
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 18 (2020) 33–49
https://doi.org/10.26493/1855-3974.2079.7b1

(Also available at http://amc-journal.eu)

Clustering via the modified Petford-Welsh
algorithm

Barbara Ikica ∗

Faculty of Mathematics and Physics, University of Ljubljana, and
Institute of Mathematics, Physics, and Mechanics, 1000 Ljubljana, Slovenia

Received 9 August 2019, accepted 21 September 2019, published online 8 June 2020

Abstract

Detecting meaningful communities has become crucial to advance our knowledge in
diverse research areas that deal with datasets which can be naturally represented as net-
works. By regarding vertex clustering as the opposite problem of vertex colouring, we
were able to leverage the Petford-Welsh colouring algorithm to develop a fast, efficient,
and highly-scalable decentralised clustering algorithm. Its greatest potential lies in outper-
forming conventional methods when the community structure is fairly clear-cut.

Keywords: Graph algorithm, community detection, the Petford-Welsh algorithm, simulated anneal-
ing, complex networks.

Math. Subj. Class. (2020): 05C85, 05C15, 91C20

1 Introduction
Over the past few decades, deploying complex networks to represent and analyse vast
amounts of data has become prevalent across various disciplines [4, 21, 30]. Being able
to uncover a network’s community structure has turned out to be an invaluable tool when
trying to shed light on its intricate organisation and functioning [11].

However, to date we have not even gained an insight into what constitutes a satisfactory
clustering solution, let alone developed an approach that would have proven to be univer-
sally applicable and scalable to an ever-increasing abundance of data. As a matter of fact,
according to the “No Free Lunch Theorem” for community detection, “there can be no al-
gorithm that is optimal for all possible community detection tasks” [22]. As a consequence,

∗The author is grateful for valuable discussions with Janez Povh, Janez Žerovnik, Matjaž Konvalinka, and
Matjaž Perc. This research was supported by the Slovenian Research Agency projects N1-0057, N1-0071, and
J1-8155.

E-mail address: barbara.ikica@fmf.uni-lj.si (Barbara Ikica)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2367-8610

34 Ars Math. Contemp. 18 (2020) 33–49

this has led to a number of clustering algorithms, stemming from different aspects, a variety
of objective functions, stand-alone quality metrics, and information recovery metrics [10].

In this paper, we introduce a clustering algorithm motivated by a heuristic approach to
vertex colouring proposed by Petford and Welsh [23, 37]. Our method was founded on the
observation that finding an appropriate vertex clustering is, in essence, dual to the problem
of finding a proper vertex colouring. Indeed, local proliferation of the colour of a vertex
should, in principle, lead to densely interconnected monochromatic neighbourhoods. By
associating colours with clusters one thus attains a clustering solution that captures the very
fundamental intuition behind community detection – a division into tightly-knit groups,
loosely connected to one another. Hence, the terms colour(ing) and cluster(ing) will be
used interchangeably.

Due to its heuristic nature, the resulting algorithm typically runs in linear time O(|E|)
in the number of edges, which makes it computationally less demanding compared to other
widely used methods, and, consequently, highly scalable. Moreover, as it only leverages
local knowledge about the network, it does not require specifying any objective function to
be optimised. Nevertheless, as there is a general lack of consensus regarding both validity
and quality of clustering solutions, it may be beneficial to define an application-specific
quality measure in order to filter the resulting solutions based on desirable properties. These
can also be accommodated by varying the only prerequisite parameter of the algorithm, the
weight parameter ω that enables tuning the degree of randomness, and thus renders the
algorithm more widely applicable.

2 Method

It should be noted that our algorithm can be applied to any kind of graphs – be it directed or
undirected, connected or disconnected, weighted or unweighted. Regardless, for simplic-
ity, let us assume that we are only dealing with simple connected undirected graphs with
possibly weighted edges.

Thus, let G = (V,E) be a simple connected undirected graph with possibly weighted
edges. Furthermore, let A = [auv]u,v∈V denote its (weighted) adjacency matrix with the
entry auv representing the weight of the edge uv ∈ E (auv = 0 if uv /∈ E) and assume
that, in the case of an unweighted graph, auv = 1 if and only if uv ∈ E.

For the purpose of the algorithm, we say that a vertex v ∈ V is bad if c(u) 6= c(v)
for the colouring c : V → {1, 2, . . . , k} currently constructed by the algorithm and some
vertex u ∈ V such that uv ∈ E. Analogously, an edge uv ∈ E that satisfies c(u) 6= c(v),
i.e., a bichromatic edge, is said to be a bad edge. It will also prove convenient to adopt
the notationW(v, i) =

∑
u∈V :c(u)=i auv for the sum of the weights of the edges incident

to vertices of colour i adjacent to vertex v. As a side note, in the case of an unweighted
graph, auv ∈ {0, 1} for all u, v ∈ V , and the expressionW(v, i) reduces to the number of
neighbours of vertex v of colour i.

The main idea of the algorithm goes as follows. During initialisation, each vertex gets
assigned a random colour. Afterwards, in an iterative procedure, a vertex with at least one
neighbour of a different colour – dubbed a bad vertex – is chosen uniformly at random and
is reassigned colour i chosen proportionally to eW(v,i)/T where W(v, i) denotes the sum
of the weights of the edges incident to v with an endpoint of colour i, and T denotes the
temperature parameter. Hence, from a local point of view, the more abundant a particular
colour is, the more likely it will spread out – even more so, when the corresponding vertices

B. Ikica: Clustering via the modified Petford-Welsh algorithm 35

form strong bonds with the rest of the graph. This weighting function is motivated by
the simulated annealing heuristics [15] – we will be using an equivalent expression, i.e.,
ωW(v,i) for appropriately chosen weight ω > 1.

The recolouring process repeats until there are no more bad vertices or the stopping
criterion, a sufficiently low variance Var in the number of bad edges calculated over a
sliding window of length l ∈ N, is met. To facilitate the computation and subsequent
updating of the sliding-window variance, at each step of the iteration, the algorithm records
the number of bad edges, stores it in the list bad_edges, and re-evaluates Var only by
adding and subtracting local contributions.

To be more specific, let bstep = bad edges [step] be a shorthand notation for the
number of bad edges at step step of the iteration, and let µstep and Varstep denote the
sample mean and the variance of the number of bad edges at step step over the sliding
window of length l, respectively, i.e.,

µstep =
1

l

step∑
s=step−l+1

bs,

Varstep = Var
(
[bs]

step
s=step−l+1

)
=

1

l − 1

step∑
s=step−l+1

b2s −
l

l − 1
µ2
step.

The variance at step step+1 is then calculated by first updating the sample mean accord-
ing to

µstep+1 = µstep +
1

l
(bstep+1 − bstep−l+1) ,

which is immediately followed by

Varstep+1 = Varstep +
1

l − 1
(bstep+1 − bstep−l+1) ·

· (bstep+1 + bstep−l+1 − µstep+1 − µstep) .

All in all, the algorithm thus takes as an input a given graphG, a suitably chosen weight
ω > 1, and an initial number of clusters k ∈ N. Optionally, two additional parameters that
serve as a stopping condition may be specified – a tolerance tol > 0 on the variance Var
in the number of edges spanning distinct clusters and a length l ∈ N of the sliding window
over which this variance is computed. Alternatively – or additionally, a pre-given maximum
number of steps can be used as a termination condition. Schematically, the algorithm can
be outlined as detailed below (refer to Algorithm 1).

Observe that for the initial number of colours k any upper bound on the number of
clusters may be taken. E.g., one may even use the cardinality of the vertex set. Regardless
of the choice, the number of colours present in the graph will drop to its natural level as
the iterations proceed. Indeed, as soon as a colour 1 ≤ i ≤ k disappears, i /∈ {c(v) | v ∈
V }, it cannot reappear ever again, since the prerequisite W(v, i) 6= 0 is not met by any
vertex v ∈ V (cf. line 7 in Algorithm 1). Note that permanently discarding absent colours
also turned out to enhance numerical stability and consistency of the clustering solutions
generated by the algorithm.

More crucially, the weight parameter ω should be chosen more carefully as it may have
a profound affect on the algorithm’s performance. A sufficiently small ω yields a uniform

36 Ars Math. Contemp. 18 (2020) 33–49

Algorithm 1 The modified Petford-Welsh algorithm (mPW)

Input: G, ω, k, tol, l
Output: c

1: generate an initial k-colouring c
2: bad edges [0]←

∣∣{uv ∈ E | c(u) 6= c(v)}
∣∣

3: step← 1
4: Var← tol
5: while (bad edges [step− 1] > 0) and (Var ≥ tol) do
6: choose a bad vertex v uniformly at random
7: choose a new colour 1 ≤ i ≤ k for v with probability proportional to ωW(v,i) if

W(v, i) 6= 0
8: c(v)← i
9: bad edges [step]←

∣∣{uv ∈ E | c(u) 6= c(v)}
∣∣

10: if (step ≥ l − 1) then
11: Var← Var

(
[bad edges [s]]steps=step−l+1

)
12: end if
13: step← step+ 1
14: end while
15: return c

distribution over the set of all possible outcomes that result from recolouring a vertex at
each iteration step, leaving the diffusion of colours to chance. At the other end of the
spectrum, a large ω puts higher weight on more frequent colours – the more neighbours
of a certain colour a vertex has, the higher the probability of it being assigned the same
colour. The final decision whether to choose an intermediate value of ω or a value closer
to the extremes should be based on the specifics of the application. Moreover, to achieve
better results, the model could be extended by implementing a self-tuning mechanism that
iteratively optimises ω in a way analogous to [29].

Nevertheless, ω was set to the constant value of 6 for all test runs, the length l of the
sliding window was fixed at the number of vertices |V |, and the tolerance tol was chosen
by trial and error but was kept within the range of [10−4, 10−2]. A key insight that led to
the deployment of tol as a stopping criterion in the first place was a typical steady decline
in the number of bad edges followed by a flatter region observed across all experiments.

It is worth noting that optimising the initial parameters ω and tol through, e.g., dy-
namic adaptation to the specifics of the problem under consideration should lead to an
improvement in overall performance. Undertaking this task lies beyond the scope of this
work but nonetheless deserves more attention in an independent study. All data and the
source code for the modified Petford-Welsh algorithm are available at [14].

2.1 Fine-tuning

Essentially, the vertex colouring that is returned as the output of the algorithm lends itself
to a natural interpretation in terms of clusters – each vertex colour class corresponds to a
cluster. However, there are a few hurdles to overcome.

Initial random colouring may inadvertently lead to disconnected clusters, which inval-
idates one of the main premises underlying clustering in general. This is resolved in the

B. Ikica: Clustering via the modified Petford-Welsh algorithm 37

final part of the algorithm by extracting subgraphs corresponding to different colour classes
and assigning new colours to their connected components, thus obtaining a subdivision of
the original clustering solution. Besides, an additional optional tweak is implemented to
enable a further refinement of the clustering solution by discarding singleton clusters that
are potentially left over after the iterations terminate. This is achieved by recolouring every
such cluster with the most frequently represented colour in its neighbourhood.

Although our algorithm already typically runs in linear time O(|E|), there is still room
for improvement. In the era of ever-expanding data, developing fast and efficient tools
is of utmost importance, as the sheer amount and complexity of data can make many ex-
isting algorithms computationally unfeasible. A further significant reduction in runtime
could be achieved through parallelism, as the very design of our method makes it easily
implementable. In fact, as vertex updates are computed locally and independently of one
another (that is, neglecting the unlikely event of simultaneously updating both endpoints of
an edge), they can be performed synchronously. This approach has already proved efficient
in practice for the Petford-Welsh algorithm [38].

3 Numerical experiments
In this section we compare the performance of our algorithm against several state-of-the-art
clustering algorithms. In particular, we restrict our analysis to algorithms that, similar to
ours, do not require specifying any additional parameters beforehand. In order to make ex-
periments more comparable, we use the implementations of these algorithms that are read-
ily available in the python-igraph (version 0.7.1) software package that comprises of
the igraph high performance C library for network analysis and a Python interface [8].
These are Edge betweenness relying on iterative removal of edges with high betweenness
scores, Fastgreedy, Multilevel, and Leading eigenvector optimising modularity in differ-
ent ways, Infomap analysing the information flow of random walks, Label propagation
based on an iterative process in which each vertex adopts a label that the majority of its
neighbours has, Spinglass utilising a spin-glass model and simulated annealing, and Walk-
trap performing random walks. For a thorough review of the methods, their computational
complexity and performance, we refer to survey [35] and the references therein.

As far as our algorithm is concerned, it is implemented in Python. However, in order
to make it comparable to igraph’s implementations in C, the part of the code that corre-
sponds to the iterative procedure is compiled using Cython [5] that converts it into C code.
The initialisation and the fine-tuning processes are compiled in Python. The experiments
were performed on a computer equipped with an Intel Core i7-8550U 1.80 GHz processor
with 16.0 GB of physical memory (RAM).

3.1 Datasets

We investigated the performance of our proposed method on a class of artificially generated
networks as well as on several real-world networks, some of which were given a ground-
truth division into clusters. However, it should be noted that it can be misleading to compare
the ground-truth clusters, possibly derived from latent network information, with those
detected by clustering algorithms operating solely with structural information about the
network.

All synthetic networks with embedded community structure were generated by means
of the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [17], a commonly used bench-

38 Ars Math. Contemp. 18 (2020) 33–49

mark for testing clustering algorithms. It tries to mimic observations found in many real-
world networks by producing networks whose vertex degrees and cluster sizes follow
power-law distributions with exponents 2 ≤ γ ≤ 3 and 1 ≤ β ≤ 2, respectively. Moreover,
its tunable mixing parameter µ ∈ [0, 1], the fraction of a vertex’s neighbours that belong to
different clusters, enables varying how well-defined the clusters are. For µ > 0.5, clusters
tend to blend in and become increasingly indistinguishable; as noted in [35], clusters in the
strong sense disappear.

Further analysis was carried out on diverse real-world networks ranging from social to
infrastructural networks. With the exception of one, all of them have an observationally or
experimentally pre-defined community structure. Their basic properties are summarised in
Table 1.

Table 1: Real-world networks used in our experiments.

Graph Vertices Edges Ground truth
Zachary’s karate club 34 78 Yes
Dolphins 62 159 Yes
UK faculty 79 552 Yes
Political books 105 441 Yes
American college football 115 613 Yes
Political blogs 1222 16714 Yes
Cora citation network 23166 89157 Yes
International E-road network 1040 1305 No

For simplicity, all networks are treated as unweighted and undirected, and we only
consider their largest connected components.

3.2 Quality metrics

Most commonly, clustering results are evaluated using internal and external quantitative
approaches [34]. The former are derived on the basis of distinct intrinsic statistical charac-
teristics of the clustering solution obtained, whereas the latter compare it to a given ground-
truth clustering, provided such a clustering exists.

With regard to internal quality measures, we used the now-standard modularity Q [21],
conductance φ [10], and coverage γ [10], defined as

Q(C) = 1

2|E|
∑

v,w∈V

(
avw −

kvkw
2|E|

)
δ(cv, cw),

φ(C) = 1− 1

|C|
∑
Ci∈C

φ(Ci) with

φ(Ci) =

∑
v∈Ci,w/∈Ci

avw

min
{∑

v∈Ci,w∈V avw,
∑

v/∈Ci,w∈V avw

} ,
γ(C) =

∑
v,w∈V avwδ(cv, cw)∑

v,w∈V avw
.

Here, C = {Ci}i denotes a partition into clusters,A = [avw]v,w∈V the network’s adjacency

B. Ikica: Clustering via the modified Petford-Welsh algorithm 39

matrix, kv the degree of vertex v and cv the community it has been assigned to with respect
to C.

One should bear in mind that despite the general prevalence of these indices, they come
with a number of caveats. For example, modularity suffers from the resolution limit that
displays a bias towards detecting larger clusters, as its value increases by merging clusters
smaller than the characteristic size [12]. In spite of there being no clear winner in terms of
general applicability, the study published in [10] suggests that conductance correlates best
with information recovery metrics, which tend to be more reliable than internal indices
when ground truth is supplied.

To validate against externally given ground truth, we made use of two well-established
information-theoretic measures, normalised mutual information NMI [9] and the adjusted
Rand index ARI [34]. Given two partitions C1 and C2, they can be calculated as follows

NMI(C1, C2) =
MI(C1, C2)√
H(C1)H(C2)

with MI(C1, C2) = H(C1) + H(C2)−H(C1, C2),

ARI(C1, C2) =
RI(C1, C2)− E[RI(C1, C2)]

max(RI(C1, C2))− E[RI(C1, C2)]

=
2(n00n11 − n01n10)

(n00 + n01)(n01 + n11) + (n00 + n10)(n10 + n11)
.

In the formulas above, H denotes the Shannon entropy, i.e., H(Ci) = −
∑

C∈Ci
|C|
|V | log

|C|
|V |

and H(C1, C2) = −
∑

C1
i ∈C1,C2

j∈C2
|C1

i ∩C
2
j |

|V | log
|C1

i ∩C
2
j |

|V | , and nij denotes the number of
pairs of vertices that fall in the same cluster (different clusters) of C1 if i = 1 (i = 0) and
in the same cluster (different clusters) of C2 if j = 1 (j = 0). Both NMI and ARI were
computed using Python library Scikit-learn.

As a final remark, all metrics under consideration assume values in the range of 0-1,
and combined higher values across all quality measures indicate better performance.

3.3 Results

Adequately equipped with all the necessary tools, we are now able to present our exper-
imental results. First of all, let us see how well our algorithm performs on the set of
real-world networks which was briefly described in Table 1.

As evident from Tables 2 to 8 provided in Section A.1 of the Supplementary materials,
the modified Petford-Welsh algorithm, if ran a sufficiently large number of times, either
recovered the underlying ground-truth division into clusters or constructed a clustering
closest to the ground truth in terms of both NMI and ARI. Notice that modularity may
indeed not be the best indicator of the quality of clustering solutions. On the other hand,
conductance tends to achieve highest values for the mPW, which is consistent with findings
in [10].

What is more, although the International E-road network does not come with a pre-
determined community structure, solutions generated by the mPW – besides achieving the
highest conductance (see Table 9 in Section A.1 of the Supplementary materials) – also
seem to be in line with a natural partition of Europe and Central Asia into countries, as
shown on Figure 1 below. On top of that, relaxing the tolerance tol on the variance in the
number of bichromatic edges leads to a coarser partition into geopolitical regions within
both continents.

40 Ars Math. Contemp. 18 (2020) 33–49

In all experiments, the mPW turned out to be the fastest-performing method, although
it should be pointed out that the time elapsed during the initialisation phase and the fine-
tuning procedures was not measured in order to be able to benchmark the code against
python-igraph C implementations.

On a different note, results on the LFR benchmark (here, we refer to Section A.2 in
the Supplementary materials and the figures within) indicate that the mPW is among the
best-performing methods in terms of NMI and ARI when the community structure is well-
defined, that is, in the range µ ∈ [0.1, 0.4]. As the clusters become more and more inter-
twined, its performance drops, but achieves best results in the region of µ ' 0.7, where all
methods, as expected, struggle the most. Here, the difference between the mPW and Label
propagation becomes the most apparent – although both methods use only local informa-
tion, are non-deterministic (and thus need to be executed repeatedly in order to achieve
best results), with almost linear complexity in the number of edges, Label propagation, as
opposed to the mPW, can either easily get trapped into local minima or inevitably lead to a
single giant cluster.

Leaflet (http://leafletjs.com)

Figure 1: A clustering solution generated by the modified Petford-Welsh algorithm. It
consists of 20 clusters; the corresponding quality metrics are equal to Q = 0.830, φ =
0.847, and γ = 0.933.

It should be taken into account that optimising the choice of the initial parameters ω
and tol lies beyond the scope of this study; implementing it should lead to better results.
Indeed, dynamically adapting tol to account for the mixing parameter µ already yielded
a significant improvement.

All in all, predominantly, the mPW is a fast algorithm that scales efficiently to large
networks and produces high-quality clustering solutions when the community structure is
reasonably well-defined. Due to its non-deterministic nature, it can be best used in order
to find a division into clusters that optimises an application-dependant pre-given quality
measure.

B. Ikica: Clustering via the modified Petford-Welsh algorithm 41

ORCID iDs
Barbara Ikica https://orcid.org/0000-0002-2367-8610

References
[1] Cora citation network dataset – KONECT, April 2017, http://konect.uni-koblenz.

de/networks/subelj_cora.

[2] Euroroad network dataset – KONECT, April 2017, http://konect.uni-koblenz.de/
networks/subelj_euroroad.

[3] L. A. Adamic and N. S. Glance, The political blogosphere and the 2004 U.S. election: divided
they blog, in: J. Adibi, M. Grobelnik, D. Mladenić and P. Pantel (eds.), Proceedings of the
3rd International Workshop on Link Discovery (LinkKDD 2005), ACM, 2005 pp. 36–43, doi:
10.1145/1134271.1134277, held in Chicago, Illinois, USA, August 21 – 25, 2005.

[4] A.-L. Barabási and M. Pósfai, Network Science, Cambridge University Press, Cambridge, UK,
2016.

[5] S. Behnel, R. Bradshaw, C. Citro, L. Dalcı́n, D. S. Seljebotn and K. Smith, Cython: the best of
both worlds, Comput. Sci. Eng. 13 (2011), 31–39, doi:10.1109/mcse.2010.118.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities
in large networks, J. Stat. Mech. Theory Exp. 2008 (2008), P10008, doi:10.1088/1742-5468/
2008/10/p10008.

[7] A. Clauset, M. E. J. Newman and C. Moore, Finding community structure in very large net-
works, Phys. Rev. E 70 (2004), 066111, doi:10.1103/physreve.70.066111.

[8] G. Csárdi and T. Nepusz, The igraph software package for complex network re-
search, InterJournal Complex Syst. (2006), Manuscript 1695 (9 pages), https://www.
interjournal.org/manuscript_abstract.php?361100992.

[9] L. Danon, A. Dı́az-Guilera, J. Duch and A. Arenas, Comparing community structure identi-
fication, J. Stat. Mech. Theory Exp. 2005 (2005), P09008, doi:10.1088/1742-5468/2005/09/
P09008.

[10] S. Emmons, S. G. Kobourov, M. Gallant and K. Börner, Analysis of network clustering al-
gorithms and cluster quality metrics at scale, PLoS ONE 11 (2016), e0159161, doi:10.1371/
journal.pone.0159161.

[11] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (2010), 75–174, doi:10.1016/j.
physrep.2009.11.002.

[12] S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proc. Natl. Acad.
Sci. U.S.A. 104 (2007), 36–41, doi:10.1073/pnas.0605965104.

[13] M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc.
Natl. Acad. Sci. U.S.A. 99 (2002), 7821–7826, doi:10.1073/pnas.122653799.

[14] B. Ikica, A clustering algorithm based on a modification of the Petford-Welsh algorithm,
https://github.com/ikicab/mPW.

[15] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science
220 (1983), 671–680, doi:10.1126/science.220.4598.671.

[16] V. Krebs, Amazon’s sales data of political books, http://www.orgnet.com/divided.
html.

[17] A. Lancichinetti, S. Fortunato and F. Radicchi, Benchmark graphs for testing community de-
tection algorithms, Phys. Rev. E 78 (2008), 046110, doi:10.1103/physreve.78.046110.

https://orcid.org/0000-0002-2367-8610
http://konect.uni-koblenz.de/networks/subelj_cora
http://konect.uni-koblenz.de/networks/subelj_cora
http://konect.uni-koblenz.de/networks/subelj_euroroad
http://konect.uni-koblenz.de/networks/subelj_euroroad
https://www.interjournal.org/manuscript_abstract.php?361100992
https://www.interjournal.org/manuscript_abstract.php?361100992
https://github.com/ikicab/mPW
http://www.orgnet.com/divided.html
http://www.orgnet.com/divided.html

42 Ars Math. Contemp. 18 (2020) 33–49

[18] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten and S. M. Dawson, The bot-
tlenose dolphin community of Doubtful Sound features a large proportion of long-lasting asso-
ciations, Behav. Ecol. Sociobiol. 54 (2003), 396–405, doi:10.1007/s00265-003-0651-y.

[19] T. Nepusz, A. Petróczi, L. Négyessy and F. Bazsó, Fuzzy communities and the concept of
bridgeness in complex networks, Phys. Rev. E 77 (2008), 016107, doi:10.1103/physreve.77.
016107.

[20] M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices,
Phys. Rev. E 74 (2006), 036104, doi:10.1103/physreve.74.036104.

[21] M. E. J. Newman, Networks: An Introduction, Oxford University Press, New York, NY, USA,
2010, doi:10.1093/acprof:oso/9780199206650.001.0001.

[22] L. Peel, D. B. Larremore and A. Clauset, The ground truth about metadata and community
detection in networks, Sci. Adv. 3 (2017), e1602548, doi:10.1126/sciadv.1602548.

[23] A. D. Petford and D. J. A. Welsh, A randomised 3-colouring algorithm, Discrete Math. 74
(1989), 253–261, doi:10.1016/0012-365x(89)90214-8.

[24] P. Pons and M. Latapy, Computing communities in large networks using random walks, J.
Graph Algorithms Appl. 10 (2006), 191–218, doi:10.7155/jgaa.00124.

[25] U. N. Raghavan, R. Albert and S. Kumara, Near linear time algorithm to detect community
structures in large-scale networks, Phys. Rev. E 76 (2007), 036106, doi:10.1103/physreve.76.
036106.

[26] J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E 74
(2006), 016110, doi:10.1103/physreve.74.016110.

[27] M. Rosvall, D. Axelsson and C. T. Bergstrom, The map equation, Eur. Phys. J. Spec. Top. 178
(2009), 13–23, doi:10.1140/epjst/e2010-01179-1.

[28] M. Rosvall and C. T. Bergstrom, Maps of random walks on complex networks reveal com-
munity structure, Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 1118–1123, doi:10.1073/pnas.
0706851105.

[29] J. Shawe-Taylor and J. Žerovnik, Adapting temperature for some randomized local search al-
gorithms, in: N. Mastorakis, V. M. Mladenov and B. Suter (eds.), Advances in Scientific Com-
puting, Computational Intelligence and Applications, WSES Press, Danvers, MA, USA, Math-
ematics and Computers in Science and Engineering, pp. 82–87, 2001.

[30] S. H. Strogatz, Exploring complex networks, Nature 410 (2001), 268–276, doi:10.1038/
35065725.

[31] L. Šubelj and M. Bajec, Robust network community detection using balanced propagation, Eur.
Phys. J. B 81 (2011), 353–362, doi:10.1140/epjb/e2011-10979-2.

[32] L. Šubelj and M. Bajec, Model of complex networks based on citation dynamics, in: L. Carr,
A. H. F. Laender, B. Farias Lóscio, I. King, M. Fontoura, D. Vrandecic, L. Aroyo, J. P. M.
de Oliveira, F. Lima and E. Wilde (eds.), Proceedings of the 22nd International Conference on
World Wide Web (WWW ’13), ACM, New York, NY, USA, 2013 pp. 527–530, doi:10.1145/
2487788.2487987, held in Rio de Janeiro, Brazil, May 13 – 17, 2013.

[33] V. A. Traag and J. Bruggeman, Community detection in networks with positive and negative
links, Phys. Rev. E 80 (2009), 036115, doi:10.1103/physreve.80.036115.

[34] C. Wiwie, J. Baumbach and R. Röttger, Comparing the performance of biomedical clustering
methods, Nat. Methods 12 (2015), 1033–1038, doi:10.1038/nmeth.3583.

[35] Z. Yang, R. Algesheimer and C. J. Tessone, A comparative analysis of community detection
algorithms on artificial networks, Sci. Rep. 6 (2016), 30750, doi:10.1038/srep30750.

B. Ikica: Clustering via the modified Petford-Welsh algorithm 43

[36] W. W. Zachary, An information flow model for conflict and fission in small groups, J. Anthro-
pol. Res. 33 (1977), 452–473, doi:10.1086/jar.33.4.3629752.

[37] J. Žerovnik, A randomized algorithm for k-colorability, Discrete Math. 131 (1994), 379–393,
doi:10.1016/0012-365x(94)90402-2.

[38] J. Žerovnik and M. Kaufman, A parallel variant of a heuristical algorithm for graph coloring
— Corrigendum, Parallel Comput. 18 (1992), 897–900, doi:10.1016/0167-8191(92)90035-6.

44 Ars Math. Contemp. 18 (2020) 33–49

Appendix A Supplementary materials

A.1 Real-world networks

Our analysis on real-world networks is supported by the numerical results presented in the
tables below. In columns NMI, ARI, φ, γ, and Q, maximum values attained over r runs
(as specified below) are reported. Column Clusters shows the median number of clusters
returned and column t[s] the average running time in seconds over the same set of runs. For
the modified Petford–Welsh algorithm (mPW), only running times of the code compiled to
C are measured (excluding the initialisation phase and the fine-tuning procedures). In all
cases except for the Spinglass method applied to the Political blogs and the International
E-road network, the number of runs r was set to 100. Due to a relatively high complexity
of Spinglass, we needed to resort to a smaller value of r = 10 when running it on net-
works of order greater than ≈ 1000 (although this was still too much of a hurdle for the
Cora citation network). Edge betweenness was not even run on these networks noting its
prohibitively high computational complexity, namelyO(|E|2|V |) [35]. Bold font indicates
maximum values attained column-wise (except for the column corresponding to t[s], where
the minimum values are indicated).

Table 2: Zachary’s karate club [36].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness [13] 0.517 0.392 0.424 0.692 0.401 5 2.083e−03
Fastgreedy [7] 0.576 0.568 0.574 0.756 0.381 3 1.630e−04
Multilevel [6] 0.516 0.392 0.558 0.731 0.419 4 1.512e−04
Leading eigenvector [20] 0.612 0.435 0.487 0.667 0.393 4 3.191e−03
Infomap [28, 27] 0.578 0.591 0.668 0.821 0.402 3 5.579e−03
Label propagation [25] 0.865 0.882 0.773 0.949 0.415 3 7.300e−05
Spinglass [26, 33] 0.627 0.509 0.563 0.756 0.420 4 2.922e−01
Walktrap [24] 0.531 0.321 0.434 0.590 0.353 5 1.538e−04
mPW 1.000 1.000 0.773 0.949 0.403 2 3.080e−07

Table 3: Dolphins [18].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.600 0.395 0.570 0.799 0.519 5 1.792e−02
Fastgreedy 0.602 0.451 0.575 0.824 0.495 4 8.213e−04
Infomap 0.649 0.390 0.571 0.774 0.528 5 8.299e−02
Label propagation 1.000 1.000 0.880 0.962 0.526 4 3.263e−04
Leading eigenvector 0.497 0.283 0.544 0.711 0.491 5 7.615e−03
Multilevel 0.564 0.327 0.585 0.755 0.519 5 1.217e−03
Spinglass 0.690 0.452 0.654 0.805 0.529 5 4.357e−01
Walktrap 0.565 0.417 0.613 0.824 0.489 4 2.257e−03
mPW 1.000 1.000 0.880 0.962 0.528 3 4.210e−07

B. Ikica: Clustering via the modified Petford-Welsh algorithm 45

Table 4: UK faculty [19].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.875 0.898 0.540 0.841 0.441 4 1.826e−01
Fastgreedy 0.882 0.854 0.564 0.783 0.457 4 5.425e−04
Infomap 0.838 0.817 0.583 0.763 0.461 4 5.510e−03
Label propagation 0.898 0.920 0.722 0.953 0.443 3 1.763e−04
Leading eigenvector 0.898 0.913 0.495 0.772 0.408 4 4.711e−03
Multilevel 0.948 0.957 0.683 0.826 0.446 3 6.230e−04
Spinglass 0.894 0.842 0.583 0.764 0.461 4 5.776e−01
Walktrap 0.838 0.817 0.583 0.763 0.461 4 1.544e−03
mPW 0.951 0.968 0.743 0.953 0.443 3 4.250e−07

Table 5: Political books [16].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.562 0.682 0.626 0.905 0.517 5 1.153e−01
Fastgreedy 0.531 0.638 0.648 0.918 0.502 4 4.967e−04
Infomap 0.503 0.536 0.584 0.855 0.523 6 1.142e−02
Label propagation 0.607 0.702 0.917 0.957 0.523 3 2.345e−04
Leading eigenvector 0.525 0.547 0.555 0.778 0.467 4 7.717e−03
Multilevel 0.516 0.558 0.675 0.853 0.520 4 4.436e−04
Spinglass 0.566 0.657 0.644 0.889 0.527 6 8.279e−01
Walktrap 0.544 0.653 0.687 0.914 0.507 4 9.237e−04
mPW 0.645 0.727 0.917 0.957 0.511 3 5.230e−07

Table 6: American college football [13].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness 0.880 0.778 0.533 0.710 0.600 10 2.486e−01
Fastgreedy 0.708 0.474 0.567 0.731 0.550 6 8.467e−04
Multilevel 0.891 0.807 0.547 0.708 0.605 10 4.085e−04
Leading eigenvector 0.703 0.464 0.456 0.641 0.493 8 9.658e−03
Infomap 0.924 0.897 0.505 0.690 0.601 12 9.109e−03
Label propagation 0.927 0.889 0.568 0.741 0.605 11 2.301e−04
Spinglass 0.929 0.900 0.563 0.728 0.605 11 3.580e−01
Walktrap 0.888 0.815 0.547 0.705 0.603 10 1.383e−03
mPW 0.936 0.900 0.600 0.780 0.603 9 6.200e−07

46 Ars Math. Contemp. 18 (2020) 33–49

Table 7: Political blogs [3].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness – – – – – – –
Fastgreedy 0.659 0.785 0.451 0.923 0.427 10 6.923e−01
Infomap 0.523 0.651 0.250 0.899 0.423 41 3.500e+00
Label propagation 0.723 0.813 0.857 1.000 0.426 3 6.523e−03
Leading eigenvector 0.693 0.781 0.854 0.926 0.424 2 8.246e−02
Multilevel 0.651 0.774 0.476 0.920 0.427 9 3.876e−02
Spinglass 0.649 0.783 0.315 0.922 0.427 15 5.976e+01
Walktrap 0.646 0.760 0.484 0.925 0.425 11 4.427e−01
mPW 0.732 0.820 0.857 0.927 0.426 4 2.000e−06

Table 8: Cora citation network [1, 32].

Method NMI ARI φ γ Q Clusters t[s]

Edge betweenness – – – – – – –
Fastgreedy 0.373 0.085 0.701 0.906 0.693 159 7.465e+00
Infomap 0.574 0.122 0.505 0.678 0.670 1162 1.450e+02
Label propagation 0.546 0.170 0.580 0.793 0.721 722 5.967e−01
Leading eigenvector 0.157 0.008 0.252 0.853 0.311 11 6.480e+00
Multilevel 0.450 0.190 0.792 0.860 0.790 42 2.600e−01
Walktrap 0.522 0.127 0.523 0.797 0.710 1204 3.347e+01
Spinglass – – – – – – –
mPW 0.537 0.184 0.602 0.771 0.729 517 7.100e−05

Table 9: International E-road network [2, 31].

Method φ γ Q Clusters t[s]

Edge betweenness – – – – –
Fastgreedy 0.860 0.917 0.861 24 3.741e−03
Infomap 0.663 0.787 0.777 126 4.615e−01
Label propagation 0.731 0.856 0.828 82 7.130e−03
Leading eigenvector 0.794 0.887 0.835 26 3.492e−01
Multilevel 0.873 0.921 0.867 24 4.546e−03
Spinglass 0.866 0.924 0.872 25 1.210e+01
Walktrap 0.757 0.886 0.828 67 8.510e−03
mPW 0.945 0.979 0.845 17 2.000e−06

A.2 LFR benchmark

Experiments were also conducted on networks generated by the LFR benchmark model [17].
To this end, we constructed three qualitatively different families of networks on 1000 ver-
tices and, for each of the regimes separately, studied how varying the mixing parameter µ
in the range of 0.1 to 0.9 affects the overall performance.

B. Ikica: Clustering via the modified Petford-Welsh algorithm 47

First, the power-law exponents were set to γ = 2 and β = 1, the average and the
maximum degree to 15 and 100, respectively, and the sizes of the embedded ground-truth
clusters were restricted to the interval [50, 100]. Further, the second set of trials was carried
out on networks with the average degree and the maximum degree equal to 25 and 150,
respectively, whereas the power-law exponents were kept the same, i.e., γ = 2 and β = 1,
and no constraints were imposed on the sizes of the clusters. Lastly, the networks in the
third regime followed power-law distributions at the other extreme, with γ = 3 and β = 2.
For the average degree and the maximum degree we chose 15 and 50, respectively. Again,
we left out the optional parameters controlling the permitted cluster sizes.

The plots below display how maximum values of NMI, ARI, and Q attained over a
series of runs vary as a function of the mixing parameter µ. For each particular value of
µ, 10 networks were generated and each of the methods was run 100 times on top of them.
Edge betweenness and Spinglass were omitted from the analysis due to their rather slow
execution speed. Moreover, in order for Leading eigenvector to converge, new networks
had to be generated occasionally.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

Normalised mutual information

Label propagation

mPW

Fastgreedy

Infomap

Multilevel

Leading eigenvector

Walktrap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

Adjusted Rand index

Label propagation

mPW

Fastgreedy

Infomap

Multilevel

Leading eigenvector

Walktrap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

Q

Modularity

Label propagation

mPW

Fastgreedy

Infomap

Multilevel

Leading eigenvector

Walktrap

Figure 2: NMI, ARI, and Q plotted as functions of µ ∈ [0.1, 0.9], evaluated on networks
generated by the LFR benchmark model using |V | = 1000, γ = 2, β = 1,k_avg =
15,k_max = 100,c_min = 50 and c_max = 100.

48 Ars Math. Contemp. 18 (2020) 33–49

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

Normalised mutual information

Label propagation

mPW

Fastgreedy

Infomap

Multilevel

Leading eigenvector

Walktrap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

Adjusted Rand index

Label propagation

mPW

Fastgreedy

Infomap

Multilevel

Leading eigenvector

Walktrap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q

Modularity

Label propagation

mPW

Fastgreedy

Infomap

Multilevel

Leading eigenvector

Walktrap

Figure 3: NMI, ARI, and Q plotted as functions of µ ∈ [0.1, 0.9], evaluated on networks
generated by the LFR benchmark model using |V | = 1000, γ = 2, β = 1,k_avg = 25
and k_max = 150.

B. Ikica: Clustering via the modified Petford-Welsh algorithm 49

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

Normalised mutual information

mPW

Fastgreedy

Label propagation

Leading eigenvector

Infomap

Walktrap

Multilevel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

Adjusted Rand index

mPW

Fastgreedy

Label propagation

Leading eigenvector

Infomap

Walktrap

Multilevel

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ

0.0

0.2

0.4

0.6

0.8

Q

Modularity

mPW

Fastgreedy

Label propagation

Leading eigenvector

Infomap

Walktrap

Multilevel

Figure 4: NMI, ARI, and Q plotted as functions of µ ∈ [0.1, 0.9], evaluated on networks
generated by the LFR benchmark model using |V | = 1000, γ = 3, β = 2,k_avg = 15
and k_max = 50.

	Introduction
	Method
	Fine-tuning

	Numerical experiments
	Datasets
	Quality metrics
	Results

	Supplementary materials
	Real-world networks
	LFR benchmark

