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Abstract

In this work, several beam finite element formulations are proposed for failure analysis of planar rein-
forced concrete beams and frames under monotonic static loading. The localized failure of material is
modeled by the embedded strong discontinuity concept, which enhances standard interpolation of dis-
placement (or rotation) with a discontinuous function, associated with an additional kinematic parameter
representing jump in displacement (or rotation). The new parameters are local and are condensed on
the element level. One stress resultant and two multi-layer beam finite elements are derived. The stress
resultant Euler-Bernoulli beam element has embedded discontinuity in rotation. Bending response of
the bulk of the element is described by elasto-plastic stress resultant material model. The cohesive re-
lation between the moment and the rotational jump at the softening hinge is described by rigid-plastic
model. Axial response is elastic. In the multi-layer beam finite elements, each layer is treated as a
bar, made of either concrete or steel. Regular axial strain in a layer is computed according to Euler-
Bernoulli or Timoshenko beam theory. Additional axial strain is produced by embedded discontinuity
in axial displacement, introduced individually in each layer. Behavior of concrete bars is described by
elasto-damage model, while elasto-plasticity model is used for steel bars. The cohesive relation between
the stress at the discontinuity and the axial displacement jump is described by rigid-damage softening
model in concrete bars and by rigid-plastic softening model in steel bars. Shear response in the Tim-
oshenko element is elastic. The multi-layer Timoshenko beam finite element is upgraded by including
viscosity in the softening model. Computer code implementation is presented in detail for the derived
elements. An operator split computational procedure is presented for each formulation. The expressions,
required for the local computation of inelastic internal variables and for the global computation of the
degrees of freedom, are provided. Performance of the derived elements is illustrated on a set of numeri-
cal examples, which show that the multi-layer Euler-Bernoulli beam finite element is not reliable, while
the stress-resultant Euler-Bernoulli beam and the multi-layer Timoshenko beam finite elements deliver

satisfying results.
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Izvlecek

V disertaciji predlagamo nekaj formulacij kon¢nih elementov za porusno analizo armiranobetonskih
nosilcev in okvirjev pod monotono staticno obtezbo. Lokalizirano poruSitev materiala modeliramo z
metodo vgrajene nezveznosti, pri kateri standardno interpolacijo pomikov (ali zasukov) nadgradimo
z nezvezno interpolacijsko funkcijo in z dodatnim kinemati¢nim parametrom, ki predstavlja velikost
nezveznosti v pomikih (ali zasukih). Dodatni parametri so lokalnega znacaja in jih kondenziramo
na nivoju elementa. Izpeljemo en rezultantni in dva vecslojna kon¢na elementa za nosilec. Rezul-
tantni element za Euler-Bernoullijev nosilec ima vgrajeno nezveznost v zasukih. Njegov upogibni odziv
opiSemo z elasto-plasti¢nim rezultantnim materialnim modelom. Kohezivni zakon, ki povezuje moment
v plasticnem ¢lenku s skokom v zasuku, opiSemo s togo-plasticnim modelom mehcanja. Osni odziv je
elasti¢en. V vecslojnih kon¢nih elementih vsak sloj obravnavamo kot betonsko ali jekleno palico. Stan-
dardno osno deformacijo v palici izracunamo v skladu z Euler-Bernoullijevo ali s TimoSenkovo teorijo
nosilcev. Vgrajena nezveznost v osnem pomiku povzro¢i dodatno osno deformacijo v posamezni palici.
Obnasanje betonskega sloja opiSemo z modelom elasto-poskodovanosti, za sloj armature pa uporabimo
elasto-plasticni model. Kohezivni zakon, ki povezuje napetost v nezveznosti s skokom v osnem pomiku,
opiSemo z modelom mehcanja v poSkodovanosti za beton in s plasti¢cnim modelom mehcanja za jeklo.
Strizni odziv TimoSenkovega nosilca je elasti¢en. Vecslojni kon¢ni element za TimoSenkov nosilec nad-
gradimo z viskoznim modelom mehcanja. Za vsak koncni element predstavimo racunski algoritem ter
vse potrebne izraze za lokalni izracun neelasti¢nih notranjih spremenljivk in za globalni izracun pros-
tostnih stopenj. Delovanje konénih elementov preizkusimo na ve¢ numeri¢nih primerih. Ugotovimo, da
vecCslojni konéni element za Euler-Bernoullijev nosilec ni zanesljiv, medtem ko rezultantni koncni ele-
ment za Euler-Bernoullijev nosilec in vecslojni kon¢ni element za TimoSenkov nosilec dajeta zadovoljive

rezultate.
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Résumé

Dans ce travail, différentes formulations d’éléments de poutres sont proposées pour I’analyse a rupture de struc-
tures de type poutres ou portiques en béton armé soumises a des chargements statiques monotones. La rupture
localisée des matériaux est modélisée par la méthode a discontinuité forte, qui consiste a enrichir I’interpolation
standard des déplacements (ou rotations) avec des fonctions discontinues associées a un parametre cinématique
supplémentaire interprété comme un saut de déplacement (ou rotation). Ces parametres additionnels sont lo-
caux et condensés au niveau élémentaire. Un élément fini écrit en efforts résultants et deux éléments finis multi-
couches sont développés dans ce travail. L’élément de poutre d’Euler Bernouilli écrit en effort résultant présente
une discontinuité en rotation. La réponse en flexion du matériau hors discontinuité est décrite par un modele
élastoplastique en effort résultant et la relation cohésive liant moment et saut de rotation sur la rotule plastique
est, quant a elle, décrite par un modele rigide plastique. La réponse axiale est suppposée élastique. Pour ce
qui concerne I’approche multi-couche, chaque couche est considérée comme une barre constituée de béton ou
d’acier. La partie réguliere de la déformation de chaque couche est calculée en s’appuyant sur la cinématique
associée a la théorie d’Euler Bernoulli ou de Timoshenko. Une déformation axiale additionnelle est considérée par
I’introduction d’une discontinuité du déplacement axial, introduite indépendamment dans chaque couche. Le com-
portement du béton est pris en compte par un modele élasto-endommageable alors que celui de 1’acier est décrit
par un modele élastoplastique. La relation cohésive entre la traction sur la discontinuité et le saut de déplacement
axial est décrit par un modele rigide endommageable adoucissant pour les barres (couches) en béton et rigide plas-
tique adoucissant pour les barres en acier. La réponse en cisaillement pour 1’élement de Timoshenko est supposée
élastique. Enfin, I’élément multi-couche de Timoshenko est enrichi en introduisant une partie visqueuse dans la
réponse adoucissante. L’implantation numérique des différents éléments développés dans ce travail est présentée
en détail. La résolution par une procédure d’operator split est décrite pour chaque type d’élément. Les différentes
quantités nécessaires pour le calcul au niveau local des variables internes des modeles non linéaires ainsi que pour
la construction du systeéme global fournissant les valeurs des dégrés de liberté sont précisées. Les performances
des éléments développés sont illustrées a travers des exemples numériques montrant que la formulation basée sur
un élément multicouche d’Euler Bernouilli n’est pas robuste alors les simulations s’appuyant sur des éléments
d’Euler Bernouilli en efforts résultants ou sur des éléments multicouche de Timoshenko fournissent des résultats
tres satisfaisants.
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1 INTRODUCTION

In the introductory chapter, the motivation for research on numerical modeling of localized failure of material, with
emphasis on reinforced concrete, is presented. Previous achievements in this field of research are briefly reviewed,
and the goals and the outline of the thesis are explained.

1.1 Motivation

Localized failure is a common phenomenon in variety of materials, used in civil engineering. At a certain load
level, materials often exhibit highly localized deformations before failing. Typical examples are cracks in brittle
materials, such as concrete, stone, brick or ceramic, and shear bands in metals or soils, see [1] and references
therein. Growth of localized deformations is accompanied by reduction of stress, a process called softening of
material. Adequate description of this phenomenon is essential for a comprehensive material model, which allows
for a more accurate numerical modeling of structures and structural elements, made of such material.

In this work, we focus on reinforced concrete beams and frames, which are one of the most widespread structural
forms. It has been observed in experimental tests, as well as on actual buildings, damaged in earthquakes, that
most of material damage is concentrated at several critical locations in the structure. Localized failure of reinforced
concrete comprises cracking and crushing of concrete, yielding of reinforcement and bond slip between the two
components. This leads to the concept of plastic hinge in the limit load and push-over analyses, see e.g. [2}-4]. In
the classical limit load analysis, the limit capacity of each plastic hinge is kept constant, while additional hinges
develop with the increasing load. This approach restrains the accuracy, with which the limit load of the structure
is determined, and prevents the computation of structure’s ductility and post-peak response. In highly statically
undetermined structures, failure of a critical element does not jeopardize their integrity. It is therefore essential
for an accurate analysis to be able to describe the softening response of the critical element, associated with the
localized failure. This leads to the concept of softening plastic hinge, which allows for computation of ductility

and post-peak response of the analyzed structure.

There are many different approaches to modeling of softening hinges in numerical analysis, see e.g. [5/6]. In
earthquake engineering, researchers often deal with large scale models of complex structures under rather compli-
cated loads. Effective analysis of such problems can only be performed by using relatively simple finite elements,
e.g. finite element with lumped plasticity, see [7/8]], where all plastic deformations are concentrated in the nodes,
while the rest of the finite element stays elastic. Plastic hardening and softening of the element are described by
the moment-rotation relationship of the nodes. Another way to model a softening hinge is to use a short crack-
band finite element, in which localization is smeared over the whole element, see [9-H11]]. Since the softening is
described on strain level, a fixed length of the crack-band element has to be computed, which is then considered
a material property. In contrast to these two typical approaches, we decide to use lately established strong discon-
tinuity concept, main characteristic of which is incorporation of discontinuous displacement fields into standard
displacement based finite elements. The aim is to develop precise, effective and robust finite elements, capable of

accurate description of localized failure in reinforced concrete beams and frames.
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1.2 Theoretical background

Past decades have seen significant improvement in modeling of localized failure in numerical analysis, however,
many issues still remain unsolved. A brief history and an overview of proposed solutions can be found in [12-14].
In earlier attempts, the structural softening response, associated with localized failure of material, was modeled
simply by using elastoplastic constitutive model with softening to describe the local relation between the strain
measure and the conjugate stress (or stress resultant), e.g. curvature and bending moment. The moment was com-
puted in the same way as in classical elastoplasticity, except that after the limit load was reached, moment decreased
with increasing curvature. This very simple model, called strain softening, is troubled by several problems, which
are usually described as mathematical, physical and numerical [|12]].

In a structural element, discretized with a mesh of finite elements, only the critical element fails. Due to volumetric
character of energy dissipation, determined by strain softening, the total energy dissipated in the softening range
approaches zero when the mesh is refined. From mathematical point of view, the tangent stiffness matrix in
softening ceases to be positive definite due to the negative value of tangent modulus. The boundary value problem
becomes ill-posed and the solution of the problem is no longer unique [[12}/15,/16]]. The limit solution, when finite
element size approaches zero, suggests failure of the structure without energy dissipation, which is physically

unrealistic. From the aspect of numerical modeling, strain softening model leads to severe mesh dependency
[17L[18].

Different approaches have been used to tackle the above mentioned problems. They are often referred to as local-
ization limiters because their purpose is to prevent the strain localization to a vanishing volume. The earlier ones
are briefly described in [[19]]. The simplest way to deal with the problem is to limit the minimum size of finite ele-
ments, as in crack band models [20H22], where the fracture is smeared over the whole finite element. The crack is
therefore represented by an element-wide crack band. The volume of material, where strain softening takes place,
is obviously still mesh dependent, so the strain softening modulus has to be adjusted according to the chosen mesh,
in order to preserve the fracture energy. A similar approach is to embed a strain softening band of fixed width into
a finite element, with the width of the band a material property [23}]24f]. As stated in [12], these approaches do not
solve the mathematical issue of an ill-posed boundary value problem and the solution is restricted to certain types
of failure.

Nonlocal continuum theories have been proposed as an alternative [[19,25127]]. Here, the stress at a certain point
of material domain is considered to be a function of average (nonlocal) strain in a representative volume of ma-
terial, centered at that point. More generally, nonlocal strain is a weighted value of the entire strain field, and
the weighting functions determine the domain of influence of strain on stress. This method enables the finite ele-
ment analysis to overcome some problems caused by singularities, such as crack-tip problems. According to [12],

nonlocal theories are fully regularized from the mathematical point of view.

Several variations of the nonlocal continuum model exist. By expanding the nonlocal variable into Taylor series
and neglecting the higher order derivatives, the gradient (also weakly nonlocal) theory is obtained [28}29]. Here,
the stress at a certain point is computed from the values of strain and strain gradient at that point. Alternatively,
incorporation of higher order derivatives in the constitutive relation results in higher order gradient theory, e.g. [|30]]
for plasticity.

Apart from the above described localization limiters, several other regularization concepts have been proposed,
such as Cosserat (or micropolar) continuum models [31}[32]], which include local rotation of points in addition to
their translation, or viscoplastic regularization, where the problem is treated as rate dependent [33]]. The common
aim of all presented approaches is to capture as accurately as possible the material behavior on the micro scale
and incorporate it into finite elements for numerical analysis of structures subject to localized failure. The finite
elements are devised to automatically develop localization at the critical point of the structure or the structural

element (within their limitations). Appropriate behavior of structural elements on the macro scale is therefore
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granted by sufficiently accurate material description on the micro scale.

Quite an opposite approach is often used in development of finite elements for numerical analysis in earthquake
engineering. Dealing with large and complex structures under rather complicated loading, the analysis can become
very time consuming and computationally demanding, so the finite elements are designed in the simplest possible
way that still provides appropriate macro scale behavior of the structural element. For instance, columns of multi-
story buildings subject to earthquake loading are known to exhibit highly localized inelastic deformations at their
ends. Such behavior can be approximated by the lumped plasticity model, see e.g. [34,[35]], where all inelastic
response is concentrated at the zero-length hinges at the ends of the element, while the bulk of the element remains
elastic. Of course, this does not correspond exactly to the actual material state of the beam, but the model captures
all essential properties of the column’s response.

The discrete approach to modeling of localized failure, used in the lumped plasticity and similar models, is an
alternative to the smeared approach, used in previously described concepts. Both have advantages and drawbacks.
The main advantage of the smeared fracture concepts is that the finite elements are developed on the micro scale,
so they can generally represent any piece of material, regardless of its size and position in the structure, and the
localization is positioned automatically. On the downside, many models have been found to suffer from stress
locking due to inadequate kinematic description of discontinuous displacements around a macroscopic crack, see
[[13}36] and references within. Besides that, most techniques require sufficiently fine meshing of the softening zone
to achieve mesh objectivity, which can prove computationally too demanding for large structures [12,36]. In the
discrete approach, the issues regarding size and representation of the softening zone are avoided by contracting it
to a single point and introducing a localized dissipative mechanism. Another benefit of this method is that the finite
elements are capable of kinematically accurate description of strong discontinuities in displacement and rotation.
Consequently, a structure can be represented by a relatively coarse finite element mesh. The main drawback is that

the localized failures can only occur at the predetermined locations.

A new family of methods, characterized by incorporation of the discontinuity within the finite element, has become
very popular recently. Strain (weak) discontinuity models were developed first, by adding new discontinuous
modes into the strain field [37,]38]]. The displacement field remained continuous, however, which limited their
applicability, see [36]] and references within. This led to development of the strong discontinuity approach, utilized
also in this work.

Numerous variations of strong discontinuity models have been developed, see [39-48|] among others. Their ap-
plication to beam finite elements, as in [49-56], is especially relevant for this work. All the models are based
on the same idea. The finite volume of highly localized strain, which represented the fracture energy dissipation
zone in smeared crack approaches, is replaced by a displacement (strong) discontinuity and an associated localized
dissipative mechanism. This is achieved by upgrading displacement interpolation of standard finite elements with
additional discontinuous shape functions. Each interpolation function is associated with an additional parameter,
representing the corresponding displacement jump. Introduction of the conjugate traction at the discontinuity,
related to the displacement jump by a softening cohesive law, establishes a localized dissipative mechanism. Addi-
tional equations for the new parameters are written in the form of local equilibrium between the stress in the bulk
of the element and the traction at the discontinuity [/1}/14].

Strong discontinuity approach can be described as a hybrid of the smeared and discrete approaches and it combines
strong points of both concepts. Since the fracture energy dissipation is associated with the discontinuity, which
has zero volume, the issues with the vanishing volume of the localization zone are successfully avoided and the
physically unrealistic failure without energy dissipation is prevented. Mesh objectivity is granted as well, because
the width of the softening zone and the energy dissipation at the discontinuity do not depend on the finite element
size. From the mathematical point of view, the boundary value problem is well posed, which means that the

concept efficiently copes with the physical, numerical and mathematical inconsistencies, presented earlier.

The enhanced kinematics provide an accurate description of the discontinuous displacement field around the frac-
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ture, allowing for development of non-locking finite elements, namely the additional displacement modes are
designed in such manner that they enable the finite elements to capture the stress-free state in case of a fully
softened discontinuity [14]]. Moreover, incorporation of local kinematics, describing the small-scale response of
material (fracture), into the large-scale material model, corresponds well to the multi-scale nature of the consid-
ered physical problem [1}|12}|14}36,40]. Hence, the discontinuity can be adequately modeled with a relatively
coarse mesh. Since each finite element is capable of forming a discontinuity, there is no need to predetermine its
location. It occurs automatically and propagates through the structure, without modification of the original finite
element mesh. These properties make the strong discontinuity concept convenient for numerical analysis of larger
problems.

Implementation of displacement jumps can be performed by different methods, but generally two major families
are distinguished — extended finite element methods (X-FEM) [3911404257-59], and embedded discontinuity finite
element methods (ED-FEM) [41,/60-63)]. They differ in treatment of the additional parameters, associated with
enhanced displacement modes. In X-FEM methods, the parameters are connected to the nodes of the finite element
mesh and treated as global unknowns. In ED-FEM methods on the other hand, the parameters are associated with
the finite elements and treated as local variables. Several studies have been performed, comparing advantages
and disadvantages of both approaches [[14}/64]. The main advantage of ED-FEM methods is that the additional
unknowns can be eliminated from the global equations by static condensation, while in X-FEM each additional
discontinuity increases the global system of equations. In this work, we follow the ED-FEM concept, motivated
mainly by the previous work and experience in our research group. Illustration of the method on a basic 1D
example can be found in [65]].

1.3 Goals and outline of the thesis

Failure analysis has received much attention in our research group. Recently, a great part of research has been
focused on modeling of localized failure of material with the strong discontinuity approach, more specifically the
embedded discontinuity concept (ED-FEM) [46-48l54,/66,/67]]. The original contribution of Ibrahimbegovic and
Brancherie [48]] with respect to the strong discontinuity approach was to combine two inelastic mechanisms, both
hardening in fracture process zone and softening at the discontinuity. This concept has been generalized to different
structural models - continuum mechanics, plate and shell models, beam elements etc. The thesis relates particularly
to the recent works, dealing with beam models. Dujc et al. [54] have developed a stress-resultant Euler-Bernoulli
beam finite element with embedded discontinuities in rotation and axial displacement for failure analysis of steel
(metal) beams and frames. Pham et al. [[52] have presented a stress-resultant Timoshenko beam finite element with
embedded discontinuity in rotation for failure analysis of reinforced concrete beams and frames. The first objective
of the thesis is to combine the two concepts, namely to develop a similar finite element that uses Euler-Bernoulli
kinematics and material laws for reinforced concrete. The next objective is to extend this concept to a multi-layer
finite element in a similar manner as presented in [51[]. More specifically, the goals are to:

e develop a straight planar stress-resultant Euler-Bernoulli beam finite element with embedded discontinuity

in rotation for simple, robust and efficient failure analysis of reinforced concrete beams and frames,

e develop a straight planar multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discon-
tinuities in axial displacement for precise failure analysis of reinforced concrete beams and frames, and for

computation of stress-resultant properties, required in analysis with the stress-resultant finite element,

e develop a straight planar multi-layer Timoshenko beam finite element with layer-wise embedded disconti-
nuities in axial displacement for precise failure analysis of reinforced concrete beams and frames, and for
computation of stress-resultant properties, required in analysis with the stress-resultant finite element,

e upgrade the multi-layer Timoshenko beam finite element by applying viscous regularization.
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Besides the introduction, where the motivation, the theoretical background and the objectives are presented, the

dissertation comprises five other chapters. Their outline is as follows.

In chapter 2] a stress-resultant Euler-Bernoulli beam finite element is developed. Standard kinematics is enhanced
by incorporating a strong discontinuity in rotation. Enhanced curvature is defined by an additional parameter
(degree of freedom) and a corresponding discontinuous interpolation function. The shape function is determined in
such a manner, that the finite element is able to describe a stress-free state in case of a fully softened discontinuity.
Equilibrium equations are derived from the virtual work principle, taking into account the contribution of the
additional parameter. This produces an additional equation, describing the local equilibrium between the bulk of
the element and the discontinuity. Due to the local character, it is solved on the element level and the additional
parameter is condensed out of the global system of equations. Constitutive relation between the moment and the
curvature of the bulk is defined by an elastoplastic material law with bilinear hardening and the relation between the
moment and the rotational jump at the discontinuity is described by a plastic linear softening law. Axial response
is assumed linear elastic. An operator split iterative computational procedure is developed, in which the internal
variables and the additional degree of freedom are computed on the element level, and the standard displacements
(degrees of freedom) are computed globally - on the structure level. The derived finite element is tested on several
numerical examples. Finally, concluding remarks are presented.

A multi-layer Euler-Bernoulli beam finite element is considered in chapter A reinforced concrete beam is
divided into a desired number of concrete and steel layers. Axial displacements (and deformations) of a layer
are computed in accordance with Euler-Bernoulli kinematics. Then, each layer is treated separately as a special
“bar” - special in the sense that strain is generally linear in a layer, which can be attributed to interaction between
layers. Layer kinematics is enhanced by introduction of a strong discontinuity in axial displacement. The enhanced
layer strain is determined by an additional parameter (limited to a single layer) and a corresponding discontinuous
shape function. The latter is derived on the layer level in such way, that it does not alter the layer displacements
at the nodes. A different discontinuous shape function is derived for interpolation of virtual enhanced strain,
so as not to collide with the definition of the traction at the discontinuity. Equilibrium equations are derived
from the virtual work principle, taking into account the contributions of the additional parameters. In addition to
standard equilibrium equations of the finite element, an extra equation is acquired for each layer. It represents local
equilibrium between the bulk of the layer and the discontinuity. On account of their local nature, they are solved
on the layer level and the enhanced parameters are condensed out of the global system of equations. Behavior of a
concrete layer is controlled by an elasto-damage hardening law in the bulk (stress vs. strain) and a damage softening
law at the discontinuity (traction vs. displacement jump). Behavior of a reinforcement layer is controlled by an
elastoplastic hardening law in the bulk (stress vs. strain) and a plastic softening law at the discontinuity (traction
vs. displacement jump). An operator split iterative computation procedure is presented. The internal variables
and the enhanced parameters are calculated locally in each finite element, and the standard degrees of freedom
are computed on the global level. Performance of the finite element is tested on several numerical examples. The
chapter ends with concluding remarks.

In chapter[d] a multi-layer Timoshenko beam finite element is derived, following the procedure from chapter[3] A
reinforced concrete is divided into concrete and steel layers. Axial displacements (and deformations) of a layer are
determined according to Timoshenko kinematics. Layers are then treated individually, as bars. Due to Timoshenko
beam theory, strain is constant over the length of each layer. Layer kinematics is enhanced by introducing a strong
discontinuity in axial displacements. Enhanced strain is defined by an additional parameter and an additional
discontinuous interpolation function. Contrary to the Euler-Bernoulli multi-layer beam, virtual enhanced strain is
interpolated with the same shape function as the real strain. Equilibrium equations are derived from the virtual
work principle, taking into account the contributions of enhanced parameters. This provides an additional equation
for each layer, on top of the standard equilibrium equations. The additional equations are strictly local and are
solved on the layer level, allowing for condensation of the additional parameters. They describe local equilibrium

between the bulk of the layer and the discontinuity. Axial response of layers is controlled by identical material
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laws as in chapter 3] - two laws (bulk, discontinuity) are given for a concrete layer, and two for a reinforcement
layer. Additionally, a shear constitutive relation has to be defined for a Timoshenko beam. The shear response is
assumed linear elastic. Equations of the problem are solved by an operator split iterative procedure. The internal
variables and additional degrees of freedom are computed locally in each element. The nodal degrees of freedom
are computed globally. The finite element is tested on several numerical examples. At the end of the chapter,
concluding remarks are given.

In chapter[5] the multi-layer Timoshenko beam element from chapter [d]is upgraded, so as to include viscous regu-
larization of the softening response. This is done by introducing at each discontinuity a viscous force, depending
on the rate of change of the displacement jump and on the additional viscosity parameter. The viscous forces
are added into the virtual work equation, derived in chapter [ resulting in a modified local equilibrium equation,
describing the relation between the stress in the bulk of the layer and the traction at the discontinuity. The global
equilibrium equations, as well as kinematic and constitutive equations, remain unchanged. New expressions are
derived for the softening multiplier, the traction at the discontinuity and the displacement jump. The modified el-
ement stiffness matrix is defined. Performance of the altered finite element is tested on basic numerical examples.
The chapter is rounded with concluding remarks.

Finally, conclusions of the dissertation are presented in chapter 6]
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2 STRESS RESULTANT EULER-BERNOULLI BEAM FINITE ELEMENT
WITH EMBEDDED DISCONTINUITY IN ROTATION

2.1 Introduction

In this chapter we derive a planar stress-resultant Euler-Bernoulli beam finite element with embedded strong dis-
continuity in rotation, intended for analysis of reinforced concrete beams and frames up to complete failure, with
automatic generation of softening plastic hinges at critical locations of the structure to describe localized failure
in bending. Similar finite elements have been developed by Dujc et al. in [54]] and Pham et al. in [52]]. Dujc et
al. derived a stress resultant Euler-Bernoulli beam element with embedded discontinuity in rotation for analysis of
metal beams and frames. Pham et al. derived a stress-resultant Timoshenko beam with embedded discontinuity
in rotation for reinforced concrete structures, which can describe only constant moment over the length of the
element. Our finite element combines features of both above mentioned elements - constitutive equations suit-
able for reinforced concrete, and linear description of moment over the element in accordance with the standard
Euler-Bernoulli beam element.

The derived element is based on small deformation kinematics. It features a strong discontinuity in rotation (rota-
tional jump) at a location where a softening plastic hinge forms when carrying capacity of the element is reached.
Behavior of the bulk is described by an elastoplastic material law with bilinear isotropic hardening. Behavior of

the discontinuity is described by a linear softening law.

The chapter is organized as follows: Kinematic, constitutive and equilibrium equations are considered in section
[2.2] Finite element discretization and numerical procedure are presented in section [2.3] Performance of the finite
element is illustrated by several numerical examples in section [2.4] Concluding remarks of the chapter are given
in section 2.3]

2.2 Finite element formulation

2.2.1 Kinematics

Let us consider a planar Euler-Bernoulli beam finite element with two nodes, presented in Fig. 2.1} Each node has
three degrees of freedom, two in-plane displacements and rotation about the axis, perpendicular to the plane. If
carrying capacity of the beam is reached, a softening plastic hinge forms at a distance x4 from the first node. The

hinge is kinematically described by embedded strong discontinuity in rotation c.

Axial displacement u () is interpolated between the axial nodal displacements u, using linear interpolation func-
tions N* (x), shown in Fig.[2.2] (left).

u(z) = N*(z)u, N“(x):{l— f} u={u,u? @2.1)

i
L'L

Axial strain € (x) is computed as the first derivative of axial displacement over coordinate x. Interpolation functions

B" are the derivatives of N* and are constant. They are depicted in Fig. [2.2) (right).
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Figure 2.1: Finite element with six nodal degrees of freedom and embedded discontinuity in rotation.

Slika 2.1: Kon¢ni element s Sestimi prostostnimi stopnjami in vgrajeno nezveznostjo v zasuku.
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Figure 2.2: Interpolation functions for axial displacement (left) and axial strain (right).

Slika 2.2: Interpolacijske funkcije za osni pomik (levo) in osno deformacijo (desno).

E(x):%:B“(a?)u, B“(x):{—é,é} (2.2)

Transversal displacement v,, is described by the following equation.

padd

/A_/%
v(z,24) =N (2) v+ N () 0+ M (z,24) (2.3)

The first two parts of expression (2.3) represent standard transversal displacement, which is interpolated between
transversal nodal displacements v and nodal rotations § with Hermite interpolation functions NV (z) and N? (z),
depicted in Fig. [2.3|(left). The last term represents the additional displacement v®%? (x, x4), due to rotational jump
o. Function M (z,24) will be considered later. Note that 249 is zero until the carrying capacity is reached.

v =22 32 2 )] =y

0 x\3 z\2 x sx\3 x\2 T 24
N <‘“>:L{(L) -2(3) 3 (7) - (F) } 0=1{01,0:}
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According to Euler-Bernoulli beam theory, the curvature of the beam « (x, x4) is computed as the second derivative

of the transversal displacement.

& radd
k(z,x )—@—B”( B’ (2)0+G 2.5
) = 57 = 2)v+BY () 0+ G (z,24) (2.5)

The first two terms in expression (2.3)) represent the regular curvature &. Linear functions BV and B? are second
derivatives of Hermite polynomials NV and NY. They are written in equation (2.6), and drawn in Fig. (right).
The last part of expression (2.5) is the additional curvature, caused by the discontinuity in rotation. Function

G (,24) is the second derivative of M (x,z,4) and will be discussed in the following section.

vo- {502 E0 D) v (320D e

I L ] I L ]
— X X
1 2 1 2
% ¥
N1 \ B\]/_ l’_l/" 6
6 E
| K K
N, : / 1 B} I — L2
! : P
NG T~ B IL/L/ 2
5 - i

-

Figure 2.3: Interpolation functions for transversal displacement (left) and curvature (right).
Slika 2.3: Interpolacijske funkcije za pre¢ni pomik (levo) in ukrivljenost (desno).

It is convenient to collect all degrees of freedom of the finite element in a single vector of generalized nodal
displacements d and rewrite expressions for the axial strain ¢ and the regular part of the curvature &, defined in

equations (2.2)) and (2.3).

6:[B" 0 o]d:fsfd, E:[o BY Bﬂd:fs”d, d” = {u” v" 67} 2.7)
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2.2.2 Derivation of operator G

Interpolation function M (x,24), introduced in equation (2.3)), describes the additional transversal displacements
of the beam, due to discontinuity in rotation .. Its main feature is a unit jump in the first derivative at the location
of the discontinuity z4. Everywhere else the function is smooth. In order not to affect the nodal displacements
and rotations, the values of N and its first derivative /I’ must be zero at the nodes, see Fig. (left). It is not
necessary to know M beyond these requirements, as it does not appear in the computation on its own.

The first derivative N1’ can be composed from a Heaviside function H, , and a smooth continuous function ¢ (x)
with nodal values ¢ (0) = 0 and ¢ (L) = —1. The Heaviside function and its derivative, the Dirac-delta func-
tion d,,, are defined in equation (2.8)) and displayed in Fig. (right). Just like N, ¢ is not required for the

computation.

-0,

N 0, z<x OH. o, Tr==
N' = Hyy+o(x), Hyy= Y ‘ 2.8)
1, x>uxy4 Ox 0; otherwise
L L ] L L ]
I Xd | I Xd |
F— X F— X
1 2 1

ZH<
g<I
-

Figure 2.4: Interpolation function N/ and its first derivative M’ (left). Heaviside and Dirac-delta
functions (right).

Slika 2.4: Interpolacijska funkcija M in njen prvi odvod M’ (levo). Heaviside-ova in Dirac-delta
funkcija (desno).

Operator G is the second derivative of interpolation function M or the first derivative of N/’ According to (2.8)),

we can write:

G= (M) =(Hy+o@) =G+, G=6,,, GC=¢ () 2.9)

We can see that G consists of a discrete part G and a continuous part G. While the former is known, the latter still
has to be determined. This can be done (without knowing M or ) from requirement that the element must be able

to describe a curvature-free state when the moment in the softening plastic hinge drops to zero, see Fig.[2.5] At that
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point, the element should behave as two rigid bodies, connected by a rotation hinge, which implies the following

relations between the nodal degrees of freedom:

U2=U1+L91+(L—l‘d)a, 0 =0+« (2.10)

Y

A

Uy,V1

=X

Figure 2.5: Curvature-free deformation of the beam when the moment in the hinge drops to zero.
Slika 2.5: Deformirana lega brez ukrivljenosti, ko moment v plasti¢cnem ¢lenku pade na nic.

Let us now rewrite the expression (2.5)) for curvature, taking into account the form of G.

I3 i /rj\‘
K (x,2q) =B () v+B? ()0 + G (z,24) o+ G (z,24) (2.11)

Continuous part of expression is designated with & and represents the curvature of the bulk of the element.
The discrete part & represents the infinite curvature at location of the discontinuity x4. In a situation, depicted
in Fig. the bulk curvature is zero. After applying relations (Z.10) and equations (2-6) for B” and BY, the
expression for % is equaled to zero. Solution of obtained equation delivers the expression for G.

14+3(1-24) (12
G(r,mq) = — ( IL/)( )

2.12)

2.2.3 Relations between global and local quantities

2.2.3.1 Real degrees of freedom

A structure is modeled with a mesh of finite elements. A part of such mesh is depicted in Fig. The total number
of the nodes in the mesh is designated with n . Each node has three degrees of freedom - displacement U parallel
to the global X axis, displacement V' parallel to the global Y axis, and rotation ® about the axis, perpendicular to

the XY plane. The structure has in total npor = 3n, degrees of freedom, which are collected in the vector d®*.

@ = {U1,V1,01,02,V2,0s, ... Uny Vi, @ny } @13
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m Un

e nodeof FE

X

Figure 2.6: Degrees of freedom at a node of the finite element mesh.

Slika 2.6: Prostostne stopnje v posameznem vozli§¢u mreZe kon¢nih elementov.

Let us now consider a finite element (e) with end nodes (n;) and (ny). The local x axis is parallel to the axis of
the element, with x increasing from node (n) towards node (n;), see Fig. The element’s degrees of freedom,
defined in the local coordinate system, are collected in the vector d(©). Global degrees of freedom, associated with
the nodes of the element are similarly organized into vector D(©). The two are connected with a transformation
matrix R(®), (Z.14). In equation (Z.13), zeros are replaced by dots for clarity. ¢¢) is the angle between the global
X axis and the local z axis (rotation of the coordinate system around the global Z axis, which is equal to the local

z axis), see Fig.

a© =REpe (2.14)

T T
4 = {af a0 00 08} D = {0, U,V Vi 0y, 00, )

np

[ cosgl® . sing(®) .
cos ) . sin¢(®)

—sing(® . cos (€ .
—sing(® . cos ¢©)

(2.15)

- 1_
Vector D(¢) contains those components of vector d* that correspond to the nodes of the finite element. The

selection of appropriate components is done by matrix P(¢) of size 6 X npor with only six non-zero entries.

D(e) — P(e)dslr
(2.16)

(e) _ ple) _ ple) _ ple) _ple) _ ple) _ (e) _
P1,3n1727 2,3n2727P3,3n1717P4,3n2717P5,3n]7P6,371,2717 other P; 7 =0

Obeying equations (2.14) and ([2.16)), we can write the relation between the local degrees of freedom of the finite

element (e) and the global degrees of freedom of the mesh.
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d© = reple) gsr (2.17)

O, |
o) 02 o) Uz

n, Unz 2
Vn G A e

Figure 2.7: Global (left) and local (right) degrees of freedom, associated with a finite element.

Slika 2.7: Globalne (levo) in lokalne (desno) prostostne stopnje, povezane s kon¢nim elementom.

2.2.3.2 Virtual degrees of freedom

Virtual displacements are a kinematically admissible variation of real displacements. As with the real displace-
ments, they are interpolated between the nodal values with appropriate interpolation functions. The virtual defor-

mation of the mesh is therefore defined by the virtual displacements of its nodes.

The global virtual degrees of freedom (virtual nodal displacements of the structure) d*", the virtual displacements
of the element d(®) and the selection D(¢) of the global virtual displacements, associated with the element (e), are
defined analogously to the real quantities d**, d(¢) and D(¢), defined in equations (Z.13) and Z.13).

A

& = {01, 01,61,02, 15,03, - Uy, Vi O}

(e ~le) ~le) ~le) ~le) Ale) Ale T A (e A A~ A A N A T (218)
ae — {ug Val o) ol 8l 4l >} , DO ={0,,,0,,, V0, Vs, 6,,,,0,,}

Relations between them are equivalent to equations (2.14)-(2.17), matrices R(®) and P(¢) remain the same.
dle) = R(e)f)(e)7 Do) — P(e)astr7 d© — REpE gsr (2.19)

2.2.3.3 Internal forces

Internal forces can be organized in the same way as the generalized displacements. Each degree of freedom from
the vector d'f is accompanied by a corresponding internal force. Analogously to equation (2.13)) we can write:

l]']t,Stl‘ _ nt nt nt nt nt nt nt nt nt
f _{fUlﬂfV17 @17fU27fV27f®27 LERIS} U"N’ V”N’ G)"N} (220)
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Vector £"S" has npor = 3ny components - for each node a force parallel to global X axis, a force parallel to
Y axis, and a moment around the axis, perpendicular to the XY plane. They are labeled with f}} int, b iT; int and fint,
respectively, and depicted in Fig. 2.8]

. t .
fir
fint
ON
n. fint
Y e nodeof FE
X

Figure 2.8: Internal forces, corresponding to degrees of freedom at a node of the finite element mesh.

Slika 2.8: Notranje sile, ki ustrezajo prostostnim stopnjam v vozlis§¢u mreZe kon¢nih elementov.

Internal forces at a certain node of the structure are composed of contributions from all the elements, meeting in
that node. Let us now take a closer look at a finite element (e). The internal forces of the element are defined
in the local coordinate system and correspond to the local degrees of freedom d(©), see Fig. (right). They
are collected in the vector £"(¢). The forces can be transformed by matrix R(®) so as to match the directions
of the global internal forces "5 The new, transformed vector is designated with Fi"(¢)| Fig, . 9| (left). The
transformation matrix R(®) is the same as in equation (2.15).

fint(e) — Rlpint(e) o Fim,(e):R@)*'fmg(e) 2.21)

fine(e) = [ pinu(e) pin(e) pinc(e)  pint ) pinte) yint(c) T
— 1w uy 1 Jw 01 /0,

. , . (2.22)
o) = L) @) poel) e, fav), fote}

The components of the global vector f"*" are computed by summing the contributions F"(¢) of individual finite
elements. Matrix P(¢) is defined in (2-16).

nFE

fmt str __ Z P Fmt (2.23)

Transformation (2.21)) and summation (2.23)) can be joined in a simplified notation A. Operator A represents the

assembly of the internal forces f int,(¢) and nrg 1s the total number of finite elements.

NFE

gint,str _ Z P (e) fim,(e) _ niE |:fint,(€):| (2.24)
e=1
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int,(e
Vi, f int,(e)
v,
fint(e) o
O, f int,(e) fint(e)
o] . 6> e} Uy
£int (@) n/ fim® 2
Vi, (e e f int,(e) (e
Vi

f int,(e)
v G, fGI nt,(e) f int,(e)
u
n fim y g '
n X
X ¢

Figure 2.9: Contribution of a finite element to internal forces of the structure in global (left) and local
(right) coordinate system.
Slika 2.9: Prispevek kon¢nega elementa k notranjim silam konstrukcije v globalnem (levo) in lokalnem

(desno) koordinatnem sistemu.

Another useful relation can be observed. For rotation matrix R(¢) it holds R = R~! or RTR = I, where I is the
identity matrix. By using this property as well as equations (2.19) and (2.21), we can conclude that the scalar
product of virtual displacements and internal forces is equal in local and global coordinate system.

)T

q© 7 gint(e) — fyle (e) pint,(e) (2.25)

=
=
&
o
g
-~
©
2
Il
(e

2.2.4 Virtual work equation

Equilibrium of a structure can be described in a weak from, by the virtual work principle, which states that the
virtual work of internal forces G on any kinematically admissible perturbation of displacements - virtual dis-

placements - must be equal to the work of external forces G*' on the same displacements.

Gn_Gget=9 (2.26)

Since we are dealing with a discretized model, the external loads are defined at the nodes of the mesh. Distributed
loads have to be transferred to the nodes appropriately. The virtual work of external forces is therefore computed
simply as a scalar product of the vector of virtual nodal displacements of the mesh d*" and the corresponding
vector of generalized external forces £*"*''. Virtual displacements are defined in equation (2:.18) and the external

forces are defined analogously to the internal forces in equation (2.20).

Astrl "RQF . ext,str
Gext _ dstr fext,str _ Z djs_trfj s (2.27)
j=1

Here npor is the number of the structure’s degrees of freedom. Many components of the sum (2.27) may be zero.
The virtual work of internal forces is composed of contributions from individual finite elements. The total number

of finite elements in the mesh is ngg.
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. nFE .
Gint — Z Gint(e)  gint(e) — (&N +&M)dx (2.28)

e=1

h
©

For each element, G"(¢) jg computed by multiplying the virtual axial deformation and virtual curvature with the
axial force and moment, respectively, and integrating the products over the length of the element. The virtual
quantities € and & are interpolated between the virtual nodal displacements in the same way as the real quantities
in equations (2.2) and (2:3). The additional part of virtual curvature 4244
have already developed a softening plastic hinge.

is only defined in the finite elements that

x>

S

=B, A=B'9v+B’O+ (2.29)

Expressions (2.29) are inserted into integral (2.28)), which is then rearranged to produce the internal forces, corre-
sponding to the virtual degrees of freedom of the finite element d(®), as defined in (2:18). Index (e) is omitted until
the last line in equation (2.30).

GO = [(eN -+ M) dx =

L
- / BU“aNdz + / (B'¢+B9+Ga) Mdr =
L ; L ; . ; (2.30)
:ﬁT/B” Ndx+€'T/B” Mdz+ /B9 de+d/GMda::
L L L L

— d@7ginte) 4 4@ pe)
—_— =

@Gint,reg Gint,add

The second term of the last line G"??¢ i the additional virtual work due to enhanced kinematics. It only exists
in the n,, finite elements that have reached the carrying capacity and formed a softening hinge. Virtual work of the
remaining finite elements consists solely of the regular part G""¢9. Virtual nodal displacements of the element
and the internal forces have been defined in and (2.22).

a(e)T — {ﬁT7€,T’éT}7 fint,(e)T _ {fu,im,(e)T7fv,im,(e)T7f9,int,(e)T} (2.31)

Components of £ int,(¢) are computed as follows:

P — [BNda, O = [B M da, 19— [B Mda (232)
L L L

A shorter notation (2.33)) will also be used.

B 0
fint(e) — / 0 | Ndz+ / BY| Mdz = / B Nde + / B M (2.33)
Lo . |B? L L
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Quantity Rl corresponds to the virtual rotational jump ale).

:/Gde - /(G+5Id)de - /C;de+ M, =/G*de+t (2.34)
J .

In (2.34), we have used equation (2.9) for G and rule (2.35) for integration of the Dirac-delta function. Quantity
M |wd is the value of function M () at coordinate x4. We assign to it a new symbol ¢ and assume it as the moment
at the discontinuity (the moment in the softening hinge).

/ g(x) by, dr =g (2q) (2.35)

L

The virtual work of external and internal forces in the equilibrium equation (2.26) is replaced by expressions
and (2.28), applying also (2.30) and (2.23)). Remember, that the additional virtual work G'"-2?? is only included
for the n,, finite elements, already in the softening phase. For the sake of simplicity, it is assumed that they are
labeled with consecutive numbers from 1 to n,,. Finally, the second of equations (2.19) allows us to express the

weak equilibrium in the manner of global virtual displacement vector d*" and virtual rotational jumps &(©).

nFE 1 na
— D(e) Fmt,(e) + Z d(e)h( ) ot pextstr
- nEE ! Ny (2.36)
— astrT P Fmt dstr fext str __
L rLa

_ &str (fmt str fext qtr) nZ

Equilibrium (2.36) must hold for any kinematically admissible virtual displacements d*" and virtual rotational
jumps &'©). From this requirement we can conclude:

fmt,str _ fext,str — 0

(2.37)
Vee {1,2,...,n4}: hle) =0

The first of equations represents equilibrium of every individual node of the mesh, or the global equilibrium.
Here £t and £ X557 are vectors of internal and external forces on the structural level. They correspond in position
and direction to the degrees of freedom of the structure. Their length is equal to the total number of degrees of
freedom npor. The second of equations can be better interpreted after inserting expression (2.34) for
h'¢). Equation (2:38) represents a weak form (integral form) of Cauchy equilibrium between the moment ¢ at the
discontinuity and the moment M in the bulk of the element.

=0 o t=— / GMdx (2.38)
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Another verification is required at this place. The principle of embedded discontinuity can be regarded as a method
of incompatible modes. In that view, the additional virtual work G'"%?? performed on the virtual rotational jump
&, should be zero at least for the case of constant moment in the element.

& / GMdz = &M / Gdr—0 = / Gdz =0 (2.39)
~~
L #0 L L

Taking into account the rule (2.35) for integration of the Dirac-delta function, requirement (2.39) can be reformu-
lated.

=1

[cdo= [(G+b.)do= [Gdo+ [s,d0=0 = [Gdr=-1 (2.40)
L L L L L

Operator G, as defined in equation (2.12) satisfies this condition, regardless of the location of the discontinuity z4.

2.2.5 Constitutive models

In this section we describe selected constitutive models. Bending is controlled by two separate laws, one for the
bulk of the element and the other for the softening hinge at the location of the discontinuity.

2.2.5.1 Axial response

The axial response is presumed linear elastic. In equation (2.41)), N is the axial force, F is the elastic modulus, A

is the cross-section and ¢ is the axial strain, computed according to equation (2.2)).

N=FAe, — =EA (2.41)

2.2.5.2 Bending response for the bulk of the element

Behavior of the bulk of the element is described by elasto-plastic model with bilinear isotropic hardening. A
typical moment-curvature diagram is shown in Fig. 2.10] (left). Response is linear elastic up to moment M., at
which the first cracks in concrete appear, reducing the bending stiffness of the beam. Another drop in stiffness
occurs at moment M, when the reinforcement starts to yield. Unloading lines are parallel to the initial elastic
line. This also holds for the part of the diagram between M. and M,. Although a combined damage-plasticity
model would be more accurate, this simple plasticity model performs well enough for typical reinforced concrete
cross-sections, where the largest part of inelastic deformations comes from tensile reinforcement. The diagrams in
Fig.[2.10]depend on the axial force V. In this chapter, we limit ourselves to beams with symmetrical cross-section,
which implies a symmetrical response for positive and negative bending moment. The bulk material model is
mathematically described by the following equations, which can be derived from the principle of maximum plastic
dissipation, see e.g. [54].

Remark. For beams with a non-symmetrical cross-section, the material parameters, which determine the dia-

grams in Fig.[2.10} would be different for positive and negative moments.
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Figure 2.10: Moment - curvature diagram (left). Bilinear hardening law (right). Only positive parts of
the diagrams are shown. They are valid for constant value of axial force.
Slika 2.10: Diagram moment - ukrivijenost (levo). Bilinearno utrjevanje (desno). Prikazana sta samo

pozitivna dela diagramov. Veljata za konstantno osno silo.

Moment M is related to curvature & by equation (2.42)), which represents the elastic loading path and elastic
unloading/reloading path of the M — & diagram.

M =EI(R—F&,), k=B"v+B’0+Ga (2.42)

Here FE is the elastic modulus, I is the moment of inertia, %, plastic curvature, and # the bulk curvature, as defined
in equation (2.TT). Before the formation of the softening hinge, the rotational jump « is zero. The plastic loading
path of the M — K diagram is determined indirectly by the remaining equations in this section.

¢(M,q) =|M|—(M.—q) (2.43)

Yield function ¢ prescribes the admissible moments. Elasticity limit M, is the absolute value of the moment, at

which the first plastic deformation occurs. Moment-like hardening variable ¢ controls the yield threshold evolution.

— H&; E<&m - M, — M,
= o S bag = —2+L—° (2.44)
! {(MyMC)HZ(f'SAH); §>&an A H,y

Equation (2.44) describes the bilinear isotropic hardening of the material, presented in Fig. [2.10] (right). Here
Hy > 0and H, > 0 are constant hardening moduli, £ is a curvature-like hardening variable with the initial value
zero, and &, is the value of &, at which the slope in the § — & diagram changes from H, to H,. Evolution in
pseudo-time of internal hardening variables for plasticity, k,, and &, is prescribed by evolution equations (2.45).

Fop =4 sign(M), €=% (2.45)
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The dot designates the derivative with respect to pseudo-time and 7 > 0 is plastic multiplier. The loading/unloading

conditions and consistency condition (2.46) apply as well.

>0, $<0, ¥6=0, 46=0 (2.46)

Tangent moduli of the M — < diagram are determined by the above equations. In elastic response, the plastic
multiplier is equal to zero. As a consequence, internal variables are constant and the tangent modulus is simply

computed by differentiating the expression (2.42) for M with respect to &.

M
¥=0 = &, =const, aa—’_{ =FEI (2.47)

In plastic loading, the plastic curvature &, is not constant. It depends on the plastic multiplier 4 which depends on
the curvature <. The tangent modulus can be computed from pseudo-time derivatives of moment and curvature. It
follows from the last two equations in (2.46) that ¢ = 0 and ¢ = 0. We can express M from equation (Z.43) and
differentiate it over pseudo-time. Both options for § from equation (2.44) have to be considered. In both cases, M
is expressed as a function of £, which is differentiated according to the second of evolution equations (2.43)).

Hysign(M); &<ém

.. _ (2.48)
Hyysign(M); &> &xm

M= (M.—q) sign(M), M:{

Now we differentiate equation (2.42)) over pseudo-time, exploiting expressions (2.48)) for M. The first of evolution
equations (2.45) is utilized in the procedure.

M = EI (k—k&p)

H;7ysign (M) = EI (k—*sign(M)) Hy: E<érg
- . H, = o 2.49
Elk = (EI+ H;)%sign(M) Hy: €>ény (2.49)
. EI+H;. .
nfT’yszgn(M)

Pseudo-time derivatives M and &, defined in (2.48) and (2.49), are divided to produce the plastic tangent modulus.

OM M  EIH, [ Hi €<ém 250)
Ok k FEI+H; C\ Hy E>ép '

The elastic and plastic tangent moduli are gathered below. The first expression represents the slope of the elastic
loading and unloading path, while the second one represents the slopes [ and H, of the plastic loading path in
the M — k diagram in Fig. 2.T0]
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2.2.5.3 Softening plastic hinge in bending

Behavior of the softening plastic hinge is described by a plastic softening law, presented in Fig. It associates
the moment in the hinge ¢ to the jump in rotation a. When the hinge forms, the rotational jump is zero and the
moment is equal to the ultimate moment M, of the cross-section. If the imposed nodal displacements of the finite
element are increased, the carrying capacity of the hinge reduces. The moment ¢ decreases, while the rotational
jump « increases. This is referred to as plastic softening. If the imposed nodal displacements of the finite element
are reduced, the rotational jump remains the same, representing plastic deformation. The moment in the hinge
decreases in such a way to remain in equilibrium with the moment in the bulk, as demanded by equation (2.38).
This process is called elastic unloading. When ¢ reaches the admissible value again (in absolute value), the plastic
softening continues and « changes accordingly to the sign of the moment. The diagram in Fig. 2.1T] depends on
the present axial force IV, and may be different for positive and negative bending moment, if the cross-section
is not symmetric. In this chapter, we limit ourselves to symmetrical behavior for both load signs. Mathematical
representation of the described behavior is condensed in the following equations, which can be derived by the
principle of maximum plastic dissipation, see e.g. [54].

t

My

Ks

a
ay

Figure 2.11: Moment at the hinge - rotational jump diagram.

Slika 2.11: Diagram moment v ¢lenku - skok v zasuku.

& (t,9) = [t| — (M, —§) (2.52)

Failure function q:S defines the admissible values of moment ¢ in the hinge. The ultimate moment of the cross-
section M, is the absolute value of the moment, at which the softening plastic hinge forms. The moment-like
softening variable ¢ manages the softening threshold evolution.

g = min {—Kf, Mu} (2.53)

The linear softening law is described by equation (2.53), where §: is a rotation-like softening variable with initial
value zero, and K < 0 is a constant softening modulus with units kNm/rad. Evolution in pseudo-time of internal

softening variables o and ¢ is defined by evolution equations (2.34).
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& =%sign(t), £=% (2.54)

The dot designates the derivative with respect to pseudo-time and 5>0is plastic softening multiplier. The load-
ing/unloading conditions and consistency condition (2.53)) also apply.

=0 (2.55)

©-n
2
©-n
2l

>0, ¢<0, =0,

2l

The equation of the plastic softening loading path of ¢ — « diagram is not unique. It depends on the loading history.
If the softening process alternates between both load signs, the loading path is translated sideways (left or right).
The slope, however, is not affected and can be determined from the pseudo-time derivatives of ¢ and «. In softening
process, when 4 > 0, the failure function ¢ = 0. Expression for ¢ is then determined from (232) and (Z.33). The
derivative is obtained in accordance with evolution equation for §= .

i

(Mu + Kf) sign (t);
0;

t= (M, —§)sign(t) =

<M, K¥sign(t); §< M,
t{ Ysign(t); q 2.56)
:Mu

O; Cj: u

L1

The slope of the plastic softening path, defined as the derivative of ¢ over «, is computed by dividing the pseudo-
time derivatives (2.56) and (2.54) of both quantities.

‘ not defined; 4 =0
ﬁ—i— K; ¥ >0, G< M, (2.57)
da & ’ ’y 4 “ ’
07 §>07§:Mu

A third option was added in equation (2.57)). It corresponds to elastic unloading path with 5 = 0. It follows from
evolution equations that & = 0 in that case. And since the failure function <Z is no longer required to be zero,
the traction ¢ cannot be computed as in (2.36)). It changes in accordance with equation which represents the
equilibrium between the bulk and the discontinuity. The derivative 9t/J«a cannot be defined in this case, because

« is constant.

2.3 Computational procedure

Response of a structure, discretized by a mesh of npgr above derived finite elements, is computed at discrete
pseudo-time points 7o, 71, ..., Tn, Tntl, --- , L by solving at each pseudo-time point nonlinear equations (2.38)
for current values of nodal displacements/rotations.

fint,str _fexLstt _
(2.58)
Vee{l,2,....,na}: h9=0

Here, n,, is the number of elements that have reached the carrying capacity and formed a softening plastic hinge.
At a particular pseudo-time point 7,41, the solution is searched iteratively by the Newton-Raphson method. Each

iteration, denoted by k, consists of two subsequent phases: (A) computation of internal variables, corresponding
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to the current iterative values of nodal displacements/rotations, in order to compute the moments in the bulk and
in the softening plastic hinge according to the chosen material laws; (B) solution of linearized equations (2.58)
in order to update the iterative values of nodal displacements/rotations. When one phase of the computation is
completed, the results are used immediately in the next one.

For a pseudo-time point 7,1, the computational problem related to a generic finite element (e) can be stated as:
sven (a5 ) €0l 80} ona {al) s, €00l B0

Note that superscript (e) was omitted in section for the above internal variables. The subscript n and n + 1

denote the values at pseudo-times 7,, and 7,1, respectively.

2.3.1 Computation of internal variables

In this section we will present computations of phase (A). The internal variables for element (e) at pseudo-time
point 7,11 will be computed for the k-th iteration, while the nodal displacements/rotations are fixed at the values
from the previous iteration dffl’l(k_l). Since every internal variable is connected to a single finite element, the
computations are local, i.e. they are performed independently for each element. The condition of the discontinuity

is known by the following flag.

alse ... no discontinuity in element (e
crack'® = {f Y (©) (2.59)

true ... discontinuity in element (e)

The algorithm in Fig.[2.12]is applied. If there was no discontinuity in the previous pseudo-time step, we begin with
equations for the hardening phase of material, described in section [2.3.1.2] We must do so even if the previous
iteration of the current step indicated occurrence of the discontinuity, because that was not a converged result. We
check if the carrying capacity is reached. If not, we keep the obtained results, otherwise we discard them and use
equations for the softening phase of material, described in section[2.3.1.3] If the discontinuity already existed in
the previous pseudo-time step, it must also exist in the current step, therefore we follow the procedure from section

2313

The integrals that appear in expressions (2.32), (Z.34) and (Z-38)) for £":(¢)_ h(€) and ¢, are evaluated with numerical
integration. A three-point Gauss-Lobatto integration scheme is used with integration points at both ends and at the

center of the finite element. Curvature, moment and hardening internal variables are therefore computed only at
those three locations. Softening internal variables are defined at the location of the discontinuity, which coincides

with one of the integration points (although the two are not connected).

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element.

2.3.1.1 Axial response

Computation of the axial response is straightforward. Axial strain is computed according to equation (2.7) with

the current values of the nodal displacements. Axial force is calculated from (2.4T).

) e (e aN |®
BT | 3 R WG N off B | . —PA (2.60)
n+
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Start phase A of iteration k

for element e
Yes
crack®= true crack'®, = true
No

use egs. from sec. 2.3.1.2

crack®, = true,

delete results, computed
with egs. from
sec. 2.3.1.2

carrying capacity
exceeded

No

crack’®, = false,
keep results, computed
with egs. from
sec. 2.3.1.2

use egs. from sec. 2.3.1.3

End phase A of iteration k
for element e

Figure 2.12: Algorithm for phase (A) of k-th iteration for finite element (e).

Slika 2.12: Algoritem za fazo (A) k-te iteracije za kon¢ni element (e).

2.3.1.2 Bending response in the hardening phase

The computational procedure for the hardening phase is described next. There is no discontinuity (hinge) in the

element and the rotation jump is zero. First, we assume elastic behavior, which means that the hardening internal

variables keep the values from the previous step. Moment is computed in accordance with equation (2.42)), where
(k) _

Xpy1 =

_(k),trial _ =(k),trial z k),trial _ k—1 k _(k),trial
K;7ZL+1 = Kpn; 57(z+)1 =&n, MT(L+>1 =LKl (’f (d£L+1 )>0‘£1+)1) - “;,31+1 ) (2.61)
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Trial yield function (b mal is computed, as defined in (2.43) and (2.44).

), trial ),trial _(k),trial
n+1 ‘ n+1 (Mc*qiil )
_(k),trial { —Hip: &n < &am (2.62)
n+1 - - _
! —(My— M) —Hy (§a—Ean) s &n>Eam

The trial solution is accepted if the trial yield function is negative or zero.

q—s(k),t'rial <0 = :‘_i(k> _ R(k),trial g(k) . g(k),trial M(k)

2 g(k) trial
n+l = p,n+l pot+l 0 Sntl T M, (2.63)

n+1 ’ n+1 n+1

If the trial yield function is positive, the internal variables must be corrected, according to incremental form of
evolution equations (2.43)), where ’77(1]21 = 75;21 (Tn+1—Tn) > 0. It is shown in appendix that sign (M 7(51)1) =

sign (ijﬁimal) .

Qgﬁimal >0 = "fgffm = Kp,n +7r(:i315i9” (Mv(z?itrml> ) ggﬂl =&, *”_72?1 (2.64)

By exploiting equations (2.64), the moment M, (k)

_(k
%(Lll-

41 can be expressed with the trial moment and the plastic multiplier

k k),trial _(k . k), trial
Mfljl = Mr(ﬁ)]t — Elvflﬁlszgn <Mﬁb+>lt ) (2.65)

(k)

We do the same for the moment-like hardening variable g, /. Since the expression for g depends on the value of

£, we have to consider three options. The values form previous and current step, &, and &, 1, can be either both
smaller than 57, both greater, or one smaller and one greater. Note that &, is the greater of the two values,

(%)

because 7,,/; is positive.

qgiitrml — H, ’_Y,(ﬁzl; gn < 57L+] < EAH

_(k _ ria F = c 3 F c

Q,(LJZI = q,(ﬁ’lt ' (Hi— H)) (éar —&n) — Hz%(lﬁl, &n <Ay Sn+1 > A (2.66)
qfﬁzltmal —H; 1(1421’ £n+l > f_n > EAH

Yield function éiﬁzl is expressed as a function of plastic multiplier 77(1]21 by employing equations (2.63) and

(2:66)). Value of the plastic multiplier is computed from requirement ‘5::)1 =0, coming from the loading/unloading
conditions.

(51(1]11 ‘ n+l‘ (Mu _qilli)l) = ¢£Lk+)1 (’7&21) =0 (2.67)
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(k)

Considering the different values of g, /,,

(k)

we obtain three expressions for 7, ;.

&(k),tm’ul
n+1 . c e < &
4EI+H1’ £n<€n+l _EAH
k) _ &ﬁ’f”“l —(Hi— Hy) (éan —&n)

B+, 0 & <&m, Ens1 > (2.68)

7(k),trial
¢n+l

m? €n+1 > fn > fAH

Consistent tangent modulus is computed as the derivative of moment over curvature. Moment takes the trial value

from equation (2.61) if plastic multiplier 77(1 le is zero, and the value from if *‘ygi)l is positive. In the second

case, equations m (2.69), (2.62)) and (2.61) are used to express the moment as a function of curvature.

_ (k) _ Fe

on|® EI; Vi1 =0 o Hy; §<&m (2.69)

OF |,y | B o0 C s 656 |
N EI+Hi, 7n+1 25 AH

The hardening internal variables, the moment and the tangent modulus have been calculated under assumption that
the ultimate moment is not exceeded. This still requires verification. If the assumption is confirmed, the above

results are accepted. Otherwise, they are discarded and recomputed with the presence of the discontinuity.

The first step in the verification is to determine the location of the potential discontinuity x4. Since we have
restricted ourselves to symmetric cross-sections, the hinge is simply placed at the location of maximal moment in
absolute value. This can occur at either end of the element because of the linear form of moment. If the moment is
constant, the discontinuity is placed in the middle of the element.

My=My=M; = xq=0L/2 My = M|,
| M| > | M| = x4=0 where M, = M|,_, (2.70)
|M| < | My = wza=1L Mz = M|,_;

Remark. For beams with a non-symmetrical cross-section, the positioning of the discontinuity would be less
simple because of the different values of ultimate moment M,, for positive and negative moments. Location of

the discontinuity would be determined in a similar way as in a concrete layer of a multi-layer element in section

[3.3.1.1] of the next chapter.

With the location of the potential discontinuity determined, we can calculate the potential value of moment at the

(K),pot
n+1

integration scheme.

discontinuity ¢ by equation (2.38)). The integral is evaluated numerically with the three-point Gauss-Lobatto

n+7lp()t / n+1 (27 1)
L

pO
n+1

reduction of carrying capacity in previous steps.

Failure function q§ is evaluated with the moment-like softening variable g equal to zero, as there has been no

(Z(k%pot _

(k),pot
n+1 =\l

n+1 n+1 n+1

(M =grt), =0 (2.72)
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We set the value of the discontinuity flag to ¢rue if the failure function is positive, and to false otherwise. The

value is not final, however, until the converged state is reached. It can change in following iterations.

(;5( )pot <0 = crack®

M = false

o = (2.73)

<]5£1k+)’1p()t >0 = crackfiﬁl = true

If the carrying capacity is exceeded, the above computed values of internal hardening variables and moment in the
bulk of the element are discarded and computed again, as explained in the following section.

2.3.1.3 Bending response in the softening phase

This section describes the computational procedure for an element in the softening phase. It is applied if the current
value of the discontinuity flag crackgfll = true, which happens if the discontinuity already existed in the previous
step, or if the carrying capacity of the element was exceeded in this iteration, see equation (2.73). In any case, the

hardening internal variables take the values from the previous step, which are the last converged results.

“i;kv)wl = Kp,n; 5&21 =&, (2.74)

We start by assuming a trial solution, keeping the softening internal variables at the values from the previous step.

The moment in the bulk and the moment at the discontinuity are computed according to equations (2.42) and

([2.38)), respectively.

k), trial k),trial z
0‘51,421 = G,y §£L+1 =&

(k),trial _ (k—=1) (k),trial _ trzal trzal (2.75)
Mn+1 =LKl (ﬁ (dn-H 1Ol ) - K:P»”) ) n+1 / n+1

L

The integral is computed numerically with the three-point Gauss-Lobatto integration scheme and evaluates to

t<k> strial _ M( ),trial

NI il for the linear distribution of moment over the bulk of the element.

Td

The trial value of failure function ng mal is calculated, respecting equations (2.52)) and (2.53).

gikﬁ,ltrial _ tiki,ltrial _ (Mu . ésiz,ltrml> : q:T(lljZ,ltrial _ min{ K§n+1frml7Mu} _ ‘in (2.76)
Z(k),trial . L
If o, <0, the trial solution is accepted.
(k) __ (k)trial (k) _ F(k)trial (k) _ 5 (k) trial (k) (k),trial
i =an s S =600, ML =Mt = 2.77)

If 5§Lk l’lmal > 0, the assumed solution is not admissible. The softening internal variables are updated according to
(k)

the incremental form of evolution equations (2.54), where 7,/ = ’75111)1 (Tnt1 — ) > 0. It is shown in appendix

that sign (tgizl) = sign (t;klatv’ial).

O‘Eﬂl =Qn +§7(L]213ign (tglkl]maz) ) gfwl =&, +§’n+1 (2.78)
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By using equations (2.78)), the moment at the discontinuity #*) " and the moment-like softening variable (Z(ﬁgl are

n+1
expressed with their trial values and the softening multiplier %gfg I
k k K _

tflll = M7(l+)l‘ = {EI (B d( )+GO‘£L+)1 “pm)hzmd =

= [B1 (B“d( W Gan—fpn)|  +[BIGFY) sign (817 = (2.79)

=4 =4
_ ( ) tmal + EIG| 1SZgTL (éﬁ)_,frial)
k),trial = =
(k) qn+] q<l - K% 7(«L+)1’ _K(fn—i_v;?Jrl) < Mu
T = g — (2.80)
q_n—H :Mu; _K(gn +;Yn+l) >Mu

(k)

n+1
coming from loading/unloading conditions (2.53).

Linear operator G in expression for ¢,/ . is evaluated at 4. Obtained expressions are inserted in equation (bn +1=0,

tg:)] ’ - (Mu - ‘Z(ﬂl) =0 < tffll = (Mu - qﬁgl) sign (tgzklltrml) (2.81)

depending on the expression, used for q:(k)

After a short derivation we get two expressions for f:y(k) el

n+1°

(Z)(k) Jtrial

=A n+1 ; =A

—_— —K( , ) <M,

“ Tn+1 = G‘ E[+K fn +’Yn+1

:Yn+1 = (k),trial (282)

n+1

- , F =4
A1 = TMEI, - K (57L+Vn+1) > M,

(k )1 over the rotation jump

£L+)1 If 'y£, +)1 > 0, the moment takes the value from (2.81). Equations (2.80) and (2.78) are used to express t51+)1
(k )

If 'y( )1 = 0, the rotation jump remains constant, while the moment at the discontinuity

The tangent modulus is computed as the derivative of moment at the dlscontlnulty t

as a function of o,
changes to satisfy the local equilibrium (2.38)). The tangent modulus cannot be determined, but it is not required
for further computation.

not defined; %7(321 =0

ot | =) <o, 50
P . =4 K; Tni1 >0, 4,70 <M, (2.83)
=(k =(k
0; %(1421 >0, ‘17(1421 =M,
The discontinuity flag is set to cmckffll = true.

2.3.2 Computation of nodal degrees of freedom

In this section we will describe the computations of phase (B) of k-th iteration, mentioned in the introduction of
section In this phase, a linearized form of equilibrium equations (2.58) is solved to provide the k-th update of
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the nodal displacements/rotations at pseudo time point Tn+1. The computation is performed with known values of

(e),(k) g(e)»(k) ( d{

p,n+1’ Sntl 2
(A) of the same iteration. Since the nodal degrees of freedom are generally common to several finite elements,

internal variables & *) for each finite element, freshly updated in preceding phase
the equations of phase (B) must be handled on structural (global) level. Hence, they are also referred to as global
equations.

), (k
a7,

were fixed at the values, computed in phase (A). To improve convergence, however,

The first of equations (2.58)) would be sufficient for calculating the new values of generalized displacements

(e);(k)
n+1

it is useful to update the rotational jumps as well. For that purpose, the second of equations ([2.58) are engaged.

if all rotational jumps «

Actually, they have once already been satisfied by using expression (2.38)) for the moment at the discontinuity, but

that equality held for the displacements from the previous iteration dfﬁ’fk*l)

. Updating the displacements would
disrupt the equilibrium between the moment at the discontinuity and the moment in the bulk of the element, unless
the rotational jumps are updated as well. Solving the whole system of equations (2.58)) therefore promises a more

accurate solution.

2.3.2.1 Linearization of equilibrium equations

The first of equations (2.58)) ensures the equilibrium of the structure, i.e. of its each and every node. It is linearized
str,(k—1)

around the current values of nodal degrees of freedom of the structure d,, 5

aflnt Jstr, (k) afext Jstr

n+l str,(k) _ pextstr int,str, (k) ntl1 _

P Ad, =10 - ) W =0 (2.84)
n+1 n+1
K

(k)

The derivative on the left side of the equation is designated with Kn 41 and named the tangent stiffness matrix of

the structure. Adn J'r(l ) is the sought update of the nodal displacements in this iteration. The vector of external forces

ext,str
fn +1

the nodal displacements. The vector of internal forces f,

represents the loading, which is defined in advance for each pseudo-time point 7,,+; and is independent of
int, m ) 4 computed from contributions of individual finite

elements, according to equation (Z.24). Matrices P(¢) and R(e) are constant.

NFE

mt str,( (e) 1nt L(e),(k)
n+1 Z P n+l
2.85
str,(k) __ 6f7lgr;tr( ) e ) 18f:zni§ & 25
Kopi’ = 6dslr =1y P R o4 J(k—1)
n+1 e=l1 n+1

Let us recall the relation (2.17) between the vector of nodal displacements of a finite element difl’l(k*l) and the

str ( 1)

vector of nodal displacements of the structure d, . The derivative of one over the other will prove useful.

(€, (k=1) _ p(e)ple) qotrs (k1) oA e
d, =RPd) T =REP (2.86)
n+1

t,(e), (k)

Internal forces f:ln+ 1 of finite element (e) are defined in equation 2.33). In n,, elements, that have developed

g€k (e), (k)

il il s while in the

a hinge, internal forces are functions of nodal displacements and rotational jumps «
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remaining elements (without discontinuity) they depend solely on the nodal displacements. For the sake of clarity

it is assumed that the elements with a softening hinge are numbered with consecutive numbers from 1 to n,.

Cela a0 o) (gl 61 00 .
) 6 O (g0 6)
The derivative Bf;lnfr (e (k) / 8d;t:_1 , which appears in expression (2.83), is examined next. For the finite elements
without discontinuity, the expression is simple.
afmt ),(k) afmt 8d J(k—1)
e€{na+1,...,npp}: “jlk = = "*1 ¥ (2.88)
yres y = (5—1) pgstr,(h—1)
o, od, () od)]

fd, k e)ple
Kn+§ e),(k) R(e)p(e)

The derivative Kfi’(le)’(k) can be easily computed and the last term has been defined in (2.86)). For the n,, elements,
that have already entered the softening phase, the expression is more complicated.

afmt( k) 8f1m ),(k) afmt (k) aa(e),(k) 6(1 J(k—1)

ce {172’”"”{0‘} . n+l _ n+1 n+l1 n+l n+1 (2.89)
0 | T el e |
Kfil(e) (k) Kiil(e) (k) R(e)p(e)

The derivatives, marked W1th K/ ig ") and Kf;il(e) (k) , can be easily computed and the last term has been defined

in (2.86). The term 8an 1 / 8d k D depends on the type of the loading step. Let us denote the number of
) (k)

finite elements in plastic softening step (':71(1:’1 > 0) with np,. For the sake of simplicity we assume that they are
numbered with consecutive numbers from 1 to np,. The number of finite elements in elastic step of the softening

) (k)

phase (i(g_’l = 0) is marked with ngq = ng — Npa.

For the ng, elements in elastic step of the softening phase, « is constant and the term 804 / 8dn +1 D s

zero. For the np, elements in the plastic softening step, the term is not zero and it is determmed from the second

of equilibrium equations (2.58)), which is linearized and solved locally, i.e. independently for each finite element.
(e),(k)

This can be done because hn 1~ depends on the nodal displacements and rotational jump of a single element.

). (k) (e), (k)
8hn+1 .0, Ohnit ™\ 0 _ 0.0 _ g

(@ SOt T o A

n+1 n+1
K K2 (2.90)
- Aaﬁfm:—(z«:zzw)”Kf;wAasz
2aleh®) sgqleh (k=

Note that each hfil 1( computed by (2.34)), evaluates to zero because the moment at the discontinuity #©):(0)

n+1
has been computed by expression (2.38). The derivatives, designated with Kztﬁe)’%) and K Zi’l(e)’(k) can be
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(e),(k)

n+1
. Since we are dealing with linearized equations, the derivative

easily calculated. Equation (2.90) defines the relation between the increment of nodal displacements Ad

and the increment of rotational jump Aasll l(k)

o, +1 / Bdn Hk D s equal to the ratio of the increments.

L =@ dall ha(e), (6) Y~ g e (e), (k)
ee{l,2,....,npy}: Yoir >0, W:_(KnH ) K,
"“ (2.91)
i 0
c€{npatl,... o} 3E =0, O‘"iﬁ}:l:o
’ aa'®)-*=1)
n+1

We gather expressions (2.88)) and (2.89) for all ngp elements in the structure, applying relations (2.91)) to the latter.

Ky
el ) ot <de< k) _ gfon(e) )(Kha,(e»m)‘lKhd,(e),<k>) REOPE
v a1 ntl ntl i ni (2.92)
™ a0 gple
ec{npa+1,...,npp}: ﬁ_K’nH R*¥P
n+1

Here K{i’&c)’(k) is the standard stiffness matrix of finite element (e). We observe that it is computed in the same

way for the npg — n,, elements in the hardening phase and for the ng, elements in elastic step of the softening

(e)(k)

phase. Stiffness matrix of the np, finite elements in plastic softening step is designated with Kn 41 - Finally, we
can assemble the tangent stiffness matrix of the structure by inserting (2.92)) into (2.83).
. Npo T 1A NFE
K5 = Y pETRETRE)PREOPE 4 Y pO RO KD BREp) (2.93)
e=1 e=npq+1

2.3.2.2 Components of internal forces and stiffness matrix

mt()()

Internal forces f, of element (e) are computed according to equations (2.33)), where bending moment and

axial force take the values computed in phase (A) of this iteration. In order to determine the components of the

(e)(k)

stiffness matrix, hn 1

must be written as well. It is computed in accordance with (2.34).

£k / B N gy / B M L Rl = / aM W d 1) P (2.94)
L

To obtain the components of the element stiffness matrix, expressions (2.94) are differentiated over nodal degrees

of freedom and over rotational jump.
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The tangent moduli (OM /O )Efll(k) and (0t/0« )Sll(k) are defined by equations (2.69) and (2.83). The latter
is not defined for '?fﬁl = 0, but we have shown above that K Zi’l(e>’(k)

stiffness matrix is symmetrical.

is not required in that case. The tangent

2.3.2.3 Solution of global equations

The system of global equilibrium equations (2.84) is rewritten in a clearer form.

str, (k) 4 gstr,(k) 4 pstr,(k) str,(k) _ pext,st int,str, (k)

Kn+l Adn+l - Afn+l ’ Afn+l - f:jr ls - f711+1 (2.96)
The external forces are an input to the analysis, internal forces are defined by equations (2.85) and (2.94)), and
the tangent stiffness matrix of the structure is defined by (2.93), (2.92) and (2.93). Finally, we can compute the

increments and update the nodal displacements of the structure.

dstr,(k) _ dstr,(kfl) +Adstr,(k) (2.97)

str, (k) str, (k) -1 str, (k)
Ad - (K ) Afn+l ’ n+1 n+1 n+1

n+1 n+1

The updates of the rotational jumps could be computed from (2.90), but there is no benefit from that because they

will be recomputed anyway in phase (A) of the next iteration.

The iterations at pseudo-time 7,,1 | are repeated until the tolerance requirements are met.

HAfstr,(k)

| <ot [Jaa | < tor (2.98)

-+

When the converged solution is found, we proceed to the next pseudo-time step.

2.4 Numerical examples

The computer code for the above described finite element was generated by the AceGen program [68] that com-
bines manipulation of symbolic expressions, automatic differentiation and code generation. The obtained code
was introduced into the finite element program AceFEM [69]], in which the presented numerical examples were

performed. Both programs have been developed by prof. J. Korelc from University of Ljubljana.
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Before performing analysis with the derived stress-resultant beam finite element, the material parameters have to
be obtained. For the axial response, only axial stiffness is required because the behavior is assumed to be linear
elastic. For the bending response, the three-linear moment-curvature relation from Fig. 2.10] (left) is needed for
each integration point of each finite element. Also, the linear moment versus rotational jump relation from Fig.
is needed for each element. The curves depend on the material properties of concrete and reinforcement, geometry
of the cross-section and the level of the axial force.

The moment-curvature diagram of the cross-section can be obtained in a standard way from the uniaxial stress-
strain concrete and reinforcement diagrams by enforcing cross-sectional equilibrium. From those diagrams, the
needed stress resultant material parameters can be estimated. Another way to compute the above stress resultant
material parameters is to use a multilayer beam finite element with layer-wise embedded axial discontinuities,
where the response of a material of each layer (including softening) is described either by 1D damage model (for
concrete) or 1D elastoplastic model (for reinforcement). Of course, the required material parameters can also be

obtained directly from experiments.

2.4.1 Failure of a cantilever beam

We consider a cantilever beam of rectangular cross-section for three different load cases, presented in Fig. 2.13]
In the first load case, the beam is loaded with moment at the free end. In order to perform the analysis up to the
total collapse, the load is controlled with imposed rotation of the free end. The following geometrical and material
properties are chosen: length of the beam L = 2.5m, elastic bending stiffness £I = 77650kNm?, elastic axial
stiffness £A = 3727200kN, moment at elasticity limit M. = 37.9kNm, yield moment M, = 268kNm, ultimate
moment M,, = 274kNm, hardening moduli H| = 29400kNm? and H, = 272kNm?, and softening modulus K =
—18000kNm. Response of the structure is computed for meshes of 1, 2, 5 and 10 finite elements.

|'V'>|'V'>N|
L L L

Figure 2.13: Cantilever beam under different loads.

Slika 2.13: Konzola pod razli¢nimi obtezbami.

Results for the load case from Fig. 2.13] (left) are presented in Fig. 2.14] (left), which shows the moment versus
imposed rotation diagrams for different meshes. We can see that they are not unique. The elastoplastic parts of the
curves are the same, but the slopes of the softening lines decrease with the increasing number of finite elements
in the mesh. The reason for such behavior is that, due to homogeneous stress state along the cantilever, each
finite element develops its own softening hinge. In finer meshes, multiple discontinuities with smaller values of
the rotational jump occur, as opposed to a single discontinuity with a greater value of the rotational jump in a
single element mesh. Since the moment at the hinge drops with the growing value of the rotational jump, it is
understandable that finer meshes produce a greater moment at the same value of imposed end rotation.

The described problem can be avoided by introducing one weaker element. This is done by slightly raising the
ultimate moment M, for all but one finite element. Thus, when the weakest element enters the softening phase,
the moment in that element begins to drop and the remaining elements have to unload to satisfy equilibrium. As

a consequence, only one softening hinge appears in the beam and the response is identical for all meshes, see
Fig.[2.14] (right).

Next we consider the same cantilever, loaded by end moment and axial force, see the middle image in Fig. 2.13]



Jukié, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

34
Doctoral thesis. Cachan, ENSC, LMT.
M [KNm] M [KNm]
250 250 ]
200 — 10FE 2001 — 10FE
150 5FE 150! 5FE
2FE i 2FE
100 — 1FE 100’,:' - 1FE
50 \ 50§
‘ 0.05 0.1 0.15 0.2 0 [rad] 0.65 Ofl 0.i5 012 0 [rad]

Figure 2.14: Moment - rotation diagrams for cantilever beam under end moment: all finite elements are
the same (left), one element is slightly weaker (right).
Slika 2.14: Diagram moment - zasuk za konzolo, obteZeno z momentom: vsi kon¢ni elementi so enaki

(levo), en element je malce Sibkejsi (desno).

The axial force is applied first and it is kept constant for the rest of the analysis. The bending load is applied by
gradually increasing the imposed rotation of the free end of the beam. Due to the presence of axial force, the
parameters that define the moment-curvature diagram are altered. We choose the following data: N = 100kN,
M, = 55kNm, M,, = 395kNm, M,, = 401kNm, H; = 35000kNm?, H, = 352kNm?, K = —26000kNm. Bending
responses of the beam, with and without the presence of axial force, are shown in Fig.[2.T5] They were computed

with a mesh with one finite element.

Remark. In order to determine the influence of axial force on the material parameters for bending, the geometry of
the cross-section and the material properties of concrete and reinforcement are required. In the load case without
axial force, we defined only the resultant material-geometrical properties of the cross-section, so the modified

parameters cannot be computed. Their values are altered (chosen) in a similar way as computed in [51|].

M [KNm]
400+
3001
2007
— no axial force
100+ — with axial force
6 [rad]

002 004 006 008 0.1

Figure 2.15: Moment - rotation diagram for cantilever beam under end moment: with and without axial
force.
Slika 2.15: Diagram moment - zasuk za konzolo, obremenjeno z momentom: ob prisotnosti in brez

prisotnosti osne sile.

The third load case is shown in Fig. 2.13] (right). To obtain the response up to the total failure, the loading is
controlled with imposed vertical displacement at the location of the force. The following geometrical and material
properties are chosen: L =2.5m, F1 = 77650kNm?, EA = 3727200kN, M, = 37.9kNm, M, = 268kNm, M, =
374kNm, H; = 29400kNm?, H, = 272kNm?, K = —18000kNm. The beam is modeled with meshes, consisting
of 1, 2, 5 and 10 finite elements. The diagrams, showing the relation of moment at the support versus imposed
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vertical displacement for different meshes, are presented in Fig. We can see that a single finite element cannot
adequately describe the beam response. The error arises in hardening plasticity, because three integration points
over the whole structure are not enough to properly describe the propagation of plastic deformations. The error
diminishes rapidly for finer meshes. Contrary to the previous load cases, the stress state along the beam is not
homogeneous, so there is no need for a weakened element to prevent the occurrence of multiple discontinuities.
The only softening hinge forms at the support where the moment is the largest.

M [KNm]
40071
30 LA—""
— 10FE
200 5FE
2FE
100 — 1FE

0.1 0.2 0.3 0.4 vimi

Figure 2.16: Moment at support - transversal displacement diagram for cantilever beam under end
transversal force: all finite elements are the same.

Slika 2.16: Diagram moment ob podpori - prec¢ni pomik za konzolo, obremenjeno s pre¢no silo: vsi

koncni elementi so enaki.

2.4.2 Failure of simply supported and clamped beams

We consider the three point bending test of a simply supported reinforced concrete beam of length L = Sm, shown
in Fig. The width and the height of the cross-section are b = 0.2m and /h = 0.5m. The following material
properties are used: elastic modulus E' = 37272MPa, moment at elasticity limit M, = 37.9kNm, yield moment
M, = 282kNm, ultimate moment M,, = 304kNm, hardening moduli H; = 47314kNm? and H, = 171.6kNm?,
and softening modulus K = —85000kNm. Symmetry allows us to model only one half of the beam, which is
divided into 16 identical finite elements. The load is applied by imposing displacement v at the location and in the
direction of force F'.

2F

F|
A A A—|L/2|

Figure 2.17: Simply supported beam: use of symmetry in computational model.

Slika 2.17: Prostolezeci nosilec: uporaba simetrije v racunskem modelu.

Since this is a statically determined structure, we expect the F'— v diagram to be similar to the input moment-
curvature diagram, which is confirmed by the results, presented in Fig. (left). Rounded transition into the
plastic part of the curve is a consequence of gradual spreading of plasticity from the middle of the beam toward
the supports.
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Figure 2.18: Clamped beam: use of symmetry in computational model.

Slika 2.18: Togo podprti nosilec: uporaba simetrije v raCunskem modelu.

Next, we analyze the same beam with fixed supports, see Fig.[2.18] The geometrical and material properties are the
same as before, as well as the mesh and the loading procedure. The force versus imposed displacement diagram
is presented in Fig. (left). In comparison to the simply supported beam, the clamped beam exhibits greater
stiffness and ultimate load, but the yielding of reinforcement and collapse of the structure happen at significantly

smaller displacements.

The fact, that the ultimate moment is reached at a smaller imposed displacement in the clamped beam is not
surprising, because the fixed support prevents the rotation of the beam at that point. But when the softening plastic
hinge forms near the support and begins to soften, the clamped beam behaves more and more like the simply
supported beam. In a fully softened state (when the moment in the softening plastic hinge drops to zero), one
would expect the imposed displacement to be equal in both beams. This is not so, due to plastic deformations of
the bulk of the element. In the simply supported beam, the plastic curvature was caused only by positive bending
moment, so the half of the beam takes a C shape in the fully softened state. In the clamped beam, however, the
plastic curvature was caused by positive moment in the field and by negative moment near the support, so the half
of the beam takes an S shape.

We verify this by repeating the analysis with an elastic beam. We set the values of the elasticity limit M. and the
yield moment M, to be greater than M/,. The remaining data is the same as before. Results of the analysis are
presented in Fig. [2.19| (right). Just like in the left figure, the ultimate moment is reached at a smaller displacement
v in the clamped beam, but the diagrams drop to zero at the same value of v.

F [KN] F [KN]
250+ 250r
— simply supported — simply supported

200+ —  clamped 200+ —  clamped
150+ 150+
100+ 100+
50 50

L L n n n i 0 | ! " s

0.01 0.02 0.03 0.04 0.05 0.06 vim] 0.003 0.006  0.009 0.012 vim]

Figure 2.19: Force - displacement under the force diagrams for simply supported and clamped beams.
Elasto-plastic (left) and elastic (right) behavior in the hardening phase.
Slika 2.19: Diagram sila - pomik pod silo za prostolezeci in togo podprti nosilec. Elasto-plasti¢no (levo)

in elasti¢no (desno) obnaSanje v utrjevanju.
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2.4.3 Four point bending test of a simply supported beam

In this example, we examine a four point bending test of a symmetrical, simply supported, reinforced concrete
beam with different positions of the loading force. Experiments on such beams were performed by Lane [70],
as stated in [49]. The beam of length L = 3.82m is loaded with two vertical forces F' at distance L, from each
support. Making use of the symmetry, we only model one half of the structure, as shown in Fig. The values
of L, are 0.96m, 1.30m and 1.60m, while the corresponding values of L; are 0.95m, 0.61m and 0.31m. The
remaining geometrical and material properties are: elastic bending stiffness £I = 20400kNm?, yield moment
M, = 210kNm, ultimate moment M,, = 270kNm, hardening modulus H, = 1543kNm? and softening modulus
K = —2823kNm. Since the hardening model in [49] is linear, we take M, = M, and the first hardening modulus
Hj is not required. Parameters I, M, and M, were taken directly from [49]. The hardening modulus was
computed as Hy = 7 My2 , Where 7 is the linear hardening modulus in [49]]. The transformation is caused by
different formulations of the yield function and evolution equations. The softening modulus K was chosen to fit
the results, presented in [49].

Figure 2.20: Four point bending test of simply supported beam: computational model.

Slika 2.20: Stirito&kovni upogibni preizkus prostoleZeega nosilca: ra¢unski model.

Responses of the structure for all three load positions are presented in Fig. 2.21] They are compared with ex-
perimental results [70] and with computations by Armero and Ehrlich [49], who used the same parameters for
elasticity and hardening plasticity, but modeled the softening hinge response with quadratic function. Our results
capture well the experimental limit load and the corresponding displacement. The softening parts of the diagrams
differ from those in [49], due to a different material law in the softening plastic hinge. The experimental results
were taken from [49].

F [kN] F [kN] F [kN]
300 300 300

— thisFE — thisFE — thisFE
250 — experiment| 250 — experiment| 250 — experiment|
200 — Armero 200 — Armero 200 — Armero
150 150 150

100 100 100
50 50 50
v[m]

005 01 015 02 005 01 015 02

Figure 2.21: Force - displacement at the middle of the beam diagrams for different positions of the
force: L, = 0.96m (left), L, = 1.30m (middle), L, = 1.60m (right).
Slika 2.21: Diagrami sila - pomik na sredini nosilca za razli¢ne pozicije sile: L, = 0.96m (levo),
L, = 1.30m (sredina), L, = 1.60m (desno).
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2.4.4 Two story reinforced concrete frame

In this example we consider a two story reinforced concrete frame in Fig. The frame was experimentally
tested in [[71]] and numerically analyzed in [51]]. Story height is H = 2m and span is L = 3.5m. The columns and
the beams have the same concrete cross-section b x h = 0.3 x 0.4m, but different reinforcement. Details can be
found in [[71]]. The stress-resultant material properties, required for analysis with our finite element, were estimated
from moment-curvature diagrams, presented by Pham [51]. Material parameters of the beams are: M, = 30kNm,
M, = 150kNm, M,, = 170kNm, H; = 11190kNm?, H, = 137kNm?2, K = —1310kNm. Material parameters of
the columns are: M, = 100kNm, M, = 245kNm, M, = 265kNm, H| = 12450kNm?, H, = 195kNm?, K =
—2410kNm. Elastic bending stiffness of both columns and beams is E1 = 45760kNm? and elastic axial stiffness
is EA = 3432000kN.

! 700 kN 700 kN BEAM
= T 4x3cm?| @ e 0.04
0.32
H
2
4x3cm L] 0.04
| |
1 0.30
COLUMN
0.03
4x3cm? U
H
0.34
—— —— € 2
4x3cm o o 0.03
i
L 0.30

Figure 2.22: Two story frame: geometry, loading pattern and cross-sections.
Slika 2.22: DvoetaZni okvir: geometrija, obteZba in precni prerezi.

The properties of beams and columns were verified in the following way. For each of the two cross-sections in
Fig. a cantilever beam of length 1m was modeled with a single finite element and loaded with end moment.
The load was applied by imposing rotation 6 at the free end of the beam. The diagrams in Fig. show the
moment versus the end rotation, divided by the length of the finite element (length of the cantilever beam) for a
beam and a column of the RC frame. Due to the constant moment, the ratio 6/ L is identical to curvature  up to
the ultimate moment, when the softening hinge occurs. The material properties of both structural elements were
chosen in such manner, that the diagrams in Fig. match the moment-curvature diagrams, presented in [51].

The columns were divided into 16 finite elements from the ground to the top of the frame, and the beams were
divided into 14 finite elements. At the beginning of the analysis, vertical forces N = 700kN were applied at the
top of each column, and remained constant throughout the computation. Next, the horizontal displacement u at the
top of the frame was gradually increased and reaction F' at location and in direction of the imposed displacement
was computed.

Results are presented in Fig.[2.24] (Ieft). First nonlinear behavior occurs at u = 0.002m due to cracking of concrete
in the beams near the columns. Next, the concrete cracking appears in the columns as well, first at the bottom, then
at the top and in the middle. Yielding of the reinforcement first appears at the end of the beams at « = 0.035m.
At u = 0.045m the column reinforcement begins to yield at the supports. Maximal value of force F' is reached at

u = 0.073m, when softening hinges appear at the bottom of both columns. Although the resistance of the structure
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Figure 2.23: Moment - rotation divided by length of FE diagrams for beam and column.
Slika 2.23: Diagram moment - zasuk, deljen z dolZino KE za precko in steber.

begins to drop, the moments in the beams still increase, which improves structure ductility. The softening in the
beams begins at v = 0.1m. Hereafter, internal forces in all structural elements decrease. Total collapse of the
structure happens at © = 0.6m, see the diagram “data Pham” in Fig. 2.25] (left).

E [k N] F [kN]
300 D i -z =
- C 0 o~
/.
B ,’
200r A — cracking of beams 200! Yy ——  experiment (Vecchio, Emara)
B — cracking of columns —  Pham, stress resultant
Cyegot et e s rve o — o -
100k — yielding of reinf. at the bottom of the columns | -
E — softening at the bottom of the columns 100 thfs FE, data Pham
A F — softening at the ends of the beams this FE, data OpenSees
0 ‘ ‘ ; ‘ —u[m] o : : : : : m
003 006 009 012 0.15 [m] 003 006 009 012 015 um

Figure 2.24: Response of two story frame and material state at different stages of analysis (left).
Comparison with experiment and results of Pham et al. (right).
Slika 2.24: Odziv dvoetaznega okvirja in stanje materiala v posameznih fazah analize (levo). Primerjava

z eksperimentom in z rezultati Pham et al. (desno).

Fig. @] (right) shows the comparison with the experiment [71] and with results, reported in [S1]. Our results
are very similar in the shape of the curve to the experimental results, but do not reach the measured ultimate
capacity. For an additional test, the stress-resultant properties of beams and columns were computed from cross-
section geometry and stress-strain diagrams of steel and concrete, presented in [71]], using the computer program
OpenSees [[72]]. The following data was obtained for columns: M. = 99kNm, M, = 251kNm, M, = 259kNm,
H; = 14800kNm2, H, = 85kNm2. The following data was computed for the beams: M, = 32kNm, M, =
168kNm, M, = 223kNm, H; = 11100kNm?, H, = 248kNm?. The values of softening moduli K were preserved
from before. Results of the analysis with the new data are included in Fig. [2.24] (right).

Another set of material parameters was obtained by multi-layer Timoshenko beam element, presented in chapter
H] of this work. To obtain material properties of a beam of the frame, a cantilever beam of length 0.25m, which
corresponds to the length of finite elements in the RC frame analysis, was modeled with a single multi-layer
element. Rotation 6 of the free end of the beam was imposed and the corresponding moment M in the beam was
computed. Stress-resultant properties were determined in such way, that the M — 6 diagram, obtained with a stress-
resultant finite element, matches the diagram, obtained with multi-layer element. To obtain material properties of a

column, an identical multi-layer cantilever beam of length 0.25m was analyzed with the presence of a constant axial
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Figure 2.25: Response of two story frame up to total collapse for different material data (left).
Comparison with results of analysis with multi-layer finite element (right).
Slika 2.25: Odziv dvoetaZnega okvirja do popolne porusitve za razliCne materialne podatke (levo).

Primerjava z rezultati analize z vecslojnim kon¢nim elementom (desno).

force N = 700kN. The following material properties were calculated for beams: M. = 31kNm, M, = 165kNm,
M, = 236kNm, H; = 25800kNm?, H, = 349kNm?, K = —5250kNm. The computed properties of columns:
M, = 100kNm, M, = 281kNm, M,, = 333kNm, H; = 33800kNm?, H, = 216kNm?, K = —4750kNm. Response
of the two-story frame, analyzed with this data, is shown in Fig.[2.23] (left), along with responses, obtained for the
data from OpenSees and data estimated from [51]. We observe that the data, computed with our multi-layer
element, produces a significantly higher ultimate load and a steeper softening line.

Fig. [2.25] (right) shows the response of the frame, computed by the multi-layer finite element from chapter ] It
is compared to the results of analysis with stress-resultant element, developed in this chapter, and material data,
provided by the former multi-layer element. Both curves reach the same ultimate value of force F', but not at the

same value of imposed displacement u. In comparison to other results, the curves match pretty well.

2.5 Concluding remarks

We have presented a planar stress-resultant Euler-Bernoulli beam finite element with embedded discontinuity in
rotation, which can be used for analysis of reinforced concrete beams and frames up to complete failure. The
formulation is based on small deformation kinematics. Stress resultant elastoplasticity with bilinear isotropic hard-
ening is used to model the bending of the bulk of the element, and rigid plasticity is used for the softening bending
hinge. The element is able to describe the major characteristics of the reinforced concrete beam behavior up to
complete failure. The finite element provides a mesh independent softening response of the modeled structure. The
obtained results compare reasonably well to other results available in the literature and to experimental results.

The geometrical and material properties have to be determined individually for each cross-section and for each
level of the axial force. The moment-curvature and moment-rotational jump diagrams, required as an input for
the analysis, can be determined experimentally or computed with a more complex finite element, such as the

multi-layer beam finite elements, presented in the following chapters.
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3 MULTI-LAYER EULER-BERNOULLI BEAM FINITE ELEMENT WITH
LAYER-WISE EMBEDDED DISCONTINUITIES IN AXIAL DISPLACEMENT

3.1 Introduction

In this chapter we derive a multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discon-
tinuities in axial displacement. The element is intended for precise analysis of reinforced concrete beams and
structures up to complete failure, as well as for computation of stress-resultant properties of cross-sections, which

are required as input data in analysis with stress-resultant finite element, presented in previous chapter.

The element is composed of several layers of concrete and reinforcement, each with embedded discontinuity in
axial displacement. Axial response of concrete layer is determined by elasto-damage hardening law in the bulk and
damage softening law at the discontinuity. Axial response of reinforcement layer is controlled by elastoplasticity
hardening law in the bulk and plastic softening at the discontinuity. Small deformation kinematics is employed.

The outline of the chapter is the following: Kinematic, constitutive and equilibrium equations are developed in sec-
tion[3.2} Finite element discretization and computational procedure are presented in section Several numerical
examples are shown in section [3.4] Finally, concluding remarks are given in section[3.5]

3.2 Finite element formulation

3.2.1 Kinematics

We consider a planar Euler-Bernoulli beam finite element with three nodes, shown in Fig. The two end nodes
have regular degrees of freedom, two in-plane displacements and rotation about the axis, perpendicular to the plane.
The third node is located in the middle of the element and has one degree of freedom, the axial displacement. Its
purpose is to raise the interpolation order of axial displacements, which ensures compatibility of the axial strain
contributions by bending and axial deformation.

V1 \')
ot U 9%4\_,“2
1 3 2
X L

Figure 3.1: Finite element with seven nodal degrees of freedom.

Slika 3.1: Kon¢ni element s sedmimi prostostnimi stopnjami.
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Axial displacement @ (x) of the middle axis of the beam is interpolated between the three nodal displacements
u, using quadratic shape functions N* () shown in Fig. (left). Lateral displacement o (x) is interpolated as
follows.
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o(z) =N (z)v+N’(2)0 (3.2)

Here v and 6 are lateral displacements and rotations of the end nodes, respectively. NV (x) and N? (z) are cubic

Hermite polynomials shown in Fig. [3.2] (right).

v= {23 55 o3 35 et

0 x\3 z\2 x rx\3 T2 T 3-3)
N <$>—L{(L) ~2(7) (7)) - (F) } 0=1{01,0:}

1 L ] 1 L ]
— X X
1 3 2 1 3 2

Figure 3.2: Interpolation functions for axial (left) and transversal displacement (right).

Slika 3.2: Interpolacijske funkcije za osni (levo) in precni pomik (desno).

In Euler-Bernoulli beam theory, a cross-section is always perpendicular to the beam’s axis and its rotation is

therefore equal to the first derivative of the lateral displacement.

~ 5  ONU  ON?
()= %= o't %0 (34)

The beam is divided into a desired number ny, of layers by height. For a fine enough division, a constant state can
be assumed through the thickness of the layer. The axial displacement u () of the i-th layer is computed in its

middle axis.

~1 uz},add

S

u' (z,2h) = () —y'0(z) + M" (z,2}) o (3.5)
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The regular part i° (x) is composed of the axial displacement in the neutral axis of the beam and of displacement
due to rotation of the cross-section, depending on the distance y® from the neutral axis. If the carrying capac-
ity is exceeded, a discontinuity is introduced into the layer (see Fig. [3.3), which results in an additional axial
displacement u**% (z,z%), described by the jump in displacements o at coordinate z; and the shape function
M (z,z).

| Y1

S ¢
N
e
i
S ¢
N

Figure 3.3: Finite element divided into layers, before and after occurrence of discontinuity in i-th layer,
with corresponding axial displacement in the layer.
Slika 3.3: Na sloje razdeljen kon¢ni element pred in po nastanku nezveznosti v ¢-tem sloju ter

pripadajoci osni pomik v sloju.

A layer is then treated as a bar, namely the strain £° (x, %) is computed as the first derivative of the displacement

u' (z,z%) over the coordinate z.

=i i
g el,add

=B"(z)u—y' (B" (z)v+B? (2) 0) +Gf, (z,2%) o (3.6)

ou’
ox

e (z,2}) =

The first three parts of the expression (3.6) represent the regular axial strain &', while the last part represents the
enhanced strain due to embedded discontinuity. The strain interpolation functions for the regular part are shown
in equation (3.7). Since we chose quadratic functions N* and cubic functions N and N, their derivatives B¥,
BY and BY are all linear (see Fig. . The additional strain £-*?? only appears in the layers that have exceeded
their carrying capacity. Operator G}, is the first derivative of the shape function M, but we will discuss it more

precisely later on.

-S040 1)
Bv(x):%:{_;(l_?»;(l_?)} (3.7)

wi=5i =10 7) 1 (%))

We will also use a shorter notation for the regular strain, where all degrees of freedom of the finite element are

collected in the vector of generalized nodal displacements d. Interpolation matrix B? is composed accordingly to

the arrangement of displacements in d.
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F=[Br —yB —yB|d=Bd, d"={u" " 0"} (3.8)
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Figure 3.4: Interpolation functions for axial strain due to axial (left) and transversal displacement

(right).
Slika 3.4: Interpolacijske funkcije za osno deformacijo zaradi osnega (levo) in pre¢nega pomika

(desno).

3.2.2 Relations between global and local quantities

3.2.2.1 Real degrees of freedom

A structure is modeled with a mesh of finite elements. A part of such mesh is depicted in Fig. The finite

elements are connected only with their end nodes, while the middle node is strictly local. After the meshing

procedure the model has ngy “end nodes” and ny;n “middle nodes”. The latter number is equal to the number of

finite elements. Let us label the end nodes with numbers from 1 to ngy and the middle nodes with numbers from

npN +1to npy +nunN.

Each of the end nodes has three degrees of freedom - displacement U parallel to the global X axis, displacement V'

parallel to the global Y axis, and rotation ® about the axis, perpendicular to the XY plane. The middle nodes have

only one degree of freedom - displacement W parallel to the axis of the finite element, see Fig.[3.5] The structure

has in total npor = 3ngn + nyw degrees of freedom, which are collected in the vector d°*.
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Figure 3.5: Degrees of freedom at nodes of the finite element mesh.

Slika 3.5: Prostostne stopnje v vozli§¢ih mreZe konénih elementov.

. T
dStr = {dgN7d]7\14N} 3 dEN = {Ulv‘/la®1,U27‘/2;®2a aUnENaVnENaGTLEN}Ta (3 9)

T
dyy = {VVRENH7I/V?“LE1\7+27 7WnEN+”]\4N}

Let us now consider a finite element (e¢) with end nodes (n;), (n2) and a middle node (n3). The local x axis is
parallel to the axis of the element, with z increasing from node (n;) towards node (n;), see Fig. The element’s
degrees of freedom, defined in the local coordinate system, are collected in the vector d(©), in accordance with
equation (3.8). Global degrees of freedom, associated with the nodes of the element can be similarly organized
into vector D(¢). The two are connected with a transformation matrix R(¢). Zeros are replaced by dots for clarity.
#'¢) is the angle between the global X axis and the local z axis (rotation of the local coordinate system).

d©) = rle)ple) (3.10)

e e e e e e e e T e T
d( ) :{ g ),Ug )7uf(5 )’Ug )7U§ )705 )705 )} I D( ) = {Un|7Un2>Wn3aVn1aVn27®n|a®nz}

[ cosg(®) . - singl® .
cosgl® . . sin(®)
: : : : (3.11)
R = |- sing(©) . - cos¢l® .
—singl®) . . cos ¢®)

Vector D(¢) contains those components of vector d* that correspond to the nodes of the finite element. The

selection of appropriate components is done by matrix P(¢) of size 7 x npor with only seven non-zero components.
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Figure 3.6: Global (left) and local (right) degrees of freedom, associated with a finite element.
Slika 3.6: Globalne (levo) in lokalne (desno) prostostne stopnje, povezane s kon¢nim elementom.

D(c) — P(e)dstr

(3.12)
(e) _ ple) _ ple)

Pl, 3n;—2 7 7 2,3np-2 " P3, 3"EN+(”377LEN)

= P4<-,e_25n1—1 = PS(,E;

Obeying equations (3.10) and (3:12)), we can finally write the relation between the local degrees of freedom of the
finite element (e) and the global degrees of freedom of the structure.

de) = reple)gstr (3.13)

3.2.2.2 Virtual degrees of freedom

Virtual displacements are a kinematically admissible variation of real displacements. As with the real displace-
ments, they are interpolated between the nodal values with appropriate interpolation functions. The virtual defor-
mation of the structure is therefore defined by the virtual displacements of its nodes.

The global virtual degrees of freedom (virtual displacements of the structure) d**, the virtual displacements of the
element d(¢) and the selection D(¢) of global virtual displacements, associated with the element (e), are defined
analogously to the real quantities d*", d(¢) and D(¢), defined in equations (3-9) and (3-11).

astr: {&gN,&Jq\;{N}T,

~ AA A ~ ~ A T A ~ A T

dE'N = {Ula‘/h@lu ey nENavnE]\“@nEN} ) dMN = {WnEN-‘rlu 7WnEN+n]LIN} (314)
A e e) ~(e) ~(e) a(e) Aple) Ale T A A 2 I~ i A A
d(e):{ﬂg)aﬁg>vug)»vg)7U§)a95)79§>} ) D(e):{UnlvUnzanvan»Vnzv®n|v®n2}T

Relations between them are equivalent to equations (3.10)-(3.13)), matrices R(®) and P(¢) remain the same.

d©) ZREPE), Pl Zplgsr ) — gleple)gst (3.15)
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3.2.2.3 Internal forces

Internal forces can be organized in the same way as the generalized displacements. Each degree of freedom from
the vector d* is accompanied by a corresponding internal force. Analogously to equation (3.9) we can write:

fmt str _ fmtT fmtT T 1nt _ int fll'lt fmt fint fint flnt int int int T

EN > Ups 012U IV J 0@y 0 I Unpn 2 Vi 7 Oy (3.16)
fmt _ 1nt int int T
MN = I Whgn+1 I Wagnt2? 0 I Wagytny v

Vector fg‘}v contains the internal forces of the “end nodes” - for each node a pair of forces, parallel to global X and
Y axis, and a moment around the axis, perpendicular to the XY plane. They are labeled with £, fint and fint,
respectively. Vector i contains the internal forces of the “middle nodes”, which are parallel to the local x axis,
and labeled with fi™, see Fig.

o)
int 5
f.int /fyvm
O
(;nt Om
© : int
A fé,
Y

o middle node of FE
e end node of FE

X

Figure 3.7: Internal forces, corresponding to degrees of freedom at nodes of the finite element mesh.

Slika 3.7: Notranje sile, ki ustrezajo prostostnim stopnjam v vozlis¢ih mreze kon¢nih elementov.

Internal forces at a certain node of the structure are composed of contributions from all the elements, joined in that
node. Let us now take a closer look at a finite element (e). The internal forces of the element are defined in the local
coordinate system and correspond to the local degrees of freedom d(®), see Fig. (right). They are collected in
the vector £™(¢), The forces can be transformed by matrix R(¢) so as to match the directions of the global internal
forces f"S The new, transformed vector is designated with Fi":(¢)| Fig.[3 . 8| (left). The transformation matrix
R(®) is the same as in equation (3.11).

gint(e) — ROEint(e) o  pinte) _ R(e)flfint,(e) (.17)

fint,(e):{ int,(e) rint,(e) rint,(e) int,(e) mt féﬂt fém }T
1 710y

ul rJup rJuz rJ U

. . ‘ o (3.18)
L L N N N N e el
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Figure 3.8: Contribution of a finite element to internal forces of the structure in global (left) and local
(right) coordinate system.
Slika 3.8: Prispevek kon¢nega elementa k notranjim silam konstrukcije v globalnem (levo) in lokalnem

(desno) koordinatnem sistemu.

The components of the global vector f"' are computed by summing the contributions of individual finite ele-
ments, written in Fi"(¢) Matrix P(¢) is defined in (B:12).

nFE

flnt str __ Z P Flnt (319)

Transformation (3.17) and summation (3.19) can be joined in a simplified notation. Operator A represents the

assembly of the internal forces and npr is the total number of finite elements.

fml str ni‘]’a P (e) fint7(e) _ m

€

I >“‘7

1 [f"“ (e )} (3.20)

Another useful relation can be observed. For rotation matrix R(®) it holds R” = R~! or RTR = I, where I is
the identity matrix. By using this property as well as equations (3.13) and (3.17) we can conclude that the scalar
product of virtual displacements and internal forces is equal in local and global coordinate system.

T

d@ " gint(e) — po g R Finte) — fle)" gint,(e) (3.21)

3.2.3 Virtual work equation
Equilibrium of a structure can be described in a weak from, by the virtual work principle, which states that the

virtual work of internal forces G™™ on any kinematically admissible perturbation of displacements - virtual dis-

placements - must be equal to the work of external forces G**' on the same displacements.

Gint o Gext =0 (3.22)
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Since we are dealing with a discretized model, the external loads are defined at the nodes of the structure. Linear
loads have to be transferred to the nodes appropriately. The virtual work of external forces is therefore computed
simply as a scalar product of the vector of virtual nodal displacements of the structure d** and the corresponding
vector of generalized external forces £, Virtual displacements are defined analogously to the real displace-
ments in equation and the external forces analogously to the internal forces in equation (3.16)).

Gext dsr_rT fext str nDZO’F d‘strfext,str (3 23)
L s :
j=

Here npor is the number of the structure’s degrees of freedom. Many components of the sum (3.23)) may be zero.
The virtual work of internal forces is composed of contributions from individual finite elements.

G =Y Gl gintle) = / eadV (3.24)
e=1
v(e)

For each element G™™(¢) is computed by multiplying the stress field with the virtual strain field and integrating the
product over the volume of the element. The virtual strain is defined individually for each layer of the beam which
enables virtual discontinuities &* to be introduced in each layer. The interpolation is done in the same manner as
for the real strain in equation (3.6)), except that operator G, is replaced by GY,. Differentiation between the two
operators gives us more freedom to define them according to our needs. The issue will be addressed in the next

~t,add

section. Note that the additional part of the virtual strain £ only exists in the layers that have already developed

a discontinuity (cracked layers). In non-cracked layers, the virtual strain consists only of the regular part &

21 Al
F El,add

£ (z,2%) =B (z)a—y' (BY (2)v+B? ()0) + G}, (z,25) &' =B'd + Gi.a° (3.25)
) e

The volume integral in equation (3.24) is divided into an integral over the length and an integral over the cross-

section of the element. The latter can be replaced by a sum over the layers, since everything is assumed to be
(e)

constant over the cross-section of a layer. The virtual strain is replaced by the whole expression (3.23)) for n;,

(e)

cracked layers and by its regular part & for (nL - nCL> non-cracked layers, where ny, is the total number of layers

in the finite element. Obtained expression is rearranged to produce internal forces, corresponding to the virtual

degrees of freedom of the finite element d(¢), as defined in (3.14). Index (e) is omitted until the last line. For the
(e)

sake of simplicity it is assumed that the cracked layers are numbered with 1, 2, ..., nq;.

o) = [ eodv = / [2odada = / Lot e =

ncL
uZalAldx—i— / (B'9+B%D) )" (o' Al)dr + | X Giaioiaids =
i=1 i=1

h\<

(3.26)

ny, nr
—a” [Br Z ol Alda +¥ /B” (' a)du+8" [B" Y (~y'oiA')d+
L =

Q=
=

nor n ) )
+ Z &t / LA dr = (’i(e) fmt( )+ @(e),zh(e),z
i=1 7, i=1
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A condensed form of expressions and for d(©) and £"(¢) can be used.

a(e)T — {ﬁT7 0T7 éT} , fint,(e)T _ {fu,im,(e)T ’ fv,int,(e)T ’ fﬂ,im,(e)T} (3.27)

Components of f">(¢) are defined in (3.28). The order of integration and summation can be reversed. Therefore
we can compute the internal forces as a sum of contributions of individual layers, which proves to be very helpful
in the computational procedure. Here ny, is the total number of layers in the finite element.

w,int,(e) __ uT S A o v ul i 4
f =B Za Aldr = Z BY o'A'dx
i=1 iZIL

L
) T L S oL T & 5o
goiint,(e) _ /Bv Z (7yzngz)dx = Z 7/B” y'o'Aldx (3.28)
T i=1 i=1 L

fo-int,(e) BGT%(f it gl _nL . 0T i i i
= y'o )dxf B" y'c*A'dx

A shorter notation (3.29) will also be used, where f int,(¢).¢ i5 contribution of the i-th layer to the vector of internal
forces of the finite element.

B+
) ny, ) ) T . nr, X o .T .
Fr© = 3 g / B | ofdr =Y A / B o'de (3.29)
=17 _yiBOT =l 7
| S ——
fint,(e),4

The last term of the last line in (3.26) is the additional virtual work due to enhanced kinematics. The sum has
n(cfz summands, one for each cracked layer. Quantity h(€) is an equivalent of internal force, corresponding to the

virtual displacement jump &) and is defined as follows.

Rl — / Gioididz, i=1,2,..,n% (3.30)
L

The virtual work of external and internal forces in the equilibrium equation (3.22) is replaced by expressions

(3:23) and (3:24), respecting (3.26) and (3.21). Finally, the second of equations (3.13)) allows us to express the
weak equilibrium in the manner of global virtual displacement vector d** and virtual displacement jumps &(¢):.
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_ Z l")(e)TFinl,(e)+ Z aleip(e)i | _ gstl pextstr _

ng T lWokidel ) AT
_ Z s P(e) Fint (e) + Z Z d(e),zh(e),z gt pextstr (3.31)
e=1 e=1 i=1
npE nEE ”(c%}d

— &strT Z P(e)TFint,(e) + Z Z d(e),ih(e),i 7&strTfext,str —

— astrT (fint,str_fext,str) + Z Z &(e),ih(e),i

e=1 i=1

Equilibrium (3.3T) must hold for any kinematically admissible virtual displacements d*" and virtual displacement
jumps &(¢)%. From this requirement we can conclude:

fmt,str _ fext,str — 0

| (3.32)
Vee {1,2,...,npp}, Vi € {12n<cz} L pei—g

The first equation in (3.:32)) represents the global equilibrium or equilibrium of every individual node of the struc-

fint,str and fext,str

ture. Here are vectors of internal and external forces on the structural level. They correspond
in position and direction to the degrees of freedom of the structure. Their length is equal to the total number of
degrees of freedom npor. The second equation in (3.32)) is an additional constraint for the stress in cracked lay-

ers. The number of cracked layers n(cez is generally different for each element, and can also be zero. It has been

(e)

assumed in equation (3.32)) that the cracked layers are numbered with consecutive numbers from 1 to ;. .

Let us now examine /(¢)?, defined in expression (3:30). It will be shown in the next section that the operator Gi,
consists of a continuous part G{, and a discrete part 613 , which is a Dirac delta function. Integration of the latter is
performed by the following rule.

G =Gl +6x3, /g(:zc) 5xédx =g (=) (3.33)
L

. . ,L .
Implementation of (3.33) allows a further development of expression (3.30). Here o o) 18 the value of stress

function o (z), evaluated at local coordinate z’;. We assign to it a new symbol ¢’ and define it as the traction at the
discontinuity.

R — / (Gir+3, ) o Alda = Ai/G"}aidx+Ai ol = A /C:{,aidx+ti (3.34)
d
L L L

Inserting (3.34) into the second of equilibrium equations (3.32) provides a new aspect to its meaning. Equation
(B:33) can be interpreted as a weak form (integral form) of equilibrium between the traction at the discontinuity ¢’

and the stress in the bulk o*. Being confined to a single finite element, we can refer to it as local equilibrium.
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hOi—0 o fi=— / Gio'de (3.35)
1

3.2.4 Derivation of operators G and Gv

3.2.4.1 Derivation of operator G g for real strain

Interpolation of the axial displacement field u’ (z) in the i-th layer is defined in equation (3.5). The regular part
@ (z) is computed from the axial displacement of the middle axis % (z) and rotation @ (z) of the cross-section.
Since they are both quadratic functions of z, @i’ () is quadratic as well. By the definition it is interpolated between
the nodal displacements u, v and 6 of the finite element. However, if we regard the layer as a special type of a
bar with quadratic axial displacement field, then @’ (x) can be interpolated between the nodal displacements u’
of this bar, see Fig.[3.9] If they are positioned at the ends and in the middle of the layer, the interpolation can be
performed with the original interpolation functions N“ (z) for axial displacements, defined in (3.I).

@' (z) =@ (z) —y'0(z) =N"(z)u’, u'= {u’],ué,ué}T (3.36)
- V. = = u,
. il @ —> o —> p —>
VI U U Uz
h 6.1 . % )
L

U N [~

G(X) | s Us Uz

\
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yool— ~Y6; Us N3 | .

Figure 3.9: Interpolation of standard axial displacement in ¢-th layer between nodal displacements of
the finite element (left) and between nodal axial displacements of the layer (right).
Slika 3.9: Interpolacija standardnega osnega pomika v i-tem sloju med prostostne stopnje koncnega

elementa (levo) in med vozlis¢ne osne pomike sloja (desno).

The “nodal” displacements u’ of the i-th layer can be calculated from @’ (x) by inserting for x the coordinates of
the layer’s “nodes”, which are 0, L and L/2.
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7 ~17 ~1 ~1 T
u = {u |r:0’ u |a::L’ u |9::L/2} =
(3.37)

3(U1—U2)_91+92 T
2L 4

= {m —y'01,ur —y'Or,uz — ' (-
The regular axial displacement @’ (z) is enriched with the additional part u»%4? (x,14), which represents the
additional axial displacement due to occurrence of a discontinuity in the layer. It is determined by the interpolation
function M* (z, %) and the displacement jump o’ at the discontinuity of the layer.

u' (z,2}) =0 (x) + M* (z,2)) o (3.38)

The interpolation function M* must not influence the nodal displacements u’ of the layer, which means that it must
have zero values at all nodes of the layer, and it must have a unit jump at the location of the discontinuity z*,. The
easiest way to meet the requirements is to use a combination of the Heaviside function and the suitable choice of
shape functions N*.

L L 1
|¢|
. X Q
i | | |
Q ot
: [
Hyi 0 1
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Figure 3.10: Domain and sub-domains of a cracked layer. Heaviside and Dirac-delta functions.
Slika 3.10: Domena in poddomeni razpokanega sloja. Heaviside-ova in Dirac-delta funkcija.

Domain Q of the cracked layer is divided by the discontinuity into two parts. Q™ is the part before the discontinuity,
with x < xil, and Q7 is the part after the discontinuity, with z > xfj, see Fig. The value of the Heaviside
function is 0 on Q~ and 1 on Q7. Its derivative is the Dirac delta function 5% , which has an infinite value at xj,
and zero value elsewhere.

0, z<a 0H o, =1
H, = a 1 _5, = ¢ (3.39)
d 0; otherwise
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Heaviside function H o, satisfies the requirement of a unit jump at the discontinuity. Its value, however, is only zero
on Q7, and not at all nodes of the layer. This can be fixed by subtracting from it those shape functions N;* € N,
that correspond to the nodes j, included in Q. Since N  are continuous and have zero values at all nodes except

J, they will not affect previously fulfilled demands.
M= H,; — Y Ny (3.40)
jeQt
To avoid complications, let us decide that the discontinuity can occur infinitesimally close to a node, but not at the

node itself. Two options remain for the function M®. If the discontinuity appears in the left half of the layer, Q™
contains nodes 2 and 3, and if it appears in the right half, Q" contains only node 2, see Fig.

Hxé—(Nﬁ‘—&—Né‘); 0<zy<L/2

M= ‘ (3.41)
H:I:Z_Nf; L2 <z <L
[l L ] [l L ]
i i
o : B :
— X — X
uj U u, uj U u,
| @ I ° () | @ 0 I ®
Q- Qr Q- Qr
Hy, 1 Hy, 1

Figure 3.11: Construction of interpolation function M; in case of discontinuity between nodes 1 and 3
(left) and in case of discontinuity between nodes 3 and 2 (right).
Slika 3.11: Konstruiranje interpolacijske funkcije M; v primeru nezveznosti med vozlis¢ema 1 in 3

(Ievo) in v primeru nezveznosti med vozlis¢ema 3 in 2 (desno).
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The first derivative of M* over x is designated with G},. Index R refers to the real strain, for interpolation of which
the operator G, is used. The derivatives of N}* and H », have been defined in (3.7) and (3:39).

5$37(B§‘+B§‘); 0<ai<L/2

_ , o ,
Gg (z,2y) = —M" (z,2}) = ) (3.42)
(z.2) O (z.2) 6. —BY; L)2 <z <L
Ta
It is convenient to divide G into a continuous part G, and a discrete part GJ.
, o= = _ —(By+BY); 0<azy<L/2
Gy (v,2%) = G+ Gh, Gh=6,, Gh— (B + 55 a< L (3.43)
d — B}, L2 <zy<L

Location of the discontinuity is determined by the stress state in the layer at the moment when ultimate stress is
reached. At that moment the strain still consists solely of the regular part &', defined in equation (3-8). Since this
is a linear function of z, it has extreme values at the ends of the layer. For any monotonically increasing material
law, the extreme values of stress coincide with those of the strain. The discontinuity is placed at one of the extreme
value positions. The choice depends also on the material properties.

The special case of constant layer strain, which arises in pure axial loading or pure bending of a finite element,
requires additional consideration. Linear operator G}% from is not appropriate on such occasion, as the sum
of a constant regular strain &' and a linear additional continuous strain Gha' would be linear. As a consequence,
the finite element would not be in equilibrium. For example, in pure tension of a finite element we would compute
different internal axial forces at the two end nodes. Another argument against the linear G}, operator in a constant
strain case is that it has two possible values, depending on the location of the discontinuity. A crack just to the
left of the middle node would produce completely different strain/stress state than a crack just to the right of the

middle node.

Intuitively, one would choose for the case of constant layer strain a constant operator G,. Such choice is supported
by the following reasoning. In case of constant strain in a layer, which corresponds to linear axial displacements,
the axial displacements of the layer could be interpolated between two “nodal” displacements of the layer, instead
of three, using linear interpolation functions N“*. They are presented in Fig.

~i uk i uk uk AT r z i i i\T
@' (z) =N""(z)u™, N""(z)={N] ,Nz*}:{lfz,z}, u = {uf,ub} (3.44)

Function M is determined by the same procedure as before. The difference is that the subdomain Q™ only contains
node 2, regardless of z;. The first derivative is computed accordingly.

oM’ 1
o = 0a, " T (3.45)

xT

za

M'=Hy = ) Ni"=Hy—Ni"=Hy -7, Gp(ea) =

JEQT
In a constant strain state, the discontinuity can appear anywhere between the end nodes. Without affecting subse-
quent computation, we can position it at 2, = L/2 .

Equation (3.46) collects the three possible appearances of the discontinuity in a layer. In case of a constant strain,

the discontinuity is set in the middle of the layer and the operator G}, is constant. In case of a linear strain, the
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Figure 3.12: Construction of interpolation function M; in case of constant strain.

Slika 3.12: Konstruiranje interpolacijske funkcije M; v primeru konstantnih deformacij.

discontinuity is located at either of the two end nodes, accompanied with an appropriate operator C_T'}i of linear
form. Interpolation functions B} are evaluated according to (3.7). Obtained functions are shown in Fig. @

, , = = . 1 4z i
Gr (w,73) = Gh+Gr, Gr=0,, Gr= —L<3—L); ra="0 (3.46)

3.2.4.2 Derivation of operator Gy for virtual strain

Operator GY, is a function that describes the influence of the virtual displacement jump & on the virtual strain &° of
the i-th layer. It is commonly taken to be equal to G}, but this is not compulsory. Any function, that appropriately
describes a kinematically admissible variation of displacements, can be used. Let us first examine the natural

choice Gi, = G§.

We have determined in previous sections that strain is linear in a layer of a finite element. For a piecewise linear
material law, such as a combination of linear elasticity and plasticity with linear hardening, stress in the layer is
also linear. The only exception is a partially plastified layer - in that case the stress is bilinear. For a fine enough
mesh, however, stress in such layer does not reach the ultimate values, as indicated in Fig.[3.14] We can therefore

assume a linear form of the stress in the layer at the moment when a discontinuity appears.
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Figure 3.13: Operator G for interpolation of additional real strain.
Slika 3.13: Operator G g za interpolacijo dodatnih pravih deformacij.

L. critical element

Figure 3.14: Linear strain and bilinear stress in a structural element, modeled with five finite elements.
Slika 3.14: Linearne deformacije in bilinearne napetosti v konstrukcijskem elementu, modeliranem s

petimi kon¢nimi elementi.

o' =Ciz+Cy (3.47)

Expressions (3.46) for G}, and for o are inserted into equation (3:33). The traction at the discontinuity ¢
is marked with the index R to note the use of G;é. In case of a constant strain, constant C is zero.

|

L L
_ , _ o 1
di=L/2: C1=0, oi=0C, t}{:—/ }’%aldx:f/f Codr = Ch (3.48)
0 0

We can see that the traction at the discontinuity ¢5 is equal to the stress in the bulk o, which is consistent with the

definition of ¢}, as the value of o () at x = x%,. Next, we consider the linear strain cases with 2%, = 0 and z%, = L.
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L
) 1 ) .
2 =0 / <3—>(le+6’2)dac—01 +Co 0= Ca A
OL (3.49)
i 1 4x 5L i 7
IdZL —/L<1—L> (O]QS—FCZ)CZI:C]?—FCL o mZ:LZC]L—FCz#tR
0

The traction at the discontinuity, computed in @]) is incompatible with the definition t}i = gt (:Ezl) which
suggests inadequacy of the choice G, = Gj;. An alternative function has to be found for Gj,, preferably similar
to the original proposal. A slight modification of the continuous part Gf,leads to expressions (3:30). The discrete

part G, remains unchanged.

- zhy=1/2
2 3z i
GV (IE Id) Gv+Gv, Gvf(s ) Gvf _Z z_f s xd:O (350)
2 3z i
Z (1—L> 5 CL’d—L
1 L ]
— X
1 3 2
1
— L
Gy =2 ' 5
4 1 ;
n T —

Figure 3.15: Operator Gy for interpolation of additional virtual strain.
Slika 3.15: Operator G'y, za interpolacijo dodatnih virtualnih deformacij.

It turns out that function GY,, as defined in (3.30) and shown in Fig. [3.15] solves the compatibility issues encoun-

tered before.
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L
2q=0: tzz_/_L(2_3;)(0196+02)d$2027 0|4 =C2=1"
i—
0
L2 . (3.51)
i 1. 4i__ [ A2(_2T _ i i
zy=L: t'= ./L<1 L)(C1.€C+Cz)d:c CiL+C,, U%:L CiIL+C,=t

Operator G, should also satisfy the patch test which requires the additional virtual work (performed on the virtual
displacement jumps &?) to be zero in case of constant stress o, Thus, the introduction of &' does not affect the
energy dissipation at least for the constant stress state. Such state is approached by refining the finite element mesh.

& / Gt Aidy 7™ i gi / Gidr=0 = / Girde =0 (3.52)
L £0 L L

Taking into account the rule (3.33) for integration of G?,, requirement (3.52)) can be reformulated.

=1

——
/Gedx:/(éewwé)dx:/c‘:@dwr/%dm:o = /(;ivdx:—l (3.53)
L L L L

L

It can be easily verified that each of expressions (3.50) for Gé/ satisfies (3.53).

3.2.5 Constitutive models

In this section we describe constitutive models which control the behavior of concrete and reinforcement layers.

For each material, there are two separate models, one for the bulk of the layer and one for the discontinuity.

3.2.5.1 Bulk of concrete layer

Behavior of the bulk of the concrete layer is described by 1D elasto-damage model. Response of the material
is linear elastic up to the elasticity limit. Further increase of stress produces micro damage (micro cracking in
tension and micro crushing in compression) continuously over the layer, which results in reduction of the elasticity
modulus. Unloading is linear elastic with the current value of the elasticity modulus, and leads to the origin of the
stress-strain diagram (see Fig.[3.16). These properties of concrete are collected in the following equations, which

can be derived through the principle of maximum damage dissipation, see [[73].

Equation (3:54) shows the linear elastic relation between stress and strain. It represents the loading curve/path up

to elasticity limit and the unloading/reloading curve in the o — &° diagram.

gt

[ . . L. L N
g, D’E[E’l oo), ' =B'd+ Gra' =B'd+ Gra' +Gra’ (3.54)

c

c'=D"

Here D' is compliance of the bulk material, E, elastic modulus of intact concrete, and &' the continuous part of

axial strain in the ¢-th layer, composed of the regular strain and the continuous part of the additional strain. The
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Figure 3.16: Stress - strain diagram for bulk of concrete layer.
Slika 3.16: Diagram napetost - deformacija za sloj betona.

latter is zero until the discontinuity is formed. The non-elastic part of the loading curve in the o* — &' diagram is
defined indirectly by the remaining equations in this section.

I ) ) 04. for compression
¢ (0",7") =|o'| = (ea—17T"), Ud:{ ! (3.55)

oq¢ for tension

Damage function ¢ prescribes the admissible values of axial stress ¢* in the i-th layer. Elasticity limit oz > 0
marks the beginning of micro damage and is defined separately for tension and compression. Stress-like hardening
variable §* handles the damage threshold evolution.

. _ H,.. for compression
¢ =-HS', He= (3.56)
H,.; for tension

Linear hardening of the material is described by equation (3.56), where ' is a strain-like hardening variable with
initial value equal to zero, and H, > 0 is a constant hardening modulus of concrete with separate values for tension
and compression. Evolution in pseudo-time of internal hardening variables D and £’ is defined by evolution

equations (3.57).

i "yisig@ (o) f_v s

)

(3.57)

Il
S]]

O—Z
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The dot designates the derivative with respect to pseudo-time and f?i is damage multiplier. The loading/unloading

conditions and consistency condition (3:58) also apply.

>0, ¢'<0, §'¢'=0, ¥¢ =0 (3.58)

Tangent moduli of the o — &° diagram can be determined from the above equations. The elastic loading/unloading
path corresponds to condition 4 = 0. It follows from evolution equations (3.57)), that compliance D? is constant.
The tangent modulus is obtained if expression (3.54)) for o is differentiated with respect to &%.

> —p (3.59)

4'=0 = D'=const.,
0¢

In case of damage loading, when '"yL > 0, the procedure is more complex. From the third and the fourth of conditions
- 7 .

(3:58) we can conclude that ¢* = 0 and ¢ = 0. From (3.33)) we can write the expression for o and differentiate it

over pseudo-time. We use the appropriate evolution equation to differentiate &°.

ol = (Ud — cji) stgn (oi) = (O'd + Hcgl) sign (O'i) , &' = Hcfyisign (O‘i) (3.60)

The stress can be replaced by expression (3.54). The obtained equation is again differentiated over pseudo-time.
Note that compliance D is not constant any more.

DilE = (04+ H:E") sign (o)

_DUD'E+ D E = H.E sign (o") D' = W/SZ‘CZ () =g
~7 . 7 . i . =i _ .
~p IR @) iy 578 _ 14 sign (o) /S=D (3.61)
_Diflfyisign (") + DilE = H.A'sign (o)
=1 Di_l + Hc -7 . i
g = T’y sign (O' )

The tangent modulus is computed by dividing the pseudo-time derivatives ¢ and &' from (3.60) and (3.61).

g0 &' DU'H,

o9zt & D4 H, (362

To sum up, the tangent modulus is described by two expressions. The first one covers the elastic behavior -
unloading and reloading, including the first elastic loading with the initial value of compliance D* = E_ ' The

second expression represents the slope of the damage loading curve.

D H, . (3.63)
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3.2.5.2 Discontinuity in concrete layer

Energy dissipation at the discontinuity of a concrete layer is described by a softening damage law, which connects
the traction at the discontinuity to the displacement jump. When the discontinuity is introduced, the displacement
jump is zero and the traction is equal to the failure stress of concrete. An increase of the displacement jump (in
absolute value) reduces the carrying capacity and thus produces a lower traction. A subsequent decrease of the
displacement jump (in absolute value) reduces the traction as well, but the carrying capacity remains the same.
Obviously, the problem needs to be controlled by imposed displacements to provide a unique solution. The term
“loading” therefore refers to the increase of displacement jump (in absolute value) and “unloading” refers to the
decrease of displacement jump. The unloading is always linear elastic, but there are two possibilities for loading.
Elastic (re)loading follows the unloading curve, increases the traction, and leaves the internal variables unchanged.
When carrying capacity is reached, damage loading continues. It decreases the traction and changes the internal
variables (see Fig.[3.17). This material law is mathematically described by the following equations, which can be
derived by using the principle of maximum damage dissipation, see [73].

\
Q

Ko

- — 0 fec

Figure 3.17: Traction - displacement jump diagram for discontinuity in concrete layer.

Slika 3.17: Diagram napetost - skok v pomiku za nezveznost v sloju betona.

Equation (3.64) describes the linear elastic relation between the traction at the discontinuity ¢* and the displacement
jump o'. It represents the unloading/reloading path in the ¢’ — o diagram.

[ =
o', D' €[0,00) (3.64)

Here 51 is compliance of the discontinuity which increases with progression of the localized failure. The loading

curve of the t* — o’ diagram is defined indirectly by the remaining equations in this section.
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si (o . Ofcc for compression
¢ (t ) = |t'] - (Ufc q ) Ofe = , (3.65)
oyt for tension

Failure function ¢:>Z prescribes the admissible values of traction ¢' at the discontinuity of a concrete layer. Failure
stress of concrete oy, > 0 indicates the occurrence of the discontinuity and is defined separately for tension and
compression. Stress-like softening variable ' handles the damage threshold evolution and is described by an
exponential function.

Ofce

_ K. =— for compression
=i K gl 2chc
g =o0p|l1—€e" |, K.= Ofet (3.66)
K. = ——— for tension
i 2cht

Here §: “isa displacement-like softening variable with initial value set to zero, and K. < 0 is a constant softening
modulus of concrete with units m~! and separate values for compression and tension. These are determined by the
fracture energies per cross-section unit Gy.. and Gy, for concrete in compression and tension, respectively. The
fracture energy has units kJm~2 and is measured in a uniaxial compression/tension test. Fracture energies Giec and
Gy represent the areas between the horizontal axis, and the compressive and tensile softening lines of the t —
diagram in Fig. | respectively. Evolution in pseudo-time of internal softening variables D' and § ! is defined by
evolution equations .

3 sign(t) s
TR ¢

<.

= (3.67)

I
2

The dot designates the derivative with respect to pseudo-time and %i is damage multiplier. The loading/unloading
conditions and consistency condition (3.68) also apply.

=1

'>0, ¢ <0, i = (3.68)

\2”

i3

\gu
«QII

A closer 1nspect10n of equations (3.64)-(3-68) reveals that the damage loading path of ¢! — o diagram, correspond-
ing to condition qS =0, is a straight line, see appendix E The discovery suggests a possibility of simplification,
but more insight is required.

) =1
Each point of the damage loading path is determined by its ordinate ¢* and the slope D of the unloading line,

which connects the pomt to the orlgln Abscissa o' is computed from equation (3:64). Evolution equations @D
dictate the change of D' and &', the latter deﬁmng ¢ through equations (3.63), (3.66) and (3.68). Both D and
t* change non-linearly with respect to 5" = ’y ‘AT (AT being pseudo-time step), the first one because of non-linear

evolution equation (3.67), and the second due to exponential softening law (3.66). However, the two non-linearities
neutralize each other, yielding a linear relation between ¢ and o.

The same damage loading path can be constructed by defining coordinates o and t. If they both change linearly
with respect to some new variable, the diagram will be a straight line. We introduce a new displacement-like
variable le " and the softening law takes a linear form.

=ik 1 = = = =ik 4 St
¢ =% (1 —efiet ) . G =0y <1 —efet ) =-K.o.6 =-K:¢ (3.69)
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The expression for §' in (3.69) holds for £ < oo, or equivalently & e /K, . After that §’ would become greater
than the failure stress of concrete oy, which is not acceptable. Physically, it means that the carrying capacity
cannot drop below zero.

7 =min{-K:{" ope ), K:=K.op (3.70)

Then, the introduction of a new damage multiplier f:yi* allows us to write a new set of linear evolution equations
. =1 % . .
for o and ¢ . See appendix |B|for details.

'71‘* = _F (1 - eKc’:yi) ) al= '71*52971 (t$> ) E = ’7” (3.71)

The new softening law and evolution equations (3.71)), due to their linear form, simplify the computa-
tional procedure significantly. But there is another advantage over the original equations. As the original dam-
age multiplier *=yi approaches infinity, the traction ¢* approaches zero and the displacement jump o' approaches
—sign (tl) /K. . No matter how much we increase the multiplier, o cannot pass that value. For an individual bar,
such limitation is logical, as the complete loss of carrying capacity implies singularity of the problem and a further
increase of the discontinuity is meaningless. However, if a layer of a beam loses all carrying capacity, the beam
as a whole still possesses stiffness. The broken layer just follows the rest of the beam without resistance. It is
therefore necessary to allow o' to grow past the point of failure. When the new damage multiplier ':y” reaches the
value —1/ K. , the original multiplier is pushed to infinity and the old evolution equations get out of scope.
The new evolution equations (3.71), however, withstand further increase of 5. As the latter approaches infinity,
so does o’ (in absolute value). Once past the failure point the traction ¢’ remains zero. The constitutive law at the

discontinuity is summed up below.

D a4 ¥ =0
t' =9 oy sign (o) + op. Kea's i” >0, 7 <oy (3.72)
0; ’iyl* >0, ¢ = oy

The first expression represents the elastic unloading path, the second one the damage loading path until the traction
drops to zero, and the third one the damage loading path further on. The tangent moduli are obtained by a simple
differentiation of (3.72).

(B o

ori L

Hat = K: = o—chc, ¥ >0, ql < Ofc (3.73)
O? ;YZ* > Oa él = Ofc

3.2.5.3 Bulk of reinforcement layer

Behavior of the bulk of a layer of reinforcement is described by 1D elasto-plasticity model with isotropic hardening.
It is symmetrical in tension and compression. Response of the material is linear elastic until yield stress is reached.
If loading increases, plastic deformations occur and grow continuously over the layer. Elasticity limit is raised

as well. Unloading is elastic and follows a line, parallel to the first loading path. When the stress drops to zero,
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plastic deformations remain in the layer (Fig.|3.18)). Behavior of steel is mathematically described by the following

equations, which can be derived by using the principle of maximum plastic dissipation [73]].
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Figure 3.18: Stress - strain diagram for bulk of reinforcement layer.
Slika 3.18: Diagram napetost - deformacija za sloj armature.

Stress o is computed from equation (3.74), which represents the elastic loading path and elastic unloading or

reloading path of the o* — & diagram.

F_.—’L

—

o' =B, (5 -2), & =Bd+Ghal =Bd+Ghal +Ghal (3.74)

Here E is the elastic modulus of steel, 5"; plastic strain, and &' the continuous part of axial strain in the i-th
layer, composed of the regular strain and the continuous part of the additional strain. Before the appearance of the
discontinuity the additional strain is zero. The plastic loading path of the 0! — &* diagram is determined indirectly
by the rest of the equations in this section.

¢ (0",q') = |o'| = (0y —T') (3.75)

Yield function ¢* prescribes the admissible axial stress in the layer. Yield stress o, > 0 is the absolute value of
the stress, at which the first plastic deformations occur. Stress-like hardening variable @’ controls yield threshold

evolution.

i— _HE (3.76)

Equation describes the linear isotropic hardening of the material. Here Hy > 0 is a constant hardening



66 Jukié, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.
Doctoral thesis. Cachan, ENSC, LMT.

modulus of steel and £’ is a strain-like hardening variable with the initial value zero. Evolution in pseudo-time of
internal hardening variables for plasticity, Ff; and £, is prescribed by evolution equations (3.77).

YT i B e

£, =7 sign (0 ), & =% (3.77)
The dot designates the derivative with respect to pseudo-time and 5/1 is plastic multiplier. The loading/unloading
conditions and consistency condition (3.78) apply as well.

7'>0, <0, 34=0, 3¢ =0 (3.78)

Tangent moduli of the o* — &' diagram are determined by the described equations. In elastic response, the plastic
multiplier is equal to zero. As a consequence, internal variables are constant and the tangent modulus is simply
computed by differentiating the expression for o* with respect to &%,

iy : ot

=1 =1 __ _

¥ =0 = £&,=const, 55 = E (3.79)
In plastic loadipg, the plastic strain 5;, is not constant. It depends on the plastic multiplier f?i > 0 and consequently
on the strain £&'. The tangent modulus can be computed from pseudo-time derivatives of stress and strain. It

- =1 .

follows from the last two equations in that ¢* =0 and ¢ = 0. We can express ¢ from equation (3.75)) and
differentiate it over pseudo-time.

o' = (o, —q")sign (o) = (o, + H,&") sign ('), &' = HA'sign (c") (3.80)

We can replace the stress o with expression (3.74) and differentiate the modified equation over pseudo-time again.
Evolution equations (3.77) are utilized in the procedure.

E, (Ei — ';) = (ay + HSE_’) sign (O‘i)

B, (#-2,) = HE sign (o) J&,=5"sign (o), & =7
] i i =i . ; (3.81)
E,i — E4 sign (01) = Hy¥ sign (al)
éi_ Es +Hs ;isi n(al)
- ES Y g

Pseudo-time derivatives ¢ and &', defined in (3.80) and (3.8T)), are divided to produce the plastic tangent modulus.

dot &t E.H,

95 #  F.+H,

(3.82)

The elastic and plastic tangent moduli are gathered below. The first expression represents the slope of the elastic
loading and unloading path, while the second one represents the slope of the plastic loading path in the o — &

diagram.
Aot B Es; ¥ =0 G53)
o8t E.H, Y '
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3.2.5.4 Discontinuity in reinforcement layer

Behavior of the discontinuity in a layer of reinforcement is described by a plastic softening law, which connects
the traction at the discontinuity to the displacement jump (Fig. [3.19). At introduction of the discontinuity the
displacement jump is zero and the traction is equal to the failure stress of steel. A further increase of the imposed
displacements of the layer reduces the carrying capacity. The traction at the discontinuity decreases and the dis-
placement jump increases. This is referred to as plastic softening. The displacement jump behaves analogously to
plastic strain in the continuous model, i.e. it stays the same if the loading is decreased. The traction at the discon-
tinuity in the unloading phase changes in accordance with the stress in the bulk, so that the equilibrium is
satisfied. When traction (in absolute value) reaches the carrying capacity again, the plastic loading continues and
the displacement jump changes accordingly to the sign of traction. It decreases in compression and increases in
tension, regardless of its own size and sign. The mathematical description of such behavior is condensed in the
following equations, which can be derived by the principle of maximum plastic dissipation, see [73].

O s

N

s

eastic unloading/reloading

>

Figure 3.19: Traction - displacement jump diagram for discontinuity in reinforcement layer.

Slika 3.19: Diagram napetost - skok v pomiku za nezveznost v sloju armature.

é (tq) =] - (Ufs —(?) (3.84)

Failure function <;:$Z defines the admissible values of traction ¢’ at the discontinuity of a reinforcement layer. Failure
stress of steel oy, > 0 is the absolute value of the stress, at which the discontinuity first appears. The stress-like
softening variable ¢* manages the softening threshold evolution.

qzi:min{—K £ o } K= T (3.85)
9 9 2Gf5
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The linear softening law is described by equation (3.85]), where §:Z is a displacement-like softening variable with
initial value zero, and K, > 0 is a constant softening modulus of concrete with units kNm 3. Fracture energy per
cross-section unit of steel has units kJm‘2 and is determined in a uniaxial tension test. Evolution in pseudo-time
of internal softening variables o/ and fm is defined by evolution equations (3.86)).

24

ozi:’iyisign(ti), & =

%

(3.86)

-

The dot designates the derivative with respect to pseudo-time and '=yz is plastic softening multiplier. The load-
ing/unloading conditions and consistency condition also apply.

>0, § <0,

15 =0, 34 =0 (3.87)

=2
Qu
Qu

The equation of the plastic softening loading path of ¢/ — o diagram is not unique. It depends on the loading
history. If the softening process alternates between both load signs, the loading path is translated sideways (left or
right). The slope, however, is not affected and can be determined from the pseudo-time derivatives of t* and .
In softening process, when ﬂiyi > 0, the failure function dznl = 0. Expression for t* is then determined by and

B:35).

) ) ) S—&—K;i)si n(t): § < ops
1 = (o =) sign (1) = (504 8.8 ) sian () = (3.88)
0; c? = Ofs

P . . . . . =
The derivative is obtained in accordance with evolution equation (3.86) for £ .

stiisign (t") = Kﬁisign (t)s J' <oy

4 (3.89)
0; (jl = Ofs

The slope of the plastic softening loading path, defined as the derivative of ¢’ over o, is computed by dividing the
pseudo-time derivatives (3.89) and (3.86)) of both quantities.

not defined; ? 0
ott { ,
=L K. 250, 3.90
oo &l K; 'Y >0,q < Ofs ( )
0; % >0, ¢ = oy

A third option was added in equatlon (3:90). It corresponds to elastic unloadlng path with ’y = 0. It follows from
evolution equations (3.86) that ¢* = 0. And since the failure function ¢ is no longer required to be zero, the
traction ¢* cannot be computed as in (3.88). It changes in accordance with equation (3.35) which represents the
equilibrium between the bulk and the discontinuity. The fraction in (3.90) is not defined, but it is not required in
the computational procedure anyway.

3.3 Computational procedure

Response of a structure, discretized by a mesh of npg above derived finite elements, is computed at discrete

pseudo-time points 79, 71, ... , Tn, Tn+l, --- , 1 by solving at each pseudo-time point nonlinear equations (3.91)
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for current values of nodal displacements/rotations.

fmt,str _ fext,str — 0

| (3.91)
Vee {1,2,...,npp}, Vi € {12n(cz} i

Here, ngz is the number of cracked layers in element (e¢). At a particular pseudo-time point 7, ], the solution

is searched iteratively by the Newton-Raphson method. Each iteration, denoted by k, consists of two subsequent
phases: (A) computation of internal variables, corresponding to the current iterative values of nodal displace-
ments/rotations, in order to compute the stress in accordance with given material laws; (B) solution of linearized
equations in order to update the iterative values of nodal displacements/rotations. When one phase of the

computation is completed, the results are used immediately in the next one.

For a pseudo-time point 7,1, the computational problem related to a generic element (¢) and material layer ¢ can

be stated as:

R(e)i Fle)i ple)i £(e),i Ae)i gle)i Fle)i Fle)i
. (e) Dn)’ 7551)7 7D51)' 76’57,), (e) D£L+17§n€ll’Dn€J)rl7£7(H)»l
given d,"and ) o (e fe 0 ntn 9 00 S0 (0 He
p & o G Epnt17&nt 1 Ui 1 6ntl

Note that superscript (¢) was omitted in section for the above internal variables. The subscript n and n + 1
denote the values at pseudo-times 7,, and 7,1, respectively.

3.3.1 Computation of internal variables

In this section we will present computations of phase (A). The internal variables for i-th layer of element (e) at
pseudo-time point 7,41 will be computed for the k-th iteration, while the nodal displacements/rotations are fixed
at the values from the previous iteration dffl’l(kfl). Since every internal variable is connected to a single layer of a
single finite element, the computations are local, i.e. they are performed independently for each element and each

layer. The condition of the discontinuity is known by the following flag.

. alse ... no discontinuity in layer 4
crack® = { f Y Y (3.92)

true ... discontinuity in layer ¢

The algorithm in Fig. [3.20]is applied. If there was no discontinuity in the layer in the previous pseudo-time step,
we begin with equations for the hardening phase of material, described in sections [3.3.1.1] for concrete and [3.3.1.3]
for steel. We must do so even if the previous iteration of the current step indicated occurrence of the discontinuity,
because that was not a converged result. We check if the carrying capacity of the layer is exceeded. If not, we keep
the obtained results, otherwise we discard them and use equations for the softening phase of material, described in
sections [3.3.1.2] for concrete and [3.3.1.4] for steel. If the discontinuity already existed in the previous pseudo-time
step, it must also exist in the current step, therefore we follow the procedure from sections[3.3.1.2)or[3.3.1.4]

The integrals, that appear in expressions (3.29), (3.30) and (3.33) for fi"(¢), (€)% and ¢, are evaluated with
numerical integration. A three-point Gauss-Lobatto integration scheme is used with integration points at both ends

and at the center of the finite element. Strain, stress and hardening internal variables are therefore computed only at
those three locations. Softening internal variables are defined at the location of the discontinuity, which coincides

with one of the integration points (although the two are not connected).

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element, and

the superscript ¢, denoting the layer.
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Start phase A of iteration k
for element eand layer i

crack®'= true = crack’®; = true
No
use egs. from secs.
331.10r33.13
crack®! = true,
carrying capacity Yes _| deleteresults, computed
exceeded with egs. from secs.
331.10r33.13
No
crack®; = false,
keep results, computed
with egs. from secs. use egs. from secs.
33110r3313 33120r3314

End phase A of iteration k
for element e and layer i

Figure 3.20: Algorithm for phase (A) of k-th iteration for i-th layer of finite element (e).
Slika 3.20: Algoritem za fazo (A) k-te iteracije za i-ti sloj kon¢nega elementa (e).

3.3.1.1 Bulk of concrete layer

This section describes the computational procedure for the hardening phase of a concrete layer. The discontinuity
has not yet occurred and the displacement jump is zero. The computation is started by assuming an elastic step,

which means that hardening internal variables do not change, but keep the values from the previous step. Trial

* —o.

value of stress is computed according to (3.54), with o, ", | =

= (k),trial = =(k),trial = k),trial = (k),trial™' _ [ 4(k—1 k
DSLJZ/I = D”’ g(ngl = f’ﬂ’ UELJEI = D'ELle € (dngrl >’asnll) (393)

(k),trial .

The trial damage function ¢, ;""" is computed in accordance with equations (3:33)) and (3:56).

(k),trial

T(k),trial __
¢ n+1

n+1 -

. (Ud . qflliz,ltrial) 7 qgiz,]trial _ _Hcéflliz,ltrial _ _Hcgn (3.94)
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The trial solution is accepted if the trial damage function is not positive.

Z(k),trial ~ rial =(k =(k),trial k k),trial
d)'EH)-lt <0 = 5142 Dihzf J 57(1421 = 57(142; J 0211 = Uihzf (3.95)

Otherwise, the internal variables have to be corrected and the stress recomputed. Incremental form of evolution
equations (3.57) is applied, where 50— 5 k) (Tn+1—Tn) > 0. The use of sign (U(k) ) = sign (o(k)’mal) is

nt+l = Tn+l n+l ntl
justified in appendix [A]
. k),trial
T(k),trial (k) 3 = (k) stgn (Uiﬂzlt ) F(k) 3 = (k)
Fihret 50 = DY) =Dl — L g g5, (3.96)
On+1

(k)
n+1
(k)

n+1-

and the stress-like hardening variable q'(k)

By using equations (3.96), the stress o il

can be expressed with their

trial values and the damage multiplier ¥

o) =)'z S(alh.al))

n+1 n+1 1 %nt1
pE SE) s (ql=1) (B) ) _ plk)trial (k)trial
n+ Opt1 =€ (dnJr] ’an+l> DnJrl o),
_ (k) SZgn n+1t”al> k) -
Dp+%) — 1/ o) o
n+l
D (k) ),trial (k) trial
D +7"+1829n n+l ) = Dno,})
07(1121 = o—gizltmal o D ~(k )1SZgn( gzz,ltrial)
g 3 = (k _(k),trial _(k
ich = ~HA& = ~H. <5n+7£+)1) =g - H A, (3.98)

Equations (3.97) and (3.98)) are used to express the damage function q@fﬁl as a function of damage multiplier f“yfﬁgl ,

which is then computed from requirement q_Sgi)] =0, coming from loading/unloading conditions (3:38).

50 = o (o) = ol - 8, (- ) - sl -
= Sul " = (D + Ho) Ay
(3.99)
. w“ Q—S(I:)_,ltrial
$pi1 =0 = %H—ﬁ

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

(3:93) if damage multiplier '_77(1]21 is zero, and the value from (3.97) if 77(:21 is positive. In the second case, equations

(B99), (3:94) and (3.93) are used to express the stress as a function of strain.

= _(k
e D, 7 =0
i R (3.100)
0z n+1 - - . _(k)l >0

D'+ H.’ Tt
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The hardening internal variables, stress and tangent modulus have been determined under assumption, that carrying
capacity is not exceeded. A control is required to verify that assumption. If indeed the carrying capacity is not
reached, the results are accepted. In the opposite case, the results are discarded and computed again, taking into
account the newly appeared discontinuity.

To perform the control, the location x4 of the potential discontinuity must first be determined. It is positioned
according to the stress state in the layer. In case of constant stress, it is placed in the middle of the layer. In case
of a linear stress distribution, the positioning is not so trivial because of different failure stresses of concrete in
tension and compression. Let us consider the situation, when the highest value of stress is at node 1, o1 > 3. The
seven possible linear stress states are shown in Fig. Criterion o3 > 0 covers the cases a, b, ¢ and d, where
the greatest tensile stress is greater than or equal to the absolute value of the biggest compressive stress. Since
the ultimate stress is much higher in compression, the failure is only possible in tension and the discontinuity is
placed at the left node. In cases f and g, where o < 0, the whole layer is in compression and the failure can only
occur at node 2. In case e, the location of the discontinuity is determined from the ratio of maximum compressive
stress to maximum tensile stress in the layer, compared to the ratio of ultimate stresses in compression and tension.
Situation o < o, would be treated in the same way. Here o) = o|,_(, 02 = 0|,_; and 03 = U‘E:L/z )

01 =0)=03 = xZ:L/Z
o3>0 = a:fizo

01 <0 = xil:L
o1 >0y = (3.101)

03 <0 = {02/Ul|§(0fcc/‘7fct) = 25 =0
>0 = .
lo2/o1 | > (0ec/0fet ) = xg=1L
01 <oy = analogously to o1 > 0,
01
03
) N <SP T
aj 3 2 €1
03 -
+ 72

Figure 3.21: Seven possible linear stress states in a layer.

Slika 3.21: Sedem moZnih linearnih razporedov napetosti v sloju.

When location of the potential discontinuity is known, we can compute the potential value of traction at the

discontinuity tilkl’lp " according to equation (3:33). Appropriate operator Gy is chosen from (3.50), depending on
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x4. The integral is evaluated numerically with the three-point Gauss-Lobatto integration scheme.

gl pot — / Gyol*) dw (3.102)

(k)
ntl|,

(k),pot

il for a linear stress distribution. Failure

As we have shown in section|3.2.4.2{ the value of ¢ isequal to o

( );pot
n+1

pO
n+1

been no reduction of carrying capacity in previous steps.

function (;5 * is then evaluated with the stress-like softening variable ¢ equal to zero, because there has

(b(k),pot

(k),pot
n+1 t

n+1 n+1 n+1

_ (ch _(j(k)’pot) : q(k)mot 0 (3.103)

The discontinuity flag is set to ¢true if the failure function is positive, and to false otherwise. Note that the value

of the flag is not final, until the converged state is reached. It can change in following iterations.

szﬁfm <0 = CTaCan = false (3.104)
5&}{’“ >0 = crack' )1 =true '
If the carrying capacity is exceeded (qbn +’lp °" > 0), the above computed values of internal variables, stress and

tangent modulus are discarded for this iteration and computed anew as described in section[3.3.1.2]

3.3.1.2 Discontinuity in concrete layer

In this section we describe the computational procedure for the softening phase of the concrete layer. The procedure

is used if the current value of discontinuity flag cmck( )i

(e),i

discontinuity in the previous step (cracky

41 = true. This is a consequence of either an existing
= true), or exceeded ultimate stress in this iteration, as written in
equation (3:104). In both cases, the hardening internal variables take the last converged values, i.e. the values from

the last step. The error of such choice is negligible for small enough pseudo-time step.

(& _ ~(k _
DY) =D, &Y =¢, (3.105)
The computation is started by assuming an elastic step, which 1mphes no change in the softening internal variables

in this iteration. We use the displacement-like softening variable 5 introduced in equation (3.69).

B(k),trial _ En g*(k),trial .

n+1 n+1 - (3.106)

3
The trial value of traction at the discontinuity is defined by equation (3.107)), where operator G, is chosen from
expressions (3.46), accordingly to the position of the discontinuity 24, which is known either from the previous
step or from equation (3.101). Linear functions B and Gy, are evaluated at 24 and the bulk compliance D,, at x4 is
used. Derivation of the expression is shown in appendix [C]

(k=1)

i Bd

tgbkl,]tmal _ % (3.107)
D,—GpDy],
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The trial stress in the layer is computed according to expression (3.34), where the trial value of displacement jump

agiz’lmalis calculated from equation (3.64).
J’Elliz,ltrial _ Dni;: (dslkJr—ll)7a£Lklylt’rial) 7 aibkl,ltrial _ Ent;kl,ltrial (3108)
Next, the trial value of failure function gZifjf”‘” is computed, using expression (3.70) for computation of the
. . . =(k),trial
stress-like softening variable g, /" .
Rt = [ = (o=@ ), @ = min{—KEN T o} =4, (3.109)

If qzibkl’lmal < 0, the trial solution is accepted.

A(k) _ Ak)trial (k) _ Fx(k),trial (k) __ (k)trial
Diii=Dny s & =8 I e
t(k) o t(k‘),t'r'ial (k) _ _(k),trial

n+l = “n+l ’ n+l = Y n+l

(3.110)

If 3(k) trial > 0, the assumed trial values are not admissible. We have to compute the softening damage multi-
n+1 p g g
plier %;(f:f = Ey:(fl) (Tn+1 — ) > 0 from equation qﬁgﬁ)l =0 in order to compute new values of internal softening

variables, see appendix Linear operator Gp, is evaluated at 24 and the bulk compliance D,, at 24 is used.

(Z(k),trial (Dn B GREn)

=x(k) _ | “nAl 3.111
T+l K:D, —Cg (3.111)
T=T4
It (jﬁﬂ =K (E;‘L + 5/2(1:1)) < oy., the softening internal variables are updated, following the incremental form of
evolution equations (3.71).
(k) max | z*(k)
k =x(k)) _: k)trial  Ex(k) _ E | =x(k) Ak a, A+,
0451421 = (O‘?zm “"Yn(ﬂ)) sign (tfw)if ) ; fn(d =&, +7n<+1>’ DEHZI = (k)+1 = =*J(r/i) (3.112)
[ o N A G S

Here, o™ = Ent‘,?a" = lz)n (O'fc + K :E;;) is the maximal elastic value of « for the given carrying capacity that
was reached in the last softening step. Traction at the discontinuity and stress in the layer are computed as follows.

19 = (ore =), ) sign (557), o) = Doz (al"all))) (3.113)

If -K; (fz;kt + '?Z(f:l) ) > 0 = (jflk_gl , material has lost all carrying capacity and traction at the discontinuity becomes

Z€10.

k k
t5L+)1 = O-T<l<‘21

L= [Dn (fidgl’:l) +Gral®) 1)} =0 3.114)
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From above equation we can compute the displacement jump and the compliance at the discontinuity. Note that

the linear functions B and Gy, are evaluated at z.

(k=1) (k)

Bd = «a

afﬂl:[ 75“ 1 , DW= = (3.115)
R T=x4 tn+l

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump.
If ( f = 0, their relation is described by equation (3.108). If ¥ ") > 0and 3%, = —K* (ffl +§Z(f3) < Ofe,

n+l n+l —
tractlon takes the value from (3.113). The first of equations (3.112) is used to express the traction as a function of
displacement jump. If *:y:‘z(ff > 0 and 5&&1 = oy, traction is constantly zero.
7~ =x(k
w | Ty =0
DI K — ok 7% >0, 7Y (3.116)
Ha i - = Ofclies nrl =~ Gny1 < Ofc )
0; Tt > 0,4, = o

(e)

The discontinuity flag is set to crack; 1 = true.

3.3.1.3 Bulk of reinforcement layer

The computational procedure for the hardening phase of the reinforcement layer is described next. There is no
discontinuity in the layer and the displacement jump is zero. First, we assume elastic behavior, meaning that
hardening internal variables keep the values from the previous step. Stress is computed in accordance with equation

wherea( )1 =0.

k),trial __ ), trial = k),trial _ k—1 k _(k),trial
5;(9,7)L+1 Epn §n+1 =&n, ‘72421 =L (5 (dgwl )’O‘ELJRI) _E;,ELH > (3.117)

Trial yield function qS mal is computed, as defined in (3.75) and (3.76).

(k),trial

(k). trial _
(b n+l

n+1 -

_(k),trial _(k),trial rial
(o =ath) @l = HEN = (3.118)

The trial solution is accepted if the trial yield function is negative or zero.

—(k),trial _(k) _ _(k),trial (k) _ Fk)trial (k) __ (k)trial
¢n+1 S 0 = Ep,n+1 — “pn+l é'n-"—l - £n+1 ’ 0n+1 - CTn+1 (3119)

If the trial yield function is positive, the internal variables must be corrected, according to incremental form of

evolution equations (3.77), where '77(1121 = 7&21 (Tn+1 —Tn) > 0. It is shown in appendix E| that sign (Jgﬁl) =
. ( (k),t’rial)
sign (o,"/} .

Ul 50 = &M =g, +5%) sign (afl’i}f”“l) AN A (3.120)
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(k)

n+1

their trial values and the damage multiplier 77(32 I

(k)

By exploiting equations (3.120), the stress o, ; and the stress-like hardening variable ¢ +1 can be expressed with

n

o, =, (= (a0, o, ) 2, ) =

n+l 2 n+1 p,n+1
= B, (2 () all) ) =2 ) = BAL sign (o)) = (3.121)
_ Ufllcl,ltrial _ Esﬁ/?(lljzlsign (Ogﬁ,ltrial)
_(k =(k = _(k _(k),trial _(k
qT(H)l = _H5§1<1421 =—H, (fn +71<z+)1> = qiw)lt _H577(z+)1 (3.122)

Yield function (;_5551) | is expressed as a function of plastic multiplier "yifgl by employing equations (3.121) and

(3:122). Value of the plastic multiplier is computed from requirement (;_Silkll =0.

Z(k k _(k k),trial _(k _(k),trial _(k
d)iz-&)-l = 051421 - (% - n-‘zl) = 2421 *ES’Yv(le - (% *‘17(1421 ) *HS'VT(LJL =
_ 1(k),trial _(k)
=¢,1  —(Es+Hs), (3.123)
*) *) QZT) k),trial
7(k _(k n+1
T =0 = =g

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

equation (B:117) if plastic multiplier f_yr(le is zero, and the value from (3121) if ;Y'Ef‘Zl is positive. In the second

case, equations (3.123), (3.118)) and (B.117) are used to express the stress as a function of strain.

_(k
go® [ B Ml =0
iy = E.H, Lk (3.124)
o0g . (k) >0
n+1 4Es n HS 5 7n+1

The hardening internal variables, stress in the layer and the tangent modulus have been calculated under assumption
that the ultimate stress is not exceeded. This still requires verification. If the assumption is confirmed, the above

results are accepted. Otherwise, they are discarded and recomputed with the presence of the discontinuity.

The first step is to determine the location of the potential discontinuity x4. Since the behavior of steel is sym-
metric in tension and compression, the discontinuity is simply placed at the location of maximal stress in absolute
value. This can occur at either end of the layer because of the linear form of stress. If the stress is constant, the
discontinuity is placed in the middle of the layer.

oy=oy=03 = z4,=L/2 o= 0|,
lo1] > |oa] = 24,=0 where oy =0, ; (3.125)
lo1] < |oa] = oy=L 03=0l, 1,

With the location of the potential discontinuity determined, we can calculate the potential value of traction at the

discontinuity tglkl’lp °" by equation (3:33). Correct operator Gy is chosen from (3.50), depending on 4. The integral

is evaluated numerically with the three-point Gauss-Lobatto integration scheme.

(=~ [Guol)do (3.126)
L
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(k),pot

n+1

(k)

As shown in section [3.2.4.2] the traction ¢ equals o, /| for a linear stress distribution. Failure function
Tdq

G

capacity in previous steps.

is evaluated with the stress-like softening variable equal to zero, as there has been no reduction of carrying

(Z(k)ypot _

(k),pot
n+l t

n+1

- (Ufs - gfjfz*lp"t) =0 (3.127)

We set the value of the discontinuity flag to true if the failure function is positive, and to false otherwise. The
value is not final, however, until the converged state is reached. It can change in following iterations.

¢< ) pot <0 = crack'®

M = false

= (3.128)

gzﬁflkl’f TS0 = cracki‘l’l = true

If the carrying capacity is exceeded, the above computed values of internal hardening variables, stress in the layer
and traction at the discontinuity are discarded and computed again, as explained in the following section.

3.3.1.4 Discontinuity in reinforcement layer

This section describes the computational procedure for the softening phase of the reinforcement layer. It is applied

(e),i
n+

in the previous step, or if the carrying capacity of the layer was exceeded in this iteration, see equation (3.128).

if the current value of the discontinuity flag crack, ;| = true, which happens if the discontinuity already existed

In any case, the hardening internal variables take the values from the previous step, which are the last converged
results. The error of such choice is negligible for small pseudo-time step.

& =, E0 =6, (3.129)

We start by assuming a trial solution, keeping the softening internal variables at the values from the previous
step. Stress in the layer and traction at the discontinuity are computed according to equations and (3:33),
respectively.

(k) trial a E(k:),trial _ En

n+l - n+1
(k),trial _( q(k—1) (k),trial _ tmal tmal (3.130)
On+1 =L (€ dn+1 e eS| ~Epn ) n+1 n+1 dx

L

The integral is computed numerically with the three-point Gauss-Lobatto integration scheme and evaluates to
t(k),trial __(k),trial

] =0, for the linear distribution of stress over the layer.

Td

The trial value of failure function ¢ Hm"l is calculated, respecting equations (3.84)) and (3.83).

d—_)(k),trial .

t(k),trial
n+1 -

n+1

=(k),trial =(k),trial . rial =
- (Ufs 7q'EL-21t ) ’ qil—glt = mln{ K £n+1t ’Ufs} =dn (3131)

If dzagi)’lmal <0, the trial solution is accepted.

1(116-")_1 _ aglk-’)_,lt'rial, 57(11321 _ g(k),trial O_(k) o O_(k),trial t(k) t( ), trial (3.132)

o ntl ntl = Ontl > lpgl = lpyl
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If éfﬁf”“l > 0, the assumed solution is not admissible. The softening internal variables are updated according to

the incremental form of evolution equations (3.86), where /VEL +)1 = '=77<1’21 (Tn+1—Ty) > 0. It is shown in appendix

E|that sign ( 5521) = sign (tfﬁf”al).

O‘Eﬁl =an +§Y7(ﬁ215i9" (tilklltrial) ) 51(1]21 =£, +7:/r(:21 (3.133)

=(k)

By using equations (3.133)), the traction at the discontinuity t( )1 and the stress-like softening variable g,/ are

expressed with their trial values and the softening multiplier 7( )

n+1°
k k o (k-1 = (k _
tSszl = 02431‘ = [Es (Bdgzﬂ )+GRa£z+)l _Ep,n>] =
T4 T=Tq
- [E (I?dg:l) + Gra, — gp,n)} i [EséRifL’“jlsign (tﬁf”“l)] - (3.134)
T=xq T=xq
trial k),trial
EH)-I + B GR| n+1329” (tiz-&)-l )
=A s(k)trial _ g =(K) . pe £= 154 Voo
~(k) dn+1 = qn+1 S’yn.t,_]’ s n T Tn+l fs
Q1 = -5 = 4 (3.135)
anrl :Ufs; —KS (€n+;yn+l) >Uf8

(k)

Linear operator G, in expression for ¢ n1 18 evaluated at z4. Obtained expressions are inserted in equation ¢ +1 =
0, coming from loading/unloading conditions (3:87).

T(k
ff’ngl =

tiﬂl’ - (Ufs - q7(1+1) =0 < tizk-&)-l = (Ufs - 551?1) sign (tfzkl’lmal) (3.136)

(k)

After a short derivation we get two expressions for 7( ) depending on the expression, used for g,/

n+1°

¢(k) J‘trial

=A n+l c =A
n _Ks( + n ) < O¢g
. T+l = GR} E. +K gn Tn+1 f:
Tng1 = t(k),t’rzal (3.137)
- n+1 = =A
At = W; - K (fn +’Vn+1) > Ofs

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump. If

%ﬁ)l > 0, traction takes the value from (3.136). Equations (3.133) and (3.133) are used to express the traction as
(k)

a function of displacement jump. If 4,/ = 0, the displacement jump remains constant, while the traction changes

to satisfy the local equilibrium with stress in the layer. The tangent modulus cannot be determined, but it is not
required for further computation.

not defined; f:yr(:ﬂl =0

ot | - (k) (k)
e =] Kg; Tni1 >0, 4,0 <ops (3.138)
s . = (k) (k) _
0’ fYn—H > 0’ qn+1 = Ofs

(e)yi

The discontinuity flag is set to crack 1) = true.
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3.3.2 Computation of nodal degrees of freedom

In this section we will describe the computations of phase (B) of k-th iteration, mentioned in the introduction of
section In this phase, a linearized form of equilibrium equations (3.91)) is solved to provide the k-th update

of the nodal displacements/rotations at pseudo-time point 7,,+1. The computation is performed with known values
of internal variables for each layer of each finite element - Diﬂ’f (k) f_fli)f (k). DT(fJ)r’f (k) Eg’f’(k)

; ) +(1k), Efflf k), afﬁ"f k), {1217 %) for a layer of reinforcement - freshly updated in preceding phase

(A) of the same iteration. Since the nodal degrees of freedom are generally common to several finite elements,

for a concrete

layer, and €

the equations of phase (B) must be handled on structural (global) level. Hence, they are also referred to as global

equations.

k
9,

were fixed at the values, computed in phase (A). To improve convergence, how-

The first of equations (3.91)) would be sufficient for calculating the new values of generalized displacements
(e),i,(k)
n+1

ever, it is useful to update the displacement jumps as well. For that purpose, the second of equations (3.91)

if all displacement jumps «

are engaged. Actually, they have once already been satisfied by using expression (3.33) for the traction at the
discontinuity, but that equality held for the displacements from the previous iteration dif}r’l(k_l). Updating the dis-
placements would disrupt the equilibrium between the traction at the discontinuity and the stress in the layer, unless
the displacement jumps are updated as well. Solving the whole system of equations therefore promises a

more accurate solution.

3.3.2.1 Linearization of equilibrium equations

The first of equations (3.91)) ensures the equilibrium of the structure, i.e. of its each and every node. It is linearized

around the current values of nodal degrees of freedom of the structure dgtr (k 2

afint,str,(k) ® ) 8fext str
n+1 str,(k ext,str int,str,(k n+1 N

Pyt Ad, =10 6T P 0 (3.139)
n+l n+1
Kstr;(lk)

qtr( )

The derivative on the left side of the equation is designated with K, and named the tangent stiffness matrix of

the structure. Adn +(1 ) is the sought update of the nodal dlsplacements in this iteration. The vector of external forces

fe’“’Str represents the loading, which is defined in advance for each pseudo-time point 7,41 and is independent of

int, str (k)

the nodal displacements. The vector of internal forces f, is computed from contributions of individual finite

elements, according to equation (3.20). Matrices P(¢) and R(e) are constant.

nFE

lm Qtr e -1 mt ( ) (k)
n+1 Z P n+1
s (k) 8f““ii“ K mpp (O ®) (3.140)
K, . T:trikl) — Y ple R~ nmikl)
8dn+l e=1 8dn+1

Let us recall the relation (3.13)) between the vector of nodal displacements of a finite element dffl’l(kfl) and the

str,(k—1)

vector of nodal displacements of the structure d,,

. The derivative of one over the other will prove useful.

(e),(k=1) (e)ple) gstr;(k—1) ody;) 1k X (e)ple)
e),(k—1) e e) qstr,(k— n+ o e e
d\?) =l = REpE = — ~ROP (3.141)

n+1
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mt()()

Internal forces f, of finite element (e) are defined in equation (3:29) as a sum of contributions of ny,

()(k 1)

layers. Contr1but10ns f ”ﬂ B of the “(C% cracked layers are functions of nodal displacements d,, and

(e)i,(k)

displacement jumps v, \";"", while the contributions of the remaining (non-cracked) layers depend solely on the
nodal displacements. For the sake of clarity it is assumed that the cracked layers are numbered with consecutive

(e)

numbers from 1 to n7 .

£ Zfi“il Zf;“il W (@l i) + Zf;“il W) Gaa2)

i= nCL+l

int ( ),(k) str, ( 1)

The derivative of f,_’ overd,, , which appears in expression (3.140), can be developed as follows.

R(©)pe) K/ B peple)

—
in nle) int,(e),i in k k—1 n int,(e),i,
S L O R

8dstr(k 1) = 8d( e),(k—1) aa(e),i,(k) 8(1( e),(k—1) adstr(k l)i 8d( e),(k—1) 8d5tr(k 1)

n+1 n+1 n+1 n+1 n+1 n+1 n+1
fd,(e),i,(k) fov,(e),i,(k)
Kn+l Kn+l

(3.143)

The derivatives of f, |’ int ( )i, (k) , marked with Kf d’<e)’ ) and K{;ﬂe) ih, (k) , can be computed and the last term of both

sums has been deﬁned in (3.14T). The only unknown term 8a / <9dn +1 s determined by the second of

equilibrium equations (3.91)), which is linearized and solved locally, i.e. independently for each finite element and
(e),i,(k)

layer. This can be done because h,, ;""" depends on the nodal displacements of a single finite element and on the

displacement jump of a single layer.

(e).(k) ():(k)
TS e s =it =0 o
K:ﬁ,l(e)w (k) Kzizi(e),z,(k) o 1a
= a1
2alE)®) s0ale) (E1)

Note that each h( €):is(k) , computed by (3.34)), evaluates to zero because the traction at the discontinuity t( €):is(k)

n+1 n+1
has been computed by expression @ The derivatives, designated with K| +§ () and K, +1< (B can be

. . . . . (e),(k)
easily calculated. Equation (3.144) deﬁnes( t)he(rc)elahon between the increment of nodal displacements Ad,, |,
e),i,(k

and the increment of displacement jump Acy,,\";"*" in the i-th layer of the finite element. Since we are dealing with

linearized equations, the derivative 80452{ (k) / Gdslel’l(k_l) must be equal to the ratio of the increments.

PNCENC

ntl _ ha,(e),i, (k)™ Ly hd,(e) i (k)
PG —(Kn+1 ) L -— (3.145)

n+1
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We can rewrite expression (3.143)), now being able to compute all its components.

afmt( e),(k) (c(‘i)L (

n+1 _ Z

IOl 0 Kha,<e>,i,<k>)1Khd,<e>m<k>) REPE +

Odm J(k—1) ] n+1 n+1 n+1 n+1
n+1 =
KL (3.146)
nr,
+ Z Kfj—(l) i,(k )R(E)P(e)
i=n) +1

The expression in parenthesis, marked with K! ll (k), is the contribution of a cracked layer to the tangent stiffness

matrix of finite element (e), and Kfi(l e):i:(k) § is the contribution of an non-cracked layer. Finally, we can assemble
the tangent stiffness matrix of the structure by inserting (3.146) into (3.140).

nNrg _ nyr, X
iy = F e (Fae s § wgroe | wop 3147
z:n(e> +1
CL
il

Here KEfJ)r’l(k) is the tangent stiffness matrix of finite element (e).

3.3.2.2 Components of internal forces and stiffness matrix

Contribution flnt (e} (k) of 4 th layer to internal forces of element (e) is computed according to equation (3.29)),
where stress takes the values computed in phase (A) of this iteration. In order to determine the components of the
stiffness matrix, hfif /() must be written as well. It is computed in accordance with (3.34).

f:ﬁ,§e),i,(k) :Ai/ﬁi%ﬁf,(k)d% hiel’li’(k) — 4 /G‘z}aﬁf,(mdazHﬁ,}i,(k) (3.148)
L L

To obtain layer components of the element stiffness matrix, expressions (3.148) are differentiated over nodal de-
grees of freedom and over displacement jumps.

ofint(e)i(k)

(€),i,(k)
fd (o). (k) _ Ony i [wiT 90 i
K W =4 / B 9| L
n+1 ntl 92764
. oFint(©) 9 (e),is(k)
K200 _ R /B g; G da
0o, "“ L 92 /0a
. (3.149)
o onle oo |@k)
hd,(e),i,(k n 7 i
Kn+§ ) ( ) +]k 1 (/GV ag B dl‘
8dn+l 7, n+1 9z/0d
one 9o ()i (k) ot | ()i (k)
ha,(e),i,(k) _ n+1 i
Kot P +1 Gv 9F Gp de‘F%
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The tangent moduli (0o /02 )(e>’i’(k) and (0t/0a )(e>’i’(k) are defined by equations and for concrete,

n+1 n+1
and by equations (3.124) and (3.138) for reinforcement. Note that in case of an elastic step in a cracked layer of

. =(k
reinforcement, when ’)’7(1 le =

0, the second expression is infinite.

at (e)’i’(k)

—00 = Kha,((i),i,(

ha = oo, (I(’““**“EW’“))*1 =0 (3.150)

O n+1

(€),i,(k)

Since the inverse value of component K Zil is consequently zero, the contribution of the ¢-th layer to the

element tangent stiffness matrix is computed in the same way as for the non-cracked layer.

- (e),is(k fd,(e)i,(k o (e),iy(k hay(e),d,(k)\ Ly hd,(e),i,(k fd,(e)i,(k
ngll ( ):K7i+(l) ( )_K7fz+§ bl >(Kn+1( h )) Kn+§ ol ):K7i+(l) “ (3.151)

3.3.2.3 Solution of global equations

The system of global equilibrium equations (3.139)) is rewritten in a clearer form.

str, (k) 4 gstr,(k) 4 estr,(k) str, (k) _ pext,st int,str, (k)

Kn+l Ad'n,Jrl - Afn+l ? Afn+l - fs)jr lS - fnJrl (3152)
The external forces are an input to the analysis, internal forces are defined by equations (3.140), (3.142) and
(3.148), and the tangent stiffness matrix of the structure is defined by (3.147) and (3.149)). Finally, we can compute
the increments and update the nodal displacements of the structure.

sir, (K i, (k) \ "L | st (k sir, (K str, (k—1 sir, (K
Ad;:—(l )= (K:Li(l >) Af;j—l( )= d:zr+(1 )= d;l(l )+Ad:l:—(l ) (3.153)

The updates of the displacement jumps could be computed from (3.144)), but there is no benefit from that because
they will be recomputed anyway in phase (A) of the next iteration.

The iterations at pseudo-time 7,11 are repeated until the tolerance requirements are met.

A < tor, |aa?]| < tor (3.154)

When the converged solution is found, we proceed to the next pseudo-time step.

3.4 Numerical examples

In this section we show some numerical examples to examine the performance of the derived finite element. The
element is tested on several beam and frame examples, carried out in the finite element program AceFEM [69]].

3.4.1 One element tension and compression tests

We analyze a beam in Fig. [3.22] clamped at one end. At the other end, axial displacement u is imposed and
corresponding reaction F' is computed. The test is performed for concrete, steel and reinforced concrete beams, in

order to verify the correct implementation of material models for tension and compression.
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Figure 3.22: Beam in pure tension/compression: geometry.

Slika 3.22: Nosilec v Cistem nategu/tlaku: geometrija.

3.4.1.1 Concrete beam

Concrete beam of rectangular cross-section is modeled with one element with two layers. The imposed axial
displacement produces either tension or compression. In unloading we do not switch from tension to compression
or vice versa. The geometry and the material data are: beam length is L = 2.5m, cross-section width is b =
0.2m, cross-section height is A = 0.5m, elastic modulus is F. = 4 x 10’kNm 2, elasticity limit in compression is
04, = 40820kNm 2, limit strength in compression is Ofce = 44902kNm~2, hardening modulus in compression is
H,. =2 x 10°%Nm~2, softening modulus in compression is K, = —5.2 x 10°kNm~3, limit strength in tension
is oy, = 4000kNm~2, and softening modulus in tension is K, = —8 x 10°kNm~3. By setting o4 > o7,y We
assume no damage of the bulk in tension before crack formation. The diagrams in Fig. show computed elasto-
damage relations between the end force F' and the end displacement » and suggest that the implementation of the

elasto-damage model of concrete was correct.

F [kN] F [KN]
400!
4000+
300y 3000
2007 2000}
100} 1000}
0 I I I I i O L L L L L L L L
00002 00004 00006 00008 [M 0002 0004 0006 0008 oo1 Y M

Figure 3.23: Axial force - displacement diagrams for concrete beam in pure tension (left) and pure
compression (right).

Slika 3.23: Diagram osna sila - pomik za betonski nosilec v ¢istem nategu (levo) in ¢istem tlaku (desno).

3.4.1.2 Steel beam

Steel beam is modeled with one element with two layers. The following data is used: beam length is L =
2.5m, cross-sections of both layers are A, = As» = 0.001m?2, distances of layer axes from the beam axis are
h/2—as1=h/2—as2 =0.21m (as,1 = as» = 0.04m), elastic modulus is Ey =2 x 108kNm~2, elasticity limit is
oy =4 x 10°kNm 2, failure strength is oy, = 5 x 10°kNm~2, hardening modulus is H; = 10’kNm~2, and soften-
ing modulus is Ky = —5 x 10’kNm 3. Diagram in Fig. shows elasto-plastic relation between the end force F'
and the end displacement u in tension. Response of the beam in compression is identical. The diagram in Fig.[3.24]

suggests that the implementation of the elasto-plastic model of steel was correct.
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Figure 3.24: Axial force - displacement diagram for steel beam (layer) in pure tension.

Slika 3.24: Diagram osna sila - pomik za jekleni nosilec (sloj) v Cistem nategu.

3.4.1.3 Reinforced concrete beam

Reinforced concrete beam is composed from the two previously presented beams, see Fig. [3.22] Geometry and
material properties are listed in sections [3.4.1.1] and [3.4.1.2] The beam is modeled with one finite element with
ten concrete layers and two layers of reinforcement. Diagrams in Fig. [3.25] display the responses of the beam

under tensile and compressive load. In tension (left image), the first peak represents the point where concrete starts
cracking and the force F' begins to drop. When it starts rising again, the concrete is completely broken and the
whole load is taken by the two reinforcement layers. Hereafter, the response should be equal to the response of
the steel beam, modeled in section [3.4.1.2] because in our model there is no shear interaction between concrete
and steel layers. However, a comparison of Fig.[3.24]and Fig. (left) shows a different situation. Although the
yielding and the softening of the material begin at the same values of force F', both processes start at significantly
smaller displacements u in the reinforced concrete beam. There is no yield plateau, typical for steel, and the

softening slope is not as steep.

The diagram in Fig. [3.25] (right) shows the response of the beam in compression. After the initial elastic part, the
stiffness of the beam drops twice, due to micro-cracking of concrete and yielding of reinforcement, respectively.
The peak of the diagram marks the moment when concrete begins to soften. Afterwards, the response is different
from the expectations. The stress in concrete layers should drop to zero at u /=~ 0.0086m and then the curve should
match the diagram in Fig.[3.24] Up to u ~ 0.03m, the beam should offer significant resistance, but F' becomes zero

at one third of that displacement. Obviously, the finite element is not working properly in this case.

F [KN] F [kN]
1000 5000
800 4000F
600 3000
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200 1000+
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Figure 3.25: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)
and pure compression (right).
Slika 3.25: Diagram osna sila - pomik za armiranobetonski nosilec v ¢istem nategu (levo) in Cistem
tlaku (desno).
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It turns out that the incorrect responses, presented in Fig. are a consequence of the linear form of operator
Gp, defined in equation (3:46). Although the stress is constant over each layer when the failure stress is reached,
the discontinuity is placed at one of the end nodes, rather than in the middle of the element, due to numerical error.
Consequently, a linear operator Gg is chosen instead of the constant one. While such choice still gives correct
results for an element, composed of equal layers (such as in sections [3.4.1.1] and [3.4.1.2)), it cannot work for a
composition of layers with different material properties. Explanation is given in appendix D] In short, the stress

is linear over the length of each layer, which means that the contributions of the layer to the internal forces in the
two end nodes are not equal fqiﬂt’(e) . %+ — f&?’(e)’i, see Fig. Each layer by itself is not in balance, but the
equilibrium of the finite element as a whole is satisfied by finding the exact value of u3, at which the imbalance
of internal forces in steel and the imbalance of the internal forces in concrete neutralize each other, see Fig.

where f;nlt’(e) = —fg;t’(e).

Remark. Fig. and Fig. only show the contributions of the i-th layer to the axial internal forces at the
end nodes. Contributions to the axial internal force at the middle node and contributions to transversal forces and

moments exist also, but their resultants are zero on the element level.

g —f int,(e),i f int,(e),i
. Uy Uz
I ‘ |:> -~ | | —

Figure 3.26: Linear stress in i-th layer (left) and resulting unequal contributions of the layer to axial

internal forces of the finite element at the two nodes (right).
Slika 3.26: Linearen potek napetosti v i-tem sloju (levo) in rezultirajoca razli¢na prispevka k osnim

notranjim silam kon¢nega elementa v obeh vozliscih (desno).
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Figure 3.27: Individual layers out of balance (left) and finite element in balance (right).

Slika 3.27: NeuravnoteZeni posamezni sloji (levo) in kon¢ni element v ravnoteZju (desno).

3.4.1.4 Reinforced concrete beam, imposed location of discontinuity at L /2

The concrete, steel and reinforced concrete beams from the previous sections are analyzed again, now with the
location of the discontinuity manually imposed at the middle of the finite element. Responses of the single-
material beams are an exact match to those from sections[3.4.1.T]and [3.4.1.2] so they are not discussed any further.

Responses of the reinforced concrete beam in tension and compression are shown in Fig. They are a simple
superposition of the diagram in Fig. [3.24] for steel and the appropriate of the diagrams in Fig. [3.23] for concrete.

The curves from the previous section are included for comparison.

The tensile response in Fig. [3.28] (left) is linear elastic at first. After the first peak the concrete cracks rapidly

and only the reinforcement contributes to carrying capacity. The unloading line is parallel to the loading line,
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Figure 3.28: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)
and pure compression (right) with imposed location of discontinuity at L /2.
Slika 3.28: Diagram osna sila - pomik za armiranobetonski nosilec v Cistem nategu (levo) in Cistem

tlaku (desno) ob vsiljeni nezveznosti pri L /2.

immediately after the concrete is gone. In compression, Fig. [3.28] (right), the elastic part is followed by two
subsequent drops in stiffness of the element, as concrete and steel enter the hardening phase. At v ~ 0.0086m the
concrete layers crush very quickly and only the reinforcement remains. The slope of the unloading curve decreases
up to that point. Later on it stays the same and only the plastic deformations still increase. In the last part of the
diagram steel begins to soften as well, and the force in the beam drops to zero.

Remark. Although the plateau from v~ 0.01m to u ~ 0.03m in Fig. [3.28| (right) is computationally correct, it
is not very realistic. With the concrete completely crushed, the reinforcement layers would encounter buckling

problems. The resistance would probably drop to zero instantly, but that is out of scope of our work.

Figure 3.29: Locations and sizes of discontinuities in layers of the beam in pure tension, when
transversal displacement of the free end of the beam v, is non-zero.
Slika 3.29: Lokacije in velikosti nezveznosti po slojih pri nosilcu v €istem nategu, ko je precni pomik

prostega konca nosilca v, razlicen od nic.

3.4.1.5 Reinforced concrete beam, non-zero transversal displacement

Another problem may arise in case of automatic determination of the location of the discontinuity. Surprisingly,
equilibrium is possible in pure tension or pure compression, even if transversal displacement at the free end of the
beam is not zero. This happens in a beam with symmetrical cross-section, if the bottom half of the layers (with
y® < 0) have a discontinuity at = 0 , and the other half (with y* > 0) at z = L, or vice versa, see Fig.
The sizes of the discontinuities grow proportionally with the distance of the layer from the middle axis. For a

non-zero transversal displacement v and zero rotation 6 at the free end of the beam, the contributions of individual
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layers to the nodal shear forces and to the nodal moments neutralize each other, see Fig. [3.31]and Fig.[3.32] The
axial force F' is the only remaining internal force. Such phenomenon is possible because the equilibrium is only
required on the finite element level, and not for each individual layer. A detailed explanation is given in appendix
D] As a result, the response of the beam is wrong from the appearance of the first discontinuity, see Fig.[3.30] The
transversal displacement affects the computation of the axial force, which even starts growing instead of dropping

to zero in softening.
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Figure 3.30: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)
and pure compression (right): the case of non-zero transversal displacement.
Slika 3.30: Diagram osna sila - pomik za armiranobetonski nosilec v ¢istem nategu (levo) in Cistem

tlaku (desno): primer, ko je pre¢ni pomik razli¢en od nic.
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Figure 3.31: Transversal displacement (left) and rotation (right) at the free end of RC beam in tension.
Slika 3.31: Pre¢ni pomik (levo) in zasuk (desno) na prostem koncu AB nosilca v nategu.
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Figure 3.32: Shear force (left) and moment (right) at the support of RC beam in tension.
Slika 3.32: Precna sila (levo) in moment (desno) ob podpori AB nosilca v nategu.
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3.4.2 Cantilever beam under end moment

We analyze a reinforced concrete cantilever beam with rectangular cross-section under end moment, shown in
Fig. The load is applied by imposing the rotation at the free end of the beam. The length of the beam is
L = 1m, the width and height of the cross-section are b = 0.3m and h = 0.4m. Bottom and top reinforcements
are A; 1 =Asp = 0.001256m? and they are positioned at a; = a; = 0.05m from the edges of the concrete cross-
section. Material properties of concrete are: elasticity modulus F. = 3.3 x 10"kNm 2, elasticity limit o4, =
15200kNm~2, ultimate stress in compression Oy.. = 38000kNm 2, ultimate stress in tension Ofct = 1815kNm~2,
hardening modulus in compression H,.. = 3.32 x 10’kNm~2, softening modulus in compression K}, = —5 x

10°kNm~3 and softening modulus in tension K, = —10%kNm~3.

Material properties of steel are: elasticity
modulus Ey = 2 x 108%kNm ™2, yield stress o, = 4 x 10°kNm ™2, ultimate stress oys = 5 x 10°kNm~2, hardening

modulus H, = 2.665 x 10°kNm~2 and softening modulus K, = —5 x 10’kNm 3.
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Figure 3.33: Cantilever beam under end moment: geometry.

Slika 3.33: Konzola, obremenjena z momentom: geometrija.

3.4.2.1 Mesh of equal finite elements

The beam is modeled with a mesh of identical finite elements, each consisting of 10 concrete layers and 2 layers
of reinforcement. Location of the discontinuity is determined automatically, like in section[3.4.1.3] Fig. [3.34] (left)
displays the moment M versus rotation 6 at the end of the beam for meshes of 1, 2, 5 and 10 finite elements.
The results are different from expectations. After the initial steep part of the curve, the response should exhibit a
plateau, caused by yielding of the reinforcement. Instead, the moment begins to drop immediately. This behavior
is caused by automatic positioning of the discontinuities. Explanation is given in appendix [D]
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Figure 3.34: Moment - rotation diagrams for cantilever beam under end moment: original softening
moduli (left), softening moduli modified according to length of FE (right).
Slika 3.34: Diagram moment - zasuk za konzolo, obteZeno z momentom: originalni moduli mehcanja

(levo), moduli meh€anja prirejeni glede na dolZino KE (desno).
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We observe that response of the beam depends on the mesh. The slope of the softening part of the curve decreases
with increasing number of finite elements. This is caused by simultaneous appearance of multiple smaller discon-
tinuities in finer meshes, as opposed to one big discontinuity in a single FE mesh. The traction at the discontinuity
decreases with the increase of its size. It is therefore understandable that, at the same value of imposed end rota-
tion 6, a coarser mesh produces a lower moment M. If the softening moduli of steel and concrete are modified
according to the length of FE (i.e. multiplied with the number of FE in the mesh), the results are no longer mesh de-
pendent, Fig.[3.34] (right). However, this is not a proper solution of the problem because it changes the constitutive
law at the discontinuity, which is a material property and should not be affected by the choice of a mesh.

3.4.2.2 Weaker reinforcement in one of the finite elements

The correct approach to the aforementioned problem is to prevent the multiple cracks from occurring. This is
achieved by slightly weakening one of the finite elements in the mesh, thus simulating a material imperfection.
Since the softening of the beam as a whole happens due to softening of the tensile reinforcement layer, it is
sufficient to weaken the reinforcement. Rather than decreasing the ultimate stress oy, in the weak finite element,
we slightly increase it in the remaining elements. When the ultimate moment is reached, the reinforcement in the
weak element begins to soften and the moment decreases. The moment in the other elements must follow to ensure
equilibrium. We can see in Fig. that results for different meshes match well. Mesh dependency is avoided,
but the results are still wrong due to the erroneous automatic positioning of the discontinuities, see appendix D] for
a detailed explanation.
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Figure 3.35: Moment - rotation diagram for cantilever beam under end moment: weaker reinforcement
in one of the finite elements.
Slika 3.35: Diagram moment - zasuk za konzolo, obteZeno z momentom: malce SibkejSa armatura v

enem od kon¢nih elementov.

3.4.2.3 Mesh of equal finite elements, imposed location of discontinuity at L /2

Analysis from section [3.4.2.1] is repeated, with the only difference that the discontinuity is manually placed in
the middle of the finite element x4 = L/2 and the constant operator G is employed. The moment-rotation
diagram in Fig. [3.36| takes the expected form. In the first part of the curve the beam is elastic, except for some
layers of concrete which soften in tension. When the tensile reinforcement yields, the stiffness of the beam drops
substantially. The moment in the beam keeps growing until the tensile reinforcement enters the softening phase.
After that point, carrying capacity of the cross-section decreases. Comparison of the curves for 24 = L/2 and
x4 = L from Fig.[3.36]and Fig. [3.34]is very similar to comparison in Fig. [3.28] (left) for a beam in pure tension.

As in section [3.4.2.1] the moment drops slower for finer meshes, due to formation of multiple discontinuities.
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Again, modified softening moduli provide mesh-independent response, see Fig. (right), but this is not the
proper solution.
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Figure 3.36: Moment - rotation diagrams for cantilever beam under end moment: imposed location of
discontinuity at L /2. Original softening moduli (left), modified softening moduli (right).
Slika 3.36: Diagram moment - zasuk za konzolo, obteZzeno z momentom: vsiljena nezveznost pri L/2.

Originalni moduli mehcanja (levo), moduli mehc¢anja prirejeni glede na dolzino KE (desno).

3.4.2.4 Weaker reinforcement in one of the elements, imposed location of discontinuity at L /2

The beam is analyzed once more, with ultimate stress of reinforcement oy, slightly raised in all but one finite
element, simulating a material imperfection. The discontinuity is manually positioned at the middle of the el-
ement. When the weak element reaches the carrying capacity, the moment in the beam begins to decrease and
reinforcement in other elements cannot enter the softening phase. This eliminates mesh dependency in the last
part of the response, in which the softening of the tensile reinforcement causes the beam to lose carrying capacity,
see Fig. The difference between the diagrams in the plateau remains, however. It is caused by simultaneous
cracking of concrete in tension in all finite elements. A greater number of finite elements causes a slower growth of
each individual discontinuity and a slightly higher value of the rotation, at which the tensile reinforcement yields.
Since the major part of the cross-section is still elastic, the yield moment increases considerably. Unlike in rein-

forcement, this problem cannot be solved by weakening one of the elements, because the cross-section as a whole
is still gaining strength after the concrete breaks in tension.
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Figure 3.37: Moment - rotation diagram for cantilever beam under end moment: imposed location of
discontinuity at L /2. Weaker reinforcement in one of the finite elements.
Slika 3.37: Diagram moment - zasuk za konzolo, obteZzeno z momentom: vsiljena nezveznost pri L /2.

Malce SibkejSa armatura v enem od kon¢nih elementov.
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3.4.3 Cantilever beam under end transversal force

A cantilever beam is subjected to prescribed lateral displacement at the free end, see Fig.[3.38] The length of the
beam is L = 2.5m, the width and the height of the cross-section b = 0.2m and h = 0.5m. The tensile and compres-
sive reinforcement are A; | = A;» = 0.001m? and the distances from the center of the reinforcement layers to the
edges of the concrete cross-section are a; = ap = 0.04m. Material properties of concrete are: elasticity modulus
E. =4 x 10’kNm~2, elasticity limit o4. = 40820kNm~2, ultimate stress in compression oy.. = 44902kNm~2,
ultimate stress in tension o7.; = 4000kNm~2, hardening modulus in compression H... =2 x 10°kNm~2, softening
modulus in compression K, = —5.2 x 10°kNm ™~ and softening modulus in tension K7, = —8 x 10°kNm 3. Ma-
terial properties of steel are: elasticity modulus E, = 2 x 108kNm~2, yield stress oy =4 X 10°kNm 2, ultimate
stress oy, = 5 X 10°kNm™~2, hardening modulus Hy = 10’kNm~2 and softening modulus K, = —3 X 10’kNm~3.
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Figure 3.38: Cantilever beam under end transversal force: geometry.

Slika 3.38: Konzola, obremenjena s precno silo: geometrija.

Moment at the support versus imposed lateral displacement diagrams are presented in Fig.[3.39] The curves match
pretty well. There are no great deviations in the softening part because the moment is linear over the length of the
beam and only the finite element at the support can reach the ultimate moment. There is no need for artificially
created material imperfection. The influence of the mesh on the softening of concrete in tension cannot be avoided

because the cross-section is still gaining strength when the concrete breaks, like in section [3.4.2.4]
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Figure 3.39: Moment at support - transversal displacement diagram for cantilever beam under end
transversal force: all finite elements are the same.
Slika 3.39: Diagram moment ob podpori - precni pomik za konzolo, obremenjeno s pre¢no silo: vsi

koncni elementi so enaki.

It is difficult to assess the results solely from the diagrams in Fig.[3.39] but inspection of the stress state reveals an
error. Let us examine the beam, modeled with a single FE, just before the occurrence of the first discontinuity, when
all layers are still elastic. The values of stress are anti-symmetric in the cross-section (negative below and positive

above the middle axis), their absolute values grow from the middle axis toward the edges. In each layer, they reduce
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linearly from the support toward the free end, where they are zero. Such distribution of stress is also assumed in
the trial state of the first iteration of the next increment. However, the tensile strength is exceeded at the supported
end of the topmost layer. The trial value of stress o®{"i@! = D' Bid is replaced by o = Di "' (Bid+Gj,at). The
additional part D?"' G (x) o' has a negative value at the supported end, where the discontinuity is located, and a
positive value at the free end. Thus, after the first iteration, the stress in the top layer is no longer zero at the free
end of the beam. Of course, this is not the equilibrium state, but even in the following iterations the stress at the
free end does not vanish. Instead, it becomes non-zero also in the remaining layers. Only the resultant axial force
and moment at the free end are zero, as required by the equilibrium equations.

This issue arises from completely independent consideration of discontinuities in separate layers. In the stress
resultant finite element, the operator G is defined for the whole finite element and it contains information, how
the cracked element should deform, in order to preserve equilibrium. It imposes an imbalance that is annulled
by appropriate nodal displacements. In a multi-layer element, the operator G’}é is defined for a single layer and
contains information, how the cracked layer should deform to preserve “equilibrium of the layer”. However,
the layer cannot deform freely. Modification of the nodal displacements also affects the remaining layers. The
imbalance, introduced by G’}{ into the cracked layer (and through summation into the finite element), is balanced
out by (additional) deformation of all layers in the element, so the final strain/stress in the cracked layer is not the
same, as if it would stand alone. The operator G}é, as defined here, cannot perform its original function, which is
to provide physically appropriate strain/stress in the cracked layer.

Since the occurrence of a discontinuity in one of the layers actually affects the whole finite element, the operator
G?, should be defined on the element level. This is not easily done, though. The influence of the discontinuity
would depend on the type of the load (e.g. pure tension or pure bending), which prevents unique definition of G%.
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Figure 3.40: Two story frame: geometry, loading pattern and cross-sections.

Slika 3.40: DvoetaZni okvir: geometrija, obtezba in precni prerezi.

3.4.4 Two story reinforced concrete frame

Two-story reinforced concrete frame has been experimentally tested in [71] and numerically analyzed in [S1}[74]]
with stress-resultant Timoshenko and Euler-Bernoulli finite elements with embedded strong discontinuity in rota-
tion. Analysis with multi-layer Timoshenko element with layer-wise embedded discontinuities in axial displace-

ment and elasto-plastic models for concrete and reinforcement has been done in [51,/52]. Story height of the



Juki¢, M. 2013. Konc¢ni elementi za modeliranje lokaliziranih porusitev v armiranem betonu. 93
Doktorska disertacija. Ljubljana, UL, FGG.

frame is H = 2m, span is L = 3.5m, see Fig.[3.40] Beam cross-section data is: width is b = 0.3m, height is
h = 0.4m, bottom and top reinforcements are A, | = A; o = 0.0012m2, distances of reinforcement axes from the
edges are a; = ap = 0.04m. Column cross-section data is the same, except for a; = ap = 0.03m. The steel
data is accommodated from data reported in [[71]], see Fig. @ (left): elasticity modulus F; = 192500MPa,
yield stress o,y = 418MPa, ultimate stress oy = 596MPa, hardening modulus Hy = 2790MPa, softening modulus
K, = —4 x 10’kNm—3. The concrete data in compression is also accommodated from data reported in [71]], see
Fig. @ (right): elasticity modulus E. = 28600MPa, elasticity limit o4, = 8.5MPa, ultimate stress oy.. = 30MPa,
hardening modulus H.. = 49000MPa, softening modulus K, = —2 x 10°kNm~3. The concrete data in tension
is [71]: ultimate stress oy.; = 1.8MPa, softening modulus K%, = —10"kNm ™.
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Figure 3.41: Constitutive diagrams for steel (left) and concrete in compression (right): comparison
with experimental curves.
Slika 3.41: Konstitutivna zakona za jeklo (levo) in beton v tlaku (desno): primerjava z

eksperimentalnimi krivuljami.

Comparison of experimental results and results of our analysis are shown in Fig.[3.42] The relation between the
two curves resembles the comparison in Fig. [3.28] (left) or comparison of Fig. [3.35] and Fig.[3.37] The response
of the structure is too stiff, the carrying capacity too high, and there is virtually no yield plateau. The problems,
encountered in the previous numerical examples are transferred to the more complex structure. Since the issues
have been discussed on simpler and clearer cases, there is no need to get into details here.
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Figure 3.42: Response of two story frame: comparison with experiment.

Slika 3.42: Odziv dvoetaZnega okvirja: primerjava z eksperimentom.
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3.5 Concluding remarks

We have presented a planar multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discon-
tinuities in axial displacement. Small displacement kinematics is applied on the element level and translated to
individual layers by obeying the perpendicularity of cross-section to the beam axis. A jump in axial displacements
is introduced separately for each layer. The stress state of the layer is determined by two constitutive relations,
one for the bulk of the layer and the other for the discontinuity. In concrete layer, the bulk is controlled by a
damage-elasticity hardening law and the discontinuity by damage softening law. In reinforcement layer, the bulk
is controlled by elastoplasticity hardening law and the discontinuity by plastic softening law. Internal forces of the

element are computed as a sum of contributions of individual layers.

The finite element was intended for precise analysis of reinforced concrete beams and frames up to complete
failure, with a detailed description of material state over the cross-section, as well as for computation of stress-
resultant properties of different cross-sections, which are required as an input data in analysis with the stress-
resultant beam finite element, presented in previous chapter. However, the multi-layer element does not perform
as expected. Several issues have been identified.

Operator G}, has been derived on an isolated layer of the multi-layer element. It contains information, how the
cracked layer should deform due to occurrence of the discontinuity. The proper deformation should be enforced
by the imbalance, produced by the additional strain. However, the layer cannot deform freely because it is bound
to other layers through common nodal displacements and the additional stress in the layer does not redistribute
correctly. The stress o is controlled only at the location of the discontinuity, where it has to be equal to the
traction ¢’ and has to drop with increasing displacement jump. Elsewhere in the layer, the stress may grow even
above the ultimate stress. Additional discontinuities cannot occur beacuse each layer is allowed to develop only
one discontinuity.

Another problem is that equilibrium is only required on the element level, and not for each independent layer. We
have seen the example of a finite element in pure tension, where the stress over the length of each layer was linear.
If we computed the internal forces only for one layer, they would not be in equilibrium, but for the finite element

as a whole the imbalances of individual layers neutralize each other.

Also, the displacement jumps o of individual layers are independent of each other. In a specific case of a cantilever
beam in pure tension, the layers below the middle axis developed a discontinuity at one end of the beam, while
the layers above the middle axis developed a discontinuity at the other end. The displacement jumps in all layers
were proportional with the distance of the layer from the middle axis, resulting in a non-zero lateral displacement
of the free end of the beam, without disrupting the equilibrium (the internal shear forces and internal moments of
the finite element were zero). One way to look at the unconnected « is that there is no shear connection between
the neighboring layers.

Another issue in kinematics is that there is no discontinuity on the element level. Deformation of the beam axis is
always interpolated in the same way as for a regular Euler-Bernoulli beam. Even when the element is completely
broken (carrying capacity of each layer has dropped to zero), the middle axis is a smooth curve. The bulk of each
layer slides along a path, parallel to the middle axis. This may not be problematic if we use a fine mesh. Since the
stiffness of the critical (broken) finite element is considerably reduced in comparison to neighboring (not broken)
elements, the broken element exhibits a greater curvature, which can be interpreted as a discontinuity in rotation,
smeared over the whole finite element. Still, the global kinematics is not completely accurate.

Finally, we have to mention the mesh dependency problem, which is most obvious in the case of cantilever beam
under end moment. Due to constant stress state over the length of the beam, discontinuities appear simultaneously
in all finite elements of the mesh. At the same value of imposed rotation of the free end of the beam, fine meshes

produce great number of small discontinuities and coarse meshes produce small number of great discontinuities.
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According to the softening material law, the traction at the discontinuity drops with its increasing size. Therefore,
different meshes lead to different values of moment in the beam. The greatest deviations appear in the last part
of the response when the beam as a whole enters the softening phase, which usually happens due to softening
of tensile reinforcement. This can be cured by slightly weakening reinforcement in one of the finite elements.
When the weak element begins to soften, the remaining elements unload and cannot develop a discontinuity in
reinforcement. If softening of the element happens due to crushing of concrete in compression, the problem
cannot be solved so effectively because there are multiple critical layers, as opposed to a single critical layer in
case of tensile reinforcement. Also, the mesh dependency due to cracking of concrete in tension, when moment
in the beam is increasing, cannot be avoided. Even if one of the elements is weaker, the concrete in the remaining

elements will crack sooner or later, because the moment is still rising.

Considering all the deficiencies, the above derived multi-layer Euler-Bernoulli beam finite element cannot be
recommended for general use. The only viable application is in case of constant strain/stress state over the length
of the beam, which can occur either in pure tension/compression or in pure bending. In case of bending, the mesh
dependency cannot be completely avoided.
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4 MULTI-LAYER TIMOSHENKO BEAM FINITE ELEMENT WITH LAYER-WISE
EMBEDDED DISCONTINUITIES IN AXIAL DISPLACEMENT

4.1 Introduction

In this chapter, a multi-layer Timoshenko beam finite element with layer-wise embedded discontinuities in axial
displacement is derived. It is intended for detailed failure analysis of reinforced concrete beams and frames, and
for computation of stress resultant material properties of reinforced concrete beams, modeled with stress resultant
finite elements like the one described in chapter 2] Due to layer-wise constant stress state along its length, this
finite element is expected to overcome some of the issues, encountered in the previous chapter when deriving the
multi-layer Euler-Bernoulli beam finite element.

The element is composed of several layers of concrete and reinforcement, each with embedded discontinuity in
axial displacement. Axial response of concrete layer is described by elasto-damage model with hardening for the
bulk and rigid damage softening model for the discontinuity. Axial response of reinforcement layer is governed
by elastoplastic model with hardening for the bulk and rigid plastic softening model for the discontinuity. Small

deformation kinematics is used.

The chapter is organized as follows: Kinematics, constitutive and equilibrium equations are developed in section
B.2] Finite element discretization and computational procedure are presented in section [4.3] Performance of the
finite element is tested on several numerical examples in section[#.4} Concluding remarks are given in section[4.5]

4.2 Finite element formulation

4.2.1 Kinematics

We consider a planar Timoshenko beam finite element with two nodes, shown in Fig. .1l Each node has three

degrees of freedom, two in-plane displacements and rotation about the axis, perpendicular to the plane.
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Figure 4.1: Finite element with six nodal degrees of freedom.

Slika 4.1: Kon¢ni element s Sestimi prostostnimi stopnjami.

Axial displacement 7 () and rotation of the cross-section @ () in the middle axis of the beam are interpolated lin-
early between the nodal displacements u and the nodal rotations 8, respectively. The linear interpolation functions
N () are shown in Fig.[4.2] (left).

i(z) =N(z)u, N(m):{Nl,Nz}:{l—Z—}, u={u,u}” @.1)
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0(z)=N(z)8, 6=1{6,6,}" (4.2)

Linear interpolation of transversal displacement @ (x) of the middle axis would result in shear locking of the finite
element. The problem is avoided by raising the order of interpolation of ¥ (x) with a quadratic bubble function
N3 (z), see Fig. (left). Parameter v3 is determined so as to allow the finite element to describe a shear-free

stress state in case of constant moment.

4(L— L
@(m):N(x)V—i—Ng(x)m, VZ{Uh’Uz}T, N3($)=%7 U3=§(91—92) 4.3)

In Timoshenko beam theory, the cross-section is not necessarily perpendicular to the beam axis and the shear strain
v () is computed as the difference between the derivative of the transversal displacement and the rotation of the

cross-section.

o5 - . 11 PN G T

For the interpolations of transversal displacement and rotation, chosen in equations (4.2)) and (#.3)), the shear strain
is constant. Components of the strain interpolation functions B and B* are shown in Fig. (right). A simple
verification confirms that the shear strain is zero in case of constant moment/curvature (v; = vy, 81 = —6;).
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Figure 4.2: Interpolation functions for displacements (left) and strain (right).
Slika 4.2: Interpolacijske funkcije za pomike (levo) in deformacije (desno).

The beam is treated as a composition of ny, layers of concrete and steel. Constant state is assumed over the
thickness of each layer and its displacements u’ (z) are computed in its middle axis. Embedded discontinuity

concept is used to model the material failure of each layer.

K uz,add

u’ (x,xfi) =i(z) —y'0(x) + M (x,xil) o (4.5)




98 Juki¢, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.
Doctoral thesis. Cachan, ENSC, LMT.

The standard part of axial displacement 7i° () is composed of the axial displacement of the middle axis of the beam
and of displacement due to rotation of the cross-section, depending on the distance y* from the middle axis. When
the carrying capacity is exceeded, a strong discontinuity in axial displacement is introduced into the layer (see
Fig. , which results in an additional axial displacement u**% (z,z7), described by the jump in displacements
o' at coordinate z and the shape function M* (z,z%).

17,

u'(x) |t

Figure 4.3: Finite element divided into layers, before and after occurrence of discontinuity in i-th layer,
with corresponding axial displacement in the layer.
Slika 4.3: Na sloje razdeljen kon¢ni element pred in po nastanku nezveznosti v ¢-tem sloju ter
pripadajoci osni pomik v sloju.

Equations @.I) and @.2) are inserted into @3). Then, the displacement v’ (%) is differentiated over the coor-
dinate x to obtain the axial strain & (x, xfj) in the layer.

=1 i,add
gy —— ——
' (z,aly) = yra Bu—y'BO+G" (z,z4) o (4.6)

The first two parts of expression {@.6) represent the standard axial strain &', while the last part represents the
enhanced strain due to embedded discontinuity. Derivatives B of the interpolation functions N (x) are written in
equation and depicted in Fig. (right). The additional strain £ only appears in the layers that have
exceeded their carrying capacity. Operator G' is the first derivative of the shape function M?, which will be
examined in the following section.

All degrees of freedom of the finite element are collected in the vector of generalized nodal displacements d, which
allows for a shorter notation for the regular axial strain &' and shear strain ~. Interpolation matrices B and B* are
composed accordingly to the arrangement of displacements in d. The first matrix is different for each layer, while
the second one is constant for the whole element.

E=[B 0 —yBla=B'd, y=|0 B B|d=B'd, d"={u 07} S

4.2.2 Derivation of operator G

Interpolation of the axial displacement field u’ () in the i-th layer is defined in equation (#.3)). The regular part

@ (z) is computed from the axial displacement of the middle axis # (z) and rotation @ (z) of the cross-section.
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Since they are both linear functions of x, @’ (z) is linear as well. This allows us to interpolate it between the axial

displacements of the end points of the layer, designated with u’, using the linear interpolation functions N () from

equation (@.I)), see Fig. [d.4]

@ (¢) = (z) —y'0(z) =N(2)u', u' = {uj,ub}” (4.8)
2 - u;
T —_— —
YI rin,u Y, U
h 6.t 1 % {}* |:>
L

Figure 4.4: Interpolation of standard axial displacement in i-th layer between nodal displacements of
the finite element (left) and between nodal axial displacements of the layer (right).
Slika 4.4: Interpolacija standardnega osnega pomika v i-tem sloju med prostostne stopnje koncnega

elementa (levo) in med vozlis¢ne osne pomike sloja (desno).

The “nodal” displacements u’ of the i-th layer can be calculated from 4’ () by inserting for 2 the coordinates of

9o ¢

the layer’s “nodes”.

ui = {ﬂ’i‘x=0’ ﬂi|:v=L}T = {’LL] - yiel’ U2 _yiez}T (49)

The standard axial displacement @’ (z) is enriched with the additional part u*%%¢ (x,x,), which represents the
additional axial displacement due to occurrence of a discontinuity in the layer. It is determined by the interpolation

function M* (z, ) and the displacement jump o at the discontinuity of the layer.

u (z,2}) =0 (z) + M* (z,2)) o (4.10)

The interpolation function M* must not affect the nodal displacements u’ of the layer, which means that it must
have zero values at the nodes, and it must have a unit jump at the location of the discontinuity z%. The easiest
way to meet these requirements is to use a combination of the Heaviside function and the appropriate of the shape

functions N.
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Figure 4.5: Domain and sub-domains of a cracked layer, Heaviside and Dirac-delta functions (left).
Construction of interpolation function M; (right).
Slika 4.5: Domena in poddomeni razpokanega sloja, Heaviside-ova in Dirac-delta funkcija (levo).

Konstruiranje interpolacijske funkcije M; (desno).

Domain Q of the cracked layer is divided by the discontinuity into two parts. Q™ is the part before the discontinuity,
with x < a:il, and Q7 is the part after the discontinuity, with z > xg, see Fig. (left). The value of the Heaviside
function is 0 on Q™ and 1 on Q7. Its derivative is the Dirac delta function 5% , which has an infinite value at xfi

and zero value elsewhere.

Al
Ta

H, =

ZTaq

0; otherwise

o 1=l

, = (4.11)
I, x>ax} Ox

Heaviside function Hmfi satisfies the requirement of a unit jump at the discontinuity. Its value, however, is only
zero on 7, and not at all nodes of the layer. This can be fixed by subtracting from it those shape functions N; € N,
that correspond to the nodes j, included in Q. Since N; are continuous and have zero values at all nodes except
7, they will not affect previously fulfilled demands. As we are dealing with a simple two-node finite element, we
have to subtract the shape function NN, regardless of the location of the discontinuity, see Fig. d.5] (right).

M (z,2}) ' = Hi (z,2}) — N2 (2) (4.12)

Zq

The first derivative of M i over x is designated with G and is composed of a continuous part G* and a discrete part
G'. The derivative of N, is B,, defined in @4), and the derivative of H 2, 18 defined in (@.11).

G (z,2}) = a%Mi (w.2) =G +G', G'=6,:, G'=-B= —% (4.13)
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Considering the constant strain state in a layer, see equation (#.7), the discontinuity could appear anywhere between

the end nodes. Without loss of generality, we can place it at 2%, = L /2.

4.2.3 Relations between global and local quantities

4.2.3.1 Real degrees of freedom

A structure is modeled with a mesh of finite elements. A part of such mesh is depicted in Fig.[4.6] The total number
of the nodes in the structure is designated with ny. Each node has three degrees of freedom - displacement
U parallel to the global X axis, displacement V' parallel to the global Y axis, and rotation ® about the axis,
perpendicular to the XY plane. The structure has in total npor = 3ny degrees of freedom, which are collected

in the vector d*'".

& = {U,V1,01,05,15,01, ... \Uny, Vi Oy } (4.14)

e nodeof FE

X

Figure 4.6: Degrees of freedom at a node of the finite element mesh.

Slika 4.6: Prostostne stopnje v posameznem vozlis¢u mreZe kon¢nih elementov.

Let us now consider a finite element (e) with end nodes (n;) and (n;). The local x axis is parallel to the axis of
the element, with « increasing from (n) towards (n;), see Fig. The element’s degrees of freedom, defined
in the local coordinate system, are collected in the vector d(e>, in accordance with equation . Global degrees
of freedom, associated with the nodes of the element can be similarly organized into vector D(¢). The two are
connected with a transformation matrix R(¢). Zeros are replaced by dots for clarity. ¢(¢) is the angle between the

global X axis and the local x axis (rotation of the local coordinate system).

a©) =Rrple) (4.15)
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T
) = {0l ol 00,00, 0Y o= (v

ny?

T
Uns Vi Vas Oy O }

[ cos q’)(e) . sin ¢(e) . 7
cos ¢(©) . sing(®)
R — | sing(®) . cos®) . (4.16)
B —sin ¢(e) . cos d)(e)
1
L 1]
O,
o) 02 S Uz
M2 U, 2
Ve, © Vi (®)

Figure 4.7: Global (left) and local (right) degrees of freedom, associated with a finite element.
Slika 4.7: Globalne (levo) in lokalne (desno) prostostne stopnje, povezane s kon¢nim elementom.

Vector D(¢) contains those components of vector d*!" that correspond to the nodes of the finite element. The

selection of appropriate components is done by matrix P(©) of size 6 X npor with only six non-zero components.

D) = plE)ger
© © 4.17)
=F;3,,=1, other P/ =0

» N2

(e) _ ple) _ ple) _ ple) _ ple)
Py sy 2= 5, 0= P53, 1 = By 3,01 = 5 5,

Obeying equations (@.13) and (@.17), we can write the relation between the local degrees of freedom of the finite
element (e) and the global degrees of freedom of the structure.

dl? =REPEgr (4.18)

4.2.3.2 Virtual degrees of freedom

Virtual displacements are a kinematically admissible variation of real generalized displacements. As with the real
displacements, they are interpolated between the nodal values with appropriate interpolation functions. The virtual

deformation of the mesh is therefore defined by the virtual displacements of its nodes.

The global virtual degrees of freedom (virtual nodal displacements of the mesh) d**", the virtual nodal displace-

ments of the element d(® and the selection D) of global virtual displacements, associated with the element (e),
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are defined analogously to the real quantities d*”, d(®) and D(¢), defined in equations and (4.16).

q(e ~(e) ~le) ale) ale) ple) ple T A A ~ A ~ A A T (419)
) = {60,610 189 50 4N D60 = (D1 00 G Oy 00,610}

Relations between them are equivalent to equations (@ 13)-(@.18), matrices R(®) and P(¢) remain the same.
d® =REDE P ZpEgr g = RrEplegs (4.20)

4.2.3.3 Internal forces

Internal forces can be organized in the same way as the generalized displacements. Each degree of freedom from

the vector d*'" is accompanied by a corresponding internal force. Analogously to equation [.14) we can write:

nt,str __ nt nt nt nt nt nt nt nt nt
f _{fU]) Vi ®l7fU25fV27f®27"'7 Uan VnNa ®"N} (421)

Vector fi"S" has npor = 3ny components - for each node a force parallel to global X axis, a force parallel to
Y axis, and a moment around the axis, perpendicular to the XY plane. They are labeled with fint, f‘i}“ and fint,

respectively, and depicted in Fig. @.8]

int
Vi
int
for
int
A fé,

e nodeof FE

X

Figure 4.8: Internal forces, corresponding to degrees of freedom at a node of the finite element mesh.

Slika 4.8: Notranje sile, ki ustrezajo prostostnim stopnjam v vozlis§¢u mreZe kon¢nih elementov.

Internal forces at a certain node of the structure are composed of contributions from all the elements, joined in
that node. Let us now take a closer look at a finite element (e). The internal nodal forces of the element are
defined in the local coordinate system and correspond to the local degrees of freedom d©), see Fig. (right).
They are collected in the vector f"(¢), The forces can be transformed by matrix R(¢) so as to match the directions
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of the global internal forces fi"*. The new, transformed vector is designated with Fint:(¢)| Fig. . 9| (left). The

transformation matrix R(®) is the same as in equation (@.16).

fim,(e) — R(e)Fim,(e) = Fint,(e) _ R(e)flfint,(e) (422)

gint(e) _ { pint(e) fint(e) gint(e) pinu(e) pint(e) gint(e) T
- U rJuy 1 J v vy 01 1/ 6,

T (4.23)
int,(e int, ( int, ( int, ( int, ( int, ( int, (
Flm,( ) = {fUnl 7fUn2 ’anl 7an2 af@n] "f®n2 }
int,(e)
Vh, int,(e)
f.
int,(e)
f®nz f int,(e) f int,(e)
O . 6> o) Uz
int,(e) n /o f© 2
A © " £ int,(e) C)

V.
f int,(e) !
v Oy, fgl nt,(e) f int,(e)
n fint(@ y ' ] "
U
m X

Figure 4.9: Contribution of a finite element to internal forces of the structure in global (left) and local
(right) coordinate system.
Slika 4.9: Prispevek kon¢nega elementa k notranjim silam konstrukcije v globalnem (levo) in lokalnem

(desno) koordinatnem sistemu.

The components of the global vector f"*" are computed by summing the contributions F"(¢) of individual finite
elements. Matrix P(¢) is defined in @.17).

nFE

flnt str __ Z P Flnt (424)

Transformation (4.22) and summation (4.24) can be joined in a simplified notation. Operator A represents the

assembly of the internal forces and npg is the total number of finite elements.

NnFE

fint,str Z P R e) fint,(e) _ nZE |:fint,(e):| (4.25)
e=1

Another useful relation can be observed. For rotation matrix R(® it holds R” = R~! or RTR = I, where I is
the identity matrix. By using this property as well as equations (4.20) and {@.22)) we can conclude that the scalar
product of virtual displacements and internal forces is equal in local and global coordinate system.

T

a(e)Tfint,(e) —pE"REOTRE Fint) — ple) gint(e) (4.26)



Jukié, M. 2013. Konc¢ni elementi za modeliranje lokaliziranih porusSitev v armiranem betonu. 105
Doktorska disertacija. Ljubljana, UL, FGG.

4.2.4 Virtual work equation

Equilibrium of a structure can be described in a weak from, by the virtual work principle, which states that the
virtual work of internal forces G'™ on any kinematically admissible perturbation of generalized displacements -

virtual displacements - must be equal to the work of external forces G*' on the same virtual displacements.

Gint _ Gext =0 (427)

Since we are dealing with a discretized model, the external loads are defined at the nodes of the structure. Linear
loads have to be transferred to the nodes appropriately. The virtual work of external forces is therefore computed
simply as a scalar product of the vector of virtual nodal displacements of the structure d*" and the corresponding
vector of generalized external forces £, Virtual displacements are defined in equation (@.19) and the external

forces analogously to the internal forces in equation (@.21).

nDOF

Gt — &erT foxtstr _ Z &;trf;xt,str (4.28)
j=1

Here npor is the number of the structure’s degrees of freedom. Many components of the sum (@.28) may be zero.
The virtual work of internal forces is composed of contributions from individual finite elements.

=Y, G, G = [(egrqr)av (4.29)
e=1

vi(e)

For each element, G"(¢) is computed by multiplying the corresponding components of the stress field and the
virtual strain field and integrating the product over the volume of the element. Virtual shear strain # is interpolated
between the virtual nodal displacements in the same way as the real strain in equation (4.4) and is constant all over
the finite element. Virtual axial strain € is defined individually for each layer and interpolated in the same manner

~t,add

as the real strain in equation ({#.6)). Note that the additional part of the virtual strain & only exists in the cracked

layers. In non-cracked layers, the virtual strain consists only of the regular part &'

& i add
~ 2 ~ . . A p . R v A . .
4=BV+B*0=B'd, & =Bi—y'BO+G'a'=Bd+G'&" (4.30)

The volume integral in equation (#.29) is divided into an integral over the length and an integral over the cross-
section of the element. The latter can be replaced by a sum over the layers, since everything is assumed to be
constant over the cross-section A’ of a layer. The virtual axial strain is replaced by the whole expression for
ngz cracked layers and by its regular part & for (nL — n(cez> non-cracked layers, where ny, is the total number of
layers in the finite element. Shear strain 4 is constant over the whole element and is replaced by {.30) for all ny,
layers. Shear stress 7¢ depends on the material law and is different for concrete and steel. Obtained expression is
rearranged to produce internal forces, corresponding to the virtual degrees of freedom of the finite element dl,
defined in (#.19). Index (e) is omitte(d)until the last line. For the sake of simplicity it is assumed that the cracked

layers are numbered with 1, 2, ..., nCe .
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G = [ (2o +47)dV = // Eo+4T) dAdx—/Z (€0 +47") Alde =

\%4
nr
L =1 7 i=l
vf
L

BV 7iAld / B*OriAlds =
i=1 v o Z " o (4.31)
nL 'L . T . .
—a”[ Y BToAide +% /ZBT iAlds+ 8 /Z Tot +B77) Alda+
7 i=l i=1
nCL ”(C%)L
+ &t Gz At dy = a(e)Tfint,(e) + Z d(e)’ih(e)’i
=1y i=1
A condensed form of expressions (#19) and @23) for d(¢) and f">(¢) is used.
a(e)T _ {l’\lT,f/T, éT} ’ fint7(e)T _ {fu7int,(e)T’fv7int,(e)T’f07im,(e)T} (4.32)

Components of f"(¢) are defined in (#33). Since all present quantities are constant over the length of the finite
element, the integrals are easily evaluated. The internal forces are calculated as a sum of contributions of individual

layers, which proves to be helpful in the computational procedure.

i=1

fumt /ZBT zAldx_nZLBTo_iAiL
7, i=1

ool — | Y B A= Y BT AL 433)
3 1= 1=

6,int,(e) __ v _ ipT i «T i\ gi _nL _ipT i «T i\ 7i

f = y'Blo' +B 1) Alde =) (—y'BTo’ +B* 7' | A'L
7, i=1 i=1

A shorter notation (#.34) will also be used. Here, f":(¢):¢ is contribution of the i-th layer to the vector of nodal

internal forces of the finite element.

B” 0
) ny, o o nL o, ) . ) )
=y || 0 |o'alLe | BT || =Y (B0 +BT) AL (4.34)
=\ | —yBT B i=1

fint,(e),4

The second term of the last line in (@.31)) is the additional virtual work due to enhanced kinematics. The sum has
n(gz summands, one for each cracked layer. Quantity h(¢)* corresponds to the virtual displacement jump &),

and is defined as follows:

hle)i = /GiaiAidx, i=1,2,....n% (4.35)
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The virtual work of external and internal forces in the equilibrium equation is replaced by expressions

#@28) and @.29), respecting (4.31) and (4.26). Finally, the second of equations (@.20) allows us to express the
weak equilibrium in the manner of global virtual displacement vector d** and virtual displacement jumps &(¢):.

nrE
— Z Gint,(e) Gt =
e=1

e
nFE CL

_ Z I")(e)TFint,(e)+ Z alehiple)i | _ gl pextstr _

e=

—

i=1

(e)

"FE o nFE oL T
_ Z dst P e) Fmt + Z Z a 1h — st pextstr — (4.36)
e=1 e=1 i=

"FE

— &SU‘T niE P Fmt Z i
e=1 e=1 i=1

el
La

Aot T : "FE
— dstr (fmt,str _ fext,str> Z

dstl‘ fext str_

Equilibrium must hold for any kinematically admissible virtual displacements d*" and virtual displacement
jumps &) From this requirement we can conclude:

pintstr __ pext,str 0

' (437)
Vee (1,2, npph, Vi {12, 0} B =0

The first equation in ( represents the global equilibrium of every individual node of the mesh. Here fi"S" and

feXtsU are vectors of internal and external nodal forces on the structural mesh. They correspond in position and

direction to the degrees of freedom of the mesh. Their length is equal to the total number of degrees of freedom

npor. The seco(n;i equation in is an additional constraint for the stress in cracked layers. The number of
e

cracked layers n;, is generally different for each element, and can also be zero. It has been assumed in equation

(e)

that the cracked layers are numbered with consecutive numbers from 1 to n; .

Let us now examine (¢, defined in expression (@33). Operator G, defined by equation (#13), consists of a
continuous part G* and the Dirac delta function 5% . Integration of the latter is performed by the following rule:

G'=G —&-51_2, /g(ac) 5w2dm =g (xd) (4.38)
L

Implementation of (@.38) allows a further development of expression (#.33]). We introduce o o) the value of

stress function o (), evaluated at local coordinate z;. We assign to it a new symbol ¢* and define it as the traction
at the discontinuity.

() :/(Gw(smé) JiAidx:Ai/Giaidx+Ai o'l = A’ /c‘:iaidx+ti (4.39)
d
L L L

Inserting (#.39) into the second of equilibrium equations provides a new aspect to its meaning. Equation

(@#40) represents equilibrium between the traction at the discontinuity ¢* and the stress in the bulk . Being
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confined to a single finite element, we can refer to it as local equilibrium. Relation G* = —1/L from equation

(@.13) is used as well.

ROi—0 o i / Gioids = o (4.40)
L

In the spirit of the method of incompatible modes, the operator G* should also meet the requirement, that the
additional virtual work (performed on the virtual displacement jumps &°) be zero in case of constant stress o?.
Thus, the introduction of & does not affect the internal virtual work. Since the stress is always constant in our
finite element, this test is trivial (fulfilled already by equilibrium equation (#.40)).

& / Gioi Aide = Gio’ Al / Gidr=0 = / Gide =0 @41
0 L L
L

Taking into account the rule @38) for integration of G, requirement can be reformulated.

=1

/Gidx:/((?i—i—dzé)dx:/éida:—k/émédxzo = /Gidx:—l (4.42)
L L L L L
Equality G = —1/L satisfies the condition (#.42).

4.2.5 Constitutive models

In this section we describe constitutive models which control the axial and shear response of concrete and steel-
reinforcement layers. Axial response of each material is described by two models, one for the bulk of the layer
and one for the discontinuity. Shear model is only required for the bulk of the layer, as there are no discontinuities
involved.

4.2.5.1 Shear stress model

The transverse response is assumed to be elastic. While the shear strain is constant all over the finite element, the
shear stress is different in concrete and steel layers, due to different material parameters. In equation @.43), p.
and p, are the shear moduli of concrete and steel, respectively, and c is the shear correction factor for rectangular
cross-section. Shear strain -y is computed according to equation (@.4).

. for concrete o1t

) =cp
s for steel okl

Ti == CMi% Cc= 5/67 /’(‘l = { ' (443)

The shear moduli p. and ps are computed from the elastic moduli E. and E,, and Poisson’s ratios v, and v, of

concrete and steel. The usual values are used for v, and vs.

Pe = —F— Us = —— v, =0.2, vs=0.3 (4.44)
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4.2.5.2 Bulk of concrete layer

Behavior of the bulk of the concrete layer is described by 1D elasto-damage model. Response of the material
is linear elastic up to the elasticity limit. Further increase of stress produces micro damage (micro cracking in
tension and micro crushing in compression) continuously over the layer, which results in reduction of the elasticity
modulus. Unloading is linear elastic with the current value of the elasticity modulus, and leads to the origin of the
stress-strain diagram (see Fig. [#.10). These properties of concrete are collected in the following equations, which
can be derived through the principle of maximum damage dissipation [73].

o
A
Ot =
Odt 7777
g Ec
z -€
: §©
: é&
. Q* 5
: & 9
: Qg,\"\) %é’
P & T
A L o
ﬁiil ge\oad\(\g ---------- T —O0dc
¢
"""""""""""""""""""""""""""""""""" - —0 fcc

Figure 4.10: Stress - strain diagram for bulk of concrete layer.

Slika 4.10: Diagram napetost - deformacija za sloj betona.

Equation (4.45) shows the linear elastic relation between the stress and the strain. It represents the loading

curve/path up to elasticity limit and the unloading/reloading curve in the o — &° diagram.

&t

R . L N ..
o'=D" ¢, D’e[Ec‘l,oo), e =Bd+Go' =Bd+G'o* +Ga’ (4.45)

Here D? is the compliance of the bulk material, E, the elastic modulus of intact concrete, and &' the continuous
part of axial strain in the i-th layer, composed of the regular strain and the continuous part of the additional strain.
The latter is zero until the discontinuity is formed. The non-elastic part of the loading curve in the o — &% diagram

is defined indirectly by the remaining equations in this section.
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A ) ) 04c for compression
¢ (0",7") =|o'| = (0a—7T"), Ud:{ ! (4.46)

o4 for tension

Damage function ¢ prescribes the admissible values of axial stress ¢* in the i-th layer. Elasticity limit oz > 0
marks the beginning of micro damage and is defined separately for tension and compression. Stress-like hardening
variable ¢° handles the damage threshold evolution.

. _ H,. for compression
qZ = _Hcgla Hc = (447)

H_; for tension

Linear hardening of the material is described by equation [#47), where ' is a strain-like hardening variable with
initial value equal to zero, and H, > 0 is a constant hardening modulus of concrete with separate values for tension
and compression. Evolution in pseudo-time of internal hardening variables D* and £ is defined by evolution
equations [#.48).

(4.48)

The dot designates the derivative with respect to pseudo-time and f‘yi is damage multiplier. The loading/unloading
conditions and consistency condition (4.49) also apply.

720, <0, 4 =0, 3¢ =0 (4.49)

Tangent moduli of the o — &* diagram can be determined from the above equations. The elastic loading/unloading
path corresponds to condition 4° = 0. It follows from evolution equations (#.48)), that compliance D? is constant.
The tangent modulus is obtained if expression for " is differentiated with respect to £°.

O.Z

=D 4.
9z (4.50)

4'=0 = D'=const,

In case of damage loading, when ’"yz > 0, the procedure is more complex. From the third and the fourth of conditions
- =17 .

([4.49) we can conclude that ¢* = 0 and ¢ = 0. From (4.46) we can write the expression for o* and differentiate it

over pseudo-time. We use the appropriate evolution equation to differentiate £ within.

ot = (O'd — qi) stgn (ai) = (O’d +Hcf_i) sign (o’i) , ot = nyisign (cri) 4.51)

The stress can be replaced by expression (#.43). The obtained equation is again differentiated over pseudo-time.

Note that compliance D? is not constant any more.
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DiTE = (od —|—HC§_") sign (oi)

DD E+D e = Hcgisign (o) /DZ i szg;ni (=) ; f_l =4
—p P 1RT) ) et '8 = B4 sign (o) /=D (4.52)
—D''4sign (") + D' = H.4'sign (o)
2 Di71 Hc 20 . )
E = T’Y sign (0' )

The tangent modulus is computed by dividing the pseudo-time derivatives 6% and &* from @31) and #32).

gt & DU'H,
g’i

0gt

=0 4.53
D'+ H. >3

To sum up, the tangent modulus is described by two expressions. The first one covers the elastic behavior -
unloading and reloading, including the first elastic loading with the initial value of compliance D’ = E_!. The
second expression represents the slope of the damage loading curve.

Ao’
o7\ DUH. (4.54)
Dz‘71+HC’ v

4.2.5.3 Discontinuity in concrete layer

Energy dissipation at the discontinuity of a concrete layer is described by a softening damage law, which connects
the traction at the discontinuity to the displacement jump. When the discontinuity is introduced, the displacement
jump is zero and the traction is equal to the failure stress of concrete. An increase of the displacement jump (in
absolute value) reduces the carrying capacity and thus produces a lower traction. A subsequent decrease of the
displacement jump (in absolute value) reduces the traction as well, but the carrying capacity remains the same.
Obviously, the problem needs to be controlled by imposed displacements to provide a unique solution. The term
“loading” therefore refers to the increase of displacement jump (in absolute value) and “unloading” refers to the
decrease of displacement jump. The unloading is always linear elastic, but there are two possibilities for loading.
Elastic (re)loading follows the unloading curve, increases the traction, and leaves the internal variables unchanged.
When carrying capacity is reached, damage loading continues. It decreases the traction and changes the internal
variables (see Fig.[d.TT). This material law is mathematically described by the following equations, which can be
derived by using the principle of maximum damage dissipation [73]].

Equation (@.53)) describes the linear elastic relation between the traction at the discontinuity ¢* and the displacement
jump . It represents the unloading/reloading path in the t* — o diagram.

L. =
of, D" €[0,0) (4.55)

Here 152 is compliance of the discontinuity which increases with progression of the localized failure. The loading

curve of the t* — o diagram is defined indirectly by the remaining equations in this section.
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Figure 4.11: Traction - displacement jump diagram for discontinuity in concrete layer.

Slika 4.11: Diagram napetost - skok v pomiku za nezveznost v sloju betona.

=i/ , _ Ofcc for compression
¢ (Wf) =|t'| - (O'fc — ql) ope=4 , (4.56)
ofc¢ for tension

Failure function qzbl prescribes the admissible values of traction ¢ at the discontinuity of a concrete layer. Failure
stress of concrete oy. > 0 indicates the occurrence of the discontinuity and is defined separately for tension and
compression. Stress-like softening variable g’ handles the damage threshold evolution and is described by an
exponential function.

' K..=— Ifec for compression
=i K, El 2C:fcc
¢ =op|l—€e" ), K.= (4.57)
! K, et for tensi
«t = ——=— for tension
‘ 2cht

Here §= ¢ is a displacement-like softening variable with initial value set to zero, and K. < 0 is a constant softening
modulus of concrete with units m~! and separate values for compression and tension. These are determined by the
fracture energies per cross-section unit Gy.. and Gy, for concrete in compression and tension, respectively. The
fracture energy has units kJm~2 and can be determined by different tests. Evolution in pseudo-time of internal
softening variables D' and §= ¢ is defined by evolution equations (#.58).
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'=y‘ sign (&%)
t

<.

b= (4.58)

Il
2l

)

The dot designates the derivative with respect to pseudo-time and %i is damage multiplier. The loading/unloading
conditions and consistency condition (4.59) also apply.

.

¢ =0,

=1 =g

>0, ¢ <o,

-1
Il
o

(4.59)

\Qu
2l
2

A closer 1nspect10n of equations (#.53)-(@.39) reveals that the damage loading path of t* — o diagram, correspond-
ing to condition ¢ =0, is a straight line, see appendix I This suggests a possibility of simplifying the equations.

Z !
Each point of the damage loading path is determined by its ordinate ¢* and the slope D of the unloading line,

which connects the point to the origin. Abscissa a' is computed from equation (#.53). Evolution equations (#.58)
dictate the change of D" and &, the latter defining ' through equations @.36), @57) and @39). Both D' and
t' change non-linearly with respect to *:yz = ’iyZAt (At being pseudo-time step), the first one because of non-linear

evolution equation (.58)), and the second due to exponential softening law (#.57). However, it is shown in appendix

that the two non-linearities neutralize each other, yielding a linear relation between ¢* and «’.

The damage loading path can also be constructed by defining coordinates o and ¢*. If they both change linearly
with respect to some new variable, the diagram will be a straight line. We introduce a new displacement-like
variable sz " and the softening law takes a linear form.

=ik 1 =t . =i =i% =%
£ =—— (1 — efet ) T =op (1 — efet ) = —K.opf =-KJ€ (4.60)

The expression for §' in @60) holds for &' < o0, or equivalently 3 <o /K, . After that § would become greater
than the failure stress of concrete oy, which is not acceptable. Physically, it means that the carrying capacity
cannot drop below zero.

' = min {-K;f’*,afc} . K'=K.op (4.61)

=%

Then, the 1ntr0duct10n of a new damage multiplier 4~ allows us to write a new set of linear evolution equations
for o' and f See appendix |B|for details.

iy 1 =i i ik ; = =%
= e <1 — ey ) , &'=75 sign(t'), & =% (4.62)

The new softening law and evolution equations (4.62)), due to their linear form, simplify the computa-
tional procedure 51gn1ﬁcantly. But there is another advantage over the original equations. As the original dam-
age multiplier 5 approaches infinity, the traction ¢’ approaches zero and the displacement jump o approaches
—sign (ti) /K. . No matter how much we increase the multiplier, o cannot pass that value. For an individual bar,
such limitation is logical, as the complete loss of carrying capacity implies singularity of the problem and a further
increase of the discontinuity is meaningless. However, if a layer of a beam loses all carrying capacity, the beam

as a whole still possesses stiffness. The broken layer just follows the rest of the beam without resistance. It is
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therefore necessary to allow o to grow past the point of failure. When the new damage multiplier 5 * reaches the
value —1/ K, the original multiplier is pushed to infinity and the old evolution equations {#.58) get out of scope.
The new evolution equations (#.62), however, withstand further increase of 5. As the latter approaches infinity,
so does o (in absolute value). Once past the failure point the traction ¢’ remains zero. The relation ¢ — « at the
discontinuity is described by equation (4.63).

i1 ES

D' o ¥ =0
t = afesign (o) + o Kea's ’:yl* >0,7 < Ofe (4.63)
0; %/’L* >0, (? = Ofc

The first expression represents the elastic unloading path, the second one the damage loading path until the traction
drops to zero, and the third one the damage loading path further on. The tangent moduli are obtained by a simple
differentiation of (4.63).

- [D %20
atl =ik =
Do K =0 K., 7 >0,7 <op (4.64)
0; ’éyl* >0, (72 = Ofc

4.2.5.4 Bulk of reinforcement layer

Behavior of the bulk of a layer of reinforcement is described by 1D elasto-plasticity model with isotropic hardening.
It is symmetrical in tension and compression. Response of the material is linear elastic until yield stress is reached.
If loading increases, plastic deformations occur and grow continuously over the layer. Elasticity limit is raised
as well. Unloading is elastic and follows a line, parallel to the first loading path. When the stress drops to zero,
plastic deformations remain in the layer (Fig.[4.12). Behavior of steel is mathematically described by the following
equations, which can be derived by using the principle of maximum plastic dissipation [73].

Stress o is computed from equation ([@.63), which represents the elastic loading path and elastic unloading or
reloading path of the o* — & diagram.

E—’L

. , , L S
o' =F, (e‘l — e‘;) , e=Bd+Ga' =Bd+Ga'+G'a’ (4.65)

Here E is the elastic modulus of steel, 5; plastic strain, and &' the continuous part of axial strain in the i-th
layer, composed of the regular strain and the continuous part of the additional strain. Before the appearance of the
discontinuity the additional strain is zero. The plastic loading path of the o* — & diagram is determined indirectly
by the rest of the equations in this section.

¢' (0",7') =o*| = (0y = T) (4.66)

Yield function ¢’ prescribes the admissible axial stress in the layer. Yield stress oy > 0 is the absolute value of
the stress, at which the first plastic deformation occurs. Stress-like hardening variable ¢* controls yield threshold
evolution.
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Figure 4.12: Stress - strain diagram for bulk of reinforcement layer.

Slika 4.12: Diagram napetost - deformacija za sloj armature.

g =—H (4.67)

Equation describes the linear isotropic hardening of the material. Here H; > 0 is a constant hardening
modulus of steel and & is a strain-like hardening variable with the initial value zero. Evolution in pseudo-time of
internal hardening variables for plasticity, £/, and &', is prescribed by evolution equations (@.68).

)

& =4'sign (o), & =% (4.68)

The dot designates the derivative with respect to pseudo-time and 71 is plastic multiplier. The loading/unloading
conditions and consistency condition {#.69) apply as well.

720, ¢<0, 3d=0, 3¢ =0 (4.69)

Tangent moduli of the o¢ — &% diagram are determined by the described equations. In elastic response, the plastic
multiplier is equal to zero. As a consequence, internal variables are constant and the tangent modulus is simply
computed by differentiating the expression ([@.63) for o with respect to &°.

’Lyi =0 = 6_; = const., i E, (4.70)

In plastic loading, the plastic strain 5; is not constant. It depends on the plastic multiplier fLyi > 0 and consequently

on the strain &%. The tangent modulus can be computed from pseudo-time derivatives of stress and strain. It
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—. Ev .
follows from the last two equations in that * =0 and ¢ = 0. We can express ¢* from equation and
differentiate it over pseudo-time.

ol = (O‘y — qi) sign (Ui) = (Uy + Hsf_l) sign (O'i) , o= Hﬁisign (O'i) 4.71)

We can replace the stress o with expression (#.63)) and differentiate the modified equation over pseudo-time again.
Evolution equations (4.68) are utilized in the procedure.

B (4~ 25) = oy + L&) sign )
E, (z—fl - L;) = H,E sign (o) /& =4"sign(c"), £ =4
¥ i . | i . . 4.72)
Eé — Ey sign (01) = H7 sign (crl)
=7 Es + Hs -7 . i
g = —g 7 sign (0’ )

Pseudo-time derivatives 6% and &', defined in @.71)) and {@.72)), are divided to produce the plastic tangent modulus.

dot &t E,H,
== 4.73
0gt  F#  E.+H, 4.73)

The elastic and plastic tangent moduli are gathered below. The first expression represents the slope of the elastic
loading and unloading path, while the second one represents the slope of the plastic loading path in the o — &

diagram.
Ot = EsHs Y >0 (474)
E.+H,’

4.2.5.5 Discontinuity in reinforcement layer

Behavior of the discontinuity in a layer of reinforcement is described by a plastic softening law, which connects
the traction at the discontinuity to the displacement jump (Fig. F.13). At introduction of the discontinuity the
displacement jump is zero and the traction is equal to the failure stress of steel. A further increase of the imposed
displacements of the layer reduces the carrying capacity. The traction at the discontinuity decreases and the dis-
placement jump increases. This is referred to as plastic softening. The displacement jump behaves analogously to
plastic strain in the continuous model, i.e. it stays the same if the loading is decreased. The traction at the discon-
tinuity in the unloading phase changes in accordance with the stress in the bulk, so that the equilibrium is
satisfied. When traction (in absolute value) reaches the carrying capacity again, the plastic loading continues and
the displacement jump changes accordingly to the sign of traction. It decreases in compression and increases in
tension, regardless of its own size and sign. The mathematical description of such behavior is condensed in the
following equations, which can be derived by the principle of maximum plastic dissipation [73]].

3 (ti,§i> = [#i] - (afs —cji) (4.75)
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elastic unloading/reloading

04

Figure 4.13: Traction - displacement jump diagram for discontinuity in reinforcement layer.

Slika 4.13: Diagram napetost - skok v pomiku za nezveznost v sloju armature.

Failure function ¢ defines the admissible values of traction ¢* at the discontinuity of a reinforcement layer. Failure
stress of steel s > 0 is the absolute value of the stress, at which the discontinuity first appears. The stress-like
softening variable §* manages the softening threshold evolution.

2

= . =i Ofs
q :mm{—KSé‘ 7Ufs}7 K =—2an (4.76)

The linear softening law is described by equation (4.76)), where §= ? is a displacement-like softening variable with
initial value zero, and K, > 0 is a constant softening modulus of concrete with units kNm 3. Fracture energy per
cross-section unit of steel Gj, represents the area between the horizontal axis and the softening line in the ¢t — o
diagram. It has units kJm~2 and can be determined from a uniaxial tension test. Evolution in pseudo-time of
internal softening variables o and §=Z is defined by evolution equations (@.77).

i =1 . i 2
& :fyszgn(t), & =

i

4.77)

2l

The dot designates the derivative with respect to pseudo-time and f:yl is plastic softening multiplier. The load-
ing/unloading conditions and consistency condition also apply.

i$ =0, 55 =0 (4.78)

=2
2l

‘>0, 4 <o,

2l

The equation of the plastic softening loading path of t* — o* diagram is not unique. It depends on the loading

history. If the softening process alternates between both load signs, the loading path is translated sideways (left or
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right). The slope, however, is not affected and can be determined from the pseudo-time derivatives of ' and o’

In softening process, when ’y > 0, the failure function ¢ = 0. Expression for ¢! is then determined by (#.75) and
(4.76).

, . , s + K =i) ign (t'); @ < ays
1 = (o~ ) sign (1) = (050 +16:€") sin (1) = (4.79)
05 Cjz = Ofs

The derivative is obtained in accordance with evolution equation (@.77) for £¥.

ngisign (t") = Ks’iyisign (t); g <oy
0; q=Z = Ofs

i = (4.80)

The slope of the plastic softening loading path, defined as the derivative of ¢’ over o', is computed by dividing the
pseudo-time derivatives (@.80) and {.77) of both quantities.

not defined; i =0
ottt i _
A S . z 5t 4.81
EXimrY K, 74 >0, ¢ <oy (4.81)
0; 5> 0, § = oy,

A third option was added in equatlon @D It corresponds to elastic unloading path with 7 = 0. It follows
from evolution equations (@.77) that &* = 0 in such case. And since the failure function ¢ is no longer required
to be zero, the traction ¢* cannot be computed as in (#.79). It changes in accordance with equation (& which
represents the equilibrium between the bulk and the discontinuity. The fraction in (.8T]) is not deﬁned, but it is not

required in the computational procedure anyway.

4.3 Computational procedure

Response of a structure, discretized by a mesh of npg above derived finite elements, is computed at discrete
pseudo-time points 7o, Ty, ... , Tn, Tntl, --- , 1 by solving at each pseudo-time point nonlinear equations (4.82)

for current values of nodal displacements/rotations.

flnt,str _ fext,str — 0

: (4.82)
Vee {1,2,...,npp}, Vi€ {1,2,...,@3} . h@i— g

(e)

Here, n(; is the number of cracked layers in element (e). At a particular pseudo-time point 7,1, the solution
is searched iteratively by the Newton-Raphson method. Each iteration, denoted by k, consists of two subsequent
phases: (A) computation of internal variables, corresponding to the current iterative values of nodal displace-
ments/rotations, in order to compute the stress in accordance with given material laws; (B) solution of linearized
equations (4.82) in order to update the iterative values of nodal displacements/rotations. When one phase of the

computation is completed, the results are used immediately in the next one.
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For a pseudo-time point 7,1, the computational problem related to a generic element (¢) and material layer ¢ can

be stated as:

» e),i _(6),i :(6),i :(E),i _(8),’i _<6),i :<6),i :(G>,i
given dEf) and {?:)Z ,_f:)i ’Z?z ;(i T;Z find dgfll and l?:)ilyg?(:)l;l)?;i’igli
pa o&n Q& Epmt1Ent 1 Ui 1 €nt

Note that superscript (e) was omitted in section for the above internal variables. The subscript 7 and n + 1
denote the values at pseudo-times 7,, and 7,1, respectively.

Start phase A of iteration k
for element eand layer i

crack®’= true = crack®; = true
No
use egs. from secs.
43120r4314
e, _
crack,.; = true,
carrying capacity Yes _| deleteresults, computed
exceeded with egs. from secs.
43120r4314
No
crack®i = false,
keep results, computed
with egs. from secs. use egs. from secs.
43120r4314 43130r4315

End phase A of iteration k
for element e and layer i

Figure 4.14: Algorithm for phase (A) of k-th iteration for i-th layer of finite element (e).
Slika 4.14: Algoritem za fazo (A) k-te iteracije za i-ti sloj kon¢nega elementa (e).

4.3.1 Computation of internal variables

In this section we will present computations of phase (A). The internal variables for i-th layer of element (e) at

pseudo-time point 7,41 will be computed for the k-th iteration, while the nodal displacements/rotations are fixed

(e),(k—1)

at the values from the previous iteration d, ') . Since every internal variable is connected to a single layer of a
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single finite element, the computations are local, i.e. they are performed independently for each element and each

layer. The condition of the discontinuity is known by the following flag.

(4.83)
true ... discontinuity in layer ¢

. false ... no discontinuity in layer ¢
crack(®) = {

The algorithm in Fig. [#.14]is applied. If there was no discontinuity in the layer in the previous pseudo-time step,
we begin with equations for the hardening phase of material, described in sections[4.3.1.2|for concrete and[4.3.1.4]
for steel. We must do so even if the previous iteration of the current step indicated occurrence of the discontinuity,
because that was not a converged result. We check if the carrying capacity of the layer is exceeded. If not, we keep
the obtained results, otherwise we discard them and use equations for the softening phase of material, described in
sections [.3.1.3] for concrete and 4.3.1.5| for steel. If the discontinuity already existed in the previous pseudo-time
step, it must also exist in the current step, therefore we follow the procedure from sections ord.3.1.3]

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element, and
the superscript ¢, denoting the layer.

4.3.1.1 Shear response

Computation of the shear response is straightforward. Shear strain is computed according to equation (4.7) with
the current values of the nodal displacements. Shear stress is then calculated from (@.43).

i|(k)
k < (k=1 i(k i (k or i
( )1 =B d51+1 )v Tnil) =cp 77(1+)1v ) =cH (4.84)
Y ln+1

4.3.1.2 Bulk of concrete layer

This section describes the computational procedure for the hardening phase of a concrete layer. The discontinuity
has not yet occurred and the displacement jump is zero. The computation is started by assuming an elastic step,

which means that hardening internal variables do not change, but keep the values from the previous step. Trial

* —o.

value of stress is computed according to {#.45), with a, ", | =

= (k),trial ~ =(k),trial = k),trial =(k), rial”! _ k—1 k

Dfﬁ)f =Dy, flelt =&n, 07(1-21t = wa)f € (d£z+1 )va;ll) (4.85)
The trial damage function gﬁiﬂ’frml is computed in accordance with equations (4.46) and {.47).

Z(k),trial k),trial _(k),trial _(k),trial =(k),trial =

¢£w21t = 7(1+)1t - (Ud - Qiﬁf ) ) ‘Ifw)lt = *Hcffw)lt =—H, (4.86)

The trial solution is accepted if the trial damage function is not positive.

(k) trial ~(k A (k) trial =(k =(k),trial k k),trial
¢£Ll'1t <0 = Diwil = DELlet J 51(1421 = 57242; ’ 7(131 = flﬁf (4.87)
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Otherwise, the internal variables have to be corrected and the stress recomputed. Incremental form of evolution

equations (@.48) is applied, where '"yr(:izl = '77(:21 (Tns1 —Tn) > 0. The use of sign <a(k) ) = sign (J(k)’mal) is

n+1 n+1
justified in appendix [A]
. k),trial
(k). trial Ak _ k) I (”iw)lt ) Ak o ~(K)
¢n+1 >0 = DnJrl = D” +’Yn+1 (k) ’ §n+l = En +'yn+1 (488)
0n+l

fﬁl and the stress-like hardening variable qfﬁ 1

(k)
n+1*

By using equations (@.88), the stress o can be expressed with their

trial values and the damage multiplier ¥

Q) :D“‘“)*lg(d(’“‘” o® )

n+1 n+1 n+l " n+l
~(k) (k) _ —(4(k=1) (k) \ _ ~(k)trial _(k)trial
D, o0 =¢ (dn+1 ’an+1> =D, o5
sign (O_(k),trial)
— n+1 — i
Dut3h———— | ol = Duo i (4:89)
0n+1
Daol) + 4 sign (o7 ) = Dol

o k) _ O_(k),tm'al . Dglr_yr(:?lszgn (Uifgit”al)

@fﬁ)l = _Hcf_gfgl =—H. (f_n “"_77(;21) = ‘ﬁg’l”ml - cﬁ’gﬁl (4.90)

Equations (4.89) and (4.90) are used to express the damage function éiﬁzl as a function of damage multiplier ’7&21 ,
k)

which is then computed from requirement 45; 11 =0, coming from loading/unloading conditions @49).

(k)

(k),trial
UnJrl

n+1 n+1

- (Ud_qu]?l) =1

_ Q_ﬁ k),trial (D;I +Hc) _(k)

<1~c>l -~ (Ud _q(k),trial) —Hcﬁfﬁg] _

n+1 n+1
4.91)
® ® d—)(k),ltrial
7 _ - _ n+
¢n+l =0 = ’7n+] - D,:l +Hc

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

(#83) if damage multiplier ;Vr(le is zero, and the value from [@#.89) if ’yr(ﬁzl is positive. In the second case, equations

@9T)), (#-86) and (@.83) are used to express the stress as a function of strain.

Jdo (k) D;l; _gi)l =0
2 ={ b " (4.92)
£ P T 7 >0

D 1+H, Tn+1

The hardening internal variables, stress and tangent modulus have been determined under assumption, that the
carrying capacity is not exceeded, which remains to be verified. If indeed the carrying capacity is not reached, the
results are accepted. In the opposite case, the results are discarded and computed again, taking into account the

newly appeared discontinuity.
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(k).p

n+1
is then evaluated with the stress-like softening variable ¢

°" is computed according to equation @40). Failure

=(k),pot
n+1

First, the potentlal value of traction at the discontinuity ¢

J)O
n+1

been no reduction of carrying capacity in previous steps.

function (;5 equal to zero, because there has

t(k),pot

t(k pot /GO’n_Hd:E _ U(k) (g(k),pot = |t

n+1 n+1? n+1

(o —dr), @y =o (4.93)

The discontinuity flag is set to ¢true if the failure function is positive, and to false otherwise. Note that the value

of the flag is not final, until the converged state is reached. It can change in following iterations.

55& pot <0 = cracan = false
_ o (0).i (4.94)
qbfl S0 = crackn +’1 =true

7pot
n+1

tangent modulus are discarded for this iteration and computed anew as described in section[d.3.1.3]

If the carrying capacity is exceeded (qi) > (), the above computed values of internal variables, stress and

4.3.1.3 Discontinuity in concrete layer

Here we describe the computational procedure for the softening phase of the concrete layer. The procedure is used
(e)yi

if the current value of discontinuity flag crack, | =

(e)sé

in the previous step (crack,,

= true. This is a consequence of either an existing discontinuity
= true), or exceeded ultimate stress in this iteration, as written in equation (#.94).
In both cases, the hardening internal variables take the last converged values, i.e. the values from the last step.

b, =b,, &% =¢, (4.95)

The computation is started by assuming an elastic step, which implies no change in the softening internal variables
=k
in this iteration. We use the displacement-like softening variable ¢ , introduced in equation (@.60).

Eflli),ltrial _ Dn, éz(fi,trial _ =;Z (496)

The trial value of traction at the discontinuity is defined by equation (@.97). Derivation of the expression is shown
in appendix [C} According to equation (#.40) it is equal to the trial stress. The trial value of displacement jump is

computed from equation (4.55).

(k=1)
t(k),trial (k), trial _ Bdn+1 a(k),trial 5 (k),trial

n+1 n+1 ’ n+1

_ t! (4.97)
"~ D,-GD, i

Next, the trial value of failure function qS t”al

=(k),trial

is computed, using expression {.61)) for the stress-like softening

variable ¢

i1
=(k),trial k) trial (k) trial (k) trial ) ial -
(ZS,EIlet”a _ tfnllt”a . (Ufc _qfﬂzltma ) 7 qihzltrza _ mln{ _K* é.nJrl ), tria ,O'fc} =3, (498)
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If dz)iﬁ)’lmal <0, the trial solution is accepted.

= (k) = (k),trial =x(k) =x(k),trial (k) (k),trial
D =Dnin s & =60 v Opp1 = Qg (4.99)
t(k) _ t(k),trial o_(k) _ (k),trial ’
n+1 n+1 ’ n+1 n+1

If aZif JZ’ltTial > 0, the assumed trial values are not admissible. We have to compute the softening damage multi-
=x(k) = (k)

plier 3,1 = 3,1 (Tnt1 — 7o) > 0 from equation ng 1 =0 in order to compute new values of internal softening
variables, see appendix [C|

¢5Lk+)1t7lal( _ah )

R . _ 4.100
Ve KDy —C ( )
It ‘?7(;]1)1 =—-K; (E;‘L + %Z(ff) < oy., the softening internal variables are updated, following the incremental form of
evolution equations (4.62).
(k) (k) (il E09 _ g =x9 pB) _ Ouhr _ R4
Qpt1 = ( n *%H) 519”( ntl ) s o1 =0t Vr Dol = (T;:)+ = Tjk) (4.101)
tn+l Ofc + K*gnJrl

Here, o™ = l:)ntﬁa" =D, (Ufc + K, :E;) is the maximal elastic value of « for the given carrying capacity ¢ **
from the last softening step. Traction at the discontinuity and stress in the layer are computed as follows:
k =(k ) k), trial k A1 = 4(k=1)  (k
tEL-&)-l = (Ufc - qﬁwh) sign (tiwilt ) ) 07(1421 =D,'¢ (diﬁ-l )70451421) (4.102)

If-K; (5 A, +3) > 0pe = qfﬁzl , material has lost all carrying capacity and traction at the discontinuity becomes

Z€10.

1), = ol = Dyt (Bal ) +Gall) ) =0 (4.103)

From above equation we can compute the displacement jump and the compliance at the discontinuity.

R T Dy = 2 () = (4.104)
n+1

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump.
If '*<+f = 0, their relation is described by equation @.97). If "*S_f > 0 and qfﬁzl =-K; (_f, +’=y:;(ff) < Ofe,
traction takes the value from ([@.102). The first of equations (#.101) is used to express the traction as a function of

displacement jump. If 'Yn(+1> > 0 and qfl le = o, traction is constantly zero.

= =x(k
D i =0
ot |F) . .
sal =y Ki=oeKs 70 >0,3)), <o (4.105)
n+1

O; 77L<Jr1) > O EHZ] = Ofc
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Figure 4.15: Stress in the bulk (left) and traction at the discontinuity (right) of a concrete layer: value
from the previous step (n), and trial and final values from the current step (n + 1).
Slika 4.15: Napetost v sloju (levo) in v nezveznosti sloja betona (desno): vrednost iz prej$njega koraka
(n) ter testna in kon¢na vrednost iz trenutnega koraka (n + 1).

(e),i

The discontinuity flag is set to crack; 11 =true.

4.3.1.4 Bulk of reinforcement layer

The computational procedure for the hardening phase of the reinforcement layer is described next. There is no
discontinuity in the layer and the displacement jump is zero. First, we assume elastic behavior, meaning that
hardening internal variables keep the values from the previous step. Stress is computed in accordance with equation

, where a(kil =

k),trial __ trial = k),trial _ k—1 k _(k),trial
E; Lil Epns £n+1f =&, ‘71(1+)1f “ =L, (5 (di+1)’a£ll)_€§),7)zil ) (4.106)

Trial yield function ¢, +1mal is computed, as defined in (.66) and (@.67).

(k),trial

<(k),trial
¢ |V n+l

n+1

_(k),trial _(k),trial rial
- (%*%&lf ) gl — _ g gl — _ g g, (4.107)

The trial solution is accepted if the trial yield function is negative or zero.

—(k),trial _(k) _ —(k),trial (k) _ F(k).trial (k) _ (k)trial
¢n+l < 0 = p,n+l 6p,n+l ’ fn+1 - fnJrl ’ Un+l - UnJrl (4108)

If the trial yield function is positive, the internal variables must be corrected, according to incremental form of

evolution equations (#.68), where %(L +)1 = 77(1 +)1 (Tn+1 —Tpn) > 0. Tt is shown in appendix Ethat sign (01(1]21) =
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. (k),trial
sign (Un+1 )
Z(k),trial _(k _ _(k . k),trial =(k = _(k
SN S0 = E L =gt A sign (alT) €l = Al (4.109)

(k) (k)

By exploiting equations (4.109), the stress o,,"/ | and the stress-like hardening variable g,

their trial values and the damage multiplier vﬁl +)] .

41 can be expressed with

o®) = E, (e‘ (dff;”,aikll) —5—%“) =

= B, (", 0ll))) &) = Bl sign (o) = (4.110)
. Jilletmal . Es’yfﬁ)lsmn (O_Slk—:z,ltrial)
a*) = —m," = —m, (En +7§fﬁ]) — gkl _ g a®) 4.111)

Yield function q_b (k) 1 is expressed as a function of plastic multiplier 7@1 by employing equations (#.110) and

@TTT). Value of the plastic multiplier is computed from requirement QS +1 =0.

Z(k k _(k k), trial _(k _(k),trial _(k
¢51421 = 07(131 - (Uy - nﬁl) = 51421 _E877(h21 - (Uy _%(1421 ) _HS%(z-zl =
_ 7(k),trial _(k)
= b (Es+ Hs) %, 44 (4.112)
®) ®) d—)(k) Jitrial
k k n+1
¢n+l =0 = ’ynJr] = Eg++ Hg

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

equation [@.106) if plastic multiplier 5/7(;21 is zero, and the value from @I10) if "ygizl is positive. In the second

case, equations (#.112)), (#.107)) and (@.106) are used to express the stress as a function of strain.

: S _
9o Es: Vrt1 =0
o = B, 50 (4.113)
E,+H,

The hardening internal variables, stress in the layer and the tangent modulus have been calculated under assumption
that the ultimate stress is not exceeded. This still requires verification. If the assumption is confirmed, the above
results are accepted. Otherwise, they are discarded and recomputed with the presence of the discontinuity, see

Fig. B.14]

Potential value of traction at the discontinuity ¢

d)(k)vp

n+1
capacity in previous steps.

(k),pot
n+1

is evaluated with the stress-like softening variable equal to zero, as there has been no reduction of carrying

is computed from equation (@.40). Then the failure function

t<k)aP0t

k), Ot Z(k),pot
t( 4 /GU7L+]d$ ¢( P = n+1

n+1 n+1

~(a-ar). alrr=o (@.114)
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We set the value of the discontinuity flag to ¢rue if the failure function is positive, and to false otherwise. The

value is not final, however, until the converged state is reached. It can change in following iterations.

¢( ) pot <0 = crack'®

M = false

= (4.115)

qzﬁgi)’lp TS0 = crackﬁ‘l’l =true
If the carrying capacity is exceeded, the above computed values of internal hardening variables, stress in the layer
and traction at the discontinuity are discarded and computed again, as explained in the following section.

4.3.1.5 Discontinuity in reinforcement layer

This section describes the computational procedure for the softening phase of the reinforcement layer. It is applied

iflf = true, which happens if the discontinuity already existed

in the previous step, or if the carrying capacity of the layer was exceeded in this iteration, see equation (4.113)) and

if the current value of the discontinuity flag crack

Fig.@.14] In any case, the hardening internal variables take the values from the previous step, which are the last
converged results. The error of such choice is negligible for small pseudo-time step.

_(k _ =(k =
€;,l+1 =&, &) =En (4.116)
We start by assuming a trial solution, keeping the softening internal variables at the values from the previous

step. Stress in the layer and traction at the discontinuity are computed according to equations and 4.40),
respectively.

(k),trial Z(k),trial _ Z
n+1 O, 5 - gn

) ) ) ) 4.117)
(k),trial _(4(k=1) (k)trial _ (k),trial _ _(k),trial
Tn+1 = B (5 (dn+1 » gl ) - 61”7") ’ tn+1 = Ont1
The trial value of failure function QS mal is calculated, respecting equations {@.75) and (4.76).
T(k),trial _ |, (k),trial =(k),trial =(k)trial _ . ), trial =
¢n+l - thrl - (Ofs - qn+l ) ’ qn+1 - mm{ -K fnJr] 7Ufs} =dqy (4.1 18)
Z(k),trial . L
If ¢, i <0, the trial solution is accepted.
(k) _ (k)trial (k) _ F(k)trial (k) _ (k)trial (k) (k),trial
G =0 s S =60t T =001 s L = (4.119)

If 55? l’lmal > 0, the assumed solution is not admissible. The softening internal variables are updated according to

the incremental form of evolution equations (4.77)), where ’:Yr(:igl = f:yfﬁgl (Tn+1 —7pn) > 0. It is shown in appendix

chat sign (tg‘;zl) = sign (tglli),ltrmz).

O‘Eﬂl =an+ i(ﬁ)l sign (tsﬂ’f”“l) ) 57(:1)1 =&t ’z)’v(ﬁgl (4.120)
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By using equations (4.120), the traction at the discontinuity t(kl | and the stress-like softening variable (i(k)

n n;rl are
. o . = (k)
expressed with their trial values and the softening multiplier 7,/ .
k k s (k=) | & (k -
t), = ol = B, (Bdil-‘rl '+ Gal, _5p,n> =
—E, (ﬁdﬁf;l” +Gay, — a—p,n) +EB.G5Y sign (tﬁfjf”“l ) - 4.121)
_ tiﬁzyltrwl 4 E, C_?’zygi)lsign (tﬁ),}trm)
= =(k),trial =(k F o=
0 gy = kA% K, (§n+%’?+1) < ofs
T =4 __— (4.122)
dn+1 = Ofs; _KS (€n+’7n+l) >Uf5
Obtained expressions are inserted in equation 5531)1 =0, coming from loading/unloading conditions (4.78)).
Z(k k =(k k =(k ) k) trial
¢£L‘21 = tgw)l ‘ - (Ufs - qiw)l) =0 < t'<n+)l = (Ufs - qiﬁl) stgn (tgw)l ) (4.123)
After a short derivation we get two expressions for *:yfﬁz 1» depending on the expression, used for 5&&1
qZ(/c),trial
=A n+l F o =A
A= (B ) <o
) TYn+1 —GE,+ K, 3 Tn+1 fs
Tnt1 = t(k),trial (4.124)
-B n+1 = A
Tn == *Ks(fn‘k n )Zo—s

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump. If

:7(31)1 > 0, traction takes the value from @.123). Equations (4.122) and (.120) are used to express the traction as
(k) _

a function of displacement jump. If 7,7/, =
to satisfy the local equilibrium with stress in the layer. The tangent modulus cannot be determined, but it is not

0, the displacement jump remains constant, while the traction changes

required in further computation.

" not defined; %7(:2 =0
ot _ _
sal =1 K 58 >0, %, < o, (4.125)
AR N =) <o 20 _
; nt1 = U Gy = Ofs

(e)

The discontinuity flag is set to crack,, +’1i = true.

4.3.2 Computation of nodal degrees of freedom

In this section we will describe the computations of phase (B) of k-th iteration, mentioned in the introduction of
section In this phase, a linearized form of equilibrium equations (4.82)) is solved to provide the k-th update

of the nodal displacements/rotations at pseudo-time point 7,, ;. The computation is performed with known values

7y(e)i.(k) g(e),i,(k) De)ik) E(e)ﬂ}(k)

of internal variables for each layer of each finite element - D ) nil s Dy il for a concrete
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=(€)i,(k) g(e)yi-,(k) MOBAC) g(@) i,(k)

p,n+l > Sntl > a4l n+1
(A) of the same iteration. Since the nodal degrees of freedom are generally common to several finite elements,

layer, and &€ for a layer of reinforcement - freshly updated in preceding phase
the equations of phase (B) must be handled on structural (global) level. Hence, they are also referred to as global
equations.

The first of equations (@.82)) would be sufficient for calculating the new values of generalized displacements dgbif’f),
if all displacement jumps O‘Szll (k) were fixed at the values, computed in phase (A). To improve convergence, how-
ever, it is useful to update the displacement jumps as well. For that purpose, the second of equations (4.82)
are engaged. Actually, they have once already been satisfied by using expression (@.40) for the traction at the
discontinuity, but that equality held for the displacements from the previous iteration dii)r’l(kfl). Updating the dis-
placements would disrupt the equilibrium between the traction at the discontinuity and the stress in the layer, unless
the displacement jumps are updated as well. Solving the whole system of equations (@.82)) therefore promises a

more accurate solution.

4.3.2.1 Linearization of equilibrium equations

The first of equations (#.82)) ensures the equilibrium of the structure, i.e. of its each and every node. It is linearized

around the current values of nodal degrees of freedom of the structure dslr (k b,

afmt Jstr, (k) of ext,str
n—+1 str,(k) _ pextstr int,str, (k) n+1 o

W Ad, =t R W =0 (4.126)
n+l1 n+1
KslrJ,r(lk)

str( )

The derivative on the left side of the equation is designated with K and named the tangent stiffness matrix of

the structure. Ad*"" is the sought update of the nodal dlsplacements in this iteration. The vector of external forces

n+1
fz’i ftr represents the loading, which is defined in advance for each pseudo-time point 7,41 and is independent of

int, str (k)

the nodal displacements. The vector of internal forces f, is computed from contributions of individual finite

elements, according to equation (@#23)). Matrices P(¢) and R(e) are constant.

1nt str, ( & (e) 1nt J(e),(k)
n+1 Z P n+l
4.127
s (k) 8&“;?“ k) nEg (e)T . af;l“jrg e),(k) ( )
Koti’ = o (1) — Z P RC od J(k—1)
n+1 e=1 n+1

Let us recall the relation (4.18) between the vector of nodal displacements of a finite element dgll( D and the
str ( 1)

vector of nodal displacements of the structure d,, . The derivative of one over the other will prove useful.

(), (k1) _ Rle)ple)gstr- (1) 0d, 1" o
n+l

mt( ):(k)

Internal forces f, of finite element (e) are defined in equation (#.34) as a sum of contributions of ng,

()(k 1)

layers. Contrlbutlons f infr’fe) 5R) of the n(cz cracked layers are functions of nodal displacements d,, and

displacement jumps ailll (k), while the contributions of the remaining (non-cracked) layers depend solely on the
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nodal displacements. For the sake of clarity it is assumed that the cracked layers are numbered with consecutive

(e)

numbers from 1 to n7 .

£ Zfif‘il Zf;“il W (@l el ) + Zf;“il Wa ") @9

i= nCL-l-l

str (

The derivative of f int, (), (k) overd

1 Y, which appears in expression (@.127), is developed as follows:

R(©pe) K/ B peple)

——
in n(e> in k in k k—1 n in —1
O on ) ot ol |G ; R

aan D T | g T T @) gq(@. () | gt 1)i 8d( (k1) gt (h=1)

n+1 n+1 n+1 n+1 n+1 n+1 n+1
fd,(e),i,(k) fa,(e),i,(k)
Kn+l Kn+l

(4.130)

The derivatives of f, |’ int ( )i (k) , marked with Kf d"<e)’ %) and K{if@ /b, (k) , can be computed and the last term of both

sums has been deﬁned in (@.128). The only unknown term 8a / 8dn +1 s determined by the second of

equilibrium equations (4.82)), which is linearized and solved locally, i.e. independently for each finite element and

layer. This can be done because hflll (k) depends on the nodal displacements of a single finite element and on the

displacement jump of a single layer.

(e)i,(k) (e),i,(k)
Oyt 4 Wb Oy, v @) _ @it o
k—1 n e n n
8dELJ)rl( : aOéEH{l )
hd,(e),i,(k) ha,(e),i,(k)
K SO (4.131)
(eis(k) _ _ ( prhan(e)in(k)) ! gehdi(e):i(k) 5 q(e)(k)
= Ao = _<Kn+1 ) K. Ad, 1)
alel k) 15q(e) (1)
Note that each hEL il -(8) , computed by (4.39), evaluates to zero because the traction at the discontinuity tEL ll -(8)
has been computed by expression @I) The derivatives, designated with K +1( <)) and K, +1( <)) can be

easily calculated. Equation (@.131)) defines the relation between the increment of nodal displacements Adif}r’l(k)

and the increment of displacement jump Aaffl’li ") in the i-th layer of the finite element. Since we are dealing with

linearized equations, the derivative 80452{ (k) / adﬁfj’f’“‘“ is equal to the ratio of the increments.

PNCRAE

S| _ ha,(e),i,(k)\ " Ly hd,(e),i (k)
2d D —(Km ) L -— (4.132)

n+1
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We can rewrite expression (4.130), now being able to compute all its components.

pEmLen) ey - |
_ fd,(e),i,(k) fa,(e),iy(K) [ -ha,(e),i, (k) hd,(e),i, (k) (e
aar D T & (Kn+1 — Ko (Kn+n ) K. )R< P+
n+1 =
Ko™ (4.133)

The expression in parenthesis, marked with Ki:‘lf ’(k), is the contribution of a cracked layer to the tangent stiffness
matrix of finite element Kf d ( )4:(k) s the contribution of an non-cracked layer. Finally, we can assemble the
tangent stiffness matrix of the structure by inserting @#.133) into (#.127).

nEE [ e
K0 Z Y pe RO | FIREHE Y gl | gleple) (4.134)
e=l =1 i=nlS) +1
K

Here Kifl’l(k) is the (symmetric) tangent stiffness matrix of finite element (e).

4.3.2.2 Components of internal forces and stiffness matrix

Contribution fsﬁ e)i(k) of -th layer to internal forces of element (e) is computed according to equation (#.34),

where stress takes the values computed in phase (A) of this iteration. In order to determine the components of the

stiffness matrix, hii)rll ‘") must be written as well. It is computed in accordance with (¢.39) and (@.40).

f;niie)’i’(m = (ﬁiTaﬂl ) e 7(1+1 o )) A'L hﬁfl’f’<k) =A' (_Uﬁw)l a )-HLip)rl " )) (4.135)

To obtain layer components of the element stiffness matrix, expressions (@.133)) are differentiated over nodal de-
grees of freedom and over displacement jumps.

3f1m ,i,(k)

Ki(i,(]e),i,(k) n+1 = — ]‘;iT ga_- ]‘;z —‘rB*T ? ]‘;* Al
adn+1 Sl 5254 Tt 5 5a
int k e),i,
K/ (k) _ afn+§ ) — | do ()0 G| A
i dale) sk 02 |41
n+1 n 9Z/da
e ‘ (4.136)
K (e)in (k) 8hn+l 0o (e)’l’(k)f;z Al
n+1 k—1) -
s~ "
(e)yi, (k) e)i,(k e)i,(k
ghesea _ O (00| oo O
nr 8a£w)rl (k) 0¢ |, 02) 0 Ao,y
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The tangent modulus (07 /07 )Efllz ‘) for shear is defined by equation {@.84). The tangent moduli (Jo /0 )Eflf (k)

and (0t/0« )Sif ‘™) are defined by equations (4.92)) and (@.103)) for concrete, and by equations (#.113) and (.125)

for reinforcement.

The only exception is the elastic step in a cracked layer of reinforcement (when i(ﬁzl = 0). The derivative

(0t/0c )Efllz ‘") is not defined in that case, neither is it required. Although ozifl’f () appears in the expression
for internal forces, it appears as a constant, and f;nife)’i’(k) is function of nodal displacements d::i(lk_l) alone. The
component Kfli’fe)’i’(k’) from equation (4.130) is therefore zero for that layer, and the contribution of the layer to
the element tangent stiffness matrix consists solely of the part K”fli(le%is(k) , the same as for a non-cracked layer.
(e),6: (K (61, (K) _ gint(),(k) (o (k1) K =0
e)i, (k) _ int,(e),i,(k) _ pint,(e),,(k str,(k—1 n+
a, ., =const. = f | =f,. (dn+1 ) = R0 _ g (0)il) (4.137)
ntl T gl
4.3.2.3 Solution of global equations
The system of global equilibrium equations (4.126}) is rewritten in a clearer form.
str,(k str,(k str,(k str,(k t,st int,str,(k
KA = gt aph) - et g @139

The external forces are an input to the analysis, internal forces are defined by equations ({.127), (4.129) and
(@#133), and the tangent stiffness matrix of the structure is defined by (4.134)) and (#.136). Finally, we can compute
the increments and update the nodal displacements of the structure.

str, (k)

str,(k str,(k -1 str,(k
AdTE — (kY gt sin

str str dstr,(k) _ dstr,(kfl) +Ad

ntl ntl ntl (4.139)

The updates of the displacement jumps could be computed from (4.131), but there is no benefit from that because
they will be recomputed anyway in phase (A) of the next iteration.

The iterations at pseudo-time 7,1 are repeated until the tolerance requirements are met.

A6 | < ot [|adi ]| < tor (4.140)

When the converged solution is found, we proceed to the next pseudo-time step.

4.4 Numerical examples

In this section we present a set of numerical examples to assess the ability of the derived element to simulate failure
of reinforced concrete beams and frames. The element has been programmed in AceGen [68]] implemented into
the finite element program AceFEM [|69].

4.4.1 One element tension and compression tests

We analyze a beam in Fig.[#.16] clamped at one end and subjected to prescribed axial displacement v at the other

end. Corresponding reaction F' is computed. With this test, we check response of concrete, steel and reinforced
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beams in tension and compression. The chosen values of some material parameters may be unrealistic, but they

were chosen in order to clearly present the behavior of models used for concrete and steel.

CONCRETE STEEL REINF. CONC.
| = —_ as, I [——
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Figure 4.16: Beam in pure tension/compression: geometry.
Slika 4.16: Nosilec v Cistem nategu/tlaku: geometrija.

4.4.1.1 Concrete beam

Concrete beam of rectangular cross-section is modeled with one element with two layers. The imposed axial dis-
placement produces either tension or compression. The geometry and the material data are: beam length is L =
2.5m, cross-section width is b = 0.2m, cross-section height is h = 0.5m, elastic modulus is F. = 4 X 10’kNm~2,
elasticity limit in compression is o4, = 40820kNm~2, limit strength in compression is Ofce = 44902kNm~2, hard-
ening modulus in compression is H. = 2 x 10°kNm~2, softening modulus in compression is K oo =—52x
10°kNm~3, limit strength in tension is op; = 4000kNm 2, and softening modulus in tension is K}, = —8 X

10°%kNm 3. By setting 04; > oy.; we assume no damage of the bulk in tension before crack formation.

The diagrams in Fig. show computed elasto-damage relations between the end force F' and the end displace-
ment u when the beam is either in tension or compression. The left image represents the tensile response, which is
linear elastic, followed by linear softening. Unloading lines return toward the origin, which is typical for a damage
model. The right image shows the response in compression. Initial elastic part is followed by damage hardening,
which is not linear (although not far from it for this particular data). The softening line is linear. Unloading, both
from hardening and softening, returns linearly toward the origin.
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Figure 4.17: Axial force - displacement diagrams for concrete beam in pure tension (left) and pure
compression (right).

Slika 4.17: Diagram osna sila - pomik za betonski nosilec v ¢istem nategu (levo) in Cistem tlaku (desno).

Response is characterized by the following facts: (i) single strain-like internal variable fzﬁ controls softening both in

. . . . . 7 =1 .
tension and compression, (ii) current values of compliance moduli (D* and D ) are transferred from compression
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to tension and vice versa, (iii) once softening is activated, the hardening variables D and £ remain unchanged. Of
course, the elasto-damage concrete material model can be carefully designed to comply with specific experimental
results, however, this is beyond the scope of this work. The results in Fig. #.18] and Fig. #.19]illustrate that the
present elasto-damage material model is able to describe well enough the common cases of alternating load sign,
although it has not been designed for cyclic loading.

Figure 4.18: Axially loaded concrete beam: switching from softening in tension to compression (left)
and back to tension (right).

Slika 4.18: Osno obremenjen betonski nosilec: prehod iz meh¢anja v nategu v tlak (levo) in nazaj v

nateg (desno).

Figure 4.19: Axially loaded concrete beam: switching from hardening in compression to tension (left)
and back to compression (middle). Switching from softening in compression to tension (right).
Slika 4.19: Osno obremenjen betonski nosilec: prehod iz utrjevanja v tlaku v nateg (levo) in nazaj v tlak
(sredina). Prehod iz mehcanja v tlaku v nateg (desno).

Behavior of implemented model for a beam switching from tension to compression (or from compression to
tension) is shown in Fig. d.18] and Fig. .19} On these figures, the light-gray line represents F' —u curves for
monotonically increasing tensile and compressive forces. The used data is the same as the above, except for
Ofct =2 X 10*kNm 2. Fig. (left) shows transition from softening in tension to softening in compression. This
situation is very uncommon in non-cyclic loading. It may happen that a layer that was in tension softening becomes
compressed (e.g. when the neutral axis of the element shifts), however, the compressive stress would normally be
far away from the compressive strength. The case, shown in Fig. (right), is far more common. Fig.[4.19)shows
transition from compression to tension. For example, Fig. (right) presents path from compression softening
to tension: since oy, is much lower than oy, the carrying capacity in tension is lost due to Eﬁ accumulated in

compression.
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4.4.1.2 Steel beam

Steel beam is modeled with one element with two layers. The following data is used: beam length is L =
2.5m, cross-sections of both layers are A; | = As» = 0.001m?2, distances of layer axes from the beam axis are
h/2—as1=h/2—as2 =0.21m (as, = as» = 0.04m), elastic modulus is £, = 2 x 1085kNm~2, elasticity limit is
0, =4 x 10°kNm ™2, failure strength is o7, = 5 x 10°kNm~2, hardening modulus is //, = 10’kNm~2, and softening
modulus is K = —5 x 10’kNm 3.

Diagram in Fig. shows elasto-plastic relation between the end force F' and the end displacement w in tension.
The initial linear elastic response is followed by linear plastic hardening and linear plastic softening with unloading
lines, parallel to the initial loading line. Response of the beam in compression is identical.
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Figure 4.20: Axial force - displacement diagram for steel beam (layer) in pure tension.

Slika 4.20: Diagram osna sila - pomik za jekleni nosilec (sloj) v Cistem nategu.

The diagrams in Fig. f.21] show response of the beam when loading switches from tension to compression. The
light grey lines represent the response of a monotonically loaded beam. The left image is characteristic for isotropic
hardening - material yields in compression at the same (absolute) value of F', at which unloading started in tension.
If loading is still increased in compression, as shown in the middle image of Fig. softening occurs at the same
force F' as in monotonic loading, but at a smaller displacement u, due to accumulation of plastic deformations in
both tension and compression. Change of load sign in softening, Fig.[d.21|(right), produces an equivalent response
- unloading is parallel to the elastic loading, and softening in compression begins at the same (absolute) value of
F, at which unloading started in tension.

F F F

Figure 4.21: Axially loaded steel beam: switching from hardening in tension to compression (left) and
back to tension (middle). Switching from softening in tension to compression (right).
Slika 4.21: Osno obremenjen jekleni nosilec: prehod iz utrjevanja v nategu v tlak (levo) in nazaj v nateg

(sredina). Prehod iz mehcanja v nategu v tlak (desno).
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4.4.1.3 Reinforced concrete beam

Reinforced concrete beam is composed from the two previously presented beams, see Fig. Geometry and

material properties are listed in sections4.4.1.1|and{4.4.1.2] The beam is modeled with one finite element with ten

concrete layers and two layers of reinforcement. Diagrams in Fig. [4.22] display the responses of the beam under
tensile and compressive load. In tension (left image), the first peak represents the point when concrete enters the
softening phase and the force F' begins to drop. When the concrete breaks completely, the whole load is taken by
the two reinforcement layers, which are still elastic. Force F’ starts rising again. Hereafter, the diagram is equal to
the response of the steel beam in Fig.

The diagram in Fig. (right) shows the response of the beam in compression. After the initial elastic part, the
stiffness of the beam drops around F' = 4500kN due to micro-cracking of concrete, and again at approximately
F = 5000kN due to yielding of reinforcement. The peak of the diagram marks the moment when concrete begins
to soften. Force F' drops suddenly, until concrete loses all carrying capacity and only the reinforcement remains to
take the load. From now on, the diagram is the same as in Fig. The unloading lines return toward the origin,
until reinforcement enters hardening phase and first plastic deformations occur. The slope of the unloading lines
(axial stiffness of the element) keeps decreasing until the stress in concrete drops to zero. Afterwards it remains
constant and only plastic deformations increase. Like in tension, the diagram is a superposition of diagrams of

concrete (Fig. d.17) and steel (Fig. [4.20).
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Figure 4.22: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)
and pure compression (right).

Slika 4.22: Diagram osna sila - pomik za armiranobetonski nosilec v ¢istem nategu (levo) in istem
tlaku (desno).

4.4.2 Cantilever beam under end moment

We analyze a reinforced concrete cantilever beam with rectangular cross-section under end moment, shown in
Fig.[4.23] The load is applied by imposing the rotation at the free end of the beam. The length of the beam is
L = 1m, the width and the height of the cross-section are b = 0.3m and h = 0.4m. Bottom and top reinforcements
are Ag 1 = Asp = 0.001256m? and they are positioned at a; = a = 0.05m from the edges of the concrete cross-
section. Material properties of concrete are: elasticity modulus E, = 3.3 x 10’kNm~2, elasticity limit oz, =
15200kNm 2, ultimate stress in compression oy, = 38000kNm 2, ultimate stress in tension oy.; = 1815kNm 2,
hardening modulus in compression H.. = 3.32 x 10’kNm~2, softening modulus in compression K, = —5 x
10°kNm~3 and softening modulus in tension K* = —10°%kNm~3.
modulus F, = 2 X 108kNm~2, yield stress o, = 4 X 105kNm_2, ultimate stress ops = 5 X 105kNm_2, hardening

modulus H, = 2.665 x 10°kNm~2 and softening modulus K, = —5 X 10"kKNm 3.

Material properties of steel are: elasticity
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Figure 4.23: Cantilever beam under end moment: geometry.

Slika 4.23: Konzola, obremenjena z momentom: geometrija.

4.4.2.1 Mesh of equal finite elements

The beam is modeled with a mesh of identical finite elements, each consisting of 10 concrete layers and 2 layers
of reinforcement. Fig. (left) displays the relation of moment M versus rotation # at the end of the beam for
different meshes. The diagram can be divided into three parts. In part 1, most of the beam is still elastic, except for
some concrete layers that crack in tension, slightly decreasing the stiffness of the element. Part 2 is characterized
by yielding of tensile reinforcement, which causes a plateau in the response curve. More concrete layers break
in tension and micro-cracking occurs in concrete in compression. The resistance of the beam increases until the

tensile reinforcement begins to soften, which marks the beginning of part 3 of the response curve. Hereafter, the
moment drops toward zero. Softening of concrete in compression does not occur at all.
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Figure 4.24: Moment - rotation diagrams for cantilever beam under end moment: original softening
moduli (left), softening moduli modified according to length of FE (right).
Slika 4.24: Diagram moment - zasuk za konzolo, obteZeno z momentom: originalni moduli mehcanja

(levo), moduli mehcanja prirejeni glede na dolZzino KE (desno).

Fig. .24 (left) shows that part 3 of the diagram depends on the mesh. The slope of the softening line decreases with
increasing number of finite elements. This is caused by simultaneous appearance of multiple smaller discontinuities
in finer meshes, as opposed to one big discontinuity in a mesh with a single FE. The traction at the discontinuity
decreases with the increase of its size. It is therefore understandable that, at the same value of imposed end rotation

0, a coarser mesh produces a lower moment M. The mesh dependency is also present in the first two parts of the
diagram, where the concrete layers crack in tension. In part 1, the slower decrease of traction at the discontinuity
in finer meshes manifests in a higher yield moment. In part 2, the effect is more evident because the force in

plastified tensile reinforcement changes very slowly, and the different tractions in tensile concrete layers have a
greater influence.

If the softening moduli of steel and concrete are modified according to the length of FE (i.e. multiplied with the
number of FE in the mesh), the results are the same for all meshes, Fig. [#.24] (right). However, this is not a proper
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solution of the problem because it interferes with the constitutive law at the discontinuity, which is a material
property and should not be affected by the choice of a mesh.

4.4.2.2 Weaker reinforcement in one of the finite elements

The mesh dependency problem, described above, resembles the situation, encountered with the stress resultant
Euler-Bernoulli element with embedded discontinuity in rotation in chapter [2] There, the problem is solved by
weakening one element of the mesh. When the weak element starts to soften, the other elements have to unload

to satisfy the equilibrium and can never reach their failure moments. We will apply the same principle to the
multi-layer element.

Since the softening of the beam in part 3 of the M — € diagram is caused by failure of tensile reinforcement, it is
enough to create a weakness in reinforcement. Ultimate stress oy, is slightly increased in all but one finite element
of the mesh to preserve the original value in the weak element. When the ultimate stress is reached in the weakest
reinforcement layer, the moment in that element begins to decrease. The remaining elements in the mesh have to
unload to preserve equilibrium and reinforcement in those elements cannot reach the (increased) ultimate stress.

This leads to mesh independent part 3 of the diagrams in Fig. [4.25] (left). Such solution is only possible, if failure
of the cross-section is caused by softening of reinforcement.
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Figure 4.25: Moment - rotation diagrams for cantilever beam under end moment: weaker reinforcement
in one of the finite elements (left), weaker concrete and reinforcement in one of the elements (right).
Slika 4.25: Diagram moment - zasuk za konzolo, obteZeno z momentom: malce SibkejSa armatura v

enem od kon¢nih elementov (levo), SibkejSa armatura in beton v enem od elementov (desno).

Mesh dependency in the first two parts of the response cannot be avoided in this manner, because it is created
by simultaneous occurrence of multiple discontinuities in concrete in tension. One would assume that weakening
concrete in one of the elements would solve the problem, but it turns out differently. Concrete layer in the weak
element enters the softening phase sooner than in the remaining elements, but the moment in that element con-

tinues to grow along with the force in tensile reinforcement. The moment in the rest of the finite elements grows
accordingly, and just a little later the concrete begins to soften there as well.

Fig. (right) shows M — 6 diagrams of a beam, modeled with two finite elements, one of them weaker. In
the strong element, failure stresses of steel oy, and concrete in tension oy, are increased by different factors. The
diagrams are compared to response of a beam, where weakness is only created in reinforcement. The factor is
irrelevant in case of steel - the increased oy, in the strong element will not be reached, whether it is 1% or 100%
higher than original. Situation is different in concrete. If oy is increased by 1% or 10%, the intervention has little
effect on the response. Concrete layers of the strong element hold on a little longer in tension, but fail soon after

the weak ones. If value of oy is doubled, the tensile concrete layers become too strong and increase the stiffness
of the element considerably.
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4.4.3 Cantilever beam under end transversal force

A cantilever beam is subjected to prescribed lateral displacement at the free end, see Fig. [4.26] The length of the
beam is L = 2.5m, the width and the height of the cross-section b = 0.2m and & = 0.5m. The tensile and compres-
sive reinforcement are A; | = A5 = 0.001m?2 and the distances from the center of the reinforcement layers to the
edges of the concrete cross-section are a; = ap = 0.04m. Material properties of concrete are: elasticity modulus
E. =4 x 10'kNm~2, elasticity limit o4, = 40820kNm~2, ultimate stress in compression Ofce = 44902kNm 2,
ultimate stress in tension oy.; = 4000kNm 2, hardening modulus in compression H.. =2 X 10°kNm~2, softening
modulus in compression K7, = —5.2 x 105kNm ™~ and softening modulus in tension K, = —8 x 10°kNm 3. Ma-
terial properties of steel are: elasticity modulus E, = 2 x 108kNm~2, yield stress oy =4 X 10°kNm~2, ultimate
stress ops = 5 x 10°kNm~2, hardening modulus Hy = 10’kNm~?2 and softening modulus K, = —3 x 10’kNm~>.
The beam is modeled with different meshes of identical finite elements with ten layers of concrete and two layers
of reinforcement.
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Figure 4.26: Cantilever beam under end transversal force: geometry.
Slika 4.26: Konzola, obremenjena s precno silo: geometrija.

Moment at the support versus imposed lateral displacement diagrams are presented in Fig. (left). The diagram
for a single element mesh deviates substantially, because the derived Timoshenko beam element is only able to
describe constant stress along the length of each layer. A finer mesh is required for a better approximation of linear
stress distribution in the tested beam. Meshes of two or more elements give approximately the same value of the
moment at which the tensile reinforcement yields, but the length of the yield plateau only stabilizes for meshes of
ten or more elements.
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Figure 4.27: Moment at support - transversal displacement diagrams for cantilever beam under end
transversal force: original softening moduli (left), moduli modified according to length of FE (right).
Slika 4.27: Diagram moment ob podpori - pre¢ni pomik za konzolo, obremenjeno s precno silo:

originalni moduli meh¢anja (levo), moduli mehc¢anja prirejeni glede na dolZino KE (desno).
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The same beam is analyzed again under a different load. Instead of the force, a moment is applied at the free
end, producing a constant moment over the length. This allows us to model the beam with a single finite element
and avoid the influence of mesh refinement on the results. Results for the one element mesh are presented as
diagram of moment at the support versus lateral displacement at the free end - the black dashed line in Fig.
Although we cannot expect the curves of different load cases to match, the reinforcement should yield at the same
moment. However, comparison in Fig. (left) shows that the beam under end force withstands substantially

higher moment than the beam under end moment, before yielding.

Analysis of the beam under end force is repeated with a modified set of softening moduli - original values are
scaled according to the length of the finite elements (multiplied with the number of FE in the mesh). Results are
presented in Fig. (right). In these diagrams, the “yield moment” decreases for finer meshes, and for a mesh
of ten elements gets very close to the value from the “constant moment” diagram. The ultimate moment is still a
little higher. Another change is evident in the right image - the softening parts of the diagrams are more parallel

than before and even grow steeper for finer meshes.

Let us take a closer look at what happens inside the finite element. The stress o is constant over the length of each
layer. The resulting moment M, computed from equation (@.14T)), is constant as well.

M=Y —yo'A" (4.141)

The internal forces %", defined by equation (@.33), are different from M, however. After inserting expressions
for B and B*, and defining shear force () = ZTiAi, we obtain the following expressions for nodal moments:
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We can see that the two moments have a different absolute value. The difference L(E)Q, where L(©) is the length
of the finite element, derives from the shear stress, and it enables the finite element to deal with linear moment
in the analyzed structure. Based on equation (4.142)), we can characterize M as the average moment in the finite
element.

We say that an element yields when the stress in tensile reinforcement reaches the yield value. The matching yield
moment M, is computed from equation (#.141). But when M reaches the yield moment, the corresponding nodal
moments £%7"* take the values from [@#.142), which can differ significantly from M,, especially in a coarse mesh.
The most evident example is the mesh, composed of a single finite element. Since the moment is zero at the free
end, the moment at the support is twice as big as the average moment M. When the tensile reinforcement yields,
the moment at the support has twice the value of M,,. This is confirmed by comparing the “1FE” and “const. M”
diagrams in Fig. The yield plateau in the first curve is twice as high as in the second. In the constant moment
case, the shear stress is zero and the nodal moments £ are equal to the average moment M, which activates
plastification. The problems, arising from the described property of Timoshenko beam element, are avoided by
using a fine enough mesh, so the nodal moments 2)‘1“ and fé‘;‘ are almost equal.

Refining of the finite element mesh brings about another problem, however. As we have seen in section
shortening the finite elements causes them to soften more slowly. Let us imagine a short section of the tested

cantilever beam next to the support, with the tensile reinforcement on the verge of yielding. Concrete in tension
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is already in the softening phase by then. If the section is modeled with two finite elements, instead of one, two
narrow cracks form in concrete, instead of one wide crack. Since the traction at the discontinuity drops with the
growth of the crack, the stress is greater in the short layers. Consequently, the yield moment M), rises for a finer
mesh. This explains why the diagrams in Fig. (left) never reach the “const. M” diagram, despite the ever finer
mesh.

This phenomenon is confirmed by the diagrams in Fig. (right), where the softening moduli are modified
according to the length of the finite element. At the same size of the discontinuity, a short layer (of a short element)
produces a lower traction than a long one. In the situation, described above, two short layers with two narrow
cracks produce the same traction as the long layer with one wide crack. Therefore, the yield moment M, is not
affected by the size of the finite elements. The yield plateau of the diagrams in Fig. (right) is too high for
coarse meshes because of the linear moments in the beam, but for the mesh of ten elements the yielding begins at
almost the same moment, as in the constant moment case.

4.4.4 Simply supported beam

Simply supported beam, loaded by vertical force in the middle of the span, was analyzed in [51]. The length of
the beam is L = 5m, width and height of the cross-section are b = 0.2m and h = 0.5m, tensile reinforcement is
A1 = 0.00161m2, compressive reinforcement iS4, = 0.0001m?, distances of axes of tensile and compressive
reinforcements from the edges are a; = 0.044m, and a; = 0.032m. Material properties of concrete are: elastic
modulus E, = 37272000kNm 2, elasticity limit in compression oz, = 30600kNm 2, failure stress in compres-
sion . = 38300kNm 2, hardening modulus in compression H.. = 9.09 x 10°kNm 2, softening modulus in
compression K*, = —18.165 x 10°kNm~3, failure stress in tension ofet = 3727kNm~2, softening modulus in
tension K, = —3 X 10’kNm 3. Material properties of steel are: elastic modulus F, = 2 x 1085kNm~2, yield
stress oy = 4 X 10°kNm~2. The above data is the same as in [51]. Since failure stress 0fs, hardening modulus
H, and softening modulus K are not given in [51], we choose: o, = 5 X 10°kNm~2, H, = 3.3 x 10°kNm~2,
K, = —4x10’kNm3. By taking oy; > Ofct, we assume that concrete is elastic until the failure stress is reached
and a discontinuity appears. Due to the symmetry, only one half of the beam is modeled by using appropriate
boundary conditions, see Fig.[4.28] Analysis is performed for meshes of 5, 8, 10 and 16 FE. Each element consists
of 20 layers of concrete and 2 layers of reinforcement. Vertical displacement at the position of force F' is prescribed
and reaction in the same place is computed.
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Figure 4.28: Simply supported beam: use of symmetry in computational model.

Slika 4.28: ProstoleZeci nosilec: uporaba simetrije v raunskem modelu.

Results are presented in Fig. [4.29] They depend only slightly on the number of the elements in the mesh. Com-
parison with results from [51]] reveals that the force-displacement diagrams are similar, except for the shorter yield
plateau of present element. Label “stress result.” in Fig. (right) refers to the stress resultant Timoshenko beam
element with embedded strong discontinuity in rotation from [S1]], while “multi-layer” denotes multi-layer Timo-
shenko beam element with layer-wise embedded discontinuities in axial displacement and elasto-plastic material
models for both concrete and reinforcement from [51]].
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Figure 4.29: Force - displacement under the force diagrams for simply supported beam: results for
different meshes (left), comparison of results for 8 FE with results of Pham (right).
Slika 4.29: Diagram sila - pomik pod silo za prostolezeci nosilec: rezultati za razlicne mreze kon¢nih

elementov (levo), primerjava rezultatov za 8§ KE s Phamovimi rezultati (desno).

According to Fig.[4.30] (left), which shows dependence of the results on the number of concrete layers, already ten
layers are enough for a proper description of the stress distribution over the height of the beam. Further refinement
is not necessary in this case. Fig. (right) displays dependence of the results on the hardening modulus of
steel. We can see that lower values of H lengthen the plateau, while higher values increase the ultimate force F’,
which is not surprising. The softening modulus K, does not affect the computation, since the beam collapses due
to crushing of concrete in compression, and the reinforcement does not enter the softening phase.
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Figure 4.30: Force - displacement under the force diagrams for simply supported beam: different
number of concrete layers in 5 FE mesh (left), different hardening modulus of steel in 8 FE mesh (right).
Slika 4.30: Diagram sila - pomik pod silo za prostolezeci nosilec: razli¢no Stevilo slojev betona v mrezi

s 5 KE (levo), razli¢en modul utrjevanja jekla v mrezi z 8§ KE (desno).

Fig. £.31] shows material state at some characteristic stages in the analysis, marked with red dots in the F' —v
diagram. Results are shown for a mesh of 8 finite elements with 20 concrete layers. It can be seen that the beam
collapses due to concrete failure in the middle of the span. The stresses in reinforcements have not yet reached the
failure strength. Growth of the discontinuities (cracks) in concrete is shown in Fig.[#.32] The size of the cracks is

increased by factor 50. The red color represents the zone of crushing of concrete in compression.
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Figure 4.31: Simply supported beam: material state at different stages of analysis (marked with dots).

Slika 4.31: Prostolezeci nosilec: stanje materiala v posameznih fazah analize (oznaCene s pikami).

F [KN]

]

60

l ‘ 20
O L L L L L L L L L L
‘ 001 002 003 004 00sY[M

Figure 4.32: Simply supported beam: discontinuities (cracks) at different stages of analysis.

Slika 4.32: ProstoleZeci nosilec: nezveznosti (razpoke) v posameznih fazah analize.
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4.4.5 Reinforced concrete portal frame

A two-hinge pinned single story frame in Fig. was experimentally tested in [75] and numerically analyzed
in [76]. The height of the frame is [/ = 1.93m, span is L = 2.64m, width and height of rectangular cross-sections
of beam and columns are b = 0.1016m and i = 0.1524m, distances of axes of bottom and top reinforcements from
the edges of the cross-section are a; = ay = 0.014m. Bottom and top reinforcements of column and beam are given
in Fig. 33| (right). The material data for steel is: elastic modulus E; = 200000MPa, yield stress o, = 293MPa,
ultimate stress o, = 310MPa, hardening modulus Hy = 2020MPa, softening modulus K, = —2.5 x 10’kNm >,
The material data for concrete is: elastic modulus £, = 31500MPa, elasticity limit in compression o4, = 0.407.. =
14.6MPa, ultimate stress in compressionoy.. = 36.5MPa, hardening modulus in compression H.. = 29000MPa,
softening modulus in compression K*, = —4 x 10’kNm~3, ultimate stress in tension ofct = 0.95MPa, softening
modulus in tension K, = —1.1 x 10’kNm 3. By taking o4; > oy.:, we assume that concrete is elastic until the
failure stress is reached and a discontinuity appears. All the above data, except for the softening moduli K,
K*

ce?

K}, and hardening modulus H.., is adopted from [76]. The frame is loaded symmetrically, with two vertical
forces at distance [ p = 1.09m from the axis of each column. Thus, we model one half of the frame with appropriate
boundary conditions. In analysis, the vertical displacement at location of the force P was imposed. Analysis was
performed for different meshes, ranging from 8 to 64 FE for a column, and from 5 to 40 FE for one half of the
beam.

lp
Pj j P
_ P
|w
H 0.55m
— A=2.85cn?
A=1.43 crr?

A AT
| L |

Figure 4.33: Pinned portal frame: geometry, loading pattern and reinforcement.

Slika 4.33: Vrtljivo podprt portalni okvir: geometrija, obteZba in armatura.

Results are presented in Fig. where relation between the force P and the vertical displacement in the middle
of the frame w is shown. The left image shows the results for the case, in which the material (not geometrical)
properties of all finite elements are the same. We can see that the results do not converge, which is caused by the
constant moment in the middle section of the span (between the forces P). With refinement of the mesh, more
and more discontinuities occur in this part of the beam. This can be solved in a similar way as in section f.4.2}
namely by creating a weaker element. In order to preserve the original material properties in the critical element,
we slightly increase the ultimate stress of steel oy, in all finite elements in the middle section of the span, except

for the one adjacent to the force P. Results of the analysis with a weak element are presented in Fig. #.34] (right).

Comparison of the P —w diagram with experimental results [75]] and results, reported in [[76] is shown in Fig.[4.35]

The moments at the joint of the column and the beam and in the middle of the span are presented in Fig. #.36]
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Figure 4.34: P —w diagram: results for different meshes of finite elements if all elements to the right
of force P are the same (left) and if reinforcement is weakened in one of them (right).
Slika 4.34: Diagram P — w: rezultati za razli¢ne mreZe kon¢nih elementov, ¢e so vsi elementi desno od

sile P enaki (levo) in Ce je v enem od njih armatura oslabljena (desno).
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Figure 4.35: P —w diagram: comparison to experiment and results of Saje et al.

Slika 4.35: Diagram P — w: primerjava z eksperimentom in z rezultati Saje et al.
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Figure 4.36: Moments at the joint of the beam and the column (left) and in the middle of the span
(right): comparison to experiment and results of Saje et al.
Slika 4.36: Moment na stiku stebra in precke (levo) ter na sredini razpona (desno): primerjava z

eksperimentom in z rezultati Saje et al.

Progression of damage, yielding and softening of material is shown in Fig.[4.37] where material state is presented
element-wise and layer-wise for different stages of the analysis, performed on the mesh of 32 FE in the column and
20 FE in the half-beam. If we examine the elements near the inflection point of the beam, where the moments are

close to zero, we can see transition of some layers from compression to tension and vice versa. This happens due
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Figure 4.37: Portal frame: material state at different stages of analysis (marked with dots).
Slika 4.37: Portalni okvir: stanje materiala v posameznih fazah analize (oznacene s pikami).
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Figure 4.38: Portal frame: discontinuities (cracks) at different stages of analysis (marked with dots).

Slika 4.38: Portalni okvir: nezveznosti (razpoke) v posameznih fazah analize (oznacene s pikami).
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to shifting of the neutral axis and corresponds to the situation in Fig. (left). The cyan color designates a layer
that has developed a discontinuity in tension and was then loaded in compression. In this case, the compressive

stress values are well below oy

Fig.[d.38] shows the discontinuities in concrete, increased by factor 50, for the phases of the analysis, marked with
the red dots. We can see that the greatest part of damage occurs in the middle and at the end of the beam. In the
three rightmost elements (to the right of the load P) the cracks grow equally at first. But when the ultimate stress
is reached in the tensile reinforcement of the weaker element, the cracks in the remaining elements stop growing.

They do not close because of the plastic deformations in steel.

4.4.6 Two story reinforced concrete frame

Two-story reinforced concrete frame in Fig. [4.39]has been experimentally tested in [71]]. Numerical analyses were
done by Pham et al. [52] and Juki¢ et al. [[74], using stress-resultant Timoshenko and Euler-Bernoulli beam finite
elements, respectively, with embedded strong discontinuity in rotation. Analysis with multi-layered Timoshenko
beam element with layer-wise embedded discontinuities in axial displacement and elasto-plastic material models
for both concrete and reinforcement was also done in [52]]. Story height of the frame is = 2m, span is L = 3.5m.
Beam cross-section data is: width b = 0.3m, height » = 0.4m, bottom and top reinforcements A, = As> =
0.0012m?2, distances of reinforcement axes from the edges a; = ap = 0.04m. Column cross-section data is the
same, except for a; = ap = 0.03m. Material properties of steel are accommodated from data reported in [[71]:
elasticity modulus F; = 192500MPa, yield stress o, = 418MPa and ultimate stress oy, = 596MPa are taken directly
from [71]], while the hardening modulus H; = 2790MPa is computed in such way that the ultimate stress is reached
at the same strain as in [[71]], see Fig. @] (left). The softening modulus is not provided in [[71]. We choose
K, = —4x10"kNm~3. Material properties of concrete are also accommodated from data reported in [71]: ultimate
stress in compression oy, = 30MPa is taken directly from [[71]], elasticity modulus F, = 28600MPa and ultimate
stress of concrete in tension oy; = 1.8MPa are taken from Fig. 2 in [71]. Elasticity limit o4, = 8.5MPa and
hardening modulus H.. = 49000MPa are computed in such way that the ultimate compressive stress is reached at
the same strain as in Fig. 6(a) in [71]], see Fig. 4.40] (right). Softening moduli are not provided in [71]]. We choose

K. = —2x 10°%Nm~3 for compression and K}, = —10’kNm~? for tension.
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Figure 4.39: Two story frame: geometry, loading pattern and cross-sections.
Slika 4.39: DvoetaZni okvir: geometrija, obteZba in precni prerezi.



148 Jukié, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

o [MPa] o [MPa
600t 30l
500¢ 250
400+ 20+
300 15+
200 10+
100 5f
O.bl 0.62 0.63 0.64 0.65 0.66 0.07 0.68 /Ll 0.601 0.602 0.603 0.604 0.605 0.006 /Ll

Figure 4.40: Stress - strain diagrams for steel (left) and concrete in compression (right) used by
Vecchio and Emara, compared to diagrams used in present analysis.
Slika 4.40: Diagrama napetost - deformacija za jeklo (levo) in beton v tlaku (desno), ki sta ju uporabila

Vecchio in Emara, v primerjavi z diagramoma, uporabljenima v tej analizi.

Remark. The diagrams in Fig. were obtained by modeling steel and concrete beams with one finite element
of length 2.5m and loading them in pure tension and pure compression, respectively. They show the stress o in the
(steel or concrete) beam, depending on the displacement of the free end of the beam, divided by the length of the

beam u/L. Up to the ultimate stress, the diagrams are identical to o — € diagrams of steel and concrete.

The frame is modeled with different meshes of finite elements with ten layers of concrete and two layers of
reinforcement. Constant vertical force of 700kN is applied on top of each column, before the frame is pushed
horizontally at the top of the second story. Reaction F' is computed at location and in direction of the imposed
displacement .
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Figure 4.41: Response of two story frame: results for different meshes (left), comparison of results for
16 FE in a column and 14 FE in a beam with experiment and results of Pham (right).
Slika 4.41: Odziv dvoetaZnega okvirja: rezultati za razli¢ne mreZe kon¢nih elementov (levo),

primerjava rezultatov za 16 KE v stebru in 14 KE v precki s Phamovimi rezultati (desno).

Fig.[4.41] (left) shows the results of the analysis, depending on the finite element mesh. The number of the elements
ranges from 4 to 64 in columns (from the ground to the top of the frame) and from 3 to 56 in the beam, as indicated
in the legend. The greatest deviation occurs for the coarsest mesh because our FE can only describe constant
moments over its length. Therefore we need a mesh, fine enough to capture the linear moments in the structural
elements. Results for finer meshes match pretty well in the first phase but differ significantly in the softening range.
In all cases, the ultimate moment exceeds the experimental results for at least 20%. If no hardening is used for

steel, the results are closer to the experiment, although the stiffness remains too big in the first part of the response,
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see Fig. [.47] (right). A case of unloading of the frame is shown in Fig. f.42] Analysis was performed on a mesh
with 16 FE in columns (8 FE in each story) and 14 FE in beams. Apart from the exceeded ultimate moment,
a difference occurs in the unloading curves which are straight and a little steeper than experimental. Also, the
re-loading follows almost exactly the unloading line.
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Figure 4.42: Response of two story frame: loading and unloading for a mesh of 16 FE in a column and
14 FE in a beam. Comparison to experiment.
Slika 4.42: Odziv dvoetaznega okvirja: obremenjevanje in razbremenjevanje za mrezo s 16 KE v stebru

in s 14 KE v precki. Primerjava z eksperimentom.

Images in Fig. f.44] show progression of damage and plasticity in the material at several stages of the frame
analysis, performed on a mesh with 16 FE in columns and 14 FE in beams. The stages are marked with red dots
in the response of the frame in Fig. d.43] The legend for Fig. 4.44]is included in Fig. 1.43] Fig. @.45]shows the
discontinuities in concrete, corresponding to the same stages of the analysis. Their sizes are increased by factor

50. The red color represents a discontinuity in compression, (zone of crushing of concrete in compression).
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Figure 4.43: Two story frame: stages of analysis, corresponding to images in Figs. #.44 and .45]
Slika 4.43: Dvoetazni okvir: faze analize, ki ustrezajo stanjem materiala na slikah 4.44]in[4.43]

4.5 Concluding remarks

We have presented a planar multi-layer Timoshenko beam finite element, composed of several concrete and steel
reinforcement layers. Small deformations are assumed in the beam kinematics. Deformation of an individual layer
is computed from axial deformation of the middle axis of the beam and rotation of the cross-section. Contribution
of the rotation depends on the distance from the middle axis. A discontinuity in axial displacement is introduced
individually into each layer. Axial response of a concrete layer is described with a damage hardening model for

the bulk and a damage softening law at the discontinuity. Axial response of a steel layer is described with isotropic
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Figure 4.44: Two story frame: material state at different stages of analysis, marked in Fig. [#.43]

Slika 4.44: Dvoetazni okvir: stanje materiala v fazah analize, oznagenih na sliki [4.43]
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Figure 4.45: Two story frame: discontinuities at different stages of analysis, marked in Fig. [4.43]

Slika 4.45: DvoetaZni okvir: nezveznosti v fazah analize, oznacenih na sliki
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hardening plasticity model for the bulk and plastic softening cohesive model at the discontinuity. Shear response
is assumed elastic.

The finite element has been derived for analysis of reinforced concrete beams and frames up to complete failure,
providing a detailed description of material state over the cross-section. It can also be used for computation of
stress-resultant properties of different cross-sections, which are required as an input data in analysis with stress-
resultant beam finite elements, such as the one presented in chapter [2 The derived multi-layer element is not
intended for cyclic loading. Nevertheless, it can handle minor changes of the load sign, which can occur in some

layers due to shifting of the neutral axis even in monotonic loading.

Mesh dependency is observed in the case of cantilever beam under end moment if all finite elements are the same.
The reason lies in simultaneous occurrence of multiple discontinuities along the beam. In a fine mesh a large num-
ber of small discontinuities are formed, while coarse mesh creates a small number of large discontinuities. Since
traction at the discontinuity decreases with its growth, different meshes produce different moment in the beam.
The differences are greatest in the last part of the response, when the moment in the beam begins to drop due to
softening of tensile reinforcement. This can be solved by slightly weakening reinforcement in one of the elements
in the mesh, preventing occurrence of multiple discontinuities in steel along the cantilever beam. If softening of
the beam happens due to crushing of concrete in compression, the problem cannot be solved so effectively, since
there are multiple critical layers of concrete, as opposed to a single critical layer of tensile reinforcement. Minor
deviations appear in the hardening part of the beam response due to cracking of concrete in tension. This cannot be
avoided by weakening one of the elements in the mesh because the moment in the beam is still rising and, sooner
or later, concrete will crack in the remaining elements as well.

Mesh dependency due to cracking of concrete in tension is more evident in the case of cantilever beam under
end transversal force. Since the developed Timoshenko beam finite element can only describe constant state
over its length, a fine mesh is required for adequate description of linear moment along the beam. However,
shortening of the finite elements increases the number and reduces the size of discontinuities in concrete in tension,
resulting in higher traction at the discontinuity and considerably overestimated yield moment of the beam. The
same phenomenon is observed in the cantilever beam under end moment, but to a lesser extent.

Another kinematics issue should be addressed. There is no discontinuity (in rotation or axial displacement) on the
element level, since the embedded discontinuities in axial displacement are defined locally in each layer. Defor-
mation of the beam axis is always interpolated in the same way as for a regular Timoshenko beam. Even when
the element is completely broken, the middle axis is a smooth curve. The bulk of each layer slides along a path,
parallel to the middle axis. In a fine mesh, however, this may not be problematic. The critical finite element ex-
hibits a significantly decreased stiffness and greater curvature than neighboring elements, which can be interpreted
as a jump in rotation, smeared over the length of the critical element. Still, the global kinematics is not completely
accurate.

Several numerical examples and experiments from literature have been modeled with our finite element. Significant
deviation is observed in stiffness and ultimate load of the two-story RC frame. However, the shape of the loading
and unloading diagram is appropriate. Results of the simply supported beam model and the portal frame model
match well the results from the literature. Despite some deficiencies, the finite element allows for quite adequate
modeling of reinforced concrete beams and frames, based on axial responses of concrete and steel, which are easily
obtained from experiments and are independent of the cross-section geometry.
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5 VISCOUS REGULARIZATION OF SOFTENING RESPONSE FOR MULTI-LAYER
TIMOSHENKO BEAM FINITE ELEMENT

5.1 Introduction

In this chapter, we upgrade the multi-layer Timoshenko beam finite element, presented in chapter[d} by implement-
ing viscous regularization of the softening response [[77]]. This method can be used to prevent certain computational
problems, such as alternating between equivalent solutions [78]]. In present work, we introduce viscous forces at
discontinuities to help control their development and prevent (physically) erroneous occurrence of multiple dis-
continuities in homogeneous stress field.

When several equivalent finite elements develop a discontinuity simultaneously, the viscous regularization favors
one of them. The preferred element continues to soften, while the others unload. The selection is based on the rate,
at which the discontinuities develop in different elements. The faster a discontinuity grows, the more its growth
is encouraged. Eventually, only the “fastest” element develops a discontinuity and the others unload to satisfy the

equilibrium.

Introduction of viscous regularization into the finite element slightly modifies the equilibrium equations, while the
kinematic and the constitutive equations remain unchanged. This leads to alteration of some expressions, used in
the computational procedure. In this chapter, we only derive the equations that differ from the ones in chapter ]

The outline of the chapter is as follows. In section [5.2] we introduce the viscous forces into the virtual work
equation, derived in the previous chapter, which produces modified equilibrium equations. In section the
modifications to the computation of internal variables are presented. Section [5.4] presents the differences in the
global computation of the nodal degrees of freedom. In section [5.3] the newly developed finite element is tested
on several numerical examples. Conclusions are given in section [5.6]

5.2 Virtual work equation

We have computed the virtual work of internal forces G™™(¢) of the finite element (e) in the previous chapter, see
equation (4.31)), and we have obtained expression (3.1).

(Eo+A4T)dV = a©" fint(©) 1 Y7 4le)iple)i 5.1)
1

Q=
S

Gint,(e)

74 K3

Here, d®) and f"-(¢) are virtual nodal displacements and corresponding internal forces of element (e), &l s the
virtual displacement jump in the ¢-th layer, and h(€) is the equivalent of internal force, corresponding to ale,
The number of cracked layers is denoted with ng‘) . We enrich the standard virtual work of internal forces Gi":(¢)
by adding in each discontinuity a viscous term, which depends on the rate of change of the displacement jump

&'€)" and on viscosity parameter 7°.



154 Jukié, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.
Doctoral thesis. Cachan, ENSC, LMT.

©) e
Girgg(e) = Ggint(e) 4 iL@(e),i nid(e),iAi _ a(e)Tfim,(e) + fd(e),i (h(e),i+nia(e),iAi) (5.2)
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; n. for concrete Nee for compression
n = Ne = (5.3)

ns for steel net for tension

©) a5 the regularized virtual work of internal forces. Expression n'c(¢)-iA4?

We refer to the modified expression Gi?g’
represents the additional viscous force at the discontinuity in the i-th layer. For the sake of clarity, index (e) is
omitted in notations for the viscosity parameter 7’ and the cross-section area of the layer A?. Expression in the

parenthesis is further developed by applying equation @#39) for ().

g’ = Al / Gioide+t | + il A’ = A7 / Gioide + i + 16! (5.4)
L L
Here, G = —1 /L is the continuous part of the interpolation function for enhanced strain, o' is the stress in the

bulk, and #* is the traction at the discontinuity in the i-th layer. Index (e) is omitted in &’ as well.

Equation (5.5) represents the weak equilibrium of the whole structure. Regularized virtual work of internal forces
is computed as a sum of contributions from all finite elements, while the virtual work of external forces is calculated
as a scalar product of the vector of virtual nodal displacements of the structure d*" and the corresponding vector
of external forces £, The total number of finite elements in the structure is marked with ngg

. . nFE . T )

G;gtg Gt = 0, G:gé — Z G;{clg(e)7 GEXt — st pextstr (5.5)
e=1

We rearrange equation (5.5) by taking into account the relations between the displacements of the element d

and the displacements of the structure d*", described in section of the previous chapter. This brings us to the
following system of global equations.

gintstr __ pext,str 0

i (5.6)

The first equation in (5.6) represents the global equilibrium (equilibrium of each node in the structure) and it is
exactly the same as before, see equation (.37). The second equation keeps the previous form, only the expression
hle)i s replaced by h(r?’i. If expression is inserted, the equation can be interpreted as the local equilibrium
between the stress in the bulk o? and the traction at the discontinuity ¢*.

M=o o = —/G"'o—idx —niet =o' —pial (5.7)
L

We notice that o* and t* are no longer equal. They differ for the viscous term n’&’. In this aspect, the viscous
regularization can be described as a slight alteration of the considered problem by imposing a small imbalance at
the discontinuity.



Jukié, M. 2013. Konc¢ni elementi za modeliranje lokaliziranih porusSitev v armiranem betonu. 155
Doktorska disertacija. Ljubljana, UL, FGG.

5.3 Computation of internal variables

Introduction of viscosity into the finite element changes some equations in the computational procedure as well.
Let us first consider the local phase of the operator-split procedure, in which the internal variables of element (e)

are computed for the k-th iteration at the pseudo-time point 7,41, while the nodal displacements are fixed at the

(e),(k=1)
n+1

single element, the computation is performed separately for each layer s.

values from the previous iteration d . Since each internal variable is associated with a single layer of a

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element, and
the superscript ¢, denoting the layer.

Computations, described in sections[£.3.1.1] [£.3.1.2]and [£.3.T.4] of the previous chapter remain the same as before.
They concern the shear response and the hardening axial responses of the bulks of concrete and reinforcement

layers, which are described by the original rate independent models. On the other hand, the computations associ-
ated with the discontinuities alter. The approach remains the same as in the element without viscosity, but some
quantities are evaluated by different expressions.

5.3.1 Discontinuity in concrete layer

Here we describe the computational procedure for the softening phase of the concrete layer. The computation is
started by assuming an elastic step, which implies that the softening internal variables D and £ take the values
from the previous step. The same is true for the hardening internal variables D and &.

Dy =Du &l =&, D™ =D £ =8 (58)

The trial value of traction at the discontinuity is defined by expression (3.9), derived in appendix [E} The viscous
term is expressed in the incremental form by introducing the pseudo-time increase A7, | = T+1 — T, from the

previous to the current step. The trial value of displacement jump is evaluated according to equation (@.53)).

(k=1)

B M) Nc
(k).trial _ Bdn‘H +Dn AT An (k),trial _ 7 ,(k)trial
t"Jrl 7 = — n = n+1 - D"ﬁnJrl (5.9)
Dy~ GDy+ Dy 52D,

The local equilibrium (5.7) determines the trial value of the stress in the bulk. The rate of change of the displace-

(k),trial

il is written in the incremental form, see appendix @ for details.

ment jump &

(k),trial _ ,(k),trial Nc (k),trial
Jn+1 - tn+1 + ATn+l (an_H - an) (510)

The trial value of the failure function (;zﬁgﬁz’ltrial is computed in the same way as in the previous chapter.

(k),trial

Z(k),trial
¢ n+1

n+1 =\t

T Un+1 n+1 n+1

_ (Ufc (j(k),trial) 7 5(k),trial — min {—KSE*(k)7tTml,Ufc} =G, (5.11)
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If gizygi)’lmal <0, the trial solution is accepted.

B(k) 75(k),trial g*(k) 75*(k),trial a(k) _ (k),trial

ntl = Pntl 0 Spl T Sntl ) ntl = Qpil (5.12)
t(k:) _ t(k),trial (k) __ _(k),trial ’
n+l = “n+l ) 0n+1 - Un+l

If qzbglkl’lmal > 0, the assumed trial values are inadmissible. We have to compute the softening damage multiplier

i:ffl) from equation 55111)1 = 0 in order to compute the new values of internal softening variables, see appendix

] églkrltmal (Dn . Gf)n + "ATL D n)
,—y*(k) _ _ _ ntl (5.13)
it KD, — G+ D,
Tn+1
If qib +) = —K; (5* ‘Z +2) < ofc, the softening internal variables are updated, using the same equations as in

chapter except that '"yn(Jr% has a different value.

(k) (k) (arialy 20 _F =9 AK) _ Onh _ om0
— max =% . ;tria =k " —x = T o
an+l - (an +7n+1>529n (tn+] ) ) n+1 —£n+ nt1° DnJrl = tilkll O_fc_'_K*g:‘L(—f% (514)

Here, oM = Ent‘;a" =D, (afc + K

was reached in the last softening step. Traction at the discontinuity and stress in the layer are computed as follows.

:) is the maximal elastic value of « for the given carrying capacity that

(k) _ =(k) ; (k)trial k) _ p-1s(qk—-D (k)
tn+1 o (Ufc N qn+l) sgn (th - ) ’ UTL+I - Dn € (dn+1 7an+]) (515)
If-K; (fj; + %;(fl) ) > 0pe = (jﬁﬁ&l, material has lost all carrying capacity and traction at the discontinuity becomes
zero. Note that, due to viscosity, the stress in the bulk is not zero.

k k UE k
tiﬁ)l = 07(1421 T At (Oéiz-&)-l *an) =0 (5.16)

From equation (5.16) the displacement jump is computed, see appendix [E] The compliance at the discontinuity
becomes infinite because the traction has dropped to zero.

(k=1) e (k)
L Bd i+ Dl i p® = Intl _ (5.17)
" G- D" : ATn:H " tifl)l

Since the introduction of Viscosity does not modify the constitutive relation at the discontinuity, the values of the
tangent modulus (9t /0« ) )1 remain the same as in the previous chapter.

5.3.2 Discontinuity in reinforcement layer

In this section we describe the computational procedure for the softening phase of the reinforcement layer. We
start by assuming an elastic trial solution, keeping the softening internal variables o and ¢ at the values from the

previous step. The hardening internal variables £, and ¢ take the values from the last step as well.
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k k),trial rial =
5;21+175pnv §n+1 &n, agw)lt = Qn, §£l+1t =&, (5.18)

Stress in the layer and traction at the discontinuity are computed according to equations ([@.63) and (3.7), respec-
tively.

k),trial k—1 k),trial _
U£i+)1 = E; ( (dfm )’aghzl ) _Ep,n)

(k) trial _ _(k),trial Ns (k),trial __(k),trial 5.19
botl  =Ongl  — Ao (O‘n+1 _O‘n> = Ont1 (5.19)
n

=0

The viscous term 7)¢ is written in the incremental form, as defined in appendix [E} The difference in the parenthesis

is zero because the displacement jump « is fixed in the trial step (5.18). Next, the trial value of failure function

¢£lkl lmal is computed in the same way as in the previous chapter.
Z(k),trial k), trial =(k),trial =(k),trial . ),trial =
(biﬁ)-l”a = tngim - (Ufs *qfﬁzi - ) ' Qfllim - mm{ K §n+1 " ’st} = n (5.20)

If gzglkl’lmal < 0, the trial solution is accepted.

(k) __ (k)trial (k) _ F(k)trial (k) _ (k)trial
n+l 7 “n+tl ’ £n+1_£n+1 ’ n+l = “n+l ’

a ##) | = gk riat (5.21)

n+1

It gi__aflkl’lmal > 0, the assumed solution is inadmissible. The plastic softening multiplier f:y(k)

41 Must be computed

from (/)n 1 =0, in order to update the softening internal variables. The procedure is shown in appendix
é(k),trial
=A n+1 F o =A
n = ; - KS ( n + n ) < Ofs
(k) e ~GEat Kot 5 ntl o) <o
Tnt+1 = t(k),trzal (5.22)
-B n+1 (: = A )
ntl = T AL T s - K + Y > Ofs
/y +1 _GE + AT - é‘n 7 +1 Jf

(k)

il takes a different value.

The internal variables are updated in the same way as before, except that ¥

O‘gzkil =ay, +":yr(ﬁ213ign (tglkl’ltrial) ) fffﬂl = f:n +’:Y7(L]ir)1 (5.23)

The stress in the bulk and the traction at the discontinuity can finally be calculated.

01(1/21 =Es (5_ (dikgll)vo‘ﬁl) - 5p’n) ) tiﬂl = (Ufs - cifffﬂl) sign (t;kl’ltrial> (5.24)

Since the introduction of Viscosity does not modify the constitutive relation at the discontinuity, the values of the

tangent modulus (9t/0a ) +1 remain the same as in the previous chapter.
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5.4 Computation of nodal degrees of freedom

Let us now consider the global phase of the operator-split procedure. Here, the linearized form of global equilib-
rium equations (5.6) is solved to provide the update of the nodal displacements in the k-th iteration at pseudo-time
point 7,1, while the internal variables are fixed at the values, calculated in the local phase of the same iteration.

Introduction of the viscous regularization hardly affects the global phase of the computation. The equilibrium

equations are linearized in exactly the same way as in section [4.3.2.1] of the previous chapter. The only difference
(e),i,(k) (€),i,(k) (e),i,(k)

is that the quantity h,, """ is replaced by hreg 1> Which depends on ¢, " as well.
e),i,(k e),(k—1 e),i,(k) .(e),, e),(k—1 e k 1
hEeg),nErl) (d’E’Lll( )vailll ) a’(rlll * >) = hgzll ® (d,ﬁ]( ) a’E’Lll " )) +1' agH)rl W4 (5.25)

(€)i:(k)

n+1
, as defined in appendlx

The pseudo-time derivative &

(e)yi,(k)
n+1

is expressed in the incremental form as a function of displacement jump

(07

(e)7i1<k) (e>7i aa(e)vi7(k>

. (e),i,(k) — an+1 —Qn n+l = 1 5 26
Yt ATy 7 8a(el’f’(k> ATy i1 o0

The stiffness matrix K' ll( ) of finite element (e), defined in equation (@.134)), is computed by the same expression.

The term Kﬁl (k) is defined in equation (4.133).

nle)
nor -1
(e L ) I L
1= (c)
= CL+1

However, the components must be computed in accordance with the modified equilibrium equations (5.6). The dif-
ference arises with the components KZilr’Ee)’z’(k) and K, ha’(e>’ (k) , which are now defined as derivatives of ple)i(k)

reg,n+1
over the nodal displacements of the element dif}rl( ) and the displacement jump in the ¢-th layer ol J)rl <k), re-
spectively.
(k) . (e),i,(k

hd,(e),i,(k) _ ahreg ntl1 3hn+1 50&211 (k) i A 8hn+1
n+1 9 (k—1) — (k—1) (k—1) n Al = (1) (528)

dn+1 adn-‘,—l adn-H adn-H

~—

=0

hd,(e)i,(k) computed in

n+1
exactly the same way as in chapterl 41 The only modified term of the stiffness matrix is therefore K Zi"l(e)’l'(k).

The additional viscous term in (3.23)) does not depend on the nodal displacements, so K

(e),i,(k) )i, (k . (e)iy(k .
ha,(e),i,(k) ah‘reg n+1 8h£LJ)rl (k) 8a£LJ)rl (k) P ahill ,(k) n i
Ko - aa(el,li,(k) o aa(el,li,(k) + aa(elli’(k) na = 804(2’1“ ;T Ao A (5.29)
=1/Amp 4y

Let us rewrite the components of the element stiffness matrix, defined in equation (#.136), taking into account the
corrected term (5.29).
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ofint(e)i(k)

(= il L I DS A< R S50 D
8dn+l ntl 5-75d Y ln+1 ov)od
int, k) e),i,(k
RSl (k) _ o8, g 07 e ) g
n+1 aa(e),i,(k) 0 11
n+1 n O& /0 (5 30)
Khd,(e),i,(k) ah‘rcg n—‘rl) | _ do (€):4,(k) B Al
n+1 W - 5 —~—
n+1 ntl 0g/od
k) e),i,(k e)i,(k i
e (@)in(k) _ Mgt _ (00| W Lot oy 0y
ntl o 9o\ i(k) - 0z ~~ o AT,
®nt1 "t 9e/oa i e

As we have already mentioned in previous sections, introduction of viscosity does not affect the constitutive equa-
tions, so the tangent moduli in equations (5.30) stay unchanged. The remaining operations of the global computa-
tion are performed identically to the previous chapter.

Remark. Even though the internal forces of the finite element are computed by exactly the same equations, they
evaluate to a (slightly) different value than in the case without viscosity. This is due to the modified computation

of stress in the local phase of the operator-split procedure.

5.5 Numerical examples

Performance of the modified multi-layer Timoshenko beam element is tested on basic numerical examples — pure
tension/compression and pure bending. The computer code of the element has been implemented in the finite
element program AceFEM [69].

5.5.1 One element tension and compression tests

In this section we consider a beam clamped at one end. At the free end, axial displacement is imposed to produce
either pure tension or pure compression. The beam is modeled with a single finite element, therefore no benefits of
viscous regularization are expected. The purpose of this test is to examine the influence of viscosity on the results.

5.5.1.1 Concrete beam

We consider the concrete beam of rectangular cross-section, described in section f.4.1.1] of the previous chap-
ter. We model it with one finite element with two layers. The geometry and the material data are: beam
length is L = 2.5m, cross-section width is b = 0.2m, cross-section height is h = 0.5m, elastic modulus is E. =
4 x 10’kNm~2, elasticity limit in compression is o4, = 40820kNm~2, limit strength in compression is 0y.. =
44902kNm~2, hardening modulus in compression is H.. = 2 x 10°kNm~2, softening modulus in compression is
K =-52x 10°kNm~3, limit strength in tension is oy, = 4000kNm~—2, and softening modulus in tension is
K} = —8 x 10°kNm~3. By setting 04 > oy we assume no damage of the bulk in tension before crack forma-
tion. The additional viscosity parameters for concrete in compression and tension are marked with 7.. and 7.,
respectively. They have units [kNm’3s].

We impose the axial displacement v at the free end of the beam and compute the resulting axial force F' for
different values of the viscosity parameters 7., and 7.;. Since the model is rate dependent, the loading speed must

be prescribed. We impose a unit displacement in a unit of pseudo-time (meter/second).
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Remark. The chosen loading speed 1m/s is not realistic, but that is not important, because we are dealing with
pseudo-time. Here, viscosity is not used as a material model, but as a computational aid. In this view, it could be
called pseudo-viscosity. Identical results would be computed if the loading speed was changed e.g. to 1m/h and

the units (only units, not the numbers) of the viscosity parameters were changed from kNm~3s fo kNm~—>h.

F [KN] F [kN]
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— 5000 4000’
— 2000 — 10000
400¢ 1000 3000r — 5000
400 2000
100 2000+
200+ — a0 — o
1000/ | —, .o
0.0003 0.0006 0.0009 0.0012 ulmi 0.605 0.01 0.015 ufmi

Figure 5.1: Axial force - displacement diagrams for concrete beam in pure tension (left) and pure
compression (right) for different values of viscosity parameter.
Slika 5.1: Diagram osna sila - pomik za betonski nosilec v ¢istem nategu (levo) in Cistem tlaku (desno)

za razli¢ne vrednosti viskoznega parametra.

The results are presented in Fig. [5.1] If values of the viscosity parameters are zero, the diagrams are identical to
those in figure [4.17] With increasing values of 7. and 7, the results begin to deviate from the original (correct)
response. The deviation occurs in the softening range, caused by the imbalance between the stress in the bulk
o and the traction at the discontinuity t. For great values of 7, the computed response exceeds considerably the
original ultimate force, the softening line is shifted to the right, and the stress in the bulk is non-zero, even when
the discontinuity fails completely. Of course, such values of viscosity parameter are too big for realistic analysis,
and are applied here for illustration purpose only. For sufficiently small 7, the error is negligible.

5.5.1.2 Steel beam

We analyze the steel beam, presented in section[d.4.1.2]of the previous chapter. We model it with one element with
two layers. The material and the geometrical data is: beam length is L = 2.5m, cross-sections of both layers are
As1=Asp = 0.001m?, distances of layer axes from the beam middle axis are h/2— as1 =h/2—as»=021m
(as,1 = asp = 0.04m), elastic modulus is Ey = 2 X IOSkNm’Z, elasticity limit is 0, = 4 X 105kNm’2, failure
strength is oy, = 5 x 10°kNm~2, hardening modulus is H, = 10’kNm~2, and softening modulus is K, = —5 x
10’kNm 3. The additional viscosity parameter with units [kNm~s] is marked with 7),.

We impose the axial displacement u at the free end of the beam and compute the resulting axial force F' for different
values of ns. We impose a unit displacement in a unit of pseudo-time (meter/second).

Results of the analysis are presented in Fig.[5.2] We observe a similar behavior as in concrete in compression, see
Fig.[5.1] (right). The elasto-plastic hardening response is not affected, since the viscosity only takes effect when a
discontinuity appears. In the softening range the force F’ rises above the original ultimate force, it drops at higher
value of the imposed displacement u, and finishes at a permanent non-zero value. When the value of 75 approaches

zero, these effects vanish and the diagram eventually matches the one in figure [4.20]
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Figure 5.2: Axial force - displacement diagram for steel beam (layer) in pure tension for different
values of viscosity parameter.

Slika 5.2: Diagram osna sila - pomik za jekleni nosilec (sloj) v ¢istem nategu za razli¢ne vrednosti

viskoznega parametra.

5.5.2 Tension and compression tests on a mesh of several elements

We repeat the above described uniaxial tests, now modeling the beams with several identical finite elements. We
demonstrate the mesh dependency of original results (without viscosity) and examine how they are affected by

introduction of viscosity.

5.5.2.1 Concrete beam in compression

In this example we analyze a concrete beam in pure compression. The geometrical and the material properties are
listed in section The beam is modeled with different number of identical finite elements, each consisting
of two concrete layers. The axial displacement w of the free end of the beam is imposed at a rate of one meter per
one pseudo-second, and the axial force I is computed. At first, the viscous regularization is excluded by setting
the parameter 7). to zero. Results for this case are shown in Fig.[5.3] We observe the typical mesh dependent
response in the softening phase, caused by simultaneous occurrence of multiple discontinuities in the beam. The
mesh dependency can be cured by slightly weakening one of the finite elements, as presented in previous chapters.

Thus only the weak element softens and the response diagrams match the “1FE” curve for all meshes.

F [KN]
5000}
— 10FE
4000 \“‘-\\\~\~\\~ sFE
3000¢ 2FE
2000} — 1FE ~O
1000

001 002 003 004 0.05 ufm]
Figure 5.3: Axial force - displacement diagram for concrete beam in pure compression for different
meshes of finite elements - without viscosity.
Slika 5.3: Diagram osna sila - pomik za betonski nosilec v Cistem tlaku za razli¢ne mreZe kon¢nih

elementov - brez viskoznosti.
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In this analysis, however, we keep all finite elements the same, and introduce viscous regularization. We perform
the analysis on a mesh of 5 identical elements. The results for different values of viscosity parameter 7. are
presented in Fig. For values of the parameter up to 7. ~ 130kNm s, the computed response matches the
“SFE” curve from Fig. With further increase of 7., the results approach the correct response, Fig. (left).
The best results are obtained for 7). ~ 260kNm3s. If the viscosity parameter is still increased, the results worsen
again, Fig. [5.4] (right), and we already observe the unwanted side effects, namely the exceeded ultimate force and
non-zero force after the complete failure of the beam. Signs of the side effects can be seen in the left image, as
well. The softening line of the curve 7., = 260kNm s is not as steep as the correct “1FE” curve in Fig. It
resembles the curve 7. = 300kNm s in Fig.|5.1| (right).
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Figure 5.4: Axial force - displacement diagram for concrete beam in pure compression for different
values of viscosity parameter (5 FE mesh).
Slika 5.4: Diagram osna sila - pomik za betonski nosilec v Cistem tlaku za razli¢ne vrednosti

viskoznega parametra (mreza s 5 KE).

In the softening phase, the regularized diagram follows the original curve for a while, until the slope changes
suddenly and the force F' decreases rapidly. This sudden change of slope coincides with the moment when viscosity
causes one of the finite elements to become “preferred”. Only the “preferred” element continues to soften, while
the others unload elastically. The mechanism of this phenomenon briefly described next.

Let us consider two finite elements from the mesh, and denote them with A and B. If, due to numerical error,
one of them develops a displacement jump « at a slightly faster rate than the other &* > &, this results in a

slightly higher value of the viscous stress nc* > & Since the bulk stress o has to be the same in all elements to

A — 5B it follows that t* < t&, which further increases a* and &, Of course, numerical

B

preserve equilibrium o
errors affect the equality 0 = o as well, but the general idea still holds. Fast advancement of a discontinuity
further stimulates its growth, while slow advancement inhibits its development. When enough of these micro
errors accumulate, one of the elements breaks out, i.e. increases the displacement jump so fast that the others

cannot follow. The remaining elements must unload elastically to preserve equilibrium.

5.5.2.2 Steel beam

We consider a steel beam in pure tension. The material and the geometrical properties are listed in section[5.5.1.2]
The axial displacement u of the free end of the beam is imposed at a rate of one meter per one pseudo-second and
the resulting axial force F' is computed. Fig.[5.5]shows the results for different finite element meshes, if no viscous
regularization is used. This is achieved by setting the viscosity parameter 7, to zero. We can see the typical mesh
dependent response, caused by simultaneous softening of all finite elements. If one of the elements were slightly
weakened, the results of all meshes would match the correct “1FE” curve.
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Figure 5.5: Axial force - displacement diagram for steel beam (layer) in pure tension for different
meshes of finite elements - without viscosity.
Slika 5.5: Diagram osna sila - pomik za jekleni nosilec (sloj) v Cistem nategu za razli¢ne mreZe koncnih

elementov - brez viskoznosti.

The influence of viscous regularization is tested on the mesh of 5 identical elements. Results of the analysis
for different values of the viscosity parameter are shown in Fig. Some resemblance to Fig. is observed,
namely the computed response approaches the correct curve “1FE” from Fig. [5.3] when 7, is increased up to
ns =~ 13000kNm3s. If the parameter is still increased, the results worsen again. The correct curve is never quite
reached. Nevertheless the diagram computed with 7, = 13000kNm—3s is much better than the non-regularized
diagram “5FE” in Fig.[5.3]
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Figure 5.6: Axial force - displacement diagram for steel beam (layer) in pure tension for different
values of viscosity parameter (5 FE mesh).
Slika 5.6: Diagram osna sila - pomik za jekleni nosilec v ¢istem nategu za razli¢ne vrednosti viskoznega

parametra (mreZa s 5 KE).

5.5.3 Cantilever beam under end moment

In this example we consider a cantilever beam of rectangular cross-section, already analyzed in section[d.4.2]of the
previous chapter. The length of the beam is L = 1m, the width and height of the cross-section are b= 0.3m and h =
0.4m. Bottom and top reinforcements are A, | = A, = 0.001256m? and they are positioned at a; = a; = 0.05m
from the edges of the concrete cross-section. Material properties of concrete are: elasticity modulus F, = 3.3 x
10’kNm ™2, elasticity limit o4 = 15200kNm~2, ultimate stress in compression oy, = 38000kNm 2, ultimate stress
in tension oy.; = 1815kNm~2, hardening modulus in compression H,. = 3.32 x 10’kNm~2, softening modulus in
compression K*, = —5 x 10°%kNm~3 and softening modulus in tension K, = —10°kNm~3. Material properties
of steel are: elasticity modulus E; = 2 x IOSkNm_z, yield stress o, = 4 X 10°kNm™2, ultimate stress Ofs =3 %
10°kNm~2, hardening modulus H, = 2.665 x 10°kNm~?2 and softening modulus K, = —5 x 10’kNm 3.
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We impose the rotation 6 at the free end of the beam at a rate of one radian per one pseudo-second and calculate the
corresponding moment M. The beam is modeled with different number of equal finite elements, each consisting
of ten concrete layers and two reinforcement layers. Fig.[5.7|shows the results of the analysis for different meshes,
if no viscous regularization is applied. This is achieved by assigning zero value to viscosity parameters 7, 7. and
Nct- As observed already in the previous chapter, the model exhibits mesh dependent response, most evident in the
last phase of the analysis, when the beam as a whole begins to soften, due to softening of tensile reinforcement.
In chapter [4] the problem was treated by slightly weakening the reinforcement in one of the finite elements. The
intervention cured the major mesh dependency in the last part of the diagram, but the lesser deviations in the yield
plateau, caused by softening of concrete in tension, remain unsolved.

M [KNm]
200+

150H
100

50

005 01 015 02 025 03 0 [rad]
Figure 5.7: Moment - rotation diagram for cantilever beam under end moment for different meshes of
finite elements - without viscosity.
Slika 5.7: Diagram moment - zasuk za konzolo, obteZeno z momentom, za razli¢ne mreZe kon¢nih

elementov - brez viskoznosti.

Here, we deal with the mesh dependency problem in a different way. The finite elements are kept identical, but the
viscous regularization of the softening response is introduced. The influence of viscosity is examined on the 5 FE
mesh. The results of the analysis for different values of viscosity parameter of steel 7, are presented in Fig. [5.8]
The viscosity parameters of concrete 7., and 7., were zero in this computation. Similarly to examples in section
the results improve while the viscosity parameter increases up to 7, == S000kNm3s. If the parameter is
further increased, the beneficial effect of viscosity fades and the unwanted side effects occur.

M [KNm] M [kNm]
200+ 200
150 1501 1= 150 000
— 100000
100 100 60 000
30000
S0 S0F | — =500
6 [rad] 6 [rad]

005 01 015 02 025 03 005 01 015 02 025 03

Figure 5.8: Moment - rotation diagram for cantilever beam under end moment for different values of
viscosity parameter (5 FE mesh).
Slika 5.8: Diagram moment - zasuk za konzolo, obteZeno z momentom, za razli¢ne vrednosti

viskoznega parametra (mreZa s 5 KE).
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The major mesh dependency in the softening part of the M — 6 diagram in Fig. can be prevented by viscous
regularization of the softening response of steel. However, the minor mesh dependency in the yield plateau of
the beam cannot be cured. Even if viscosity is introduced into tensile softening of concrete and one of the tensile
concrete layers becomes “preferred”, the others cannot elastically unload. Their deformation is dictated by the rest
of the cross-section, which is still gaining strength as a whole.

5.6 Concluding remarks

We have presented in this chapter an upgrade for the multi-layer Timoshenko beam finite element with layer-wise
embedded discontinuities in axial displacement, so as to include viscous regularization of the softening response.
This is achieved by introducing at each discontinuity a viscous force, depending on the rate of change of the
displacement jump and on the additional viscosity parameter 7.

The viscosity is implemented by adding the viscous force in the virtual work equation, which results in a modified
local equilibrium between the stress in the bulk of the layer and the traction at the discontinuity. The two quantities
are no longer equal, but differ for the value of the viscous force (stress). The global equilibrium equations remain
the same. Kinematic and constitutive equations are not affected either. The computational procedure is only
slightly modified. New expressions for softening multiplier, traction at the discontinuity and displacement jump,
which are required in the local computation of internal variables, are provided. The global computation of the nodal
degrees of freedom remains unchanged, except for an additional viscous term in the element stiffness matrix. Due
to the rate dependent nature of the regularization method, specification of the loading speed is required in the
analysis.

Influence of viscosity is examined on single element tension/compression tests of concrete and steel beams. Large
values of the viscosity parameter substantially increase the ultimate load, shift the softening line to the right, and
enforce non-zero axial force in a fully softened beam. These undesired effects are a consequence of an excessive
imbalance between the bulk stress and the traction at the discontinuity. The effects are negligible for sufficiently
small values of 7.

Tension/compression tests of concrete and steel beams, modeled with several identical finite elements, show that
applying viscous regularization can prevent mesh dependency in the softening response of the beam. Effectiveness
of the method depends on the value of viscosity parameter 7. Results approach the correct diagram, if n is increased
up to a certain value. A further increase reduces the beneficial effects of viscosity and amplifies the unwanted side
effects. The optimal value of the parameter is not unique. It depends e.g. on the chosen load (time) increment

(without changing the loading speed).

The last numerical example considers pure bending of a reinforced concrete beam, modeled with a mesh of equal
finite elements. It exhibits major mesh dependency in the softening range, caused by softening of tensile rein-
forcement, and minor mesh dependency in the yield plateau, caused by softening of concrete in tension. The
former can be prevented by viscous regularization, similarly to the uniaxial tests. The latter, however, cannot be
avoided, because the tensile concrete layers cannot deform freely. Their deformation is dictated by the rest of the

cross-section, which is still gaining strength in that moment.

The viscous regularization requires only minor changes of the existing multi-layer Timoshenko beam finite element
and is therefore fairly simple to implement. The method can prevent mesh dependency in the softening response of
a structural element, but its efficiency depends on the viscosity parameter. For the considered numerical examples,
the same can be achieved by weakening one of the elements, which is simpler and independent of any parameter.
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6 CONCLUSIONS

The aim of the dissertation was to develop finite elements capable of modeling localized failure in reinforced
concrete, for numerical analysis of reinforced concrete beams and frames up to complete collapse. The localized
failure was modeled in accordance with the embedded strong discontinuity approach, in which a discontinuity
in displacement (or rotation) is incorporated into the finite element, resulting in discontinuous displacement (or
rotation) field.

We have derived a stress-resultant Euler-Bernoulli beam finite element with embedded discontinuity in rotation,
based on small deformation kinematics, elastoplastic model with bilinear hardening for the bulk of the element,
and rigid plastic linear softening model for the discontinuity.

e Despite its simplicity, the finite element is capable of describing the major phenomena in reinforced concrete
beam behavior - reduction of stiffness due to cracking of concrete, yielding of reinforcement and localized

failure of the beam.

e The finite element allows for analysis of reinforced concrete beams and frames up to complete failure, which
provides information not only about the ultimate load, but also about ductility and post-peak response of the

structure.

e The obtained results compare reasonably well to other results available in literature and to experimental
results.

e The finite element provides mesh independent softening response of the modeled structure.

e Moment vs. curvature diagram for the bulk and moment vs. rotational jump diagram for the discontinuity
are required as an input for the analysis. They can be determined from an experiment or computed with a

more refined finite element.

e The finite element could be further upgraded by implementing a coupled damage-plasticity model for the
bulk or by including a discontinuity in axial displacements, but for the common reinforced concrete struc-

tures, improvement of the results should not be substantial.

We have derived a multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discontinuities in
axial displacement, based on small deformation kinematics. The reinforced concrete beam is divided into concrete
and reinforcement layers, and a jump in axial displacement is introduced separately into each of them. Behavior of
a concrete layer is controlled by an elasto-damage hardening law in the bulk and by a rigid damage softening law
at the discontinuity. Behavior of a steel layer is controlled by an elastoplastic hardening law in the bulk and by a
rigid plastic softening law at the discontinuity.

e The finite element was intended for detailed analysis of reinforced concrete beams and frames, and for
computation of stress-resultant properties, required as an input in the stress-resultant analysis. However, the

element does not perform as expected. Several issues have been identified.

e The interpolation function for enhanced layer strain has been derived on an isolated layer, under assumption
that it can deform freely. This is not true because the layer is bound to other layers through common
nodal displacements. Consequently, the additional stress caused by enhanced kinematics cannot redistribute
correctly. The stress is only controlled at the discontinuity, where it has to be equal to the traction at the
discontinuity and therefore has to decrease with increasing displacement jump. Elsewhere in the layer, the

stress may even grow above the ultimate stress.
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e Equilibrium is only required on the finite element level, but not for each individual layer. We have seen an
example of a beam in pure tension, where stress was linear (not constant) over the length of each layer. If a
layer were singled out, it would not be in equilibrium, but the finite element as a whole is in balance because
the imbalances of individual layers neutralize each other.

e The displacement jumps of individual layers are independent of each other. In a specific case of a can-
tilever beam in pure tension, the values of displacement jumps changed linearly over the height of the beam
(negative on the bottom edge, positive on the top edge and zero in the middle), resulting in a non-zero lat-
eral displacement of the free end of the beam, without disrupting equilibrium (the internal shear forces and
internal moments were zero).

e There is no discontinuity (in rotation) on the element level. The middle axis of the beam always deforms
according to standard Euler-Bernoulli kinematics and is therefore smooth, even if the beam is completely
broken. The bulk of each layer slides along a path, parallel to the middle axis. This may not be problematic
if a fine mesh is used, since the broken finite element exhibits a greater curvature than the neighboring

elements, which can be interpreted as a discontinuity smeared over the whole element.

e Mesh dependency has been observed in numerical tests, most clearly in the case of a cantilever beam under
end moment. Due to constant stress state over the length of the beam, discontinuities appear simultaneously
in all finite elements of the mesh. At the same imposed rotation of the free end of the beam, a fine mesh
produces a great number of small discontinuities and a coarse mesh produces a small number of great
discontinuities. According to the softening material law, the traction at the discontinuity drops with its
increasing size. Therefore, the fine mesh produces a greater moment then the coarse mesh at the same value
of imposed rotation. The greatest deviations appear when the beam as a whole enters the softening phase,
which usually happens due to softening of tensile reinforcement. This can be cured by slightly weakening
reinforcement in one of the finite elements and thus preventing multiple discontinuities. If the beam fails
due to crushing of concrete in compression, the problem cannot be solved so effectively. Also, the (lesser)
mesh dependency due to cracking of concrete in tension cannot be avoided.

e Considering all the deficiencies, the considered multi-layer Euler-Bernoulli beam finite element cannot be
recommended for general use. The only viable application is in case of constant strain/stress state over
the length of the beam, which can occur either in pure tension/compression or in pure bending. In case of

bending, mesh dependency cannot be completely avoided.

We have derived a multi-layer Timoshenko beam finite element with layer-wise embedded discontinuities in axial
displacement, based on small deformation kinematics. The reinforced concrete beam is divided into concrete and
reinforcement layers, and a jump in axial displacement is introduced separately into each of them. Behavior of a
concrete layer is controlled by an elasto-damage hardening law in the bulk and by a rigid damage softening law
at the discontinuity. Behavior of a steel layer is controlled by an elastoplastic hardening law in the bulk and by a
rigid plastic softening law at the discontinuity. Shear response is assumed elastic.

e The finite element allows for detailed analysis of reinforced concrete beams and frames up to complete
failure, which provides information not only about the ultimate load, but also about ductility and post-peak
response of the structure. A detailed description of material state (progression of damage, plasticity and
localized failures) is provided at any stage of the analysis.

o The finite element is not intended for cyclic loading. Nevertheless, it can handle minor changes of the load
sign, which can occur due to shifting of the neutral axis even in monotonic loading.

e Two material laws are required for each material - stress vs. strain for the bulk of the layer and traction
vs. displacement jump for the discontinuity. They can be determined from tension/compression tests. This
makes the finite element appropriate for computation of stress-resultant (material-geometrical) properties

of beams, required as an input in the analysis with a stress-resultant finite element.
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e Mesh dependency has been observed in numerical tests, most clearly in the case of a cantilever beam under
end moment. Due to constant stress state over the length of the beam, discontinuities appear simultaneously
in all finite elements of the mesh. At the same imposed rotation of the free end of the beam, a fine mesh
produces a great number of small discontinuities and a coarse mesh produces a small number of great
discontinuities. According to the softening material law, the traction at the discontinuity drops with its
increasing size. Therefore, the fine mesh produces a greater moment then the coarse mesh at the same value
of imposed rotation. The greatest deviations appear when the beam as a whole enters the softening phase,
which usually happens due to softening of tensile reinforcement. This can be cured by slightly weakening
reinforcement in one of the finite elements and thus preventing multiple discontinuities. If the beam fails
due to crushing of concrete in compression, the problem cannot be solved so effectively. Also, the mesh

dependency due to cracking of concrete in tension cannot be avoided.

e Mesh dependency due to cracking of concrete in tension is more evident in the case of a cantilever beam
under end transversal force. Since the finite element can only describe constant state over the length, a fine
mesh is required for adequate description of the linear moment. However, shortening of the finite elements
increases the number and reduces the size of discontinuities, resulting in a higher traction in tensile concrete

and considerably overestimated yield moment of the beam.

e There is no discontinuity (in rotation) on the element level. The middle axis of the beam always deforms
according to standard Euler-Bernoulli kinematics and is therefore smooth, even if the beam is completely
broken. The bulk of each layer slides along a path, parallel to the middle axis. This may not be problematic
if a fine mesh is used, since the broken finite element exhibits a greater curvature than the neighboring

elements, which can be interpreted as a discontinuity smeared over the whole element.

e Performance of the finite element has been tested on several numerical examples. In some cases, the com-
puted results compare well to other results available in literature and to experimental results. In some cases,
however, the difference was considerable.

e Before the finite element is put to general use, the mesh dependency, caused by softening of concrete in
tension, should be examined carefully. In the specific case of a cantilever under end force, the influence was
substantial. However, in some more complex structures, the mesh dependency was less noticeable.

e The finite element could be modified so as to allow cyclic loading. For that purpose, separate sets of
softening internal variables should be introduced. However, softening responses in tension and compression

are not independent, neither is their relation trivial to describe.

We have upgraded the multi-layer Timoshenko beam finite element, so as to include viscous regularization of the
softening response. This is performed by introducing at each discontinuity a viscous force, depending on the rate
of change of the displacement jump and an additional viscosity parameter. The viscous forces are added in the
virtual work equation, resulting in slightly modified equilibrium equations and consequent minor alterations of the
computational procedure.

e Viscous regularization is relatively simple to implement, as it only requires minor changes of the existing

multi-layer Timoshenko beam finite element.

e Great values of the viscosity parameter can corrupt the results of the analysis by increasing the ultimate
load, shifting the softening line (delaying the softening) and producing a non-zero stress state in a beam
with a fully softened discontinuity. The effects are negligible for sufficiently small values of the parameter.

e Viscous regularization can prevent mesh dependent softening response of a beam, caused by physically
erroneous occurrence of multiple discontinuities in a homogeneous stress field. However, effectiveness of
the regularization depends on the value of the viscosity parameter. The optimal value is not unique, as it

depends e.g. on the chosen load (time) increment.



Juki¢, M. 2013. Konc¢ni elementi za modeliranje lokaliziranih porusitev v armiranem betonu. 169
Doktorska disertacija. Ljubljana, UL, FGG.

e Mesh dependency, caused by softening of concrete in tension when the beam as a whole is still gaining
strength, cannot be prevented by this method because the softening concrete layers cannot deform freely.
Their deformation is dictated by the rest of the cross-section.
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RAZSIRJENI POVZETEK

V gradbeniStvu se uporablja mnogo materialov, ki ob doloceni obremenitvi lokalno odpovejo. Za lokalizirano
porusitev je znacilno, da je vecji del deformacij zgos$€enih na relativno majhnih obmocjih v okolici kriti¢nih mest
konstrukcije. Z njihovim nara$¢anjem se napetosti v materialu zmanjSujejo, cemur pravimo meh¢anje materiala.

Pravilen opis tega pojava je bistvenega pomena v porusni analizi konstrukcij.

V disertaciji se osredoto¢imo na armiranobetonske nosilce in okvirje, ki so ena prevladujocih konstrukcijskih oblik
pri nas in po svetu. V armiranem betonu se lokalizirana poruSitev pojavi kot posledica pokanja betona v nategu
in kruSenja v tlaku, teCenja armature, medsebojnega zdrsa obeh komponent in njune lokalne odpovedi. Te lo-
kalizirane posSkodbe materiala, ki jih opazimo npr. na vrhu in na dnu stebrov stavb, poSkodovanih v potresih,
obicajno opisemo s plasticnim clenkom. V klasi¢ni analizi mejne nosilnosti moment v posameznem ¢lenku ohra-
nja isto vrednost, medtem ko se z naras¢anjem obremenitve oblikujejo novi ¢lenki drugod po konstrukciji. Tak
pristop omejuje natancnost dolocene mejne nosilnosti ter preprecuje analizo duktilnosti konstrukcije in njenega
post-kriticnega obnasanja. V stati¢no nedolocenih konstrukcijah porusitev posameznega kriticnega elementa Se ne
ogrozi celotne konstrukcije, zato je za njeno natancno analizo potrebno poznati tudi odziv elementa v mehcanju.

V zadnjem Casu smo prica znatnemu napredku na podro¢ju modeliranja mehcanja v numeri¢ni analizi konstruk-
cij, vendar precej problemov Se vedno ostaja odprtih. Pregled zgodovinskega razvoja in trenutnega stanja na tem
podrocju najdemo npr. v [12H14]]. V prvih modelih je bilo meh¢anje materiala opisano lokalno, s padajoco kri-
vuljo v diagramu napetost-deformacija. Pristop je sicer enostaven, vendar ga pestijo Stevilne teZave, ki jih lahko
opredelimo kot matematicne, fizikalne in numeri¢ne. Z matemati¢nega vidika postanejo parcialne diferencialne
enacbe robnega problema slabo pogojene zaradi negativnega elasticnega modula v obmoc¢ju mehcanja [[121|15}/16].
V konstrukcijskem elementu, diskretiziranem z mreZo kon¢nih elementov, odpove le kriti¢ni element. Ker je sipa-
nje energije vezano na prostornino materiala, kjer poteka mehcanje, se koli¢ina disipirane energije z zgo$€evanjem
mreZe konénih elementov priblizuje vrednosti ni¢. V limitni situaciji to pomeni porusitev brez disipacije energije,
kar fizikalno ni sprejemljivo. Z vidika numeri¢nega modeliranja tak pristop ocitno vodi do izrazite odvisnosti
rezultatov od izbrane diskretizacije [17}/18]].

Za resitev opisanih teZav je bilo predlaganih ve¢ pristopov. Nekaj zgodnejsih je predstavljenih v [19]. Zelo eno-
stavni so t.i. “crack-band” modeli [20-22], v katerih je lokalizirana poruSitev razmazana na celoten kon¢ni element
in porusitev brez disipacije energije preprecena z omejitvijo minimalne velikosti elementov. Ker je volumen, v ka-
terem se material mehc¢a, Se vedno odvisen od diskretizacije, je potrebno vrednost modula mehcanja prilagoditi
izbrani mreZi. Sorodno reSitev predstavljajo modeli, pri katerih je znotraj elementa predpisan pas fiksne Sirine
(materialna karakteristika), v katerem se material mehca [2324]]. Omenjene metode ne resijo matemati¢ne plati
problema.

Kot alternativa je bilo predstavljenih vec ne-lokalnih metod [[19,25H27], pri katerih je napetost v neki tocki funkcija
povprecne (ne-lokalne) deformacije v nekem kon¢nem volumnu okoli te to¢ke. Bolj splo$no je napetost v posame-
zni tocki funkcija celotnega deformacijskega polja, pri cemer je vplivno obmocje doloceno z uteznimi funkcijami.
Z matemati¢nega vidika ne-lokalne metode popolnoma regularizirajo obravnavani problem [12]]. Zelo sorodna je
gradientna metoda [28,29], pri kateri za opis napetosti v neki tocki poleg vrednosti deformacij uporabimo tudi
njihov gradient v tisti to¢ki. Uporabimo lahko tudi gradiente visjega reda [30].

Predlaganih je bilo Se ve¢ pristopov, kot sta na primer model Cosseratovega kontinuuma [31}|32]], ki poleg tran-
slatornega pomika upoSteva tudi lokalno rotacijo posameznega delca (tocke) materiala, in viskoplasti¢na regulari-
zacija [33]], ki obravnava problem kot ¢asovno odvisen. Skupno vsem nastetim metodam je, da se lotevajo opisa
lokalizirane porusitve in mehcanja na nivoju materiala. Koncni elementi so zasnovani tako, da ¢im natancneje
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opiSejo obnasanje materiala na mikro nivoju, vklju¢no s samodejnim generiranjem nezveznosti na kriticnih me-

stih, in tako zagotovijo primeren odziv konstrukcijskega elementa na makro nivoju.

Pri razvoju kon¢nih elementov za uporabo v potresnem inZenirstvu se pogosto uporablja popolnoma drugacen
pristop. Numeri¢na analiza velikih konstrukcij pod kompleksno obtezbo, lahko kaj hitro postane racunsko pre-
zahtevna in Casovno potratna, zato so koncni elementi zasnovani na najenostavnejsi nacin, ki Se zagotavlja pri-
meren makro-odziv konstrukcijskega elementa. ObnaSanje armiranobetonskih stebrov, ki izkazujejo lokalizirane
poskodbe na dnu in na vrhu, lahko zadovoljivo opi§emo z zelo enostavnim “lumped plasticity” modelom [34,35]],
pri katerem so vse neelasti¢ne deformacije zdruzene v plasti¢nih ¢lenkih nic¢elne dolZine na obeh koncih elementa,
medtem ko se vimesni del obnasa elasti¢no. To seveda ne ustreza dejanskemu stanju materiala, kljub temu pa model
zajame vse bistvene lastnosti odziva stebra.

Diskretni pristop, uporabljen v “lumped plasticity” in sorodnih modelih je alternativa predhodno predstavljenim
zveznim modelom. Obe strani imata svoje prednosti in slabosti. Glavna prednost modelov razmazane nezveznosti
je, da so razviti na mikro nivoju, zato so sposobni opisati katerikoli koS¢ek materiala, ne glede na velikost in poloZaj
v konstrukciji, nezveznost pa generirajo samodejno. Slaba stran je ta, da zahtevajo precej gosto mrezo koncnih
elementov v obmocju nezveznosti, kar je lahko problemati¢no pri analizi vecjih konstrukcij [[12,36]. Nekateri
imajo tudi tezave z blokiranjem [|13}[36]]. Pomembna prednost diskretnega pristopa je, da se izogne teZavam z
velikostjo obmoc¢ja mehcanja, tako da ga skr¢i v tocko in vpelje lokalni disipativni mehanizem. Poleg tega so
elementi sposobni opisati nezveznosti v pomikih in zasukih, kar omogoca opis konstrukcije z dokaj grobo mreZo

koncnih elementov. Glavna slabost je ta, da se nezveznosti lahko pojavijo le na predhodno dolocenih lokacijah.

V zadnjem casu se je v modeliranju lokalizirane porusitve uveljavil nov pristop, katerega glavna znacilnost je
vkljucitev nezveznih deformacij ali pomikov v standardne kon¢ne elemente. Skoke v deformacijskem polju ime-
nujemo tudi Sibke nezveznosti, skoke v polju pomikov pa moc¢ne nezveznosti. V skladu z metodo vgrajene mocne
nezveznosti, ki jo uporabimo tudi v tej disertaciji, je bilo razvitih mnogo razli¢nih modelov, npr. [39-48]. Za nas
je posebej zanimiva aplikacija metode na linijske koncne elemente [49-54]]. Vsem modelom je skupno, da kon¢ni
volumen lokaliziranih deformacij, ki je predstavljal obmocje disipiranja energije pri modelih razmazane nezve-
znosti, nadomestijo z nezveznostjo v pomikih in s pripadajo¢im lokalnim disipativnim mehanizmom. To doseZejo
z vpeljavo dodatnih, nezveznih interpolacijskih funkcij. Vsaka oblikovna funkcija je povezana z dodatnim para-
metrom, ki predstavlja velikost nezveznosti. Z vpeljavo kohezivnega materialnega zakona mehcanja, ki skok v
pomiku poveze s konjugirano silo v nezveznosti, se oblikuje lokalni disipativni mehanizem. Dodatne enacbe za
nove parametre so zapisane v obliki lokalnega ravnotezja med napetostmi po elementu in silo (ali napetostjo) v
nezveznosti [[1}/14].

Metoda vgrajene mocne nezveznosti zdruzuje dobre lastnosti tako diskretnih, kot zveznih metod. Disipacija ener-
gije ob porusitvi je vezana na nezveznost, ki nima volumna, zato zgoS¢evanje mreZe kon¢nih elementov ne vpliva
na velikost obmocja mehc¢anja in na koli¢ino disipirane energije. S tem sta prepreceni odvisnost rezultatov od dis-
kretizacije in fizikalno nerealna porusitev brez disipacije energije. Tudi z matemati¢nega vidika je problem mejnih
vrednosti dobro pogojen, kar pomeni, da pristop uspe$no resi na zaCetku predstavljene fizikalne, numericne in
matemati¢ne tezave. IzboljSana kinematika omogoca korekten opis nezveznega polja pomikov v bliZini nezve-
znosti, kar omogoca razvoj kon¢nih elementov, ki nimajo teZav z blokiranjem. Dodatne interpolacijske oblike so
namre¢ zasnovane tako, da omogocajo opis breznapetostnega stanja v elementu v primeru popolnoma zmehcane
nezveznosti [[14]. Poleg tega vgraditev lokalne kinematike, ki opisuje porusitev materiala na mikro nivoju, v ma-
terialni makro-model popolnoma ustreza ve¢-nivojski naravi obravnavnega fizikalnega problema [[1,/12}14}36}/40]]
in omogoc¢a modeliranje nezveznosti z relativno grobo mreZo kon¢nih elementov. Ker je vsak posamezen element
sposoben opisa nezveznosti, ni potrebe po vnaprejSnjem dolocanju njene lokacije. Nastane samodejno in napreduje
po konstrukciji brez spreminjanja osnovne mreZe koncnih elementov. Zaradi nastetih lastnosti je metoda primerna
tudi za analizo vecjih konstrukcij.
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Glede na nacin implementacije nezveznosti lo¢imo dva glavna pristopa — extended finite element method (X-
FEM) [39,40,42,57-59]] in embedded discontinuity finite element method (ED-FEM) [41,60-63]]. Pri X-FEM me-
todah so dodatni parametri, ki se nanaSajo na nezvezne interpolacijske funkcije, vezani na vozlis¢a mreze koncnih
elementov in se jih obravnava kot globalne neznanke. Pri ED-FEM metodah pa so dodatni parametri na posamezen
kon¢ni element in se jih obravnava kot lokalne (elementu lastne) neznanke. Prednosti in slabosti obeh pristopov so
predstavljene v vec Studijah [14,/64f]. Glavna prednost ED-FEM je v tem, da lahko dodatne neznanke izlo¢imo iz
globalnih enacb s staticno kondenzacijo na nivoju elementa, medtem ko pri X-FEM vsaka nova nezveznost razsiri
globalni sistem enacb. V disertaciji sledimo ED-FEM pristopu.

Naloga temelji predvsem na predhodnem delu nase raziskovalne skupine, zlasti na linijskih kon¢nih elementih, ki
so jih razvili Dujc et al. [[54]] in Pham et al. [52]. V prvem ¢lanku je predstavljen kon¢ni element na nivoju rezultant
napetosti za Euler-Bernoullijev nosilec, ki ima vgrajeni nezveznosti v zasuku in v osnem pomiku in je namenjen
analizi metalnih nosilcev in okvirjev. V drugem ¢lanku je opisan kon¢ni element na nivoju rezultant napetosti za
TimoSenkov nosilec, ki ima vgrajeno nezveznost v zasuku in je namenjen analizi armiranobetonskih konstrukcij.
Prvi cilj disertacije je zdruZiti oba koncepta in razviti podoben koncni element, ki temelji na Euler-Bernoullijevi
kinematiki in uporablja materialne zakone, primerne za modeliranje armiranega betona. Naslednji cilj je razSiriti

ta koncept na vecslojni model nosilca, podobno kot v [51]]. Bolj konkretno lahko naSe cilje opredelimo kot:

e razviti raven konc¢ni element na nivoju rezultant napetosti za ravninski Euler-Bernoullijev nosilec z vgra-
jeno nezveznostjo v zasuku, namenjen enostavni robustni in ucinkoviti poru$ni analizi armiranobetonskih

nosilcev in okvirjev,

e razviti raven vecCslojni kon¢ni element za ravninski Euler-Bernoullijev nosilec, ki ima po slojih vgrajene
nezveznosti v osnem pomiku, namenjen detajlni porusni analizi armiranobetonskih nosilcev in okvirjev
ter ratunu rezultantnih (materialno-geometrijskih) lastnosti prerezov, potrebnih pri analizi z rezultantnimi

konc¢nimi elementi,

e razviti raven vecslojni kon¢ni element za ravninski TimoSenkov nosilec, ki ima po slojih vgrajene nezvezno-
sti v osnem pomiku, namenjen detajlni porusni analizi armiranobetonskih nosilcev in okvirjev ter racunu
rezultantnih (materialno-geometrijskih) lastnosti prerezov, potrebnih pri analizi z rezultantnimi kon¢nimi

elementi,

e nadgraditi veCslojni element za TimosSenkov nosilec z viskozno regularizacijo odziva v mehc¢anju.

KONCNI ELEMENT NA NIVOJU REZULTANT NAPETOSTI ZA EULER-BERNOULLIJEV
NOSILEC Z VGRAJENO NEZVEZNOSTJO V ZASUKU

V poglavju |2 razvijemo konc¢ni element na nivoju rezultant napetosti z vgrajeno nezveznostjo v zasuku za rav-
ninski Euler-Bernoullijev nosilec. Element je namenjen za enostavno, robustno in u¢inkovito numeri¢no analizo
armiranobetonskih nosilcev in okvirjev do popolne porusitve. Element omogoca samodejno generiranje plasti¢nih
¢lenkov z meh¢anjem, ki predstavljajo lokalizirano porusSitev materiala na kriti¢nih mestih v konstrukciji. Element
temelji na dveh podobnih koncnih elementih, predstavljenih v [54] in [52]. V prvem c¢lanku je izpeljan kon¢ni
element za Euler-Bernoullijev nosilec z vgrajenima nezveznostma v zasuku in osnem pomiku za analizo metalnih
nosilcev in okvirjev. V drugem clanku je predstavljen element za TimoSenkov nosilec z vgrajeno nezveznostjo v
zasuku, v katerem je uporabljen konstitutivni zakon z bilinearnim utrjevanjem, ki omogoca natancnejSi opis ne-
linearnega obnaSanja nosilca zaradi razpokanja betona in teCenja armature. Element je zato primeren za analizo
armiranobetonskih konstrukcij, vendar zaradi izbrane kinematike omogoca le opis konstantnega momenta. Tu raz-
vijemo kon¢ni element, ki zdruZuje lastnosti obeh navedenih elementov - konstitutivni zakon, primeren za armirani

beton, in kinematiko, ki omogoca opis linearnih momentov vzdolZ elementa.
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Konc¢ni element temelji na teoriji majhnih deformacij. Vsebuje vgrajeno nezveznost v zasuku (skok v zasuku),
ki se pojavi na kriticnem mestu v elementu, ko je preseZena mejna nosilnost. Obnasanje materiala je opisano z
elastoplasticnim materialnim zakonom z bilinearnim izotropnim utrjevanjem, obnaSanje nezveznosti (plasticnega
Clenka) pa z materialnim zakonom linearnega mehcanja.

Kinematika

Ravninski Euler-Bernoullijev nosilec modeliramo z ravnim dvovozli§¢nim kon¢nim elementom. Vsako vozlisce
ime tri prostostne stopnje, dva pomika in zasuk. V primeru prekoracene nosilnosti se pojavi nezveznost v zasukih
pri koordinati 4 in aktivira se dodatna (lokalna) prostostna stopnja - skok v zasuku . Osni pomik u (z) interpo-
liramo med vozli§¢ne osne pomike u s standardnimi linearnimi oblikovnimi funkcijami N* (z). Osno deformacijo
¢ (z) izraunamo kot odvod osnega pomika.

u(x) =N*(x)u, e(z)= e

B" (z)u

Pre¢ni pomik v (x) interpoliramo med vozli§¢ne pre¢ne pomike v in zasuke 6 s Hermitovimi polinomi NV ()

in N? (). Standardni interpolaciji dodamo &len v (

x,xq), ki opisuje dodatne pomike zaradi skoka v zasuku.
Odvod interpolacijske funkcije M (z,x4) ima enotski skok pri x4, vozli§¢ne vrednosti funkcije in njenega odvoda

pa so enake nic.

padd

—_——~
v(x,zq) =N (2)v+N (2) 0+ N (z,24)

Ukrivljenost « (x, x4) izratunamo kot drugi odvod pre¢nega pomika.

P radd
82U v 0
k(z,xq) = 92 =B (2)v+B’ (2)0+G (z,24)

Operator G (,24) je drugi odvod interpolacijske funkcije M (z,14). Zaradi nezveznosti prvega odvoda M’ je G
sestavljen iz zveznega dela G in Dirac-delta funkcije, ki ima neskon¢no vrednost na mestu nezveznosti in vrednost
ni¢ drugje. Izraz za G izpeljemo iz zahteve, da mora biti v primeru popolne izgube nosilnosti kon¢ni element
sposoben opisati breznapetostno stanje v nosilcu. V tem primeru se element deformira kot kinemati¢na veriga
dveh togih teles.

G=MN"=G+G, G=-

1+3(1_2de)(1_2Tx) = {oo; z =14
T ’ G:(sxd:

0; sicer

Interpolacijo osne deformacije in standardnega dela ukrivljenosti lahko zapiSemo tudi krajse.

6:[B" 0 o]d:fsfd, E:[o BY Bﬂd:fs”d, d” = {uT v7,07}
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Princip virtualnega dela

Virtualno osno deformacijo € in virtualno ukrivljenost & interpoliramo na enak nacin kot pravi koli¢ini, med virtu-
alne vozlis¢ne pomike @, v in @ ter virtualni skok v zasuku &. To pripelje do dodatnega ¢lena v izrazu za virtualno

delo notranjih sil GI">(¢) elementa (e).

s—B'a, A=B'¥+BO+ Ga, G = / (EN +AM)dz = A" i) 4 5 ple)
Radd L standardno dodatno

Vektor posplosenih virtualnih pomikov de zdruZuje vse virtualne prostostne stopnje elementa (e), vektor f int,(e)
pa ustrezno urejene notranje sile. Koli¢ina h'®) ustreza virtualnemu skoku v zasuku &(¢).

de" = {aT 370"}, g / B N + / B Mde, 1 = / GMda
L L L

Z upostevanjem prej izpeljanega izraza za operator G in pravila za integriranje Dirac-delta funkcije razvijemo
izraz za h{®). Moment M (z) je funkcija koordinate z. Njeno vrednost na mestu nezveznosti M |93d oznacimo s ¢
in definiramo kot moment v nezveznosti, ki je konjugirana koli¢ina skoku v zasuku a.

/g(aj) 8oyl = g(zq), h© = /(G‘+5zd) Mdz = /G’Mda;+ M|, = /(‘;de+t
L L L L

Iz principa virtualnega dela G™™ — Gt = 0 izpeljemo ravnoteZne enalbe konstrukcije. Poleg klasi¢nega globalnega
ravnoteZja zunanjih in notranjih sil dobimo dodatno ravnoteZno enacbo za vsak element, v katerem je bila nosilnost

prekoracena in se je oblikovala nezveznost v zasukih.

A |fine) ffm’(@)] =0, Vee{l2..,na}: h®=0
e=1
Tu je A tako imenovani “assembly” operator, ngg Stevilo konénih elementov v celotni konstrukciji, n,, pa Stevilo
koncnih elementov z aktivirano nezveznostjo. Pomen dodatne enacbe se razjasni, ¢e vanjo vstavimo izpeljani izraz
za h{¢). Ugotovimo, da predstavlja ravnoteZje med momentom v nezveznosti ¢ in momenti po elementu M v §ibki
(integralski) obliki. Ker se nanaSa le na posamezen koncni element, ji pravimo tudi enacba lokalnega ravnotezja.

h) =0 o t:—/Gde
L

Materialni modeli

Predpostavimo, da je osna sila ves Cas elasticna N = EAe. Za upogibni odziv nosilca uporabimo elastoplasti¢ni
model z bilinearnim utrjevanjem. Po doseZeni meji elasti¢nosti togost nekoliko pade zaradi poskodb v betonu,
bistven padec togosti pa se zgodi zaradi teCenja natezne armature. Krivulja razbremenjevanja ima elasti¢ni naklon.
Osnovne enacbe materialnega modela so izpeljane iz termodinamike (princip maksimalne plasti¢ne disipacije),
glej npr. [[73]. Moment izracunamo iz elasti¢ne ukrivljenosti, ki je razlika med skupno ukrivljenostjo < in plasti¢no

ukrivljenostjo ,. V izrazu za skupno ukrivljenost nastopa tudi prispevek zaradi skoka v zasuku o.
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M =EI(R—F&,), R=B"v+B’0+Ga

Funkcija teenja ¢ nadzira prehod iz elasti¢nega v plastiéno obnasanje in obratno. Konstanta M, > 0 predstavlja
absolutno vrednost momenta, pri katerem se prvi¢ pojavijo neelasti¢ne deformacije. Momentu podobna koli¢ina
q < 0 predstavlja spremembo meje elastiCnosti zaradi utrjevanja materiala in je bilinearna funkcija ukrivljenosti
podobne spremenljivke £.

¢(M,q) = |M|—(M.—q), §=q(&)

Potrebujemo Se evolucijski enatbi za notranji spremenljivki 7, in £ ter Kuhn-Tuckerjeve pogoje obremenjevanja
in razbremenjevanja. Tu je # plasti¢ni mnoZitelj, ki izhaja iz izpeljave enacb s principom maksimalne plasti¢ne
disipacije.

fp=Asign(M), £€=% 420, $<0, %4=0, 56=0

Podobne enacbe dolocajo togo-plastien materialni model, ki povezuje moment v nezveznosti ¢ in skok v zasuku
a. Po dosezeni meji nosilnosti M,, > 0 se zacne moment ¢ linearno zmanjSevati z naras¢anjem «, dokler ne pade
na ni¢ (ob tem mu morajo slediti tudi momenti po elementu M). V primeru razbremenjevanja vrednost o miruje.

b=l - (M~ 7=3(¢)

Funkcija q=5 nadzira prehod iz elastinega obnaSanja v meh&anje in obratno. Momentu podobna koliéina § € [0, M,,]
predstavlja zmanjSanje nosilnosti zaradi mehc¢anja materiala in je linearna funkcija zasuku podobne spremenljivke
E . Materialni model zaokrozimo z evolucijskima enacbama za notranji spremenljivki « in E ter s pogoji obre-
menjevanja in razbremenjevanja, kjer je Ey plasti¢ni mnoZitelj mehcanja, ki izhaja iz izpeljave enacb s principom

maksimalne plasti¢ne disipacije.

=2
-
I
=)
1}
i
I
o

a=Fsign(t), E=% >0, $<0,

Racunski postopek

Odziv konstrukcije izracunamo tako, da pri posameznih psevdo-¢asih, ki predstavljajo postopno nanasanje obtezbe,
reSimo sistem ravnoteznih enacb, pri ¢emer moramo zadostiti tudi kinemati¢nim in konstitutivnim enacbam. Ker
so enacbe izrazito nelinearne, jih v vsakem psevdo-Casovnem koraku n + 1 lineariziramo in reSujemo iterativno.
Vsaka Newtonova iteracija k sestoji iz faze (A), v kateri zamrznemo trenutne vrednosti vozlis¢nih pomikov in po-
sodobimo vrednosti notranjih spremenljivk, in faze (B), v kateri zamrznemo pravkar izracunane vrednosti notranjih

spremenljivk in izraunamo nove prirastke vozlis¢nih pomikov.

Pri znanih {dgze>; f_fz(nflla érr(f), 011(16)7 Er(f)} is¢emo {dgflﬁ jozﬂrlv Effl], 0‘5217 5521 }
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Faza (A) je lokalnega znacaja, in jo izvajamo na nivoju kon¢nega elementa. Pri zamrznjenih vrednostih pomikov

d®- =1
n+1

potrebujemo za racun v fazi (B). Dokler element ne doseze meje nosilnosti, sta notranji spremenljivki mehcanja

iz prejsnje iteracije iS¢emo pripadajoce iterativne vrednosti notranjih spremenljivk in momentov, ki jih

a in € enaki ni¢ in i§¢emo samo notranji spremenljivki utrjevanja % in £. Ko se nezveznost enkrat aktivira, se
R in & ne spreminjata ve¢, ratunamo pa o in fz . 'V vsakem primeru je postopek enak. Najprej predpostavimo
elastien testni korak, kar pomeni, da notranje spremenljivke obdrZijo vrednosti iz prejSnjega koraka. Izraunamo
testni vrednosti momenta in funkcije te¢enja. Ce je le-ta negativna, je bila predpostavka pravilna in obdrzimo
testne rezultate. V nasprotnem primeru notranje spremenljivke posodobimo skladno z evolucijskimi enacbami in
pogoji obremenjevanja in razbremenjevanja. IzraCunamo kon¢no vrednost momenta, ki ga potrebujemo za izratun
notranjih sil kon¢nega elementa.

U S U o T YL o e

V fazi (B) resimo zgornji linearizirani sistem ravnoteznih enacb, v katerem iS¢emo prirastke pomikov konstrukcije

Ad:SI ), Operator A sestavi prispevke posameznih elementov v togostno matriko Kf:i’(l ) ,s;ig )

celotne konstrukcije. Togostne matrike posameznih elementov izraunamo z naslednjima izrazoma.

in rezidual Af

d, (e has(e), (k) Ly hd,(e),(k
e€{1,2,...,npa}: <>1(> Kﬁ+(1><> Kﬁ+f)()(Kn+1()()) KHE)()
ec{npa+1,....,npg}: (ll() Kfi(l)u

Tu je npg Stevilo vseh koncnih elementov v konstrukciji, np,, pa Stevilo elementov, ki so Ze prekoracili nosilnost

in so trenutno v plasticnem koraku mehcanja. Pri elementih, ki so Ze vstopili v mehcanje opazimo dodaten Clen,

(e)(k)

ki nastopi zaradi izloCitve spremenljivk o, 1)

(e)(k)

enacb hn 1

iz globalnega sistema enacb s kondenzacijo lokalnih ravnoteZnih
= 0. Pri elementih, ki so Ze aktivirali nezveznost, vendar se trenutno elasticno razbremenjujejo
(Aa = 0), je dodatni ¢len enak ni¢. Posamezni Cleni togostne matrike koncnega elementa so definirani s spodnjimi
enacbami.

int,(e),(k) int,(e),(k)
K0 _ of,\ " K (k) _ o

n+l ~ad ll(k 1)’ n+tl - 8a(e)’1(k)
n n+
(e),(k) (e),(k)
Khd,§e),(k) _ 8hn+l Khai(e),(k) 8hn+1
n-+ k—1)’ n-+ e),(k
od, Y ooyl

Ko izraCunamo prirastke pomikov in posodobimo vrednosti prostostnih stopenj, vstopimo v naslednjo iteracijo.

str, (k)
n+1

str, (k—1) tr, (k)
D Al

d n+1

=d

tr, (k) _ str, (k) tr, (k)
Adse) = (k) arsel®)

str, (k

Iteriranje ponavljamo, dokler ne dosezemo zahtevane konvergence HAF i ‘ 1 ) H < tol, nato stopimo

v naslednji psevdo-Casovni korak.

VECSLOJNI KONCNI ELEMENT ZA EULER-BERNOULLIJEV NOSILEC S PO SLOJIH
VGRAJENIMI NEZVEZNOSTMI V OSNEM POMIKU

V poglavju [3| razvijemo veslojni kon¢ni element za Euler-Bernoullijev nosilec, ki ima vgrajene nezveznosti v

osnem pomiku po posameznih slojih. Element je namenjen za detajlno analizo armiranobetonskih okvirjev in
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nosilcev do popolne izgube nosilnosti. Poleg samodejnega pozicioniranja obmocij lokaliziranih deformacij (pla-
sticnih ¢lenkov) vecéslojna zasnova koncnega elementa ponuja vpogled v Sirjenje poskodb materiala in napredo-
vanje razpok po viSini elementa. Za razliko od rezultantnega kon¢nega elementa, predstavljenega v poglavju 2]
so materialne karakteristike elementa loCene od geometrijskih. Z znanimi materialnimi lastnostmi (napetost - de-
formacije), lahko za poljuben prerez izraCunamo upogibni odziv (moment - ukrivljenost), ki ga potrebujemo kot
vhodni podatek pri analizi z rezultantnim kon¢nim elementom.

Vecslojni kon¢ni element je zasnovan na teoriji majhnih deformacij. Razdeljen je na vec slojev betona in armature,
ki jih obravnavamo loc¢eno, kot posebno vrsto palic (z linearnim potekom napetosti po dolzini). Vsak sloj ima
vgrajeno nezveznost v osnem pomiku, ki se razvija neodvisno od drugih slojev. Osni odziv betonskega sloja je
opisan z modelom poSkodovanosti z utrjevanjem zvezno po sloju in z modelom poSkodovanosti v mehcanju za
nezveznost. Osni odziv sloja armature je opisan z elastoplasticnim modelom z utrjevanjem materiala zvezno po

sloju in s plasticnim modelom meh¢anja na mestu nezveznosti.

Kinematika

Obravnavamo raven koncni element s tremi vozliS¢i za ravninski Euler-Bernoullijev nosilec. Kon¢ni vozlisci
imata po tri prostostne stopnje - dva pomika in zasuk. Dodatno vozlisce na sredini elementa ima le eno prostostno
stopnjo - osni pomik, katerega namen je dvigniti red interpolacije osnega pomika in s tem zagotoviti kompatibilnost
prispevkov upogibnega in osnega odziva k osnim deformacijam. Osni pomik @ () srednje osi nosilca interpoliramo

med vozlis¢ne osne pomike u s kvadrati¢nimi interpolacijskimi funkcijami N* ().

3 242 202 4z 4a?
i(x) = N* (2)u, N“(x){1;+;,z+;,;;}7 u={u,u,uz}”

Pre¢ni pomik ¢ (x) srednje osi interpoliramo med vozli§¢ne pre¢ne pomike v in zasuke 6 s Hermitovimi polinomi
Nv (z) in N? (), zasuk 0 () pa izraéunamo kot odvod preénega pomika.

o ONU  ON¢
= = +—0
ox

o(x) =N"(z)v+Nb ()0, 6 (x) 22" o

Nosilec razdelimo po viSini na poljubno $tevilo slojev. Za dovolj fino razdelitev lahko predpostavimo konstantno
napetostno stanje po debelini sloja. Osni pomik u () i-tega sloja izratunamo v njegovi srednji osi, oddaljeni za
y® od srednje osi nosilca.

i uz,add

u' (z,2h) = () —y'0(z) + M" (2,2}) o

Sprva pomik opiSemo le s standardnim delom ° (), ki ga sestavljata prispevka zaradi osnega pomika in zaradi
zasuka srednje osi nosilca. Ko napetosti v sloju preseZejo mejo nosilnosti, se na kritiénem mestu (pri koordinati %)
oblikuje nezveznost v osnem pomiku. Dodatni osni pomik u**4? (z,z?) zaradi nezveznosti je opisan z velikostjo
skoka v pomiku o in z oblikovno funkcijo M? (z,z%). Osno deformacijo sloja e’ (x,z?) izracunamo kot prvi

odvod osnega pomika.

=7 i
g Ez,add

e (z,aly) = % =B"(z)u—y' (B" (z)v+BY () 0) + G}, (z,2%) o
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Zaradi dodatnega vozli§€a na sredini elementa in kvadrati¢ne interpolacije osnega pomika so vsi ¢leni v standar-
dnem delu osne deformacije &' linearno odvisni od z. Interpolacijske funkcije B* so namre¢ prvi odvod kva-
dratiénih funkcij N, funkcije B” in B? pa drugi odvod kubi¢nih Hermitovih polinomov N in N?. Operator G,
je odvod interpolacijske funkcije M in ga bomo opisali v nadaljevanju. Indeks R se nana$a na prave (oz. realne)

i,add

deformacije. Dodatni del € se aktivira le v slojih, kjer je bila preseZena nosilnost in se je oblikovala razpoka.

_ ON“(a)

N (x) N (x)
Y = x) =
Ox

B" () Bv(l’)—wa 0( )= 02

Standardni del osne deformacije i-tega sloja lahko zapiSemo tudi krajSe.

- [Bu _yiBY —yiBﬂ d=Bd, d7={u” " 67}

Za pomo¢ pri dolo¢anju oblikovne funkcije M* (m, xé), ki opisuje dodatne osne pomike zaradi pojava nezveznosti
. . o tees . i i T . o

v sloju, definiramo “vozlis¢ne pomike sloja” u’ = {u’],uzz,ug’} kot vrednosti standardnega pomika @' (z) na

mestih vozli§¢ kon¢nega elementa.

; i i i T ; : - 3(vy—w 0,+06 T
“1:{“1’1:0’7"I:LWZ‘FL/z} :{ul—yz917u2—y’92,U3—@/z (- <12L 2 _ 14 2)}

Ker je pomik @' kvadrati¢en, lahko njegovo interpolacijo opisemo s kvadrati¢nimi interpolacijskimi funkcijami N*

za osne pomike in z vozli§¢nimi pomiki sloja. Nato mu pristejemo dodatni pomik zaradi nastanka nezveznosti.

@t (z) =1 (x) —y'f (z) = N“(z)u’, u' (z,2h) =0 (x)+ M’ (z,2}) o’

Da bi celotni pomik sloja u’ ohranil vozli§¢ne vrednosti u’, mora imeti funkcija M* v vozlis¢ih (pri z =0, L
in L/2) vrednost ni¢, za opis nezveznosti pa potrebuje enotski skok pri koordinati z;. Tem pogojem najlaZe
zadostimo tako, da za M* uporabimo Heaviside-ovo funkcijo Hﬂ”fz , od katere odstejemo interpolacijske funkcije
N7 tistih vozlis¢ j, pri katerih je z > i,

H,; =

Zd

M=

0; =<af . ng—(N§+N§L); 0<zy<L/2
1, z>a) foi—Nf; L/2 <zl <L

Ce upostevamo, da je odvod Heaviside-ove funkcije Dirac-delta, lahko zapiSemo izraz za operator Gj,.

b}

i =

anil_ co* x:xil o 8Mi: (Sz‘ii—(B;—i-B;); 0<$2<L/2
or Ty

: R _
0; sicer O 612 — B}, L2 <zy<L

V primeru konstantnih deformacij vzdolZ sloja (v primeru Cistega upogiba ali Cistega natega/tlaka) zgornji izraz
za G} ni primeren, saj je linearen. Za ta primer izpeljemo M® in G}, z naslednjim razmislekom. Konstantne
deformacije ustrezajo linearnemu poteku pomikov, ki jih lahko interpoliramo med dva vozlis¢na pomika (namesto

treh) z linearnimi oblikovnimi funkcijami N**.
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@ (@) =N (0w, N"(@) = (NN = (1= 20 et = )

Oblikovni funkciji M? in G}, dobimo na enak nacin kot prej.

i A g T g oM o1
M'=H,—Ny"=Hy—7. Gh="3-=0,-7

Glede na linearen potek osnih deformacij po posameznem sloju se nezveznost lahko pojavi v enem od kon¢nih
vozlis€. V posebnem primeru, ko so deformacije sloja konstantne po dolzini nezveznost postavimo v sredino
elementa. Zgornje izraze za operator G}, torej lahko zdruZimo v naslednjem zapisu.

1

L
) ) . = =, _. 1 4z i
Gé(mw&)zG&—i—G}%, G}%:éwé, Gp = L<3>; zg=0

Lokacijo nezveznosti dolo¢imo glede na vrednosti napetosti v sloju v trenutku, ko je doseZena meja nosilnosti. V
sloju armature jo postavimo na mesto najvecje napetosti po absolutni vrednosti, saj je obnaSanje jekla simetricno

v tlaku in nategu. V primeru konstantnega napetostnega stanja nezveznost postavimo v sredino sloja.

0|l =0p=03 = xfi:L/Z 0'120'|x=0
lo1| > |os] = z5,=0 kjer je oy =0, 1
01| < o] = wg=1L 03=0l, 1

Pri betonu je lociranje razpoke manj enostavno, saj moramo upoStevati razli¢ni nosilnosti betona v tlaku oy.. in
nategu oy . Ce je vet kot polovica sloja v nategu o3 > 0, se pojavi nezveznost v nategu na bolj tegnjenem koncu
sloja. Ce je ves sloj v tlaku, se pojavi tlatna nezveznost na bolj tlacenem koncu. V vmesni situaciji primerjamo

nosilnosti betona v tlaku in nategu, da ugotovimo, katera obremenitev je bolj kriti¢na.

o1=0y=03 = xy,=LJ2
03>0 = z5=0
01<0 = xzclIZL
o3<0 = |(72/O'1 ‘S(Ufcc/afct) = xfi:
01>0 = ;
|02/Ul‘>(‘7f06/0fct) = g

o1 <0y = analogno kot pri o; > oy

Princip virtualnega dela

Virtualno osno deformacijo &% v i-tem sloju interpoliramo na enak nacin kot pravo deformacijo, le da operator

G}, zamenjamo z operatorjem GY,, kar nam omogoca prilagodljivo interpolacijo virtualne koli¢ine. Tako kot pri
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(e)

si:add pastopa le v Ny, slojih, ki so presegli mejo nosilnosti in aktivirali nezveznost.

pravi deformaciji, dodatni del &

Izbolj$ana interpolacija virtualne deformacije prinese dodaten &len v virtualno delo notranjih sil G (€)

: S d ”CL

Bd-i—Gl Az Gmt,(e):/é\adV:/ZézazAzdm: e) fmt +Zae zh
2i,add |4 L standardno

dodatno

Vektor posplosenih virtualnih pomikov de zdruZuje vse virtualne prostostne stopnje elementa (¢e), vektor f int,(e)
pa ustrezno urejene notranje sile. Izratunamo jih kot vsoto prispevkov posameznih slojev f int,(e)i Koligina k(€

je ekvivalent notranje sile, ki ustreza virtualnemu skoku v osnem pomiku (€)%

A/ T ~T . nLooooroo . ) L
e e A B e W B e Tt
i=1 1,

L
—_————
fint,(e),4

Za operator G, obdrzimo obliko operatorja G},. ZapiSemo ga kot vsoto zveznega dela G"'/ in Dirac-delta funkcije.

Gy :GV—&-(S_TQ, /g(a:)&médx:g(xd)
L

Z upostevanjem pravila za integriranje Dirac-delta funkcije razvijemo izraz za h(€)*. Napetost v sloju o je funkcija

koordinate x. Njeno vrednost na mestu nezveznosti o| ; ozna¢imo s #* in definiramo kot napetost v nezveznosti,
xr
d

ki je konjugirana koli¢ina skoka v osnem pomiku o.

= / (G’%}—l—éwg) ol Aldr = A /G{}Uidx—l—Aial /G%,aidx—l—ti
L L 2

Iz principa virtualnega dela G'" — G = 0 izpeljemo ravnotezne enacbe konstrukcije. Poleg standardne enacbe
globalnega ravnotezja zunanjih in notranjih sil dobimo dodatno ravnotezno enacbo za vsak sloj vsakega elementa,
v katerem je bila preseZena meja nosilnosti in se je v njem pojavila nezveznost.

A ] —0, Vee {12, mpw}, Vi {12, 0l b WO =0

e=1
Tu je A “assembly” operator, npg Stevilo kon¢nih elementov v konstrukeiji, n(gz pa Stevilo slojev z aktivirano
nezveznostjo v kon¢nem elementu (e). Ce v dodatno enalbo vstavimo zgoraj izpeljani izraz za h(¢), jo lahko
jasneje interpretiramo. Predstavlja ravnoteZje med napetostmi po sloju o’ in napetostjo v nezveznosti t* posame-
znega sloja v Sibki (integralski) obliki. Ker se nanaSa le na posamezen sloj, jo imenujemo tudi enacba lokalnega
ravnotezja.

W =0 o ti:—/G'{",aidx
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Zvezni del operatorja GY,, oznacen z G, izpeljemo na tak nacin, da ohranimo fizikalni pomen napetosti v ne-

zveznosti, ki smo jo definirali kot ¢* = o* |x, . Ce se drzimo spodnje enacbe, zgornji izraz za t* vedno zavzame
d

vrednost funkcije o (z = ) za poljubno linearno funkcijo o*.

1

) ) = = _ 2 3z i

Gy (wwh) =Gy +Gyp, Glr=0,, Gy = —L(2—L>, 7y =0
2 3z i
L(I_L>; za=1

Ce bi namesto tega uporabili kar izraze, ki smo jih izpeljali za G, bi npr. v primeru 2% = 0 za ' dobili vrednost
th= Ui|L/6 # o'

i
z4=0

Materialni modeli

Lastnosti materiala opiSemo s po dvema konstitutivnima zakonoma za vsak sloj. Prvi opisuje zvezo med napetostjo
in deformacijo po sloju, drugi pa zvezo med napetostjo v nezveznosti in skokom v osnem pomiku. Za betonski
sloj uporabimo model poskodovanosti z utrjevanjem. Osni odziv je sprva linearno elasticen. Ko doseZzemo mejo
elasti¢nosti, se zacnejo zvezno po materialu pojavljati mikro poskodbe, kar se odraza v zmanjsani togosti. Ob
razbremenjevanju se deformacije zmanjSujejo premo sorazmerno z napetostjo - ¢rta razbremenjevanja se vraca

proti izhodiS¢u diagrama. Osnovne enacbe modela so izpeljane iz zakonov termodinamike, glej npr. [73].

o'=D""g, DielE ), &=Bd+G

Tu je D' podajnost sloja, ki je na zacetku enaka inverzni vrednosti elasticnega modula E, in nara¢a s pojavom
mikro poskodb. Funkcija poskodovanosti ¢* nadzira prehajanje iz elasti¢nega obnasanja v poskodovanost in obra-
tno. Konstanta o4 > 0 predstavlja absolutno vrednost napetosti, pri kateri se prvi¢ pojavijo mikro razpoke v nategu
oz. mikro drobljenje materiala v tlaku. Napetosti podobna koli¢ina ¢’ < 0 predstavlja pove¢anje meje elasti¢nosti
zaradi utrjevanja materiala. Odvisna je od deformaciji podobne spremenljivke £ in modula utrjevanja H, > 0.
Vrednosti konstant o, in H,. dolo¢imo posebej za tlak in nateg.

o' (0",0) =lo’| = (oa=a), @ =-HE

Materialni model obsega e evolucijski enacbi za notranji spremenljivki D? in £ ter pogoje obremenjevanja in
razbremenjevanja. Tu je 71 Lagrangev mnozitelj, ki izhaja iz izpeljave enacb po principu maksimalne disipacije

energije.

Obnasanje nezveznosti v betonskem sloju opiSemo z modelom meh&anja, ki povezuje spremenljivki ¢ in . Skok
v osnem pomiku je enak ni¢, dokler ne doseZemo meje nosilnosti. Od tu dalje se ' zmanjSuje z nara$Canjem

o', dokler ne pade na vrednost ni¢ (zaradi enacbe lokalnega ravnoteZja mu sledijo tudi napetosti v sloju o?).
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Ob razbremenjevanju skok v pomiku o linearno pada proti ni¢ (razpoka se zapira), kar ustreza znacaju betona.

Materialni model nezveznosti je definiran z naslednjim kompletom enacb.

: =1 . = =i/ . _ . . . =i
t=D"a', D'efo), & (0.7) =]t (0r-T), q’=ofc<1—eKCf>

Tu je D’ podajnost nezveznosti, gizal je funkcija mehcanja, ki nadzoruje prehod iz elasticnega obnaSanja v mehcéanje
in obratno, gy, > 0 je absolutna vrednost napetosti, pri kateri se aktivira nezveznost, i e [0,0¢.) je napetosti
podobna spremenljivka, ki opisuje zmanjSanje nosilnosti zaradi meh¢anja materiala, in je odvisna od pomiku
podobne spremenljivke ? in modula mehc¢anja K, < 0. Vrednosti konstant oy, in K c sta razli¢ni za tlak in nateg.
Opis modela zaklju¢imo z evolucijskima enacbama za notranji spremenljivki D'in ? ter s pogoji obremenjevanja

. . . e =1 v . .. . . . oy . . v
in razbremenjevanja, v katerih je ¥ Lagrangev mnozitelj, ki izvira iz termodinamicne izpeljave enacb.

X izszgn(tl) . - =5 15 _0

D=-—7—~ €£=7, 720 §<q

2l

[l

e
I
(=]

Za izbrani zakon mehcanja (enacba za §') se izkaZe, da je zveza med t' in o’ linearna. ReSevanje enacb lahko

poenostavimo tako, da vpeljemo novo spremenljivko le ", Enacba za ' tako dobi linearno obliko.

=i 1 % = 3 % 3
[ —— <1 —efet ) . q =0y <1 et ) = —Keopf =K

N . . iy: = . iy ey . - “ .
V izvirnem zapisu se je koli¢ina ¢" asimptoti¢no pribliZevala vrednosti oy, ko je £ nara$¢al prek vseh meja.
Posledi¢no betonski sloj nikoli ni mogel popolnoma izgubiti nosilnosti , velikost nezveznosti a? pa je bila navzgor
omejena. V novem, linearnem zapisu ¢' doseZe vrednost oy, pri neki kon¢ni vrednosti nadomestne spremenljivke

Sk v =i .. . .. Ly
£ . Ob njenem nadaljnjem nara$¢anju koli¢ina ¢' ohranja isto vrednost (nosilnost sloja je enaka ni&).

' = min {—K;E’*,afc} . K'=K.op

Ustrezno prilagodimo tudi evolucijski enacbi, ki ju izrazimo z nadomestnim Lagrangevim mnoZiteljem Eyz* To
omogoda, da skok v pomiku o nara$¢a tudi po tem, ko je sloj popolnoma izgubil nosilnost. Za obravnavo samo-
stojnega betonskega sloja to sicer ne bi imelo pomena, saj bi ob popolni izgubi nosilnosti postal nestabilen. Za
sloj, ki predstavlja le del nosilca, pa je zmoZnost prostega spreminjanja o’ potrebna, zato da poruseni sloj ne ovira
deformiranja preostalih slojev.

C

Obnasanje sloja armature opiSemo z elastoplasticnim materialnim modelom z linearnim izotropnim utrjevanjem,
katerega osnovne enacbe so izpeljane iz zakonov termodinamike [73]]. Napetost v sloju izraCunamo iz elasti¢ne
deformacije, ki je razlika med skupno deformacijo &% in plasti¢no deformacijo e';,.

o'=E,(g-¢), &=Bd+GLa’
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Funkcija te¢enja ¢’ kontrolira prehod iz elasti¢nega v plasti¢no obnasanje in obratno. Tu je oy > 0 napetost na meji
te¢enja, ¢* < 0 pa napetosti podobna koli¢ina, ki predstavlja poviSanje meje elasti¢nosti zaradi utrjevanja materiala.
Odvisna je od modula utrjevanja H > 0 in oddeformaciji podobne spremenljivke &°.

o' (0".7")=|o"| = (0y—7), §=-H{E

. v ae N w1 * ae .e . N N - =i . N « e
Potrebujemo Se evolucijski enacbi za notranji spremenljivki utrjevanja £, in £' ter pogoje obremenjevanja in razbre-

menjevanja. Tu je *"yl plasti¢ni mnoZitelj, ki izhaja iz izpeljave enacb s principom maksimalne plasti¢ne disipacije.

)

&, =Hsign(o'), &=4, §'20, ¢<0, §¢'=0, ¥¢ =0

Obnasanje nezveznosti v sloju armature opiSemo s togo-plasticnim modelom mehcanja. Do prekoracitve meje
nosilnosti oy, je skok v osnem pomiku o' enak ni¢. Nato se ob poveéevanju o napetost v nezveznosti ¢* linearno

zmanjiuje, dokler ne doseZe vrednosti ni¢. V primeru razbremenjevanja se vrednost o’ ne spreminja.

qzbi (tl "l) = |t |f (st ql), g :min{stfzi,crfs}

Funkcija (;L nadzira prehajanje med elasticnim obnasanjem in mehcanjem. Napetosti podobna koli¢ina ie [0, st]
predstavlja zmanjSanje nosilnosti zaradi mehcanja materiala. Odvisna je od pomiku podobne spremenljlvke 5 in
modula meh¢anja Ky < 0. Potrebujemo Se evolucuskl enacbi za notranji spremenljivki meh¢anja o’ in § ter
pogoje obremenjevanja in razbremenjevanja. Tu je *y plasti¢ni mnoZitelj, ki izhaja iz izpeljave enacb po principu
maksimalne disipacije energije.

<.

-
Il
=
2l
-
I
(e]

ol =F'sign(t'). € =3, 4'>0, §<o0 ¥

Racunski postopek

Konstrukcijo obremenjujemo v psevdo-Casovnih korakih. V vsakem koraku reS§imo sistem ravnoteznih enacb, pri
¢emer mora biti zados¢eno tudi kinemati¢nim in konstitutivnim enacbam. Ker so enacbe nelinearne, jih linea-
riziramo in reSujemo iterativno po Newtonovi metodi. Vsaka iteracija k je sestavljena iz dveh faz. V fazi (A)
zamrznemo trenutne vrednosti vozliSénih pomikov in posodobimo vrednosti notranjih spremenljivk, v fazi (B) pa

zamrznemo izracunane vrednosti notranjih spremenljivk in izracunamo nove vozlis¢ne pomike.

— (Vi eV AEfe)i Z(e).d A(e),i zle),i &le),i ;
D) gle)i ple)i fle)i e g Dleki e pleki &l
n+1 —(e),i
13

p,n+l7€n+l ’n41 7£n+l

. . () :
Pri znanih d;;” in "(e)’i,fﬁf)’i,a(e)’i,fi(f)’i

p,n n

Fazo (A) izvajamo na nivoju posameznega sloja kon¢nega elementa. Pri fiksiranih vrednostih pomikov d(e>’(k_l)

iz prejSnje iteracije iS¢emo pripadajoCe vrednosti notranjih spremenljivk in napetosti po sloju, ki th potrebujemo
zaraCun v fazi (B). Dokler sloj ne preseze meje nosilnosti, sta notranji spremenljivki mehcanja (D in { za beton
o0z. ' in f za jeklo) enaki ni¢ in raunamo samo vrednosti spremenljivk utrjevanja (D? in £ za beton oz. "; in &

za jeklo). Ko se nezveznost aktivira, se spremenljivke utrjevanja ne spreminjajo ve¢ in iS¢emo samo spremenljivke
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mehcanja. V vsakem primeru je postopek enak. Predpostavimo elastiCen testni korak, kar pomeni, da notranje
spremenljivke ohranijo vrednosti iz prejSnjega koraka, nato izra¢unamo testni vrednosti napetosti v sloju funkcije
te¢enja. Ce je slednja negativna, je bila predpostavka pravilna in obdrzimo testno resitev. V nasprotnem primeru
posodobimo notranje spremenljivke skladno z evolucijskimi enacbami, pri ¢emer moramo zadostiti tudi pogo-
jem obremenjevanja in razbremenjevanja. Izracunamo koncno vrednost napetosti, ki jo potrebujemo za izracun
notranjih sil kon¢nega elementa (prispevek tega sloja).

str( )Adqtr( 0) Afstr( )

n+1 Kslr,(k) B [Kgfl,l(k)} ’ Afstr( 0) _ NEE [fext,(e) _fin[,(e),(k)

n+1 n+l > n+l n+1 n+1 n+1

V fazi (B) re§imo linearizirani sistem ravnoteZnih enacb, v katerem so neznanke prirastki pomikov konstrukcije
Ad::ﬁl ), Operator A sestavi prispevke posameznih elementov v togostno matriko Km< ) in rezidual Af:i(lk)
celotne konstrukcije. Togostne matrike in notranje sile posameznih elementov izracunamo kot vsoto prispevkov
posameznih slojev.

e),i,(k t,( t,(
= ZK;L ( )7 :IH Zf’:ln+l
Prispevke Kgflll () posameznih slojev k togostni matriki elementa izraCunamo z naslednjima izrazoma.
. o). (e),i,(k) fd,(e),i o (€),i, (k) { p-he,(e),i,(k)\ L yrhd,(e) i, (k)
26{1727""”(0}4}‘ Kn4)»1< Kn+(1 e )_KnJrf ( )(Kn+l( ( )) Kn+l :
ie{ni+ s KT = KGO

Tu je ny, Stevilo slojev v kon¢nih elementih, n(gz Stevilo slojev v elementu (e), ki so prekora¢ili mejo nosilnost.
Dodatni €len v prvem izrazu je posledica izloCitve neznank aifl’f R 4y globalnega sistema enacb s kondenzacijo
lokalnih ravnoteZnih enacb hgflf (k) 0. Opomba: v slojih armature, ki so Ze aktivirali nezveznost, vendar se

trenutno elasti¢no razbremenjujejo (Ao’ = 0), je dodatni ¢len zaradi kondenzacije enak nié.

int,(e),i,(k) mt (k)
e _ O’ Fatedink) _ O

M gD T 804(1)’11’(16)

(e).(F) "

KP4 _ A Jhe 8 _ o™
nt (k—1 n+

od i 50l

V zgornjih enacbah so definirane vse komponente, potrebne za izracun Kill ‘") Ko izratunamo nove vrednosti

vozli§¢nih pomikov konstrukcije, jih zamrznemo in vstopimo v fazo (A) naslednje iteracije.

Adstr,(k) _ (Kstr,(k)) Afstr( )

tr, (k tr,(k—1 t
n+1 n+1 dsr( ):dsr( )J’_Adsr( )

n+l > n+1 n+1 n+1

str

Z iteriranjem nadaljujemo, dokler ne doseZemo zahtevane konvergence HAf str, (k) ‘ il

H < tol, potem
stopimo v naslednji psevdo-Casovni korak.
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VECSLOJNI KONCNI ELEMENT ZA TIMOSENKOV NOSILEC S PO SLOJIH VGRA JENIMI
NEZVEZNOSTMI V OSNEM POMIKU

V poglavju [ izpeljemo veéslojni kon¢ni element za TimoSenkov nosilec, ki ima vgrajene nezveznosti v osnem
pomiku po posameznih slojih. Element omogoca detajlno porusno analizo armiranobetonskih nosilcev in okvirjev
s samodejno identifikacijo kriticnih mest v konstrukciji, na katerih pride do lokaliziranih deformacij (plasti¢nih
¢lenkov). Vecslojna zasnova elementa omogoca pregled nad nastankom in razvojem poskodb materiala v posa-
meznih slojih ter nad napredovanjem nezveznosti (razpok) po viSini nosilca. Materialne karakteristike elementa
so definirane loceno od geometrijskih in jih je mo¢ dolo€iti z enostavnimi tlaénimi ali nateznimi testi betona in
jekla. Vecslojni element lahko zato uporabimo za izra¢un rezultantnih materialno-geometrijskih lastnosti (diagram
moment-ukrivljenost), ki so znacilne za posamezen prerez in jih potrebujemo kot vhodni podatek pri analizi z
enostavnejSimi, rezultantnimi kon¢nimi elementi. V primerjavi z ve¢slojnim elementom za Euler-Bernoullijev no-
silec, je tu izpeljani element enostavnejsi, saj je napetostno stanje konstantno po njegovi dolZini. To se odraza v

preprostejsi aplikaciji in odsotnosti nekaterih tezav, ki spremljajo element iz prejSnjega poglavja.

Vecslojni kon¢ni element je zasnovan na teoriji majhnih deformacij. Razdeljen je na vec slojev betona in armature,
ki jih obravnavamo loceno, kot palice. Vsak sloj ima vgrajeno nezveznost v osnem pomiku, ki se razvija neodvisno
od drugih slojev. Osni odziv betonskega sloja je opisan z modelom poskodovanosti z utrjevanjem zvezno po sloju
in z modelom poskodovanosti v meh¢anju za nezveznost. Osni odziv sloja armature je opisan z elastoplasti¢nim
modelom z utrjevanjem materiala zvezno po sloju in s plastiénim modelom mehc¢anja na mestu nezveznosti. Pred-

postavimo linearno elasticen strizni odziv.

Kinematika

Obravnavamo raven dvovozli$¢ni kon¢ni element za ravninski TimoSenkov nosilec. Vsako vozlis¢e ima tri prosto-
stne stopnje - dva pomika in zasuk. Osni pomik @ (x) srednje osi nosilca interpoliramo med vozli§¢na osna pomika

u z linearnimi interpolacijskimi funkcijami N (2-). Enako interpoliramo zasuk 6 (x) med vozli§¢na zasuka 6.

(@) =N@u, 0@ =N@)6, N@)={NN}={1-7.7}
Linearna interpolacija pre¢nega pomika @ (z) srednje osi nosilca bi privedla do striznega blokiranja kon¢nega
elementa, Cemur se izognemo z dodatno kvadrati¢no interpolacijsko funkcijo N3 (x). Parameter v3 dolo¢imo tako,

da je kon¢ni element sposoben opisati napetostno stanje brez striznih napetosti v primeru konstantnega momenta.

. 4(L—z)x L
0 (x) =N(x)v+ N3 () vs, N3(x):(];72), U3=§(91—92)
Strizno deformacijo ~ izraCunamo s spodnjo enacbo. Opazimo, da je konstantna tako po dolZini, kot tudi po viSini

kon¢nega elementa.

o~ 11 1 1
— % _G—_BviBO, B={B,B)={——, -\ B'={B B}={-- -
Y o 0 v+ 0, { B 2} { LvL}v { 5 } { K 2}

Nosilec razdelimo na poljubno Stevilo slojev po viSini. Za dovolj fino razdelitev lahko predpostavimo konstantno
napetostno stanje po debelini posameznega sloja. Osni pomik u () i-tega sloja izratunamo v njegovi srednji osi,

ki je za ¢’ oddaljena od srednje osi nosilca.
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h uz,add

u' (z,2}) = () —y'0 (z) + M" (z,2}) o

Na zacetku pomik opisemo le s standardnim delom i’ (z) zaradi osnega pomika in zasuka srednje osi nosilca.
Ko napetost v sloju prekoraci mejo nosilnosti, se v sloju (pri koordinati z%)) pojavi nezveznost v osnem pomiku.
i,add (

Dodatni osni pomik u x, xﬁi) zaradi nezveznosti opisemo z interpolacijsko funkcijo M* (:Jc7 :vfi) in z velikostjo

skoka v pomiku a’. Osno deformacijo i-tega sloja izratunamo kot odvod osnega pomika.

=i i,add
yo Bu—y'BO+G" (z,z}) o
x

' (z,aly) =
Standardni del osne deformacije & je konstanten po posameznem sloju. Operator G je odvod oblikovne funkcije
M in ga bomo opisali v nadaljevanju. Standardno osno deformacijo &' in strizno deformacijo v lahko zapis§emo
tudi krajse.

=B o —yBla=Bd, y=|0 B B|d=Bd, d"={u"v" 67}

T " ; . o iex . e i T .
Za pomoc pri izpeljavi funkcije M* definiramo “vozli§¢ne pomike sloja” u* = {ui,u%} kot vrednosti standar-

dnega pomika sloja i’ () v vozlis¢ih kon¢nega elementa.

w' = {a],_g @], } = {uw— g0y}

Ker je pomik i’ linearen, lahko njegovo interpolacijo zapiSemo tudi drugace - z linearnimi interpolacijskimi funk-

cijami N (z) in vozlis¢nimi pomiki sloja. Pritejemo mu dodatni pomik zaradi nezveznosti u*?<,

@' (z) =@ (x) —y'0 (x) = N(z)u’, u? (x,acil) =@ (z)+ M’ (:C,xﬁl) o

Da bi celotni pomik sloja u’ ohranil vozli§¢ne vrednosti u’, mora imeti funkcija M v vozli§¢ih (pri = 0 in L)
vrednost ni¢, za opis nezveznosti pa potrebuje enotski skok pri koordinati 2. Pogojem najlaZe zadostimo tako, da
za M* uporabimo Heaviside-ovo funkcijo H zh od katere odStejemo interpolacijsko funkcijo V5.

M (z,2}) o' = HTQ (z,2}) = N2 (2)
Upostevamo, da je odvod Heaviside-ove funkcije Dirac-delta (obe funkciji sta definirani v prejSnjem razdelku), in

zapiSemo izraz za operator G*.

i i 0 i i ~i i i ~i 1
G (x,xd):%M (z,2))=G"+G', G :612, G =—Bgz—f
Glede na konstantno napetostno stanje vzdolZ sloja, se lahko nezveznost pojavi kjerkoli. Brez izgube sploSnosti jo

lahko postavimo v sredino sloja 2%, = L/2 .
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Princip virtualnega dela

Virtualno osno deformacijo &% i-tega sloja in virtualno strizno deformacijo 4 interpoliramo na enak naéin kot pravi

koli¢ini. Dodatni del virtualne deformacije £%44

nastopa le v slojih, kjer je napetost presegla mejo nosilnosti in
se je oblikovala nezveznost v pomiku. IzboljSana interpolacija prinese dodaten ¢len v virtualnem delu notranjih sil

Gint(¢) elementa (e).

i win st A wen o )T pint,(c 2@ (e)i
doBat+cial,  s=Bda G / o+ 47)dV = @@ pinue) 4 ; ale)ip(e)
gi,add v standardno =

dodatno

Vektor d(©) zdruZuje vse virtualne prostostne stopnje elementa (e), vektor f int,(¢) pa ustrezno urejene notranje sile.
IzraCunamo jih kot vsoto prispevkov posameznih slojev fint(e)i Koligina k(€ je ekvivalent notranje sile, ki

ustreza virtualnemu skoku v osnem pomiku atei,

&(6>T = {ﬁT,f'T,éT}, fint(e) — nZL’ (f}iTai —|—I§*T7'i) AL, ple)i = /GiaiAidm
i=1

fint,(e),3

Z upostevanjem prej izpeljanega izraza za operator G* in pravila za integriranje Dirac-delta funkcije (zapisano v

prejSnjem razdelku) razvijemo izraz za ) Vrednost napetosti na mestu nezveznosti o'

i oznatimo s t' in
Tg

definiramo kot napetost v nezveznosti, ki je konjugirana koli¢ina skoka v osnem pomiku a.

/ GL+(5 ot Aldx = Ai/éioidac—i—Ai ol i = A’ /G”b’dx—&—ti
d
L L L

Princip virtualnega dela G™™ — G = 0 nas pripelje do ravnoteZnih enacb konstrukcije. Poleg standardnega global-
nega ravnoteZja notranjih in zunanjih sil dobimo dodatno ravnoteZno enacbo za vsak sloj posameznega elementa,

v katerem je bila prekora¢ena meja nosilnosti in se je v njem pojavila nezveznost.

A [ ] 0, Vee {12, npp}, Vie {1,200} RO =0

e=1

Tu je A “assembly” operator, nrpg Stevilo konénih elementov v konstrukciji, n(gz pa Stevilo slojev z aktivirano
nezveznostjo v konénem elementu (e). Dodatno enacbo lahko jasneje interpretiramo, e vanjo vstavimo prej
izpeljana izraza za € in G?. Vidimo, da zahteva enakost napetosti v sloju o in napetosti v nezveznosti t. Ker

se nanasa le na posamezen sloj, jo imenujemo enacba lokalnega ravnotezja.

WO =0 & ti= —/Giaidxzai
L

Materialni modeli

Predpostavimo linearno elasti¢en striZzni odziv, ki ga opiSemo s spodnjo enacbo, v Kateri je ¢ strizni korekcijski

faktor za pravokotni prerez, i pa strizni modul betonskega ali jeklenega sloja, ki ga izraGunamo iz ustreznega
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elasti¢nega modula in Poissonovega koli¢nika.

g = ? = 5 6 g = ——
T'=cpty,  e=5/6,  p'=3 )
Osni odziv sloja opiSemo popolnoma enako kot pri ve¢slojnem elementu za Euler-Bernoullijev nosilec v prej$njem

razdelku, torej z dvema materialnima zakonoma za betonski sloj in z dvema za sloj armature.

Racunski postopek

Racunski algoritem je enak tistemu pri Euler-Bernoullijevem nosilcu v prejSnjem razdelku, le da se za racun
notranjih spremenljivk, napetosti, notranjih sil itd. uporabljajo malce drugacni (enostavnejsi) izrazi. Poleg tega se

pri TimoSenkovem nosilcu ni potrebno ukvarjati z dolo€anjem lokacije nezveznosti.

NADGRADNJA VECSLOJNEGA KONCNEGA ELEMENTA ZA TIMOSENKOV NOSILEC
Z VISKOZNO REGULARIZACIJO ODZIVA V MEHCANJU

V poglavju 5] nadgradimo ve¢slojni konéni element za TimoSenkov nosilec iz prej$njega poglavja z viskozno re-
gularizacijo odziva v mehcanju. Pri tej metodi vpeljemo dodatno viskozno silo v nezveznosti, katere namen je
prepreciti hkraten pojav ve¢ nezveznosti v homogenem napetostnem polju. Ce se nezveznost pojavi v ve¢ kon¢nih
elementih hkrati, viskozna regularizacija da prednost enemu izmed njih. Izbrani element se mehca naprej, ostali pa
se elasti¢no razbremenjujejo. Izbira prednostnega elementa se izvede na podlagi hitrosti napredovanja nezveznosti.

v”

Hitreje kot nezveznost raste, bolj se njena rast vzpodbuja, tako da v kon¢ni fazi samo “najhitrej$i” element razvije
nezveznost. Z vpeljavo viskozne sile malenkostno spremenimo ravnoteZne enacbe, medtem ko kinemati¢ne in
konstitutivne enacbe ostanejo nespremenjene. Posledi¢no se rahlo spremenijo doloCeni izrazi, ki jih uporabljamo

v racunskem postopku.

Princip virtualnega dela

V vecslojnem elementu vpeljemo viskozne sile v vsak sloj posebej in jih upoStevamo pri racunu virtualnega dela
notranjih sil elementa (e). Izrazu G(€) ki smo gaizpeljali v poglavju priStejemo dodaten ¢len zaradi viskoznih
sil, ki delujejo na virtualnih skokih v pomiku &(¢) in katerih velikost je odvisna od hitrosti narai¢anja (pravega)
skoka v pomiku ¢(¢)% in od viskoznega parametra 7)* posameznega sloja.

néy

(e)
. . el , S .
G;g;( Glnt + Z & (e) 1 (e) AT — "(e)Tflnt,(e) + Z &(e),z (h(e),z+nzo~é(e),1Az>
v i=1

viskozna sila

ple)si

reg

Dobljeni izraz Gigg'(e) imenujemo regularizirano virtualno delo notranjih sil. Spremenjeni izraz ob virtualnem

skoku v osnem pomiku &(¢)% oznagimo s h(rgé’l. Dodatno ga lahko razvijemo, &e upostevamo znani izraz za h(©):.

W' = Al /Giaiderti + '@’ At = A /Gioidx—i—ti—i—nio’/
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Tu je G* = —1/L oblikovna funkcija za interpoliranje dodatnih napetosti zaradi nezveznosti, o je napetost v
sloju, ' napetost v nezveznosti in A prerez i-tega sloja. Iz principa virtualnega dela Gir‘gtg — G*' = 0 izpeljemo

ravnotezne enacbe konstrukcije.

by fim’@—fe"%(eq:(), vee{1,2,...,nFE},vz'e{l,z,...,ngz}: Bk =0
1

e=

Enacbe globalnega ravnoteZja konstrukcije so popolnoma enake kot pri elementu brez viskozne regularizacije,
enacbe lokalnega ravnoteZja pa obdrZijo isto obliko, le izraz hle)i je nadomescen s h(;;)“. Ce razvijemo lokalno
ravnoteZno enacbo i-tega sloja, opazimo, da o* in ¢ nista ve¢ enaka. Z vpeljavo viskozne sile torej v sloj vnesemo

(majhno) neravnoteZje med napetostmi v sloju in v nezveznosti.
h(rgzgﬁi =0 & t'= f/éiaidx —nlat =o' —n'a
L

Racun notranjih spremenljivk

Vsiljeno neravnoteZzje v sloju se odraza v nekoliko spremenjenih izrazih, ki jih uporabljamo pri racunu notranjih

spremenljivk v fazi (A) posamezne iteracije. V betonskem sloju se izraz za testno vrednost napetosti v nezveznosti
(k),trial
t

il spremeni na naslednji nacin.

i (k1) sq--) . _n
t(k),trial _ Bdn-l,-l _ N t(k),trial _ Bdn+1_ + D" ATt O[n_
s D,—GD, s Dy~ GDy+ Dy~ D,

Tu je AT, 4+1 = Th+1 — T, prirastek psevdo-Casa, ki izhaja iz zapisa psevdo-Casovnega odvoda &) v inkrementalni

(k)

obliki. Podobno se spremenita izraz za 5", 1, s katerim posodobimo vrednosti notranjih spremenljivk v primeru

n+1°
prekoracene nosilnosti (ko je éﬁ’f”“l > 0), in izraz za skok v pomiku v primeru popolne izgube nosilnosti (ko je
(k)
R
n+1

Z(k)strial (& AF = n 7 ) < (k—1) A—1l 7
=x(k) _ On i) (D” G D+ Dn Kragi On (k) _ Bd, " +D, A7 Y7
Tnt1 = K:Dyp—G+ Dyt S R Cpy g
Tn+l1 Tn+1
V sloju armature dobita izraza za %gfg 1» S katerima posodobimo vrednosti notranjih spremenljivk (v primeru, da je
$UFrtrial - 0), naslednjo obliko,
d:)(k),trial
=A n+l F o =A
Tn+1 = A 7 - K (£n+7n+l) < 0ys
S(k) _ GE+ Kot 5.
Tnt1 = (k),trial
=B buti P sA
Tn+1 = —GE + n > _KS (£n+7n+1) >Qf5
S At

Vsi navedeni izrazi prevzamejo prvotno obliko (kot v konénem elementu brez viskoznosti), ¢e vanje vstavimo

vrednost viskoznega parametra 77 = 0. Opomba: v izrazih sta opus¢ena indeksa (e) in 1.
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Racun vozlis¢nih pomikov

Pri reSevanju ravnoteZnih enacb moramo upostevati, da je h(rﬁé’l odvisen ne le od vozlis¢nih pomikov elementa de

in skoka v osnem pomiku i-tega sloja @ temvet tudi od njegovega psevdo-Casovnega odvoda alehi,

(0)ir(k) i

PEVEH (@S oW GDER) O (g GO0 il

reg,n+1 n+1 ’n+1 | n+1 +1 Qnt

(e)i,(k)

n+1
ga koraka i m ATn_H = Tn+1 T, prirastek psevdo-Casa od prejSnjega do trenutnega koraka. IzraCunamo lahko tudi

(e)si

Odvod ¢(¢)? zapisemo v inkrementalni obliki, kjer je o trenutna vrednost skoka, o, vrednost iz prej$nje-

odvod 9a®) + / 6 (k) , ki ga potrebujemo pri racunu togostne matrike elementa.

(e)7i)<k) (e>’7; (90'z(€)’i’(k> 1

gleik) _ Ong1 T On ntl
= ; T
nt A’7—n+1 aasi)r’ll’(k) ATn+1

Togostna matrika elementa je dolocena z enakim izrazom kot prej, le pri racunu posameznih komponent moramo

upostevati odvisnost izrazov od (€)%,

&

nl

e),(k d, a,(e),i ha,(e),i,(k -1
KEL-?-I( )= (K{w(l) o K’er-l( hue )(Kn—H( ol )) Kn+1 + Z Kn+1

Q
=

.
I

1*”(CZ+1

Komponenti Ki‘i’(le)’ (k) in Kfﬁﬂ(ﬁ) (k)

pri elementu brez viskoznosti. Komponenti K

f:lnige)’i’%) enaki kot
(e)yi

pa sta sedaj definirani kot odvoda h e,

ostaneta nespremenjeni, saj so izrazi za notranje sile

hd,(e),i,(k) . ha,(e),i,(k)
n+£ J ) in Ko )

namesto h(€)i.

int, (e),4,(k) int,(e),i,(k)
SR S T
" adle = " PINE
n+l1 n+1
(e),i,(k) (e),i,(k)
Khdvge%i&k) M Khai(e),i,(m _ %reginﬂ
nt n+ e),i,(k
o ol

hd,(e),i,(k)

Izkaze se, da je tudi komponenta K enaka kot prej, saj psevdo-casovni odvod @l pj funkcija vozliS¢nih

n+1
pomikov de.

od prej dodatno
e)i, €)i,(k . (e),i,(k e).i,(k
Khd(e)i(k) _ Oniar ) omi N 9, A= omy
n+l 5d£l+1<k 1) 8d( (k 1) 3d51+1k 1) ad( k 1)

=0
ha,(e),i,(k:)'

Spremeni se torej samo komponenta K}
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od prej dodatno
ha(e),i, (k) 3h£§g)’:{(+k1) ont) " 5'0'452’11 W el
Ko = i~ aea® T a1 AT oam A
da, ) da, 7y Oa, 'y Oa, 'y’ ATt
=1/Amp 4

ZdruZevanje togostnih matrik in rezidualov posameznih elementov v togostno matriko in rezidual celotne kon-
strukcije izvedemo enako kot prej. Nato izraCunamo prirastke vozli§¢nih pomikov in stopimo v naslednjo iteracijo.

Ko dosezemo zahtevano konvergenco rezultatov, nadaljujemo z analizo pri naslednjem psevdo-Casovnem koraku.

ZAKLJUCKI

Cilj doktorske naloge je bil razviti kon¢ne elemente, sposobne verodostojnega modeliranja lokaliziranih porusitev
v armiranem betonu, za numeri¢no analizo armiranobetonskih nosilcev in okvirjev do popolne porusitve. Za mo-
deliranje lokalizirane porusSitve smo uporabili metodo vgrajene nezveznosti, pri kateri se interpolacijo pomikov v
standardnem kon¢nem elementu nadgradi z nezvezno funkcijo, ki omogoca opis skoka v pomiku znotraj elementa.

Izpeljali smo kon¢ni element na nivoju rezultant napetosti z vgrajeno nezveznostjo v zasuku za ravninski Euler-
Bernoullijev nosilec. Element temelji na teoriji majhnih deformacij, elastoplasti¢cnem materialnem modelu z bili-

nearnim utrjevanjem in zakonu linearnega plasticnega mehcanja v nezveznosti.

e Kljub enostavnosti je koncni element sposoben opisati vse bistvene znacilnosti odziva armiranobetonskih

nosilcev - razpokanje betona, te¢enje armature in lokalizirano porusitev nosilca.

e Koncni element omogoca analizo konstrukcij do popolne izgube nosilnosti, zato lahko poleg mejne nosil-
nosti analiziramo tudi duktilnost in post-kriticno obnaSanje konstrukcije.

e Rezultati numeri¢nih primerov se razmeroma dobro ujemajo z drugimi rezultati, dostopnimi v literaturi, in

z eksperimentalnimi rezultati.
e Koncni element zagotavlja odziv v meh¢anju, neodvisen od mreze kon¢nih elementov.

e Kot vhodni podatek potrebujemo diagram moment - ukrivljenost in diagram moment v nezveznosti - skok

v zasuku. Lahko ju dolo¢imo z eksperimentom ali izracunamo z natan¢nej$im kon¢nim elementom.

e Element bi lahko nadgradili z meSanim materialnim modelom, ki bi poleg plasti¢nih deformacij znal opi-
sati tudi zmanjSano togost betonskega prereza zaradi mikro-razpok, ali z vpeljavo skoka v osnem pomiku,

vendar za obiCajne armiranobetonske nosilce ni pri¢akovati bistveno drugacni rezultatov.

Izpeljali smo vecslojni kon¢ni element za Euler-Bernoullijev nosilec, ki ima po slojih vgrajene nezveznosti v
osnem pomiku. Zasnovan je na teoriji majhnih deformacij. Nosilec razdelimo na vec¢ slojev betona in armature.
ObnaSanje betonskega sloja je opisano z modelom poSkodovanosti z utrjevanjem zvezno po sloju in z modelom
mehcanja v nezveznosti. Sloj armature je opisan z elastoplasticnim modelom z linearnim utrjevanjem zvezno po
sloju in z modelom plasti¢nega linearnega meh¢anja v nezveznosti.

e Koncni element je bil namenjen za natan¢no analizo armiranobetonskih okvirjev in nosilcev ter za racun
rezultantnih (materialno-geometrijskih) karakteristik poljubnih armiranobetonskih prerezov, potrebnih pri
analizi z rezultantnimi kon¢nim elementi, vendar element ne deluje, kot je bilo zamiSljeno. NaSli smo vec

nepravilnosti.
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Interpolacijsko funkcijo za dodatne napetosti zaradi nezveznosti smo izpeljali na izoliranem sloju ob pred-
postavki, da se lahko prosto deformira. To ne drzi, saj je sloj povezan z ostalimi sloji preko vozlis¢nih
pomikov. Posledi¢no se dodatne napetosti, ki so posledica nezveznosti, ne morejo pravilno razporediti. Na-
petost v sloju nadziramo samo na mestu nezveznosti, kjer mora biti enaka napetosti v razpoki, torej pada z

rastjo nezveznosti. Drugod po sloju lahko napetosti celo preseZejo mejo nosilnosti.

RavnoteZje se zagotavlja samo na nivoju koncnega elementa, ne pa tudi na nivoju posameznega sloja. V
disertaciji smo predstavili numeri¢ni primer armiranobetonskega nosilca v ¢istem nategu, v katerem se je
napetost spreminjala linearno (!) po dolZini posameznega sloja. Ce bi posamezen sloj osamili, ne bi bil v

ravnoteZzju, nosilec kot celota pa je, saj se neravnoteZja posameznih slojev medsebojno iznicijo.

e Skoki v osnem pomiku v posameznih slojih so popolnoma neodvisni med seboj. V enem od numeri¢nih
primerov nosilca (s simetricnim prerezom) v Cistem nategu smo opazili linearno spreminjanje velikosti
nezveznosti po visini nosilca (negativna na spodnjem robu, pozitivha na zgornjem robu in ni¢ v sredini).
Kot posledica se je pojavil precni pomik prostega konca nosilca brez kakrSne koli pre¢ne obteZbe.

V kinematiki na nivoju elementa ni nezveznosti (v zasuku). Srednja os elementa se vedno deformira skladno
s standardno Euler-Bernoullijevo kinematiko, torej je gladka, tudi ¢e nosilec izgubi vso nosilnost. Vsak
sloj zdrsne po tirnici, ki je vzporedna s srednjo osjo elementa. To ne bi smelo povzrocati vecjih tezav,
¢e uporabimo dovolj fino mreZo kon¢nih elementov. PoSkodovani kon¢ni element ima namre¢ povecano
ukrivljenost v primerjavi s sosednjimi elementi, kar lahko interpretiramo kot skok v zasuku, razmazan na
celoten element.

e Opazili smo odvisnost rezultatov od mreZe kon¢nih elementov, ki je bila najlepSe vidna v primeru konzole
v Cistem upogibu. Zaradi konstantnega napetostnega stanja vzdolZz nosilca se nezveznosti pojavijo hkrati v
vseh kon¢nih elementih. Ob isti vrednosti vsiljenega zasuka na prostem koncu konzole v fini mreZi nastane
vecje Stevilo manjSih nezveznosti, v grobi mrezi pa manjSe Stevilo vecjih nezveznosti. Skladno z zakonom
mehcanja, napetost v nezveznosti pada z naras¢anjem njene velikosti. Ob istem vsiljenem zasuku torej s
fino mreZo izracunamo vecji moment kot z grobo. Do najvecjih odstopanj pride v zadnjem delu odziva,
ko se element kot celota za¢ne mehcati, obicajno zaradi odpovedi natezne armature. Tezavo reSimo tako,
da malce oslabimo armaturo v enem od kon¢nih elementov, s ¢imer preprecimo hkratno odpove armature
v vseh elementih. Ce konzola odpove zaradi drobljenja betona v tlaku, problema ne moremo resiti tako
elegantno. Poleg tega se ne moremo izogniti (man;jsi) odvisnosti od diskretizacije zaradi meh¢anja betona v

nategu, preden element kot celota doseZe mejno nosilnost.

e Glede na naStete pomanjkljivosti obravnavanega vecslojnega elementa za Euler-Bernoullijev nosilec ne mo-
remo priporociti za sploS$no uporabo. Edina sprejemljiva aplikacija elementa je za primere s konstantnim
napetostnim stanjem vzdolZ nosilca (Cisti upogib ali Cisti tlak/nateg). Ob tem je treba poskrbeti za pra-
vilno lociranje nezveznosti znotraj elementa. V primeru Cistega upogiba se ne moremo popolnoma izogniti
odvisnosti od diskretizacije.

Izpeljali smo vecslojni kon¢ni element za Timosenkov nosilec, ki ima po slojih vgrajene nezveznosti v osnem
pomiku. Zasnovan je na teoriji majhnih deformacij. Nosilec razdelimo na vec slojev betona in armature. ObnaSanje
betonskega sloja je opisano z modelom poskodovanosti z utrjevanjem zvezno po sloju in z modelom mehcanja v
nezveznosti. Sloj armature je opisan z elastoplastiénim modelom z linearnim utrjevanjem zvezno po sloju in z

modelom plasti¢nega linearnega meh¢anja v nezveznosti.

e Konc¢ni element omogoca detajlno analizo armiranobetonskih nosilcev in okvirjev do popolne porusitve, za-
radi Cesar lahko poleg dolocitve mejne nosilnosti konstrukcije dolo¢imo tudi njeno duktilnost in analiziramo
njeno post-kritiéno obnasanje. V vsaki fazi analize je na voljo podroben opis stanja materiala v konstrukciji

(Sirjenje poSkodovanosti betona, plastificiranja jekla in lokalizirane odpovedi obeh materialov).
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e Koncni element ni namenjen ciklicnemu obremenjevanju, vendar kljub temu prenese manjSe spremembe
predznaka napetosti, ki se v nekaterih slojih lahko pojavi zaradi premika nevtralne osi tudi pri monotonem

obremenjevanju.

e Potrebujemo dva materialna zakona za vsak material - zvezo med napetostmi in deformacijami po sloju ter
zvezo med napetostjo in skokom v pomiku v nezveznosti. Lahko jih dolo¢imo z nateznim/tlaénim preiz-
kusom. Zaradi tega je element primeren za racunanje rezultantnih (materialno-geometrijskih) karakteristik

poljubnih armiranobetonskih prerezov, potrebnih pri analizi z rezultantnimi kon¢nim elementi.

e Pri numeri¢nih primerih smo opazili odvisnost rezultatov od mreze koncnih elementov, ki je bila najlepse
vidna pri konzoli v ¢istem upogibu. Zaradi konstantnega napetostnega stanja vzdolZ konzole se nezveznosti
pojavijo v vseh kon¢nih elementih hkrati. Ob isti vrednosti vsiljenega zasuka na prostem koncu konzole
v fini mreZi nastane vecje Stevilo manjSih nezveznosti, v grobi mreZi pa manjSe Stevilo vecjih nezveznosti.
Skladno z zakonom mehcanja, napetost v nezveznosti pada z naras¢anjem njene velikosti. Ob istem vsi-
ljenem zasuku torej s fino mrezo izracunamo vecji moment kot z grobo. Do najvecjih odstopanj pride v
zadnjem delu odziva, ko se element kot celota zacne mehcati, obiajno zaradi odpovedi natezne armature.
Tezavo reSimo tako, da malce oslabimo armaturo v enem od kon¢nih elementov, s ¢imer preprec¢imo hkra-
tno odpove armature v vseh elementih. Ce konzola odpove zaradi drobljenja betona v tlaku, problema ne
moremo resiti tako elegantno. Poleg tega se ne moremo izogniti (manjSi) odvisnosti od diskretizacije zaradi

mehcanja betona v nategu, preden element kot celota doseZe mejno nosilnost.

e Odvisnost rezultatov od diskretizacije zaradi mehcanja betona v nategu je bila bolj ocitna v primeru konzole
s precno silo na prostem koncu. Ker je element sposoben opisati samo konstantno napetostno stanje po
svoji dolZini, je za zadovoljiv opis linearnega momenta potrebna precej fina mreza koncnih elementov.
Drobljenje mreZe poveca Stevilo in zmanjSa velikost razpok ter tako povzroci vecje napetosti v tegnjenem
betonu. Posledica tega je obcutno precenjena vrednost momenta na meji te¢enja.

e V kinematiki na nivoju elementa ni nezveznosti (v zasuku). Srednja os elementa se vedno deformira skladno
s standardno Euler-Bernoullijevo kinematiko, torej je gladka, tudi e nosilec izgubi vso nosilnost. Vsak
sloj zdrsne po tirnici, ki je vzporedna s srednjo osjo elementa. To ne bi smelo povzrocati vecjih tezav,
¢e uporabimo dovolj fino mreZo kon¢nih elementov. PoSkodovani kon¢ni element ima namre¢ povecano
ukrivljenost v primerjavi s sosednjimi elementi, kar lahko interpretiramo kot skok v zasuku, razmazan na
celoten element.

e Koncni element smo testirali na ve¢ numeri¢nih primerih. V nekaterih primerih so se rezultati analize dobro
ujemali z drugimi rezultati, dostopnimi v literaturi, in z rezultati eksperimentov. V nekaterih primerih pa je

prislo do vecjih odstopanj.

e Preden lahko element priporo¢imo za splo$no rabo, je treba natan¢no preuciti tezave z odvisnostjo rezultatov
od mreZe koncnih elementov, ki jo povzro¢i mehéanje betona v nategu. V primeru konzole z linearnim
potekom momentov je bil vpliv pojava obCuten, medtem ko v nekaterih kompleksnejsih primerih odstopanje
ni bilo tako opazno. Morda je vredno razmisliti o druga¢nem materialnem modelu za beton v nategu (npr.

princip razmazane nezveznosti, zanemarjena nosilnost betona v nategu, ipd.).

e Koncni element bi lahko nadgradili, tako da bi dovoljeval ciklicno nanasanje obteZbe. V ta namen bi morali
vpeljati lo¢ena kompleta notranjih spremenljivk za beton v tlaku in nategu, vendar to ni enostavna naloga.
Tlacni in natezni odziv betona namre€ nista neodvisna, njuna povezava pa ni ¢isto preprosta.

Vecslojni konéni element za TimosSenkov nosilec smo nadgradili, tako da vkljucuje viskozno regularizacijo od-
ziva v mehCanju. V nezveznost vsakega posameznega sloja smo vpeljali dodatno viskozno silo, odvisno hitrosti
povecevanja nezveznosti in dodatnega viskoznega parametra. Dodatne sile smo upoStevali v zapisu virtualnega
dela, kar je pripeljalo do rahlo spremenjenega sistema ravnoteZnih enacb in posledi¢no do manjSih sprememb v

racunskem postopku.
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Vpeljava viskozne regularizacije je dokaj enostavna, saj zahteva le manjSe spremembe obstojecega vecsloj-

nega elementa za TimoSenkov nosilec.

Velike vrednosti viskoznega parametra lahko vplivajo na pravilnost rezultatov. Povecajo lahko mejno no-
silnost, zamaknejo krivuljo mehcanja (zakasnitev mehcanja) in povzrocijo nenicelno napetostno stanje v
elementu, tudi ko napetost v razpoki pade na vrednost ni¢. Za majhne vrednosti viskoznega parametra so ti

vplivi zanemarljivi.

Viskozna regularizacija lahko prepreci odvisnost rezultatov od mreZe konénih elementov, ki jo povzroci (fi-
zikalno nepravilen) hkraten pojav ve€ nezveznosti v homogenem napetostnem polju, vendar je uc¢inkovitost
metode odvisna od vrednosti viskoznega parametra. Optimalna vrednost parametra ni enoli¢na, saj je npr.

odvisna od izbrane velikosti obteZnega (Casovnega) koraka.

Z viskozno regularizacijo ne moremo prepreciti odvisnosti rezultatov od mreZe koncnih elementov, ki jo
povzroci mehcanje betona v nategu, ko element kot celota Se pridobiva nosilnost. Sloji betona se namrec ne

morejo prosto deformirati, ker preostali del prereza diktira njihovo obnaSanje.
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APPENDIX A: EQUAL SIGNS OF TRIAL AND FINAL VALUES OF VARIABLES

We show in this appendix that the signs of trial and final values of certain variables, appearing in computational
procedure, are equal. We demonstrate this equality for the moment in the bulk of the element M and the moment
at the softening hinge ¢ of the stress resultant finite element, and for the stress in the bulk of the layer ¢ and the
traction at the discontinuity ¢ of the multi-layer finite elements.

STRESS RESULTANT FINITE ELEMENT

Moment in the bulk of the element

Here we show that sign (Mflfﬁfl) = sign (M,+1). Index k, referring to the Newton iteration, is omitted. Behavior

of the bulk of the element is described by plasticity model with bilinear isotropic hardening, for which the following

equations hold.

trial - = Ttrial trial 5
M:z:fil = Bl (Fnt1— ’ip,n)a ¢$zr-ﬁ = \Mfzﬁf? ‘ — (M. —qn) (A.T)
If trial value of yield function _ﬂ‘}l is positive, internal variables are corrected to satisfy ¢, 1 = 0. We can also
write the updated value of the moment M, | and connect it to the trial value Mfl'j’fl

Fpn+l = Fpn + Ynr18ign (MnJrl) ) E?H»l = gn + In+1
Mn+1 =FEI (RnJrl - Fﬂp,n+1) =FEI (RnJrl - Rp,n *;YVH»ISign (MnJrl)) = (Az)

trial

it = E17p 1 sign (M, 1)

Above expressions are inserted into equation ¢,,,; = 0. We consider both options for the hardening variable §.

—Hi&ptrs Eni1 <éam
1 = { ’ L (A3)

- (My - Mc) —H, (£n+l _gAH) 5 €n+l > EAH
When &,,41 < &apr, We obtain:
énJrl = ‘MnJrl | - (Mc _QnJrl) =

= (ML — BTy 8ign (M) sign (Mi1) — (M + Hiénr) = (A4)
= M sign (M 1) — Ep 1 — (Mo + Hi€n11) =0

It follows that:

Mﬁ’f‘flsign(MnH) =EIy, 1+ M, +Hiépp1 >0 = sign (Mflﬁffl) = sign (Mp+1) (A.S5)
—_— N —

>0 >0 >0
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When &,,1 > &, we get:

(Z)nJrl = |Mn+1‘ - (Mc - Q’ﬂ‘f’l) =
= (M7 = EDny1sign (M) sign (Mo 1) — (M + (M, — Me) + Hz (Eu11 —Eam)) = (A6)
= Mﬁblilllls/ign (Mn+1) - EI'%H»I - (My + H, (f_n+l _EAH)) =0

Again, it follows that:

Mt sign (M 1) = By + My + Hy (Guir —&am) >0 = sign (ME) = sign (My11) (A7)

>0 >0 >0

Moment in the softening hinge

Similarly, we can show that sign (tﬂ‘fl ) = sign (tn+1). For the softening hinge it holds:
tyit = My, = [EIRper + Gon —Rpul,_, O =60 | = (Mu —G,) (A.8)

It éﬁf}:}l is positive, internal variables are corrected. Let us write the expression for the traction at the discontinuity
tn+1 and express it with the trial value tfﬁ’}l.

Ot = Oy +/§/n+18ign(tn+1)7 gnJrl :gn+’§/n+l

i . o (A.9)
tn+1 = Mn+1 |1d =FI [Fﬂn+1 +G0[n+1 — Rp,n} o = tf{jjl +FEI G|md ’7n+1829n (thrl)

Above expressions are inserted into equation ¢,,, ; = 0.

énJr] = ‘tn+1| - (Mu - §n+l) =
- (m"}l +EIG|, Fpei5ign (tns )) sign (tas1) — (M — G s1) = (A.10)

= tfzri(ilSign (tn+1) +EI G’Ld ’:)/n+1 - (Mu - q:n+1) =0

It follows that:

tffj‘flsign (tni1)=—FEI G‘zd Vns1+ My —§,p1) >0 = sign (tffﬁl) = sign (tn41) (A.11)
—_—
>0 20

MULTI-LAYER FINITE ELEMENTS

Stress in the bulk of a reinforcement layer

We show in this section that sign (a}fﬁ‘fl) = sign(op+1). Indices ¢ and k, referring to a certain layer and the

Newton iteration, are omitted. The bulk of a reinforcement layer is described by plasticity model with isotropic
hardening, for which the following equations hold.
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trial = = Tt l t l
Unz? = Es (5n+1 _5[),71)3 nrfﬁ - nTJ’rull ’ - Qn (Alz)

trial
n+1

expression for the final value of stress o,,+1 and connect it to the trial value a”’jj‘l.

If trial value of yield function ¢ is positive, internal variables are corrected to satisfy ¢, 1 = 0. We write the

é:p,nJrl = 5p,n + Ynr15tgn (UnJrl) ) g?H»l = gn + Yn+1

On+1 = E, (§n+l - 6_p,’thl) = Fj (§n+l - 6_p,n = Yn+15ign (Un+1)) = (A.13)

trial - .
n:}(ll E57n+1 sgn (Un+l>

Above expressions are inserted into equation ¢,, 4 = 0.

d_)n+1 = ‘Un+1| - (Uy - QnJrl) =
= (0Tt — ByAna15ign (0n41)) sign (o41) — (0 + He&pp1) = (A.14)

trial

- 0n+1 529” (Un—‘rl) Esi/n-!—l - (Uy +Hsgn+l) =0

It follows that:

trzal trial

o, stgn (ons1) = EsYny1+ oy +Hl,01 >0 = szgn( o ):sz'gn(anH) (A.15)

>0 >0 >0

Stress in the bulk of a concrete layer

We use a similar procedure for the bulk of a concrete layer. First, we write expressions for the trial values of stress
and damage function.

trial N—1= trial = Ttrial trial
oiriil =D 1,1 &  Dyoltitt=¢,., friel = |gtriat| — (04— Gn) (A.16)

Itrial

Just like before, internal variables are corrected if the trial value of yield function ¢,

is positive. We express the

final stress 0,11 with the trial value tTfl and insert it into equation Gnr1 =0.

H—1 tmal
On+1 = Dn+1€n+l = Dn+1D o,

7 ) _ (A.17)
Gnt1 = \Un+1| - (Ud - Qn+1) Dn+1D Ut”‘f sign (Un+1) - (Ud +Hcfn+1) =0
From here, we can conclude:
at’;“lllszgn (0ns1) = Dpii Dfll (ad +Hc§_n+1) >0 = sign(o, ( Kﬁ?l) = sign (on+1) (A.18)
—— N —

>0 >0 >0
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Traction at the discontinuity of a reinforcement layer

This section refers to the Timoshenko beam element. The only difference in the procedure for the Euler-Bernoulli
beam element is that the traction at the discontinuity is equal to the stress evaluated at the location of the disconti-
nuity ¢t = J\Id, instead of just £ = 0. As a consequence, certain quantities are evaluated at x4, in the same way as
for the stress resultant element above. This does not affect the procedure, nor the results.

We show in this section that sign (tﬁ‘}l) = sign (tn+1). For the discontinuity in a layer of reinforcement it holds:

tffi‘fl = iiz?l =K (§n+1 +Gay, — épﬂl) ) (b;r-ﬁl = !tflﬂl! - (Ufs —3,) (A.19)

It qzﬁﬁfﬁl is positive, internal variables are corrected. We express the final value of traction at the discontinuity ¢,
with the trial value ¢£7/4.

Qpi] = Qp —I—’E/n+18ign (tn+1)7 gnJrl = gn +;_7n+1 (A.20)
tn+1 = 0Op+1 = ES (§n+1 +G_’Oén+1 — 5;0,11) = t;”io{l +ESG’=}/R+ISZgTL (tn+1)

Above expressions are inserted into equation ¢,, 11 =0.

d_)n-ﬁ-l = ‘thrl | - (Ufs - (in—&-l) =
= (tyi5' + BsGApy18ign (tns)) sign (tng1) = (05 = §ni1) = (A21)
=714 sign (tns1) + EsGYpi1 — (075 — Gny1) =0

It follows that:

tzr—ﬁls’ign (tn—H) = _ESGFWH»I + (Ufs - q=n+1) >0 = Sign (tfﬁ—?l) = Sig’l’L (tn-H) (A.22)

>0 >0

Traction at the discontinuity of a concrete layer

This section refers to the Timoshenko beam element. The only difference in the procedure for the Euler-Bernoulli
beam element is that the traction at the discontinuity is equal to the stress evaluated at the location of the disconti-
nuity t = a\wd, instead of just ¢t = 0. As a consequence, certain quantities are evaluated at x4, in the same way as
for the stress resultant element above. This does not affect the procedure, nor the results.

First, we write the expression for the trial value of traction at the discontinuity tf[ﬁl. In this expression appears

the displacement jump af{i‘{l, which is directly dependent on tfff{l. Therefore, we have to rearrange the equation

to express the trial value of traction with known quantities.

trial _ _trial _ -1 (= ~ _trial trial __ trial
tn+1 — Ynt+l — Dn (En+1 + Gan+1 ) y Opyl = Dnthrl (A23)
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AS

5 = D, (81 + Gt
D ttrial _ = Gﬁ ttrial
nlptl = En+l + nin+l

i (Do =Gy ) = En

From here we can conclude:
trial > ~7 \ 7= ; trial Lo (E
bl = (Dn — GDn) En+l = Sign (tnrﬂ ) = sign (En+1)

—_——
>0

Exactly the same operation is performed on t,,, 1, only o!"*! and En are replaced by a4+ and 5n+1-

n+1

—1/= =
tnr1 = 0ns1 =Dy (Ens1 +Gany1),  angt = Dypsitng
We come to an equivalent conclusion:

_ _ = =1 _ X . =
tnt1 = (Dn _GDn-H) Ent1 = sign(tpy1) = sign(Env1)

|
>0

From (A:23) and (A:27) it is obvious that:

trial

sign (#714)) = sign (ta-)

Since D,, 11 is positive, we can also conclude from the second of equations (A-26)):

sign (an-H) = sign (tn+1)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
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APPENDIX B: LINEAR RELATION BETWEEN ¢ AND o IN CONCRETE LAYER

In this appendix we take a closer look at the relation between the traction ¢* and the displacement jump o’ at the

discontinuity of the i-th concrete layer. Index ¢ is omitted in the following equations.

We are interested in the case when the layer is in softening and still possesses some carrying capacity, that is when

g < of. The following equations then hold.

T=0p (1-¢5), G=—Koopee™{é = ~K.op. 05 (B.1)
The first of the following evolution equations was already used in the above expression.

: e s %/ .

£E=%5, D= - sign (1) (B.2)
Displacement jump « and its pseudo-time derivative are computed as follows.

a=Dt, a=Dt+Di (B.3)

Since we are considering a softening step, rather than elastic unloading, the failure function ¢ must be zero. We
use this requirement to write the expressions for traction ¢ and its pseudo-time derivative.

d=t|—(0je—G) =0 = t=(0p.—q)sign(t), i=—Gsign(t) (B.4)

We can now further develop the pseudo-time derivative ¢ by utilizing expressions (B.2)), and (B.1).

a= t%sign (t)— D sign(t) = 5 sign (t) + DK, Tfe eKCg;ysign(t)

_ - (B.5)
asign(t) =45 (1 +DK. oy, eKCE)
We introduce a new variable A.
. 2 > K€
. ¢ o (1 + DK, Ofc€ ) 1 1 - _
A= O‘SZ{”( ) _ I A <ech +ach> (B.6)
q —K. Ofc eke 5 Ofc c

Pseudo-time derivative A is computed by utilizing the evolution equations (B:2). Expressions for ¢ and ¢ from (B:1))
and (B.4) are also used.
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= i <€KC§=— Ufc > = l €7KC£=— afc = (B7)

We observe that A is constant in pseudo-time, since its derivative A is equal to zero. The value of A can be
determined at any particular point in pseudo-time but the obvious choice is the moment when softening begins
(denoted with index 0). Then, the values of certain variables are known: 5 0=0, 50 =0, and consequently aig =0,
do = 0. Time derivatives cj and ¢ evaluate to:

Qo= —Keopey, o =7sign(t) (B.8)
Ao Oa & o _ _sign(t) (B.9)
AG 01§ qy  Keop '

For evolution equations (B.2) and the chosen exponential softening law (B.T)), the increments Aa: and Ag are
linearly dependent.

Exactly the same behavior would be obtained by employing another set of evolution equations and softening law.

=5, a=¥sign(t), j=-K:& K:=K.ap (B.10)

Variables §= * and 5* are denoted with * to be distinguished from the original variables.

_ i*sign;(t) _ sign(t) B.11)

Ba_da
AG 0§

Q| Q-

By taking into account the initial conditions (o = 0, ¢! = 7. sign (o)), we can finally write ¢’ as a function of o’

t' = opesign (') + o Koo (B.12)

Remark. are not actual evolution equations and softening law. This is merely an aid which allows for con-
siderable simplification of the computational procedure. Due to linear form of all equations, an explicit analytical
expression can be easily obtained for §*, as opposed to %. Indeed, the calculated value of ¥* in a certain step is
different than the value of 7, but the corresponding values of o and  are correct. Of course, this procedure is only
applicable in case of the particular softening law, chosen in (B.1).
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APPENDIX C: EXPRESSIONS FOR #7i¢! AND 7, ; IN CONCRETE LAYER

In this appendix we derive the expressions for the trial value of traction tf{’f{l at the discontinuity of a concrete layer

and for the damage softening multiplier 7. ;. Both variables are used in the computational procedure, described

in section[4.3.1.3] of chapter[d]and in section [3.3.1.2] of chapter 3]

MULTI-LAYER TIMOSHENKO BEAM FINITE ELEMENT

Trial value of traction at the discontinuity of concrete layer

Once a discontinuity occurs in a concrete layer, the hardening internal variables are frozen. From then on, we
always use D,, for the bulk compliance. In a trial step, the behavior of the discontinuity is assumed to be elastic,
which means that the discontinuity compliance D and displacement-like variable E * that controls the reduction
of carrying capacity, keep the values from the previous step. The size of the discontinuity is proportional to the

traction at the discontinuity.

Atrial _ T ok trial _ Fx trial _ 7y 4trial
Dn+l _Dn’ €n+1 - an+l _Dnthr] (Cl)

The trial value of stress in the bulk is defined by equation (4.45)).

otrial = D! (Bd,, 1 + Galrie!) C2)

We multiply equation (C.2) by D,, and then use the expression (C.1)) for af{"ﬁl. We also take into account the
equality of traction at the discontinuity and stress in the bulk (4.40).

Dol =Bd,, ., + GD,t"i4 = Bd,, ) +GD, ot (C.3)

The trial values of traction at the discontinuity and stress in the bulk can easily be obtained from (C.3).

BdnJrl
Dn - Gf)n

ttmal __trial __

nt+l — Optl = (C.4)

Damage softening multiplier for concrete layer

The trial failure function is computed from (@.56), where § (g;‘lﬂ”“l) is defined by (@.61).

birial = |erist| - (Ufc +K; 5217”) (C.5)
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It gzzﬁil’”ﬁl < 0, the assumption about elastic behavior was correct and the trial values are confirmed as final. Oth-
erwise the internal variables have to be corrected. The incremental form of evolution equations in (.62)) reads as
follows.

%

1 = (™ + 55 41) sign(tn1) s &1 =&+ (C.6)

Here o' = ﬁnt‘;'l’ax =D, (O‘fc +K jngl) is the maximal elastic value of « for the given carrying capacity, that

was reached in the last softening step, see figure If |a] < o™ or equivalently |¢| < tM®% behavior of the

n

discontinuity is elastic. The failure function from (C.3) can now be rewritten, using the updated values of internal

variables (C.0).

Pri1 = ltnr1] — (Ufc+K:§:L+l) , tnpt =0ni1 =D, (Bdyyi + Gon ) (C.7

We express all unknown variables with the softening multiplier 7;;, |, which remains the only unknown, and equal

the obtained expression for qzbn 41 to zero as required by loading/unloading conditions (4.59).

$n+1 =D,' (Edn-H + Gany1) sign (tnr) — (Ufc +KZ§=Z+1) =

:D;l Bd, JrG(Dn(UchrKZE:f,)Jr’:y:H)sign(th) sign (tne1) — (afc+Kj (§;+%;;H)) = (C.8)

An+1

1 (ﬁdn+1sign (tn1)+GD,, (afc +K:§;;) + G%:;H) - (afc e n) ~ K55, =0

The two parts of the equation, containing 7, are put to the right side of the equation, which is then multiplied
by D, and divided by (Dn - Gf)n) :

Dyt (Bdussign (bu1) + GDy (o0 + K& ) = (o7 + K2€) = KiFa — Dy G

B, sign (tn 1) +GD, (Ufc + K;*EZZ) -D

o+ K& = (K:Dn—G) 751
. _ _ C9
Bdn—H . (t ) —f—K*:* Kan_Gz* ( )
— == S1gn\ln+1) — | Ofc csn ] = = == "Tn
D,—GD, NG D,-Gb, "
V.
itrigt
o

S = _ (C.10)
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MULTI-LAYER EULER-BERNOULLI BEAM FINITE ELEMENT

Derivation of expressions for ¢/719" and 57, | for the Euler-Bernoulli beam is performed in the same way as for the
Timoshenko beam element.The only difference is that stress in no longer constant over the layer and the traction at
the discontinuity is equal to the stress, evaluated at the location of the discontinuity ¢ = O’|wd, instead of justt = o.

Some other non-constant quantities are evaluated at x4 as well, which reflects in the resulting expressions.

9 Ttrial [ 1 P
ttM’al _ [ Bdn+1 :| =% _ iLJ“l (Dn B GRD") (C 11)
n+l — = = = ) - = = .
D, - GRDn T=r4
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APPENDIX D: INFLUENCE OF Zle ON COMPUTATION OF INTERNAL FORCES

In this appendix we demonstrate how the location of the discontinuity ;] in a layer affects the computation in case
of constant strain/stress, resulting in incorrect response of the finite element. The problem was encountered in pure
tension/compression numerical examples in section and pure bending numerical examples in section

Pure tension or pure compression

Here, we examine the reasons for the incorrect response of the reinforced concrete beam, computed in section
3.4.1.3] According to section [3.2.4.1] in case of constant stress the discontinuity is placed in the middle of the
layer and the constant operator G}, is chosen from (3:46). The strain in the bulk is computed, as shown in equation

(3-39). Interpolation functions B’ are defined by (3.7) and (3.8).

g =B'd+Gha' =Ciz+C>, C},Cy = const. (D.1)

If the strain is to remain constant over the layer, which is required for the equilibrium, the linear part of expression
(D-I) must be zero. Since G is constant, it makes no contribution to the constant C;. For a single-layer finite
element, the coordinate y° is zero and we can conclude

4
Clzﬁ(lﬂ—Fuz—ZUj;):O = U3ZUI;UZ (D.2)
Expression (D.2) for u3 is inserted in (D.IJ) to obtain
. i
5 :f(uz—u]—a) (D.3)

The jump in displacements can be computed from equation (3.33)), which reduces to ¢ = ¢ for the constant G}.
In case of monotonic softening, o’ = £**. For concrete one gets

th= (O'fc —|—Kc*§*i) sign(t'), o'=D"

_up—up— DiLafc sign (t’)
14+ DILK; sign ()

%

1
g =

(D.4)

For a steel layer, the only difference would be in the constitutive equation for ¢*, leading to a slightly different
expression for o, These equations have been developed for a single-layer finite element and a constant operator
%, but they also hold for each layer of a multi-layer element if the transversal displacements v and rotations 6 of
the nodes are zero, as in pure tension/compression. Such tests were modeled in section Since expression
for o depends on material parameters, the displacement jumps are different in concrete and reinforcement.

A different scenario unfolds in sections 3.4.1.1] [3.4.1.2) and [3.4.1.3] however. Despite the linear stress in a layer,
the algorithm detects even the smallest difference between the values at both ends of the finite element, arising

from the numerical procedure. The discontinuity is positioned at the “critical” node and one of the linear operators
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7 is chosen from (3.46). The constant Cy from (D.I) is now affected by G, but it still has to be zero to provide
constant strain over the layer.

u1+u2—2m—ai):0 = wzm (D.5)

4
01:72 2

2 (
Inserting expression (D.3)) for u3 into returns exactly the equation (D.3). The strain is therefore computed
in the same manner as in the case with constant Gj. However, the displacement u3 is no longer independent of
a', which means that the middle node has to move out of the middle of the element to preserve the equilibrium.

By itself, this is not problematic. In a single-layer finite element or an element composed of equal layers, like the

beams in sections [3.4.1.1|and [3.4.1.2] all displacement jumps o are equal and require the same u3 to “balance”

them. An issue arises in a finite element, composed of different layers, like the reinforced concrete beam in section
3.4.1.3] Since the displacement jumps are different in steel and concrete, they would each require a different
middle node displacement u3 (computed from (D.3))), which is not possible. A constant strain state is therefore not

possible in such case!

Nevertheless, equilibrium is achievable. For any w3, different from the value in @D stress is linear over the
length of the layer. Contributions of the layer to the internal forces are computed as integrals of the stress, and the
components are different at both ends of the layer f;m - fﬂ;t’(e) ’i, see Fig. The layer by itself is out of
balance, but equilibrium of the finite element is satisfied by finding the exact value of u3, at which the imbalance
of internal forces in steel and the imbalance of the internal forces in concrete neutralize each other, see Fig.[3.27]

1nt

where fu, ' = — fuy () This is possible, because the equilibrium is only required on the element level, and not

on the layer level. Of course, this solution is incorrect, see the comparison in Fig. [3.28]

;rit,(e),z#_ ;r;t,(e),z - Z int, ( Z Lr;t,(e),z (D.6)
%,_/ ZH/_/
rayt '

Remark. Fig. and Fig. only show the contributions of the i-th layer to the axial internal forces at the
end nodes. Contributions to the axial internal force at the middle node and contributions to transversal forces and

moments exist also, but their resultants are zero on the element level.

Pure tension or pure compression, non-zero transversal displacement

Another incorrect solution of equilibrium equations exists. So far, we have assumed that the transversal displace-
ments v and rotations @ of the nodes are zero, but this is never explicitly requested. The degrees of freedom change
so as to satisfy the equilibrium equations and it turns out that equilibrium is also possible in pure tension or pure
compression if transversal displacement at the free end of the beam is different from zero. Such situation arises
in a beam with symmetrical cross-section, if the layer discontinuities are positioned at = 0 in the bottom half of
the beam (y° < 0) and at 2 = L in the top half of the beam (3° > 0), or vice versa. In the particular example from
section @ the only difference from section @] was the reversed orientation of the local axis x, which
sufficed for a slightly different numerical evaluations of stress in the layers and different positioning of the discon-
tinuities. Results in Fig. and Fig. state that the transversal displacement at the end of the beam increases
with the loading (imposed axial displacement), while the rotation, shear force and moment remain zero. Although

physically not sensible, these results are mathematically possible which is easily verified.

Let us inspect two symmetrically positioned concrete layers of a beam in pure tension. We will show that their

contributions to internal shear forces and moments neutralize each other. Quantities, related to the layer above
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the neutral axis, are denoted with 4+, and the quantities, related to the layer below the neutral axis, with —. The
elasticity limit is defined higher than the failure stress so there is no damage in the bulk of the layer (D* = E.1).
Strain and stress in the layers are computed according to equation (3.54), with zero values for nodal rotations 6.
The operator G, takes the appropriate value from (3.46), depending on the location of the discontinuity. We choose
xq =0 for y*~< 0, and x4 = L for yy'*> 0.

o' = E.&, £t —BdtGiatt, & —BidtGia (D.7)

Contributions of the two layers to shear force f}i,rllt’(e> in node 1 are defined in equation (3.28). Symmetry of the

layers is taken into account: —y'~ =y’ =y’ and A~ = A" = A%,

int,(e),i+ _ _/Bi) yi+0_i+Ai+dx — _/BIJ yio_iJrAidx
L L

b - o (D.9)
int,(e),i— _ 7/Bi) yz—o_z—Al—dx — /Bij ylgl_AZd.’ﬂ
L L

After some straightforward manipulation we obtain the expression for their sum. Procedure is repeated for the

.. int int int
remaining shear force fql,g ©) and moments fgll ) and férzl (e),

int,(e) i+ 4 pint,(e)i— _ 4A'E, y' (6yi (v1 —v2)+ L (O‘i_+ O‘H))
v

U] L3
int (e) i+ pint(e) i~ _ 4A'Ecy (6y' (v —w) + L (e +a't))
v v L3
i i i i—y it (D.9)
int(e)it | nt(e)ie  A'Eeyt (1247 (11 —v2) + L (30’ +a'T))
f91 + f91 - 2
L
int(e)it | nt(e)ie  A'Eeyt (1247 (1 —v2) + L (o' +3a'"))
f92 + f92 - I2

If the displacement jumps ‘™ and o™ take the value from (D.10)), all four expressions in are zero. Since the
beam has a symmetrical cross-section, all layers can be arranged into symmetrical pairs and their contributions to
internal shear forces and moments neutralize each other.

o= oft = _3(uw ;UZ)yi = Ti}rllt,(e) _ qijr;t,(e) _ f;rllty(e) _ féi)r;tﬂ(e) —0 (D.10)
Therefore, the results from section @] do not contradict the equations, used in our finite element. Equilibrium
of a beam in “pure tension” (with imposed axial displacement) is indeed possible, even if transversal displacement
at the free end is not zero. The solution is incorrect, but mathematically possible. One of the reasons for existence
of such solution is the absence of any regulation to correlate the displacement jumps in different layers. Each o’
is free to follow equation (D.I0). Since the expression depends on the distance of the layer from the middle axis,
the sizes of the discontinuities grow linearly from the middle toward the edge of the beam, which is not physically
reasonable.

Pure bending

Here, we examine the effect of incorrect automatic positioning of the discontinuity in case of pure bending, when

only one layer of concrete exceeds the ultimate tensile stress. Such situation was encountered in sections [3.4.2.1]
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and The first discontinuity appears in the bottom layer of concrete in tension. The rest of the element is
still elastic at that point. Even though the stress is constant over the layer when the ultimate stress is reached, the
discontinuity is placed at either of the two end nodes, rather than in the middle of the element, due to numerical
error. One of the linear functions from (3.46) is chosen for operator G,. We can see from Fig. that the
additional strain in the bulk G},a’ is negative at the discontinuity and positive at the other end of the layer, which
means that the stress is decreased at z; and increased at the opposite end. Of course, this is not the converged
state, but even when equilibrium is reached, the stress in the layer is not physically logical. At the discontinuity,
the value of o° is equal to the traction ¢’ and smaller than the ultimate tensile stress Ofct, Which is correct. On the
other end, however, the value of ¢ is higher than o.;. This happens because G}, was derived on an isolated layer.
If the layer was a self standing three-node bar, as assumed for the derivation, it would deform in such way that the
stress in it would be constant and equal to ¢*. In truth, the layer is bound to the remaining layers through common
nodal displacements and cannot deform freely. The imbalance, produced by additional strain, is not neutralized
within the cracked layer, but on the level of the finite element. The cracked layer makes only a part of the “required
deformation” and the stress at the non-cracked end of the layer remains too high. Eventually, the traction at the
discontinuity ¢* and the value of stress o at the discontinuity z, would drop to zero, but at the opposite end of the
layer the stress would stay positive. The layer would contribute to internal forces, computed as an integral of ¢’
over the length of the element, even when it is supposed to be completely broken.

Almost constant strain/stress state in a layer

In all previous cases, described in this appendix, the stress in the layer was constant at the moment when the
carrying capacity was reached. The algorithm wrongly positioned the discontinuity at one of the end nodes, due to
numerical error. However, the problem was avoided by manually imposing the location of the discontinuity at the
middle of the element.

This trick cannot be used if the stress state in the layer is linear. In that case, the discontinuity must be placed at the
location of highest stress. If the stress is almost constant (but not quite), for instance in a cantilever beam, loaded
with a great axial force and very small transversal force at the free end, the situation is virtually identical to the one
described above, only without the remedy. Incorrect computation cannot be avoided here. We conclude that, for a
general stress state, the operator G, derived in section is inappropriate.
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APPENDIX E: EXPRESSIONS FOR tfrial, 5% | o, 1 AND 5,41 IN VISCOSITY

n

In this appendix we derive expressions, required for the computation of softening internal variables in multi-layer
Timoshenko beam finite element with viscous regularization of softening response, presented in chapter 5] Ex-
pressions for the trial value of traction at the discontinuity tz’i‘}l, the damage softening multiplier 7,7, and the
displacement jump «,, 11 are required in the computation of internal variables of a concrete layer, while the expres-
sions for plastic softening multiplier 7, is required in the computation of internal variables of a reinforcement

layer.

Discontinuity in concrete layer when q < oy,

(k),trial
n+1

which are used in the computation of internal variables in a concrete layer in section m

Here, we derive the expressions for the trial value of traction at the discontinuity ¢

(k)
+1o

The following derivation is valid while ¢ < oy, i.e. until the traction at the discontinuity drops to zero and the

and the damage soften-

ing multiplier 7,

discontinuity compliance D becomes infinite.

Once a discontinuity occurs in the layer, the bulk internal variables are frozen. Therefore, the value D,, is used as
the bulk compliance. In the trial step, the behavior of the discontinuity is assumed to be elastic, which means that
the discontinuity compliance D and displacement-like softening variable £* that controls the reduction of carrying

capacity, keep the values from the previous step. The size of the discontinuity is computed in accordance with

equation (#.53).

A(k),trial 7 =x(k),trial Sx (k) trial _ & k),trial
DG =Dny 64 no Oty = Datyl) (E.T)

The trial value of stress in the bulk is defined by equation (@.43)).

k),trial N 5 3(k—1 =~ (k),trial
o\l = Dyt (Bl + Gall) (E.2)

Relation between ¢/7%4! and o7/ is described in equation (5.7). It depends on the pseudo-time derivative c,

which is here defined in incremental form, as the difference between the current value of o and the value from the

previous step, divided by the corresponding increase of time A7, = T4 — Tp.

(k) (k),trial
(k) _ %py1— Gn . (k),trial _ L - Un

o) — (E.3)
i ATpiy i ATnp
Equation (5.7) can now be rewritten.
(k),trial _ (k),trial n (k),trial
boyl  =0pl — Ar R (E4)
n+l
After using the expression (E.I)) for a;kl’lmal in equation (E-4) we can express Ufﬂ’f”al with tfﬁ’f”al.
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O_(k) trial (k),trial n (a(k),trial ) t( ), trial n 5 t(k:),trial_ n U (E.5)

=t + -
n+l n+1 ATnJrl n+1 n+1 ATn+1 n n+41 AT7L+1

We multiply equation (E-2) with D,, and substitute or< mal with (E3)) and a mal with (E-I).

Dn t(k),tm’al Ui f)n t(k),tm'al_ Ui i ﬁd(k 1) Gf) (k),trial E.6
( s - ATyt ntl ATptd “ n+1 E5)

After some straightforward manipulation, the trial value of traction at the discontinuity is obtained from (E:6).

(=1, 7
(k) trial Bdn+1 +Dn ATnJrl Qn
A p—_ . (E7)
Dy~ GDy+ Dy D,

Next, the trial value of failure function is computed from (#.36), where § (fzn(H) t”al) is defined by [@61).

(k),trial
n+1

(b(k) trial

n+1 =t

— (ore+ E2EE) (E.8)

If (Zg:)’lmal < 0, the assumption about elastic behavior was correct and the trial values are confirmed as final.
Otherwise the internal variables have to be corrected. The incremental form of evolution equations (4.62)) reads as
follows.

O‘Eﬂl = ( e +7’n<+1)> SZQ”( 51k+)1) ) f_:z(fl —5 + n(—fl) (E9)

where o' = D, X — D, (O'fc + K} E *) is the maximal elastic value of « for the given carrying capacity, that

max

was reached in the last softening step. If |a| < oM, or equivalently |¢| < t™**, behavior of the discontinuity is

elastic. The failure function is now written, using the updated values of internal variables (E.9).

=(k k o Ex(k
¢51421 = t'EH)-l‘ - (Ufc+Kc§n<+1>)
(E.10)
k k U k k = (k
tiil :0'221 T A (0451421 _O‘n)v ‘77(1+)1 (Bd£L+1)+GO‘§1+>1)

*(k)

n+1°
the obtained expression for ¢n "1 to zero as required by loading/unloading conditions ([#.59).

We express all unknown varlables with the softening multiplier ¥ which remains the only unknown, and equal

5)5,511 = (Dﬁl (ﬁdg;ll) + G”S—Zﬁ]) - Z (wfflu - ‘¥n>> sign (fﬁ]) - (”fc +K:§:L(jff) =

- o _ _ - 7 A _
:D:l (Bd(nkﬂl) + (Gf D, ! 1 ) 0‘5{21 +D"A « ) sign <t£j‘ll) (G’fc + K £n+l)
+

Tn+1

=Dy i"d(fi]u(_—f)n#i“) (Do (oge+ 128:) + 308 ) sign (41 )+ D

ap 57971(“22]) <(Tf(‘+K*<£rl _:(fl))>

ATty

(k)

n+1

o)+ (0 0n )Pl i8) ¢ -

e

n (k) * wzx(k) _
)

(E.11)
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The two parts of the equation, which contain 7, ff are put to the right side of the equation, which is then multiplied
by D,, and divided by (Dn ~GDy+ DD )

s ) D)) i

)

<Bd(nk+|l) D, ATn an> sign( 55:_1) <_ D, A7-71+]>5n (O'fc—"K:f:,:’) -D, (O'fc—.—KzE:) :Kffl_),ﬁz(ff— <_ -D, " > ’=y:;(_f]>
)
)

nAT

k—1 i
D, <<Bd$L+l 4D,

n+1

(k=1), 7 n (k) A7 n > *
(BdnH +D, ATnHan)éLgn tn+,>+<<G Dy ATn+]>Dn Dn> (o7 + K2,

ATn+1
9 ( ) - - -
Bd, '+ Dy 1 ay, ign (t( ) B (U LRE) = KiDn=G+Dng 5
Dn GD71+D71AT Dn n+1 ‘ o D"76D7L+D"LATZHD" !
tsf:rltr ial
5(’Zc+>,ltrmz
(E.12)
Finally, we can write the expression for ijl(fl)
Z(k),trial [ & =~ 7 = n 7
:*(k) (bn—‘rl Dn_GDn+DnATn+1 n (E 13)
Yn+1 = =R .
et K.D,—-G+D, ATZ-H

Discontinuity in concrete layer when q = oy,

Here we consider the situation, when the concrete layer loses all carrying capacity. When the stress-like softening
variable reaches the value § = oy, the traction at the discontinuity ¢ drops to zero (at a non-zero displacement jump

«) and the discontinuity compliance D becomes infinite, so the above derivation does not apply any more. Instead,
(k)

n1 1s computed from equation )

the displacement jump o il =

We start by inserting expressions (3.13)) for Ufﬁzl and (E.3)) for o'zgzzl into equation (5.7).

k k =~ ~ (k n k
1) = ol —nall), = Dt (BalL +Gal),) - o (o) —an) (E.14)

(k)

The obtained expression for ¢,/ is equaled to zero. The equation is then multiplied with D,, and rearranged to
(k)

collect the terms containing «,, /.

n-+

D! (Bdﬁl’i{ N Gal )

( —an)—O

S (k=1) A (k) = ()
Bd, " +Gao, 0 — Dy Ar,, Qi D Aryr =0 (E.15)

(k) _ ( ) 2 n
(G D, ATnH)a"H = (Bdn+1 DnATnHan)

We can now write the expression for the displacement jump aﬁl

kD 7/ _n
NOR— Bdn+_1 +_Dn At O (E.16)
n+1 G-D n .

T ATp 4
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Discontinuity in reinforcement layer when q < oy

In this section we derive the expression for the plastic softening multiplier ':ygle,

internal variables in the reinforcement layer in section[5.3.2)of chapter[3] in case that the layer still possesses some

required for the computation of

carrying capacity, i.e. § < oys.

We begin by expressing the traction at the discontinuity tglkl | with its trial value tglkl’lt mial To achieve this, we insert
expressions (5.24) for ‘7&21 and (E3) for dgﬁl into equation (3.7).
k k (K Lo(k=1) A (R) - k
tihz1 = ‘77(1421 - ”aihzl =L (Bdgl-‘rl '+ Ga;ll - 5p,n) - ATn+1 (agl—al - an) (E.17)

The displacement jump is expressed with the softening multiplier by using the evolution equation (5.23). The

applied equality sign (tilk +>1) =sign (tglk l’lmal) is justified in appendix

tfﬁ)l =F, (]?dg:]) +G (an —&-i(ﬁgl sign (tsﬁl)) — épm) — ATZH (ozn —|—’=y7(fglsign (tsﬁl) — an) =

=F, (Bdg:l) +Ga,, — ép n) +E5C_¥’§/r(le sign (tiﬂl) __n ’?Sﬁl sign (tiﬁil) =
’ A1 (E.18)
_ (k),t'rial_t(k),trial
“Tn+1 T 'n+l
_,(k),trial A n =(k) . (k)
- thrl + (ESG - ATnJrl > 7n+] stgn (tn+1)

Equation (5.19) has been applied as well, stating that the trial values of traction at the discontinuity and the stress
in the bulk are equal. The stress-like softening variable ¢ is determined by equation ([4.76). We are considering the
case when ¢ < oy,. This value is designated with q:;:‘ 1

B =K & = -k (G A ) = dh - KA, - dk (E.19)

Expressions (E-I8) and (EI9) are inserted in the failure function d:);kll, determined by equation .73). The

obtained expression has to be zero to fulfill the loading/unloading conditions [@.78).

=(k
‘bEle =

] = (on—al) =0 (E.20)

(it (.0 ) A sion (141) ) s (4,) = (o~ 807 4 KAL) =0

ATn+1

(k),trial . (k) = n =(k) =(k),trial =(k)

t, sign (tn )—i— (ESG— ) ]~ (os—qn ) -K#,., =0
+1 +1 AT +1 i +1 +1 (E21)
(k),trial ( :(k),trial) ~ n =(k)

t — | ops — —| Ks— EG =0

s s~ ni ( + ATy ) M

(Z(y{vl,ltrial

From (E:21)), the expression for the plastic softening multiplier ’:y(k) i

ni1 18 Obtained. It is denoted with ’:y;?ﬂ to

associate it with the stress-like softening variable (j;? 1 < Ofs-
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(Z(k),trial

=A n+1
I pp—— (E.22)
T T CEE A Kot g

We have derived expression (E-22) under assumption that § < oy,, which has to be verified. g, has to be

(k)
n+1-°

ofs, the assumption was correct. Otherwise, the carrying capacity at the discontinuity has dropped to zero and
(7 = Ofs-

computed from equation (E.19), using expression (E.22)) for ¥ If the calculated value is indeed smaller than

Discontinuity in reinforcement layer when q = oy

In this section we derive the expression for the plastic softening multiplier ':yfﬁz

lost all carrying capacity at the discontinuity (the stress in the bulk may be different from zero). The stress-like

| for the case when the layer has

softening variable is denoted with §Z, | = oy, in order to be distinguished from g}, | < o7, above.

gﬂl = 0. Expression (E.I8)) for the traction at the discon-

) =sign (tiﬂ’frml) is applied again.

By inserting ¢2, | in equation (E:20), we conclude that ¢

4(®)

tinuity is equaled to zero. The equality sign < el

(k),trial = n =(k) _: (k) _
bt + <ESG Aot > Vn+15tg1 (tn—H) =0

(E.23)
(k),trial . ( (k),trz’al) < - n > (k)
t sign (t +| G ——— =
n+l 9\ bt T A Tn+1
Expression for i(ﬁzl is acquired from (E223). It is marked with 5, | to be associated with ¢, | = oy.
t(k),trial
-B n+1
=—F— E.24
Tn+1 —GES + n ( )

ATy

During the computational procedure in section , %7(1121 is first evaluated according to equation (E.22)), then the
stress-like variable is computed according to (ET9): ¢2, | = — K, (En + ’:y;.?ﬂ). If the value is indeed 32, | < oy,
the value ’:y;? "1 is stored. Otherwise the value *:yf ', from (E.24) is taken.
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