are holomorphic maps into C
m and C

n �

respectively� Since for each � � �D the matrix function Ao��� is invertible� the



��

mapping g can be written in a unique way in the form

g � Ao�u� i�v � iT�v�� �u� v � E�� �

Since F has boundary in the bundle L� the discs f and g satisfy the equation

Re�G�
o���f��� �N�

o ���g���� � � �� � �D� �

Hence� since N�
oAo equals to iIn�

Re�G�
o���f��� � i�u���� �T�v������ v���� � � �� � �D�

and the mapping v is given by the equation

v � Re�G�
of� �����

If the partial indices of the bundle L are all greater or equal to ��� then the

product

Ao�v � iT�v�

extends holomorphically to D and so� given a holomorphic disc f in C m � the

equation ���� is also a su�cient condition for the existence of a holomorphic

disc g in C n such that the disc F � �f� g� has boundary in the bundle L� Even

more� in this case one can 	nd an explicit parametrization of all holomorphic

discs attached to the bundle L with the parameter space Rn�k � �A�����D��m�

where k is the total index of the bundle L� Namely� for each holomorphic

vector f � �A�����D��m and for each real vector function u � E� such that



��

�ou extends holomorphically to D� there exists exactly one holomorphic disc

F � �f� g� attached to L�

Before we consider the nonlinear case let us make a few remarks�

�� Since our choice of a change of coordinates in C m�n involves quite a lot of

freedom� it looks like that one could get� using a di�erent change of coordinates�

also a di�erent set of attached discs to the bundle L� It is quite easy to construct

an example� e�g�� the real normal bundle L� � �D � C
� is given by the matrix

N t��� �� ��� �
�
�� where di�erent linear changes of coordinates result in di�erent

sets of partial indices of the associated bundle L� But� as already the above

argument shows� as soon as all partial indices of the bundle L are greater or

equal to ��� we know how to parametrize all holomorphic discs in C
m�n with

boundaries in L� Also� the following simple lemma is true�

LEMMA ��� The Banach spaces X � �A�����D��m and R� �X are naturally

isomorphic�

Proof� We de	ne

" � R� �X �� X

as

"�s� t� f���� �� �s � it� � �f��� �� � �D� �

It is easy to verify that " is one to one and onto bounded linear map�
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Since the parameter space of holomorphic discs attached to L is Rn�k �
�A�����D��m� we get that as soon as the CR�dimension of the bundle L is

at least �� the set of parameters is isomorphic either to �A�����D��m or to

R � �A�����D��m� depending on the codimension n and the orientability of the

bundle L� Observe that L is orientable if and only if the bundle L is orientable

and thus L is orientable if and only if the total index k is an even integer�

Moreover� in the example of the CR�bundle L � �D � C � � where its real

normal bundle L� is given by the matrix N t��� � ��
�
� ���� one can see that it

can also happen that a certain linear change of coordinates can produce only

positive partial indices but some other only negative partial indices� Therefore�

to work on general CR�manifolds� we will have to assume that there exists a

linear change of coordinates in C m�n such that in the new coordinates each

	ber of the maximal complex tangent bundle along a certain curve projects

isomorphically onto C m � f�g and the corresponding partial indices are all

greater or equal to ��� Observe that in the case of positive CR�dimension the

condition that all partial indices are negative does not necessary imply� as in the

case of maximal real bundles� that there is no nearby analytic discs attached to

L� See the next remark�

�� The set of discs attached to a generating CR�bundle of a positive CR�

dimension is always parametrized by an in	nite dimensional Banach space� Even

in the case where all partial indices of the associated bundle L are negative we
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will 	nd a subspace of 	nite codimension in �A�����D��m which is in one to one

correspondence with the analytic discs with boundaries in L�

As it was already seen above� a necessary condition for a disc �f� g� in C m�n

to be attached to the bundle L is

v � Re�G�
of� �

To get all holomorphic discs attached to L the function v should be such that

there exists a mapping u � E� such that

Ao�u� i�v � iT�v��

is the boundary value of a holomorphic disc in C n � For each partial index

kj � �� the dimension of the corresponding set of parameters is kj � �� But

if kj � ��� then the function uj has to be chosen to be identically � and the

su�cient condition on vj to generate a holomorphic disc is that the Fourier

coe�cients bvj���� bvj���� � � � � bvj�� jkj j� � � �� are all equal to �� Here �x�� x � R�

stands for the greatest integer less or equal to x� This condition is equivalent

to the condition

Fjs�f� �

Z ��

�

eis�Re��j��� � f���� d� � � �

for s � �� �� � � � � �
�
jkjj � � in the case kj is an even integer and for

s �
�

�
�
�

�
� � � � �

�

�
kj � �

in the case kj is an odd integer� Here �j stands for the j�th row of the matrix

G�
o� Since the linear functionals Fjs are continuos on the space �A�����D��m in
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the case kj is an even integer and on the space �A����m in the case kj is an odd

integer� the claim is proved�

�� The following example shows that in the nonlinear case some assumptions

on the partial indices are really needed� We already know that this can happen

in the maximal real case� but when the CR�dimension is positive the di�erence

can be even more striking� Namely� although in the linear model the set of

solutions is always parametrized by an in	nite dimensional vector space� it can

happen that the set of local nearby solutions on a CR�manifold is only 	nite

dimensional�

Example� Let

M� �� f�z� w� � C
� � Im��w� � jzj�g �� � �D� �

Then the disc

� 
�� ��� �� �� � �D�

is the only analytic disc with boundary in the 	bration fM�g���D�

Proof� Let �f� g� be an analytic disc with boundary in the 	bration fM�g���D�
Then

Im��g���� � jf���j� �� � �D� �

But

� �

Z ��

�

Im��g����d� �

Z ��

�

jf���j�d�
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and so f � �� But then

Im��g���� � �

on �D and so also g � ��

Observe that in the above example the matrix A��� equals to ��� i�� and thus

the only partial index is ���
One can also de	ne a ��dimensional submanifold of C � of CR�dimension �

with a similar property� Let

M ��
�
���D

f�g �M� �

Then any holomorphic disc with boundary in M and close to the disc

� 
�� ��� �� �� �� � �D�

is of the form

� 
�� �a���� �� �� �� � �D� �

where a is an automorphism of the unit disc close to the identity� Thus the

family of such discs is ��dimensional�

We consider now the nonlinear case� Let fM���g���D be a family of gener�

ating CR�submanifolds of CR�dimension m in C m�n and let

p � �D �� C
m�n

be a map of class C��� such that

p��� �M��� �� � �D� �
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We say that the family fM���g���D is a C��� generating CR�	bration over the

unit circle �D with C� 	bers if for each �o � �D there are a neighbourhood

U�o � �D of �o� an open ball B�o � C
m�n centered at the origin and maps

��o� � � � � � �
�o
n from the space C����U�o� C

��B�o�� such that for every � � U�o

�� the CR�submanifold M��� � �p��� � B�o� equals to f�z� w� � p��� �

B�o� �
�o
j ��� �z� w�� p���� � �� j � �� � � � � ng �

�� ��oj ��� �� �� � �� j � �� � � � � n � and

�� �z�w�
�o
� ��� z� w� 
 � � � 
 �z�w�

�o
n ��� z� w� �� � on B�o�

THEOREM �� Let M��� � C m�n � � � �D� be a C��� generating CR��bration

over the unit circle �D with C� �bers and CR�dimension m� Let

p � �D �� C
m�n

be a C��� closed path in C m�n such that

p��� �M��� �� � �D� �

Assume that there exists a linear change of coordinates in C m�n such that in

the new coordinate system all maximal complex subspaces of the generating CR�

bundle

L ��
�
���D

f�g � Tp���M���

project isomorphically onto the subspace C m �f�g� Assume also that all partial

indices of the corresponding maximal real bundle L � �D � C
n are greater or

equal to �� and that the total index is k� Then there are an open neighbourhood



��

U of � � R
n�k � an open neighbourhood V of the function � in �A�����D��m� an

open neighbourhood W of p in �C�����D��m�n and a map

" � U � V ��W

of class C� such that

�� "��� �� � p�

�� for each �t� f� � U � V the map ep �� "�t� f�� p extends holomorphically

to D and is such that ep��� �M��� for each � � �D�

�� "�t�� f� �� "�t�� f� for t� �� t� from the neighbourhood U and any f � V �

�� if ep � W satis�es the condition ep��� � M���� � � �D� and is such that

ep� p extends holomorphically to D� then there are t � U and f � V such

that "�t� f� � ep�
Proof� Since we are assuming that all maximal complex subspaces project

isomorphically onto the subspace C m�f�g� one can� using the same construction

as in Lemma �� 	nd a set

���� z� w� � ������ z� w�� � � � � �n��� z� w��

of �global de	ning functions for the 	bration fM���g���D� i�e�� there exist an

ro 
 � and functions

�oj � C���
R

��D�C��Bro�� �� � j � n�



��

such that for every odd partial index kj the function �oj has the property

�oj���� z� w� � ��oj��� z� w� ���� z� w� � �D �Bro� �

and such that for the functions

�j��� z� ��

�
�oj�r���� z� w�� kj is odd
�oj��� z� w�� kj is even

the following holds

a� M��� � �p��� � Bro� � f�z� w� � p��� � Bro� �j��� �z� w�� p���� � �� j �

�� � � � � ng �
b� �w�� 
 � � � �w�n �� � on �D � Bro�

One may also assume that for each � � �D one has

��w��
���� �� �� � N�

o ��� �

We de	ne

" � �A�����D��m � E� � E� �� E�

by

"�f� u� v���� �� ���� f���� Ao�u� i�v � iT�v������ �� � �D� �

Then for every v � E� and � � �D we have

�Dv"��� �� ��v���� � �Re��w���� �� ��Ao���i�v��� � i�T�v������ � ��v���

and thus the partial derivative of the mapping " with respect to variable v is

an invertible linear map from the space E� into itself� By the implicit mapping



�	

theorem one can 	nd a neighbourhood V of the zero function in �A�����D��m�

neighbourhoods fW and eU of the zero function in E� and a unique mapping

� � eU � V ��fW
such that a triple �f� u� v� � V � eU �fW solves the equation

"�f� u� v� � �����

if and only if v � ��u� f�� Finally one would like to select from the above family

of all possible C��� closed curves in the CR�	bration fM���g���D near p those

which bound a sum

p� analytic disc �

The rest of the argument is the same as in the proof of Theorem �� At this

point one should assume that all partial indices of the maximal real bundle L
are greater or equal to ��� In this case the vector function

Ao�v � iT�v�

extends holomorphically to D� This follows from the fact that for any odd

partial index kj the function vj� iT vj is of the form r���goj��� for some function

goj � A�����D�� We recall that r��� represents the principal branch of the square

root
p
�� So the condition on the vector function

� 
�� Ao�u� i�v � iT�v����� �� � �D�
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to extend holomorphically into D is in the case where kj � ��� j � �� � � � � n�

equivalent to the condition that the vector function

� 
�� Ao���u��� �� � �D�

extends holomorphically to D� To 	nd all such functions u � E� one has to 	nd

all vector functions a � �A�����D��n such that on �D

�a � a �

i�e�� for all j � �� � � � � n

�kjaj��� � aj��� �� � �D� �

For any partial index kj � �� the only solution of the above equation is aj � �

and for kj � � one has a kj � � dimensional parameter family of solutions�

Hence� altogether one gets a k � n parameter family of solutions�

The rest of this section was inspired by the work �Bao�Rot�Tre� by Bao�

uendi� Rothschild and Trepreau� See also the paper �Tum� by Tumanov for

some related results and de	nitions�

We recall the de	nition of the conormal bundle of a CR�submanifold M �
C N as given in �Bao�Rot�Tre�� We identify the complex bundle ����C N of ��� ��

forms on C N with the real cotangent bundle T �C N as follows� To a real ��form

( �
P

cjdzj � cjdzj on C
N we associate the complex ��� �� form � � �i

P
cjdzj



��

so that the pairings between the vectors and covectors are related by the identity

h(� Xi � Imh��Xi

for all X � TzC
N � Under this identi	cation� the 	ber of the conormal bundle

%�M� on a CR�submanifold M at the point p �M is given by

%p�M� � f� � ����
C
N � Imh��Xi � �� X � TpMg �

If the manifold M is generating� then the conormal bundle can be naturally

identi	ed with the characteristic bundle �T CM�� of the CR�structure on M � If

locally� near some point p � M � the submanifold M is generating and is given

by the set of equations � � ���� � � � � �n� � �� then the 	ber of the conormal

bundle over the point p is given by

%p�M� � fist���p� � i
X
j

sj
��j
�z

�p�� sj � R� � � j � ng �

From now on let M��� � C m�n � � � �D� be a generating CR�	bration over

the unit circle �D of class C��� with C� 	bers and with CR�dimension m� Let

p � �D �� C
m�n

be a C��� curve such that

p��� �M��� �� � �D� �
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Let Vp be the set of all holomorphic discs c��� � �c����� � � � � cm�n���� of class

C��� such that for each � � �D the ��� �� form

m�nX
j��

cj��� dzj����

belongs to the space %p���M���� For each � � �D we denote by Vp��� �
%p���M��� the subset consisting of all such forms �����

Vp��� � f� � %p���M���� � �
X

cj���dzj� c � Vpg �

Clearly Vp��� is a real linear subspace of %p���M����

Henceforth we will assume that the coordinates in C
m�n can be chosen so

that each maximal complex subspace of the tangent space Tp���M���� � � �D�

projects isomorphically onto C m � f�g� We recall that this is always possible

in the case the 	bration M��� � C m�n � � � �D� is of at least class C��i�e��

the de	ning functions of the 	bration belong to the space C���D�C��Bro�� for

some ro 
 �� and the closed path p is of class C�� We also recall that for each

� � �D the columns of the matrix function

N��� �

	
Go���
No���



�

span the 	ber of the normal bundle of the submanifold M��� at the point p����

The following characterization of elements of Vp���� � � �D� is immediate�

see also �Bao�Rot�Tre�� Proposition ����
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PROPOSITION �� A covector � �
P

cjdzj � T �p��o�M��o� belongs to the

subspace Vp��o� if and only if there is a real function s � �s�� � � � � sn� � E� such

that

�� ct � �c�� � � � � cm�n� � ist�G�
o� N

�
o ���o� and

�� the covector function st�G�
o� N

�
o � extends holomorphically to D�

Remark� For any real vector function s � E� for which property ��� holds we

will say that it generates an element from Vp�

COROLLARY �� If all partial indices of the associated maximal real �bration

L are greater or equal to �� then Vp � f�g and so each of the subspaces Vp���� � �
�D� is trivial�

Proof�
Corollary� Let Ao denote the matrix function whose columns for ev�

ery � � �D span the 	bers of L� Then Ao � ��o� where � is an invertible

holomorphic matrix on D and �o is the square root of the characteristic matrix

� of the maximal real vector bundle L� Then

N�
o � �o�

��

and a necessary condition to get an element from Vp is that there exists a real

function s � E� such that

st�o

extends holomorphically to D� But since all partial indices of � are greater or

equal to �� one concludes that s has to be ��
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Since our method gives all nearby analytic discs of class C��� attached to

the CR�	bration M��� � C
m�n � � � �D� only in the case when all partial

indices of the associated maximal real bundle are greater or equal to ��� this
will be the case we will consider from now on� In this case we have already

proved� Theorem �� that the family of all nearby holomorphic discs� i�e�� all

holomorphic discs F � �A�����D��m�n with the property that the disc p � F

is attached to the 	bration M���� � � �D� forms a Banach submanifold A of

the Banach space �A�����D��m�n� In the case where the CR�dimension of the

	bration is �� this submanifold is of 	nite real dimension n � k� where k is the

total index of the 	bration� but in the case of positive CR�dimension we get an

in	nite dimensional submanifold� Also� di�erentiation of the equation ���� with

respect to u and f at the point ��� �� yields

�Du��v � � and �Df��f � Re�G�
of� �

We recall that v � ��u� f� is the solution function of the equation ���� which we

got using the implicit mapping theorem in an appropriate Banach space� Thus

all vectors of the tangent space T�A to the submanifold A at the point � are of

the form

�f� Ao�u� i�v � iT�v��� �

where f � �A�����D��m� and the functions u� v � E� are such that v � Re�G�
of�

and �ou extends holomorphically to D�



��

Remark� In the case considered by Baouendi� Rothschild and Trepreau in

�Bao�Rot�Tre� one works only in a neighbourhood of a point on a given CR�

submanifold and so all partial indices of any nearby holomorphic disc attached

to the manifold are �� It is easy to see that all partial indices of a constant map

are �� On the other hand� this condition is stable under small perturbations of

the disc� see �Vek���

PROPOSITION �� The dimension of the subspace Vp��� � %p����M���� does

not depend on � � �D� i�e�� it is the same for every � � �D�

Remark� This proposition extends the Proposition ��� from �Bao�Rot�Tre��

Proof� We split the space Rn into three subspaces

R
n � R

n� 	 R
no 	 R

n�� �

where n� is the number of positive partial indices� no is the number of partial

indices which equal to �� and n�� is the number of partial indices which equal to

��� With respect to this splitting we denote the coordinates on Rn by �q� y� t��

We recall that every element of the space Vp is of the form

ist�G�
o� N

�
o �

for some real function s � E�� We also recall that N�
o � iA��o � Since the 	rst n�

partial indices are positive� any real vector function s from the space E� which

generates an element in Vp� must have� by the same argument as in the proof



��

of Corollary �� the 	rst n� coordinate functions identically equal to �� Because

of this reason� and to simplify the notation� we will assume� and we can do so

without loss of generality� that n� � ��

Each element of Vp is now generated by a real function of the form

�y�Re��r�����

where y � Rno � � � C n�� and r��� is the principal branch of the square root� Let

ko be the dimension of the space Vp���� We will prove that for each � � �D the

dimension of the space Vp��� is also ko� Since for each �o � �D there exists an

automorphism of the unit disc D which takes � to � and �o to ��� it is enough
to prove the above claim for �o � ���

Let �yj�Re��jr������ j � �� � � � � ko� be a set of real functions on �D which

for each j generate an element of Vp� and such that the real vectors

�yj�Re��j�� �j � �� � � � � ko�

are linearly independent� If also the set of vectors

�yj�Re�i�j�� �j � �� � � � � ko�

is linearly independent� the claim is already proved and we are done� Let us

assume now that this is not the case and that these vectors are not linearly

independent� Then there are real numbers ��� � � � � �ko� not all equal to �� such



��

that
koX
j��

�jyj � �

and
koX
j��

�jRe�i�j� � � �

The second equation is equivalent to

koX
j��

�j�j � t

for some real vector t from R
n�� � The way how t is de	ned immediately implies

that t �� � and that the real vector function

���Re�tr�����

generates an element from Vp� Since t is a real vector� both functions

���Re�tr����� and ���Re�itr�����

generate an element from the space Vp� This follows from the following claim�

Claim� Let f � u � iv� u� v � �E���
R

�n� be a vector function such that the

function

� 
�� Re�r����f��� �� � �D�

extends holomorphically into D� Then f � �A����n� In particular� also the

function

� 
�� Re�ir����f��� �� � �D�

extends holomorphically into D�



��

Proof�
Claim� Since the function

� 
�� Re�r����f��� �� � �D�

extends holomorphically into D� all its negative Fourier coe�cients have to

vanish� This implies that for every j � N we have

bf��j� � bf��j � �� � � �

Since we also have

lim
j��

bf��j� � � �

we conclude that all negative Fourier coe�cients of the function f are � and the

claim is proved�

Also� since not all real numbers �j� j � �� � � � � ko� are �� we may assume�

without loss of generality� that �� �� �� We repeat the above argument on the

set of real functions �yj�Re��jr������ j � �� � � � � ko� and the vector function

���Re�itr������ If at � � �� these vectors are still linearly dependent� one can

	nd real numbers e��� � � � � e�ko� not all equal to �� such that

e��it � koX
j��

e�j�j � t�

for some nonzero real vector t� � Rn�� � We observe that it can not happen

that e�� � � � � � e�ko � � since the vectors t and t� are real� We also observe

that t and t� are linearly independent vectors� Repeating the above argument



�		

we either stop at the jth step� j � ko� or we produce ko linearly independent

vectors which span Vp�����

So we can de	ne the defect of the closed curve p in a generating CR�	bration

over �D with partial indices greater or equal to�� in the same way as Baouendi�

Rothschild and Trepreau do in �Bao�Rot�Tre�� See De	nition ��� and Propo�

sition ��� in �Bao�Rot�Tre�� See also �Tum��

DEFINITION �� The defect def�p� of the curve p is de�ned as the dimension

of the real vector spaces Vp���� � � �D�

From now on we will restrict our discussion to the set A� of holomorphic

perturbations of p which leave one of the points� say p���� on the curve p 	xed�

But to prove that the set A� is in fact a manifold� we have to assume that all

partial indices of the path p are nonnegative� See the examples at the end of

this section� Let E��� � E� and �A���
� ��D��m � �A�����D��m be the subspaces

of the functions which are � at � � �� Let

T� � C
���
R

��D�� C���
R

��D�

be the Hilbert transform which assigns to a function v � C���
R

��D� the harmonic

conjugate function ev for which ev��� � �� Since T� does not preserve the subspace

of odd functions in C���
R

��D�� there is no natural way of de	ning an appropriate

Hilbert transform on E����



�	�

Let k be the total index of the associated maximal real bundle L � �D�C n �

Then the following lemma holds�

LEMMA ��� A� is a Banach submanifold of the manifold A of the in�nite

dimension in the case the CR�dimension of the �bration fM���g���D is positive�

and of real dimension k in the case of maximal real �bration over �D�

Proof� We de	ne the map

F � �A���
� ��D��m � E��� � E��� �� E���

by

F �f� eu� v���� �� ���� f���� Ao��eu� T�v� � i�v � iT�v������ �� � �D� �

Here � � ���� � � � � �n� is the set of de	ning functions of the 	bration fM���g���D
along the path p� Using the implicit mapping theorem as in the proof of Theorem

� one gets a neighbourhood N of the zero function in �A���
� ��D��m� neighbour�

hoods eU and V of � in E���� and a unique mapping � � N � eU � V such that

the triple �f� eu� v� � N � eU � V solves the equation F �f� eu� v� � � if and only

if v � ��f� eu��
As we already know a necessary and su�cient condition for any disc from

the above family to be the boundary value of a holomorphic disc is that the

mapping

Ao�eu� T�v�



�	�

extends holomorphically to D� Let "�t�� t � R
n�k � denote the linear parametri�

zation ���� �
� of all real functions u � E� such that Aou extends holomorphically

to D� Thus to extract from the above family of discs Ao�eu � i��f� eu�� all

holomorphic discs which are � at � � �� we have to 	nd all functions eu � E���
and values t � R

m�n which solve the equations

eu� T���f� eu� � "�t� and T���f� eu���� � "�t���� �

Since all partial indices are nonnegative� the n� �n� k� matrix Dt�"�t�����jt��
has the maximal rank� Since we also have

D
eu�eu� T���f� eu��jf���eu�� � Id �

one gets� using the implicit mapping theorem again� a unique mapping � from

a neighbourhood of the point ��� �� � �A���
� �D��m � Rk into E��� such that all

small holomorphic disc �f� g� from �A���
� ��D��m�n which solve the equation

���� f���� g���� � � �� � �D�

are of the form

�f� Ao���f� s� � i��f� ��f� s����

for a unique pair �f� s� from a neighbourhood of the point ��� �� in �A���
� �D��m�

Rk �

Note that any element of the tangent space T�A� is of the form

�f� Ao�u� i�v � iT�v���



�	�

for some f � �A���
� ��D��m� v � E��� such that v � Re�G�

of�� and u � E� such

that Aou extends holomorphically toD and for which one also has u�T�v � E����
Henceforth our goal will be to reprove and to generalize Theorem � from

�Bao�Rot�Tre�� In fact we can prove the same statement for an arbitrary

closed path p in a generating CR�	bration M��� � C
m�n � � � �D� for which

there exists a linear change of coordinates in C m�n such that the partial indices

of the corresponding maximal real bundle are all greater or equal to ��

We recall the de	nition of the evaluation maps F� de	ned on the manifold

A�� see �Bao�Rot�Tre� for more details� See also �Tum�� For every � � �D

and F � A� we de	ne

F��F � �� �p� F ���� �

Then for every � � �D the derivative F 	
���� maps the tangent space T�A� into

Tp���M����

THEOREM �� Let p and M��� � C
m�n � � � �D� be as above� Then for each

� � �D� � �� �� one has

F 	
�����T�A�� � Vp���

� �����

Proof� We 	rst prove the following partial statement� namely�

F 	
�����T�A�� � Vp���

�



�	�

for each � � �D� To prove this claim let

�f� Ao�u� i�v � iT�v�������

be an arbitrary element of T�A�� We recall that f � �A���
� ��D��m� that u � E��

that v� u� T�v � E���� and that also

v � Re�G�
of� �

On the other hand let

uto�G
�
o� N

�
o �����

be an element of Vp� Here uo � E�� Since both vector functions ���� and ����

extend holomorphically to D� their product also has to extend holomorphically

to D� But on the other hand the multiplication of ���� and ���� yields a purely

imaginary vector function

iuto�u� T�v � Im�G�
of�� �

Since the vector function ���� is � at � � �� the claim is proved�

To prove that in the above inclusion in fact the equality holds it is enough

to prove that the dimension of the space F 	
�����T�A�� is �m�n� def�p�� Since

for each � � �D� � �� �� one can 	nd an automorphism of the unit disc D which

takes � to � and � to ��� it is enough to prove the claim for � � ��� For this

it is enough� since the set of function values ff����� f � �A���
� ��D��mg already
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spans a �m�dimensional subspace� to prove that the subspace

f�u� T�v������ v � Re�G�
of�� f���� � �� Aou � �A�����D��n� u� T�v � E���g

has dimension n� def�p��

Denote by n� the number of positive indices and by no the number of indices

which are equal to �� and split the space Rn correspondingly� For each positive

partial index kj the set of real functions uj such that the function � 
� �kj��uj���

extends holomorphically to D and �uj � Tvj���� � � is at least ��dimensional�

Thus the proof of the claim will be 	nished once we prove that the following

subspace of Rno

f��u� T�v������ v � Re�G�
of�� f���� � �� u� T�v � E���g

�
R
no

has dimension n� n� � def�p��

To prove the last claim we will show that for a vector uo � Rno the condition

uto�u� T�v����� � �

for every v � �C���
R

��D��no such that v is given as the last no component func�

tions of Re�G�
of�� f���� � �� and every constant vector u � R

no such that

�u� T�v���� � �� implies

��� uto��G
�
o� N

�
o ����� � Vp���� �

This will complete the proof of ����� But since every real vector function euo �
E� which generates an element from Vp has the 	rst n� coordinate functions
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identically equal to �� see the proof of Corollary �� it is enough to prove the

statement for the case where all partial indices are � and n� � ��

From here on the argument goes very much the same as the one given by

Baouendi� Rothschild and Trepreau in �Bao�Rot�Tre��

We recall that T� denotes the Hilbert transform on �A���
R

��D��n such that

for every v � �A���
R

��D��n we have

�T�v���� � � �

Also� since all partial indices are �� the vector function u is in fact a constant

such that �T�v � u���� � � and hence

T�v � u � T�v �

Let uo � Rno be a vector with the property that

uto�T�v����� � �

for every v � �C���
R

��D��n such that v � Re�G�
of�� f���� � �� We recall that

for v � C���
R

��D� and �o � �D one has

�T�v���o� � PV
i

�

Z ��

�

v������ �o�

�� � ���� � �o�
� d� �

where � stands for ei�� We denote the vector function utoG
�
o by ato� Then for

every nonnegative integer q� every vector zo � C m � and a function f of the form

f��� � ��� � ���qzo �� � �D�



�	�

one has

�uto�T�v������ � PV
i

�

Z ��

�

�
Re�ato���f����

�� � ���� � ��
� d�����

�
�i

��

Z ��

�

��q��ato���zo � �q��ato���zo� d� �����

By our assumption the integrals ���� and ���� equal � for every nonnegative

integer q and every vector zo � C m � Since one can also take izo instead of zo�

one gets that

�i

��

Z ��

�

�q��ato���d� � �

for every nonnegative integer q� The above identity can be written in terms of

Fourier coe�cient as

bao��q � �� � � �q � �� �� �� � � � �

which immediately implies that the real vector uto generates an element of Vp�

The identity ���� is proved�

For the next theorem we have to assume more regularity on the 	bration

fM���g���D and the closed path p� We assume now that we have a C��� 	bration

with C� 	bers� i�e�� the 	bration is given by a set of real functions from the

space C�����D�C��Bro��� and the closed path p shall be of class C���� Under

this conditions one can repeat the proofs of Theorem � and Theorem � in the

C��� category� We recall the de	nition of the mapping G from �Bao�Rot�Tre��



�	�

Let

G � T�A� �� C
m�n

be de	ned by

G�F � ��
�

��
F �ei��

����
���

�

THEOREM �� Let p and M��� � C m�n � � � �D� be as above� Then G maps

T�A� into Tp���M��� and

G�T�A�� � Vp���
� ���
�

Proof� We 	rst observe that for every F � T�A� one has

Re��G�
o� N

�
o �F � � �

on �D� Di�erentiation with respect to � and setting � � � implies that G maps

T�A� into Tp���M����

The proof of ��
� is quite similar to the proof of ����� The inclusion

G�T�A�� � Vp���
�

follows as above since the product of any two functions G � Vp and F � T�A�

equals to ��

GtF � � �����

Namely� the di�erentiation of ���� with respect to � and setting � � � yields

Gt���
�

��
F �ei��

����
���

� � �
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To prove the opposite inclusion in ��
� we proceed similarly as in the proof

of ���� and reduce the problem to to the case where all partial indices of the

associated maximal real bundle are �� and showing the following claim�

Claim� The vector space

f �

��
�T�v��ei��

����
���

� v � Re�G�
of�� f��� � �� � ����qzo� q � N � f�g� zo � C

mg

has dimension n� def�p��

Proof�
Claim� We are using a similar notation as in the proof of ����� Let

uo � R
n be a real n�vector which annihilates the above vector space� Also� let

ato be the vector utoG
�
o� We recall that

uto
�

��
�T�v��e

i��j��� �
�

�

Z ��

�

Re�ato���f����

�� � ���
� d�

�
�

�

Z ��

�

�ato����
q��zo � ato����

q��zo� d� �

Replacing zo by izo and adding the identities one getsZ ��

�

ato����
q�� d� � �

for every nonnegative integer q� In terms of Fourier coe�cients we have

bao��q � �� � �

for every q � N � f�g� Thus the real vector uo generates an element from Vp�

This 	nishes the proof of the claim and so also the theorem�

Remarks and examples� In the case when the partial indices of the path p in
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the generating CR�	bration fM���g���D are not all nonnegative� the conclusions

in Theorems � and � are not true even if we consider only the case where all

indices are greater or equal to ��� One problem� of course� occurs if the total

index k happens to be negative� Then the number of free parameters is strictly

less than the number of additional equations we have to satisfy� Here we give

two examples in C � for which k � � but the conclusions of Theorems � and �

still do not hold�

Example �� In this example we 	nd a maximal real 	bration in C � for which the

set of attached discs passing through the point ��� �� does not form a manifold�

Let the maximal real 	bration fM���g���D be given by the set equations

Im�z�� � �

and

Re�wr���� � Re�r����Re��z���� �

It is easy to check that the partial indices of the path p��� � �� � � �D� are

� and ��� and so the total index k equals � and the defect of the path p is ��

Hence the dimension of the spaces

Vp���
� �� � �D�

is also ��

Claim� The family of holomorphic discs with boundaries in the maximal real



���

	bration fM���g���D which all pass through the point ��� �� at � � � is not a

manifold�

Proof�
Claim� Let �z� w� be a holomorphic disc with boundary in the maximal

real 	bration fM���g���D and such that �z���� w���� � ��� ��� Then from the

	rst equation

Im�z����� � �

we get

z���� � �� � �Re��� � ��

for some complex number �� The second equation

Re�w���r���� � Re�r����Re��z������� �� � �D�

implies

Re�w������ � Re���Re��z�����
�
��� �� � �D� �

A short calculation shows that the right hand side of the last equation equals

to

Re����
 � ��� � ��Re������ � ��j�j� � ��Re����� � ��Re������ �

Thus

w��� � ���� � ��� � ��Re����� � ��j�j� � ��Re����� � ��Re����

and so one must have

�� � ��� � ��Re���� � ��j�j� � ��Re����� � ��Re���� � �



���

or after division by �

�� � ��Re��� � j�j� � ��Re����� � � �

If we write � � x� iy� then the imaginary part of the last equation yields

��xy � � �

Thus the constant � has to be either real or purely imaginary� So the set

of solutions of the above equations is the union of two intersecting curves in

�A�����D��� and therefore not a manifold�

Example �� Let the maximal real 	bration in C � be given by

Im�zr���� � �

and

Im�wr���� � Re��zr������ �

Then the partial indices of the closed path p��� � �� � � �D� are � and �� and

so the total index is �� Also� the defect def�p� is � and thus the dimension of the

spaces V �
p ���� � � �D� is �� Let �z� w� be a holomorphic disc with boundary

in the maximal real 	bration fM���g���D and such that �z���� w���� � ��� ���

Then from the 	rst equation we get

z��� � ia�� � ��

for some real number a� The second equation now implies

Im�w������ � Re��ia�� � �����



���

or

Im�w������ � �a�Im��� � ��� �

Hence we get

w��� � �a��� � ��

which can be � at � � � if only if a � �� Thus we showed that the only

holomorphic disc attached to the 	bration fM���g���D and which is passing

through the point ��� ��� is the zero disc p�
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