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A B S T R A C T A R T I C L E   I N F O 
TRIP (Transformation Induced Plasticity) steels belong to the group of ad-
vanced high-strength steels. Their main advantage is their excellent strength 
combined with high ductility, which makes them ideal for deep drawing pro-
cesses. The forming of TRIP steels in the deep drawing process enables the pro-
duction of a thin-walled final product with superior mechanical properties. For 
this reason, this study presents comprehensive research into the deep drawing 
of cylindrical cups made from TRIP steel. The research focuses on three main 
aspects of the deep drawing process, namely the sheet metal thinning, the max-
imum force value and the ear height as a result of the anisotropic material be-
haviour. Artificial neural networks (ANNs) were built to predict all the men-
tioned output parameters of the part or the process itself. The ANNs were 
trained using data obtained from a sufficient number of simulations based on 
the finite element method (FEM). The ANN models were developed based on 
variable material properties, including anisotropic parameters, blank holding 
force, blank diameter, and friction coefficient. A good agreement between sim-
ulation, ANN and experimental results is evident. 
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1. Introduction
The development of materials for vehicle production faces the challenge of solving diverse and 
often conflicting requirements. These include the need to reduce vehicle weight while providing 
high levels of weldability, formability, joinability, and sufficient stiffness or mechanical strength 
to increase the safety of passengers. In addition, it is important to optimize the simple installation 
of components, maintain surface resistance in demanding conditions, and preserve aesthetic 
properties. In today's automotive environment, meeting fuel efficiency and environmental stand-
ards within economic constraints is critical [1-3]. Cost reduction can be considered one of the 
main interests for companies in the modern era [4]. Different advanced forming methods have 
been developed to make custom made goods at a reasonable price [5]. Given these complex re-
quirements, the choice of materials plays a key role in shaping the car's structure. High-strength 
steels (HSS) have demonstrated the ability to strike a balance between cost-effectiveness, weight 
consideration and favourable mechanical properties [6, 7].  
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Current research is focused on advanced high-strength steels (AHSS) and ultra-high-strength 
steels (UHSS), mainly composed of martensitic steels. The AHSS category includes two-phase 
steels and TRIP (Transformation Induced Plasticity) steels. These groups of materials exhibit me-
chanical properties that meet stringent environmental standards and customer requirements 
while remaining economically affordable for manufacturers [1-3]. 

1.1 Fundamentals of TRIP steels 

TRIP steels hold significant appeal for the automotive industry in constructing the body-in-white 
due to their enhanced mechanical properties, formability, and exceptional energy absorption dur-
ing a crash [8]. The microstructure of TRIP comprises distinct phases, including ferrite, austenite, 
martensite, and bainite, contributing to the high performance of the steel [9]. The TRIP effect, em-
ployed to improve formability and strength, is rooted in a lattice transformation. The face-centred 
cubic (fcc) austenite transforms, without diffusion, into either the body-centred cubic (bcc) mar-
tensite (α-martensite) or a hexagonal martensite phase (β-martensite). The bcc crystal phase is 
more stable, and the hexagonal phase transitions to bcc depending on the conditions [10, 11]. 
These diverse phases are not only beneficial for forming processes but also play a crucial role in 
the crash behaviour of components. However, as mechanical properties are directly linked to mi-
crostructural evolution, local stress and strain conditions impact both forming and failure behav-
iour. Therefore, understanding the interaction among microstructure, stress and strain condi-
tions, and the occurrence of failure is essential [12]. 

1.2 Fundamentals of deep drawing  

Deep drawing is a sheet metal forming process which are used to plastically deform the sheet 
metal into the desired shape of the final product [13]. The deep drawing process, widely utilized 
across industries, involves forming sheet metal for a variety of applications. Its uses span from 
crafting automotive components, products in the arms industry, and aerospace parts to forming 
tubes for medication and perfume, pots, pans, and various kitchen appliances. This method relies 
on forming production parts with either simple or intricate designs through substantial plastic 
deformation [14, 15]. Throughout the deep drawing process, potential defects may arise, such as 
surface scratches, wrinkling of walls and flanges, tearing, and earing [16, 17]. The effectiveness of 
the deep drawing process is heavily dependent on material properties, geometric considerations, 
and technological parameters. Key material factors encompass elasticity, plasticity, and anisot-
ropy. Additionally, significant roles are played by parameters like punch velocity, blank holding 
pressure, and lubrication. The radius of the punch and die, blank thickness, and the clearance be-
tween the punch and die also contribute to the process. Incorrectly defining these parameters can 
result in common defects of the deep drawing process [18, 19]. 

Earing, a distinctive defect marked by the development of a wavy edge at the open end of the 
cup, is a notable issue in the deep drawing process. Numerous recent studies have addressed ear-
ing defects [20, 21]. Colgan and Monaghan [22] explored key parameters in the deep drawing pro-
cess, including punch and die radii, punch velocity, friction, and draw depth. Using ANOVA soft-
ware, they calculated the percentage contributions of each factor. Interestingly, punch velocity 
emerged as the fourth most crucial parameter, particularly impacting wall thickness deviation. 
Seth et al. [23] investigated the formability of steel sheets subjected to high-velocity impact from 
an electromagnetically launched punch at speeds of 50 and 220 m/s. Their experiments involved 
five different steel specimens with varying thicknesses, revealing failure strains ranging from 30 % 
to 50 %. Notably, the study observed that higher forming velocities correlate with increased form-
ability. Huang et al. [24] examined the influence of blank thickness and fracture thickness on form-
ing limits. Fracture strain, derived from a uniaxial tension test, served as the fracture criterion. 
The assumption was made that the blank fractures when its thickness reaches the fracture thick-
ness in any section. The study involved the analysis of square cup drawing and elliptical hole flang-
ing. Chalal et al. [25] determined forming limit diagrams using different localization criteria, such 
as the criterion based on the maximum second-time derivative of thickness strain, the criterion 
based on the ratio of equivalent plastic strain increment, the maximum punch force criterion, and 
the loss of ellipticity. ABAQUS/Explicit tool was employed for their analysis [25]. Gusel et al. [26] 
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focused on the forming of high-strength steel sheets (DP780 and DP1180HD) by deep drawing. 
The influence of yield stress, tensile strength, blank holder force and punch speed on the output 
parameter of cup height was evaluated [26]. The fracture problems during deep drawing were 
successfully predicted using genetic modelling. 

1.3 Simulation using finite element method 

Simulations allow the prediction of crucial outcomes within the system or process itself, using the 
computer environment. A correctly created simulation model of a forming process enables fast 
and reliable prediction of key output parameters. A small discrepancy between experimental and 
simulation results shows the general correctness of the set simulation model. Simulations were 
carried out as part of this study to predict three key output parameters of the deep drawing pro-
cess of TRIP steel. A sufficient number of simulations with different input parameter values and 
corresponding output results were used as the basis for building an artificial neural network 
(ANN) for each target output parameter. The simulations based on the finite element method 
(FEM) were carried out in the ABAQUS simulation environment. The material properties, the ge-
ometric properties of the blank and the tools as well as the kinematics of the deep drawing process 
were simulated. FEM simulations can be carried out with different calculation methods, finite el-
ement types and in different simulation environments [27]. The FEM simulation of the deep draw-
ing process can be very time-consuming [28]. The use of the explicit calculation method provides 
acceptable accuracy with faster calculation compared to the implicit method [29]. For this reason, 
the explicit method was chosen for all 50 simulations in the study presented here. 

The study by Vrh et al. [30] focused on the constitutive modelling of anisotropic plates and the 
prediction of the earing for the round cup drawing using the FEM method. Shell finite elements 
with reduced integration were used in the ABAQUS/Explicit simulation environment [30]. Bandy-
opadhyay et al. [31] evaluated the limiting drawing ratio (LDR) of tailor welded blanks using a 
deep drawing test. FEM models of the deep drawing process considered the anisotropy of the 
sheets and the inhomogeneous properties in the welded zone of the tailor welded blanks [31]. The 
simulations were performed with the nonlinear solver Lsdyna-971 using shell elements [31] The 
study by Dwivedi and Agnihotri [32] focused on testing different materials for deep drawing of 
cylindrical cups without using a blank holder. The ANSYS 14.0 simulation environment was used 
to determine the limit drawing ratio [32]. Magnesium alloys develop a crystallographic texture 
and plastic anisotropy during rolling, resulting in ear formation during deep drawing of such 
sheets [33]. This was investigated in the study by Walde and Riedel [33], who performed FEM 
simulations of the deep drawing process in ABAQUS/Explicit environment using C3D8R solid 
brick elements with four elements across the sheet thickness. It was found that the earing pattern 
depends on the initial texture and on the development of the texture during the forming process 
under investigation [33].  

In the study by Engler and Aretz [34], S4R shell elements with reduced integration were used 
in the ABAQUS simulation environment for the FEM simulation of the deep drawing process of 
various anisotropic aluminium alloys. In the study by Luyen et al. [35], FEM simulations of the 
deep drawing of cold-rolled carbon steel were carried out in the ABAQUS simulation environment. 
The simulations were used to determine the fracture heights of cylindrical cups and were vali-
dated with experimental results [35]. Another aim of the simulations and experiments in the study 
by Luyen et al. [35] was to investigate the effects of the blank holder force, the punch radius and 
the drawing ratio on the fracture height. Simulations and experiments showed that increasing the 
blank holder force reduces the fracture height and increasing the punch radius increases the frac-
ture height [35]. Jayahari et al. [36] investigated the formability of austenitic stainless steel 304 at 
different temperatures under warm conditions during the deep drawing process of a cylindrical 
cup. The explicit FEM analysis was performed in the LS-DYNA program for forming at room tem-
perature and other temperatures up to 150°C [36]. Shell elements were used for the blank and the 
tools, as this results in a shorter calculation time [36]. Shell finite elements were also used in the 
study presented here. 
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1.4 Fundamentals of neural networks 

Artificial intelligence can contribute to sustainable manufacturing [37]. With advances in manu-
facturing intelligence, information technology is part of the automated production technologies 
that are the main contributors to industrial change today [38]. Artificial intelligence models used 
in the field of metal forming use process parameters as input parameters and forming results as 
output parameters [37]. One special branch of such models are neural network models, which are 
expressed by a nonlinear function of the weighted sum of inputs [37]. Artificial neural network 
(ANN) is a set of neurons and connections between them with adjustable weights [39]. Commonly 
used type of ANNs are the multi-layer neural networks, which consist of an input layer, one or 
more hidden layers, and an output layer [39, 40]. Neurons of each layer are connected to each 
other by connection links with adjustable weights [39]. These weights are adjusted during the 
training process of the neural network, commonly through the backpropagation algorithm, where 
the input-output example patterns are presented to the neural networks [39]. The main advantage 
of ANNs is the data-driven self-adaptive capabilities that allow ANNs to adapt to the data they 
have been trained on [41]. A basic structure of ANN is presented in Fig. 1. 

 
 

Fig. 1 Basic structure of ANN [39] 

In order to teach the neural network, sufficient amount of data is needed. The data can either 
be provided by experiments or by simulations, including finite element method [39]. A large 
enough number of FEM simulations was also performed in here-presented study with a goal to 
provide data points on which the neural network is trained. One of the advantages of using ANN 
model is easy construction of said model on provided input and output data values with the goal 
of accurately predicting process dynamics [42].  

Machine learning, deep learning, artificial intelligence and more specifically artificial neural 
networks are being used in many fields, including state of tools, defect detection, forming pro-
cesses and material science [43-46]. In the study by Czinege and Harangozo [46], experimental 
data from tensile tests and Nakazima tests were used as input data for the ANN. The ANN models 
allowed estimation of points of the forming limit curve [46]. ANN models gave high correlation 
coefficient between predicted and measured values, which was better compared to capabilities of 
other linear and non-linear models [46]. Multi-layer perceptron (MLP) artificial neural networks 
are good for classification and for regression, which is also one of the reasons for being used in 
the study by Czinege and Harangozo [46]. MLP ANN requires a proper selection of the number of 
hidden layers and data splitting into training set, test set and validation set [46, 47]. In order to 
predict the flow curves of ZAM100 magnesium alloy sheets under hot-forming conditions as a 
function of process parameters, El Mehtedi et al. [48] developed an empirical model based on 
ANNs. ANN model predicted the flow stress as a function of strain, strain rate and temperature 
[48]. The ANN from the study by El Mehtedi et al. [48] had 6 input parameters and one output of 
equivalent stress, and it also had two hidden layers with 6 neurons each. The back-propagation 
training and validation of the multi-layer feed forward ANN was performed using MATLAB soft-
ware [48]. Great capabilities of the set model were proven with excellent fitting between experi-
mental and predicted curves [48]. For the reason of evaluating the prediction capabilities, the cor-
relation coefficient (R) was considered, which compares predicted values and experimentally pro-
duced data [48]. The model for predicting flow curves requires a sufficient number of experiments 
to obtain the necessary data on which it can be trained, which is expensive and time-consuming 
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[48]. ANN models are often used also in the field of metal forming. In the study by Gondo and Arai 
[37] an ANN was developed for metal spinning using tool-path parameters, the size of the blank, 
size of the tools and the height and the thickness of the part. In the study by Xia et al. [45] multi-
layer feed-forward perceptron ANN models with back-propagation were used to investigate the 
influence of rolling parameters on the rolling force, rolling power, and slip of tandem cold rolling. 
Different ANN architectures had been tested and the ANN configuration of one hidden layer with 
9 neurons provided the best results [45]. In the study by Kazan et al. [39] a prediction model using 
ANN was developed in the field of wipe-bending. The training of the ANN model was done on the 
data provided by FEM simulations [39]. In the study by Sivasankaran et al. [42] a feed forward 
back-propagation neural network was presented for predicting and avoiding surface failure, in-
cluding wrinkling, during pure aluminium sheet drawing through a conical die. The neural net-
work had two hidden layers with different numbers of neurons for different grades of aluminium 
sheets tasted [42].  

The study by Babu et al. [49] focused on developing an expert system using ANN to predict the 
deep drawing behaviour of welded blanks made of steel grade and aluminium alloy. FEM code is 
used for forming simulation and data generation for ANN training [49]. ANNs with one hidden 
layer with 6 neurons, 6 neurons on the input layer and one neuron on the output layer are used 
for four different output parameters, including depth of drawing [49]. In the study by Ma-
noochehri and Kolahan [50] an ANN was developed based on FEM results in the case of deep 
drawing, where important process parameters as inputs and process characteristics as outputs 
were considered. FEM models were verified with experimental tests using same parameter val-
ues, including stainless steel 304 (AISI 304) with 0.5 mm thickness with its mechanical properties 
and anisotropic coefficients [50]. In the study by Manoochehri and Kolahan [50] ABAQUS/Explicit 
software was used to develop FEM models of the deep drawing process, where the depth of draw-
ing was 30 mm. The input parameters considered were blank holder force, punch radius, die ra-
dius, friction coefficient between punch and blank as well as die and blank, while the output pa-
rameter was minimum sheet thickness after forming [50]. An ANN with two hidden layers was 
developed in MATLAB software [50]. 

2. Material and methods 
2.1 Used materials 

TRIP steels prove highly effective in manufacturing automotive components that undergo signifi-
cant work hardening during crash deformation and necessitate substantial energy absorption. 
Additionally, these steels are particularly well-suited for forming intricate and challenging to form 
parts due to their exceptional formability and hardening characteristics. In the experimental re-
search, a double-sided galvanized steel sheet TRIP RAK40/70 Z100MBO with a thickness of 0.75 
mm was utilized. To determine the mechanical properties, a uniaxial tensile test was conducted 
on the TIRAtest2300 machine (Fig. 2) according to the STN EN ISO 6892-1:2020 standard. During 
the examination, 5 test samples were assessed in three directions: 0°, 45°, and 90° degrees with 
respect to the rolling direction (see Fig. 3). The mechanical properties obtained using uniaxial 
tensile test are displayed in Table 1. The chemical composition of the experimental material TRIP 
RAK40/70 Z100MBO is shown in Table 2. 

Table 1 Mechanical properties of TRIP RAK40/70 Z100MBO 

 
Table 2 Chemical composition of TRIP RAK40/70 Z100MBO wt. % 

C Mn Si P S Al Nb Ti V Mo Cr 
0.204 1.683 0.199 0.018 - 1.731 0.004 0.009 0.004 0.008 0.055 

 

RD  
(°) 

Rp0,2 

(MPa) 
Rm 

(MPa) 
A80 
(%) 

r 
(-) 

rm 

(-) 
Δr 
(-) 

n 
(-) 

0 435 764 29 0.702  
0.834 

 
-0.100 

0.298 
45 443 763 29 0.884 0.294 
90 449 764 31 0.867 0.279 
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Fig. 2 TIRAtest2300 testing machine 

 
Fig. 3 Samples after uniaxial tensile test: a) in the RD direction 0°; b) in the RD direction 45°;  

                         c) in the RD direction 90° 

2.2 Deep drawing test 

Deep drawing is a sheet metal forming technique where a sheet metal blank is radially drawn into 
a forming die by mechanical energy. This process is notably influenced by material properties, as 
well as geometric and technological parameters. Key material parameters include elasticity, plas-
ticity, and anisotropy. Moreover, parameters like punch velocity, blank holding force, and lubrica-
tion are crucial, besides the radius of the punch and die, the thickness of the blank, and the clear-
ance between the punch and die. Improperly defining these parameters can lead to defects such 
as surface scratches, wrinkling, and tearing due to excessive thinning. The paper focuses on ana-
lysing how various technological and material parameters affect the key characteristics of the 
product and its forming process. These characteristics include deep-drawing force, earing, and 
thinning.  

In the experimental research, three circular blanks with a diameter of 95 mm were cut from 
the sheet metal strip, from which cylindrical cups with a flat bottom were subsequently drawn on 
an experimental deep drawing tool (Fig. 4a) with the parameters shown in Fig. 4b. In the deep 
drawing test, oil was used as a lubricant to reduce the coefficient of friction. The holding force was 
set to 18000 N.  

During the deep drawing process, it is essential to comprehend the maximum deep drawing 
force and the impact of input parameters on its magnitude. This understanding is fundamental for 
selecting the appropriate machine with the designated force. To measure the force during our 
experiment, we employed a load cell integrated into the forming press. During the deep drawing 
test, the load cell recorded and transmitted force data to a connected data acquisition system. The 
force was monitored and recorded throughout the entire process of deep drawing. 
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Fig. 4 a) Experimental deep drawing tool, b) parameters of the tool, where: Dp (punch diameter) = 50 mm, 

            Dd (die diameter) = 52.4 mm, Rp (punch radius) = 5 mm, Rd (die radius) = 5.5 mm 
 

Furthermore, we focused on understanding the influence of the parameters on earing, charac-
terized by the development of a wavy edge at the open end of the cup. In this paper, earing was 
assessed as the difference between the highest (Hmax) and lowest (Hmin) measured heights on the 
cups, as defined by Eq. 1, where ΔH represents ear height. 
                                    

Δ𝐻𝐻 = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚                                                                 (1) 
 

According to the value of ∆r, it is possible to determine the susceptibility of the sheet to the 
formation of ears during deep drawing. Ears are formed in the directions of the sheet where the 
value of the coefficient of normal anisotropy r is maximum, if: 

• ∆r > 0 ears will form in the directions of 0° and 90° to the rolling direction, 
• ∆r = 0 ears will not form, 
• ∆r < 0 ears will form in the direction of 45°. 

 The height of the ears (Fig. 5a) was measured with a sliding calliper at eight locations on the 
cups (Fig. 5b). Subsequently, according to Eq. 1, the maximum difference in the height of the cups 
was calculated.  

We also focused on the thinning of the sheet, which was expressed by the tmin value, which 
represented the lowest measured value of the sheet thickness after forming. Thinning of the blank 
typically occurs at the transition point from the cylindrical part to the bottom of the blank. Exces-
sive thinning in these areas can lead to the formation of cracks. The thinning itself is affected by 
the initial thickness of the sheet metal and by the diameter of the tool. When assessing the impact 
of these parameters on thinning, it is crucial not to overlook the material parameters.  
 After measuring the heights, the experimental cups were cut in half, allowing us to measure the 
thickness of the cups and obtain the values of thinning across the cross-section. The thinning of 
the sheet was measured using an optical microscope (Fig. 6a) at the transition point between the 
cylindrical part and the bottom of the cup as shown in Fig. 6b.  

 
Fig. 5 a) Ear height on the cup, b) Measurement of ear heights on the cup 
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Fig. 6 a) Microscope used for thickness measurement, b) thickness measurement points 

 
2.3 Finite element method setup 

The simulation of the deep drawing process was performed using the ABAQUS simulation soft-
ware environment, utilizing the explicit method. The CAD model of the drawing tool used in the 
simulation had identical dimensions to the experimental tool (see Fig. 4b). The blank model was 
given the characteristics of TRIP steel, which were acquired through the uniaxial tensile test (see 
Table 1). The material density was 7850 kg/m3, the Young's modulus was 210,000 MPa, and the 
Poisson ratio was 0.33. During the simulations, the Hollomon approximation was used to describe 
the flow curve of the material. The sheet material was considered anisotropic using yield criteria 
according to Hill. The simulation time for the explicit simulation method was set to 0.5 seconds.  
 According to the finite element method, the simulation of technological processes requires the 
meshing of the entire set of 3D objects (rigid as well as deformable models) with finite elements. 
For all rigid bodies (punch, die, and blank holder), R3D4 quadrilateral shell finite elements and 
R3D3 transition triangle elements were used. In terms of workpiece meshing, concentric mapped 
quadrilateral finite elements S4R were chosen for the outer section, while a freely meshed combi-
nation of quadrilateral finite elements (S4R) and triangular finite elements (S3) was utilized for 
the central part.  
 Since the size of the blank was one of the parameters that was regularly changed in each sim-
ulation, the number of elements was different in each simulation. Table 3 shows the number and 
types of elements used in simulations for every 3D model used in simulations. Fig. 7 shows the 
mesh of the blank used in the simulation. 
 

Table 3 Number and types of elements used in simulations 
Object Number of elements Type of element 
Punch 1634 R3D4, R3D3 

Die 4200 R3D4 
Blank Holder 2040 R3D4, R3D3 

Blank varied S4R, S3 

 
Fig. 7 Mesh of blank CAD model 
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The procedure involved conducting 50 simulations in which 8 independent input parameters 
were randomly varied. These parameters include blank diameter (D0), blank holding force (Fbh), 
friction coefficient (f), material constant (C), hardening exponent (n), and normal anisotropy co-
efficient values (r) in the 0°, 45°, and 90° directions. Additionally, one dependent parameter, the 
yield strength (Rp). Table 4 displays the range of input parameters within which values were ran-
domly selected for individual simulations. Values from these intervals were selected randomly for 
each simulation using the random function in Microsoft Excel. Table 5 shows the values of the 
input parameters used in the simulations. 
 

Table 4 Range of input parameters used in simulations 

 
 

Table 5 Randomly selected input values used in individual simulations 
Simulation 

number 
D0 

(mm) 
Fbh 

(N) 
f 

(-) 
Rp 

(MPa) 
C 

(MPa) 
n 

(-) 
r0 
(-) 

r45 

(-) 
r90 

(-) 
1 88.4 17778 0.11 491 1512 0.23 0.93 0.74 0.89 
2 96.9 18078 0.15 308 1038 0.28 0.64 0.8 0.65 
3 100.4 19788 0.07 418 1372 0.27 0.63 0.62 0.75 
4 90.6 18082 0.19 308 1112 0.3 0.99 0.7 0.72 

….. … … … … … … … … … 
50 87.8 16560 0.1 385 1076 0.23 0.92 0.69 0.95 

 
2.4 Artificial neural network  

With the aim of making predictions of forming force value, sheet metal thinning and ear height for 
the deep drawing process and product, artificial neural networks (ANNs) had been set up. For this 
study, a separate ANN was set up for every output parameter that considered all 9 input parame-
ters. In order to allow faster training of the neural network and good regression of the results, 
multilayer perceptron artificial neural networks (MLP ANN) had been used. This is an ANN model 
that used backpropagation learning algorithm. The basis of MLP ANN remains the same, meaning 
transformation of input values into output values or predictions. To better understand the process 
of MLP ANN, Eq. 2 shows the basic function, where y is the output value, x is the input value, w are 
weights and b are biases. 

𝑦𝑦 =  𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑓𝑓 ��𝑤𝑤𝑚𝑚𝑥𝑥 + 𝑏𝑏
𝑚𝑚

𝑚𝑚=1

� (2) 
 

The basis for training an ANN is a sufficient number of data points, which was in our case pro-
vided by 50 finite element method simulations with different values of input parameter values 
and their corresponding values of output parameters of forming force, minimum sheet thickness 
and ear height. To set up the architecture for all three ANNs of three different output parameters, 
data had to be divided into subsets for training and for testing. A preliminary investigation showed 
that the best possible division of the data is 90 % for training and the rest for testing, meaning 45 
points are used for training and five points out of 50 are used for testing.  
 Once the lengthy process of training is complete, the set ANNs can be used for prediction pur-
poses. All three ANNs of three considered output parameters are based on the feed-forward mul-
tilayer perceptron (MLP) and are thus divided into layers. On every layer there is at least one 
neuron. The layers present within an MLP ANN are the input, output and at least one hidden layer. 
On the input layer there are as many neurons as there are input parameters, which in the case of 

Parameter Minimal value Maximal value 
D0 (mm) 86 102 
Fbh (N) 16000 20000 

f (-) 0.05 0.20 
Rp (MPa) 300 700 
C (MPa) 900 1800 

n (-) 0.2 0.35 
r0 (-) 0.6 1 

r45 (-) 0.6 1 
r90 (-) 0.6 1 
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our study is equal to 9. In the case of our study there is only one neuron on the output layer of all 
three neural networks which corresponds to one output parameter of either forming force value, 
minimum sheet thickness or ear height. Within the preliminary study the number of hidden layers 
was set to five for every neural network and their corresponding output parameter. The same is 
true for the number of neurons on these five hidden layers, where 60 neurons had been chosen 
for all five hidden layers for all three neural networks. The configuration of hidden layers and 
corresponding number of neurons can be written as (60, 60, 60, 60, 60).  
 Within the neural network the value leaving a specific neuron is affected by the weight and the 
bias value before entering a specific neuron of the next layer. An important role is played by the 
activation function which removes certain values and maps modified remaining values. Many dif-
ferent activation functions had been tested in a preliminary study and a decision had been made 
to use sigmoid or logistic activation function on the neurons of the hidden layers and linear or 
identity activation function to be used on the output layer of all three set ANNs within this study. 
Eq. 3 represents sigmoid and Eq. 4 the linear activation function. Additionally, Adaptive Moment 
Estimation (ADAM) solver type had been used in MATLAB program environment, used for train-
ing of the ANNs and for predictions made used trained ANNs. Initial learning rate value was cho-
sen to be 0.1 for all set ANNs and the value of the learning rate remained constant throughout the 
neural network training process. L2 regularisation was used, and its value chosen as 0.001 for all 
ANNs within the study. The essential hyperparameter values for all three ANNs are written in 
Table 6. For a better understanding of the ANN configurations for this study, Fig. 8 shows a sche-
matic presentation of all the neurons within input, output and hidden layers. With all the chosen 
values of hyperparameters that define the ANN architecture, the training of three different ANNs 
of all three tested output parameters has been carried out. 
 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑛𝑛−𝑚𝑚
 (3) 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 (4) 
 

Table 6 Hyperparameters chosen for three ANNs within the study for the corresponding output parameters of 
        forming force, minimum sheet thickness and ear height 

Hidden layer sizes Activation function Solver Initial learning rate Learning rate type L2 
(60 60 60 60 60) Sigmoid ADAM 0.100 Constant 0.001 

 

 
     Fig. 8 Schematic representation of the ANNs used within here presented study; input layer with 9 neurons of the 
     9 tested input parameters, 5 hidden layers with 60 neurons each and an output layer with one neuron for 
     one output parameter within a single ANN. 

3. Results and discussion 
As part of the deep drawing test, three cups with a flat bottom were drawn out of circular blanks 
with a diameter of 95 mm. Three parameters were examined: deep drawing force, minimal thick-
ness, and ear height. Fig. 9 shows cups from TRIP RAK40/70. 
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Fig. 9 Cups made of TRIP RAK40/70 steel after deep drawing test 

 
 Within the framework of the experiment deep drawing forces with values of 84315 N for cup 
1, 84490 N for cup 2 and 84490 N for cup 3 were measured. These values were measured by sub-
tracting the holding force from the maximum force measured. The plot of the forces is shown in 
Fig. 10. 

 
Fig. 10 The course of measured force during the experiment of deep drawing 

 
 The measured values of the ear heights in the eight measured directions are shown in Table 7. 
The ΔH value (the difference between the maximum and minimum ear height) was calculated for 
each cup, and the average value was subsequently determined. 

As shown in Table 7, the most significant disparity in the measured heights occurred at cup 3, 
where the discrepancy between the maximum and minimum height reached 1.31 mm. The arith-
metic average for the parameter ΔH was calculated to be 1.23 mm. 
 The sheet thickness after the deep drawing test was measured at five points along the cross-
section of the cups at the transition from the cylindrical part to the bottom of the cups. The exam-
ined sheet thicknesses after the deep drawing tests are shown in Table 8. From the measured 
thicknesses, the smallest obtained value (tmin) was evaluated. From the value tmin, the arithmetic 
average was calculated within the three cups. Fig. 11 shows the measurement of sheet metal thick-
ness at the bottom radius of the second cup. 
 

Table 7 Ear height values of the cups in eight directions along with the calculated ΔH value 
Cup 

number 
H0 

(mm) 
H45 

(mm) 
H90 

(mm) 
H135 

(mm) 
H180 

(mm) 
H225 

(mm) 
H270 

(mm) 
H315 

(mm) 
ΔH 

(mm) 
1 33.61 34.11 33.07 33.17 32.93 33.25 32.86 33.84 1.25 
2 32.95 33.96 33.58 34.09 33.22 33.58 32.98 33.65 1.14 
3 33.65 34.52 33.67 34.02 33.53 33.95 34.02 34.84 1.31 

avg. ΔH 
(mm) 

1.23 
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Fig. 11 Measurement of thinning at the bottom radius of the test cup 

 
Table 8 Minimal thickness values of the cups in five measured points along with the tmin value 

 

 A deep drawing test simulation was performed with same parameter values as the performed 
experiments. The explicit method in the ABAQUS simulation program was used. The maximum 
deep drawing force, thinning value, and ear heights were measured in eight directions, from which 
the ΔH value was calculated using Eq. 1. Fig. 12 shows the cup shape after the performed simulation. 

The results of the 50 simulations present the influence of 9 input parameters on the three mon-
itored outputs, which are the maximum deep drawing force, minimum sheet thickness and earing. 
The results of 50 simulations in which the input parameters were randomly selected (see Table 
5) from the interval of values (see Table 4) are shown in Table 9. As we can see, changing the 9 
input parameters monitored significantly affects the observed output parameters. 
 

 
Fig. 12 Result of the simulation of deep drawing test using ABAQUS 

  

Cup number tA (mm) tB (mm) tC (mm) tD (mm) tE (mm) tmin (mm) 
1 0.65 0.64 0.64 0.64 0.67 0.64 
2 0.71 0.67 0.67 0.68 0.68 0.67 
3 0.65 0.62 0.62 0.62 0.65 0.62 

avg. tmin 

(mm) 
0.64 
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Table 9 Results of 50 simulations carried out in ABAQUS simulation software 
Simulation 

number 
Fmax 
(N) 

tmin 

(mm) 
Hmax 

(mm) 
Hmin 

(mm) 
𝚫𝚫𝑯𝑯 

(mm) 
1 77814 0.713 27.32 26.41 0.91 
2 63907 0.641 35.26 33.92 1.34 
3 84826 0.653 37.11 36.52 0.59 
4 62045 0.672 30.01 28.79 1.22 

….. … … … … … 
50 54482 0.713 26.34 25.07 1.27 

With all the chosen values of hyperparameters that define the ANN architecture, the training 
of three different ANNs of all three tested output parameters has been carried out. Trained neural 
networks allow for predictions to be carried out. Figs. 13, 14 and 15 show diagrams comparing 
original output values provided by simulations and predicted values using trained ANNs that were 
provided by using the same input parameter values. If the predictions perfectly matched the orig-
inal values, then a straight line would be seen on the diagrams. But as we can see, a slight discrep-
ancy is evident. To further understand the predictive capabilities of all three ANNs two coefficients 
were calculated, namely correlation coefficient R and coefficient of determination R2. Using the 
MATLAB program environment, the value for R squared was calculated automatically at the end 
of the ANN training process. R2 value (Table 10) was calculated with the use of Eq. 5, where sim-
ulation output parameter values yi are compared to ANN predicted values 𝑦𝑦�𝑚𝑚 . For the predicted 
values using ANN, same input parameter values were used as in the case of the FEM simulations. 
To better understand the predictive capabilities of ANNs and to show the general correctness of 
the simulations performed, Fig. 16, Fig. 17 and Fig. 18 show a comparison of the values obtained 
with an experimental method, an explicit simulation and a neural network using the same input 
parameters (see Table 11). 

Table 10 Evaluation of set ANNs for three different output parameters using R and R2 
Output parameter R R2 

Forming force 0.975 0.949 
Sheet metal thickness 0.953 0.907 

Ear height 0.926 0.844 

 

 
                   Fig. 13 Comparison of simulation results and predicted values by ANN for the output parameter of 
                   forming force value 
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               Fig. 14 Comparison of simulation results and predicted values by ANN for the output parameter of 
               minimum sheet thickness 
 
 

 
Fig. 15 Comparison of simulation results and predicted values by ANN for the output parameter of ear height 

 
Table 11 Parameters used in the experiment, explicit simulation and ANN with results shown in Figs. 16 to 18 

D0 
(mm) 

Fbh 

(N) 
f 

(-) 
Rp 

(MPa) 
C 

(MPa) 
n 

(-) 
r0 
(-) 

r45 

(-) 
r90 

(-) 
95 18000 0.1 422.3 1488 0.28 0.702 0.884 0.867 
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Fig. 16 Comparison of measured and calculated maximal deep drawing force values 

 

 
Fig. 17 Comparison of measured and calculated tmin values 

 

 
Fig. 18 Comparison of measured and calculated ΔH values 

4. Conclusion 
Optimisation of the deep drawing process is crucial due to its wide application in the automotive 
industry. Constantly increasing requirements for reducing emissions force designers to utilize 
high-strength materials, resulting in a reduction in the weight of structures. The demands on the 
industry are constantly growing, leading to the development of new methods for optimizing the 
deep drawing process. Artificial intelligence plays a pivotal role in this, with its increasingly fre-
quent integration into technological processes. Thanks to constant improvement in this field, the 
output parameters of deep drawing can be predicted. In this study, ANN was used to predict the 
output parameters, the results of which were compared with experimental values and simulation 
using the explicit integration method. 

The paper has focused on the analysis of various technological and material parameters that 
influence the key properties of the forming process. The results of the experiment demonstrate 
the potential for employing various methods and their integration to predict selected output pa-
rameters, such as evaluating the maximum deep drawing force, thinning and earing expressed 
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through the difference between the maximum and minimum yield height. In the experimental part 
of the research, a deep-drawing tool with defined geometry was used. Double-sided galvanized 
steel sheet TRIP RAK40/70 was chosen as the test material. TRIP steels represent a material that 
combines exceptional forming properties with strength. 

In the simulations, eight independent input parameters and one dependent input parameter, 
which was the yield strength (Rp), were randomly varied. Independent input parameters include 
blank diameter (D0), blank holding force (Fbh), coefficient of friction (f), material constant (C), 
strain hardening exponent (n) and normal anisotropy coefficient values (r) at 0°, 45°, and 90° di-
rections. The experiment proved the correctness of the simulation of the deep drawing process 
for the prediction of the selected output parameters, considering the variability of the use of pos-
sible input parameters that affect the forming process. In order to predict the selected output pa-
rameters, artificial neural networks were developed. Each output parameter was modeled by its 
own dedicated ANN, considering all nine input parameters for this study. In order to provide a 
sufficient amount of data to train the ANNs, a sufficient number of simulations had to be carried 
out. Running a simulation took between one to two hours, which is a lengthy process. The training 
of the ANNs and the predictions with the trained ANNs were performed on a computer with an 
Intel Core i7-1065G7 processor with 3.6 GHz and 16 GB RAM. The training of the ANNs took sev-
eral minutes, while the prediction process took less than one second after the input values of all 
input parameters were provided to the ANN. 
 As can be seen from Table 10, the prediction of the maximum deep drawing force using ANN 
achieved the best results within all evaluated parameters with a value of R2 = 0.949. When enter-
ing the input parameters, which were identical to the performed experiment, the prediction using 
ANN reached the maximum deep drawing force of 88792 N. During the simulation, it was meas-
ured as 82911 N compared to the deep drawing force of 84315 N during the experiment. The same 
values of the input parameters used in the experiment and in the simulation and provided to the 
ANN are listed in Table 11.  
 One of the main difficulties in the deep drawing process lies in optimizing the thinning as it can 
lead to reduced mechanical strength in the final product. If the thinning reaches a critical value, it 
can lead to failure. As part of the experiments, thinning was evaluated on three cups. The meas-
ured minimal thickness (tmin) reached the value of 0.64 mm for cup 1, 0.67 mm for cup 2 and 0.62 
for cup 3. When comparing the arithmetic mean of these three values, we register a difference of 
0.047 mm compared to the results from the simulation using the explicit method. In all three ex-
perimental cups, a smaller wall thickness value was measured compared to the simulation, where 
tmin reached a value of 0.693 mm using same input parameter values listed in Table 11. When com-
paring original output values provided by 50 simulations and predicted values using trained ANNs 
that were provided same 50 sets of input parameter values, R2 of 0.907 was calculated. The trained 
ANN predicted a minimum thickness of 0.696 mm when entering exact values of the experiment 
listed in Table 11. The most significant discrepancy in predicting the output parameters was 
measured in the case of ear height, evaluated using the ΔH parameter. When comparing the dif-
ference in maximum and minimum cup height, the deviation between simulation and experi-
mental results was found to be 0.21 mm for the same input parameter values. ANN showed supe-
rior performance in this regard, with the difference narrowing to 0.04 mm. The calculated R2 value 
for the ANN was 0.844 when comparing 50 results from simulations and predictions made with 
trained ANN using same input parameter values. With this value of R2 parameter, we can state that 
this value was influenced by the manual measurement of heights after the experiments and sim-
ulations, that were utilized to train the ANN. 

The conducted research provides a strong foundation for the continued utilization of the Finite 
Element Method and Artificial Neural Network techniques in the field of predicting the critical 
output parameters of deep drawing such as maximal deep drawing force, thinning and earing. 
With the aim of predicting the crucial output parameter values of the deep drawing process and 
providing additional control of the process itself, our future work will focus on the following: 
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• Analysis of different tool geometry for the production of a cylindrical cup with a smaller 
inner diameter. Experiments, simulations and ANNs will be set for the use of a smaller tool 
and compared with the results obtained with the tool in the study presented here. 

• Analysis of different steel grades and their performance during the deep drawing process. 
Further extension of the predictive capabilities of ANN models for more extensive material 
parameter ranges.  

• Analysis of deep drawing of more complex part shapes. Experiments and simulations for 
different tool and thus part shapes would enable the development of more flexible ANN 
models that would allow the prediction of important deep drawing output parameters for a 
larger number of selected part shapes. 
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