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Background. Non-cardia gastric cancer remains a major cause of cancer-related mortality worldwide, despite 
declining incidence rates in many industrialized countries. The development of intestinal-type gastric cancer occurs 
through a multistep process in which normal mucosa is sequentially transformed into hyperproliferative epithelium, fol-
lowed by metaplastic processes leading to carcinogenesis. Chronic infection with Helicobacter pylori is the primary 
etiological agent that causes chronic inflammation of the gastric mucosa, induces atrophic gastritis, and can lead to 
intestinal metaplasia and dysplasia. Both intestinal metaplasia and dysplasia are precancerous lesions, in which gas-
tric cancer is more likely to occur. Atrophic gastritis often improves after eradication of Helicobacter pylori; however, 
the occurrence of intestinal metaplasia has been traditionally regarded as “the point of no return” in the carcinogen-
esis sequence. Helicobacter pylori eradication heals non-atrophic chronic gastritis, may lead to regression of atrophic 
gastritis, and reduces the risk of gastric cancer in patients with these conditions. In this article, we discuss the patho-
genesis, epigenomics, and reversibility of intestinal metaplasia and briefly touch upon potential treatment strategy.
Conclusions. Gastric intestinal metaplasia no longer appears to be an irreversible precancerous lesion. However, 
there are still many controversies regarding the improvement of intestinal metaplasia after Helicobacter pylori eradi-
cation.
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Introduction

The global burden of gastric cancer remains high, 
ranking fifth for incidence and third for cancer-
related mortality worldwide. Early recognition of 
the disease can lead to potentially successful treat-
ment; however, most patients are diagnosed at a 
late stage.1(1) H. pylori is the main risk factor for 
non-cardia gastric cancer development. Although 
most H. pylori-positive individuals remain asymp-
tomatic, the infection predisposes them to the 
development of chronic gastritis2, which can be 

followed by the inflammation–atrophy–metapla-
sia–dysplasia– carcinoma sequence, known as the 
Correa cascade.3 Both chronic atrophic gastritis 
and intestinal metaplasia are considered precan-
cerous conditions, as they independently confer 
risk for the development of dysplasia and gastric 
cancer.4 

H. pylori infection is associated with a 3-fold 
increase in the lifetime risk for developing non-
cardia gastric cancer, and H. pylori infection is be-
lieved to cause at least 75% of all gastric cancer.5 
The eradication reduces the risk of gastric cancer 
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in patients with non-atrophic and atrophic gastri-
tis and effectively heals non-atrophic chronic gas-
tritis. It may also lead to the regression of atrophic 
gastritis.6 On the other hand, short-term cancer 
risk in patients with established intestinal meta-
plasia does not seem to change significantly with 
H. pylori eradication7,8, and intestinal metaplasia 
has thus been considered irreversible. This con-
cept has been challenged in recent years by stud-
ies with longer follow up, in which regression of 
intestinal metaplasia has been observed after H. 
pylori eradication.9,10 This short review summariz-
es the role of H. pylori in intestinal metaplasia and 
non-cardia gastric cancer, reviews gastric intesti-
nal metaplasia pathogenesis, and briefly discusses 
evidence regarding its reversibility.

The following keywords and MeSH terms were 
used for online searches: [(gastric) AND (metapla-
sia) OR (intestinal) AND ((regression) OR (revers-
ibility) OR (reversible))]. Reference lists of suitable 
studies and related previous review articles were 
reviewed manually to increase search yield and 
identify other related studies. All searches were 
restricted to original studies published in the 
English language. 

Helicobacter pylori infection and 
intestinal metaplasia 

H. pylori, a microaerophilic, spiral-shaped, Gram-
negative bacterium, colonizes the gastric epithe-
lium in over half of the adult population world-
wide. Its prevalence varies widely, ranging from 
30% in industrialized regions to 90% in develop-
ing countries and Eastern Asia.11,12 H. pylori stands 
as the most potent single risk factor for non-cardia 
gastric cancers, including adenocarcinoma and 
lymphoma13 and was classified as a class I carcino-
gen by the International Agency for Research on 
Cancer (IARC) and the World Health Organization 
(WHO) in 1994. Gastric adenocarcinoma is gener-
ally divided into two main histological subtypes: 
diffuse and intestinal, and H. pylori contributes to 
the risk of both.14 

Diffuse-type gastric adenocarcinomas, charac-
terized by poorly differentiated infiltrating neo-
plastic cells without a clear glandular structure, 
predominantly occur in younger patients. Their 
development does not require long-standing 
chronic inflammation, and H. pylori’s exact role in 
this subtype remains unclear. Diffuse-type cancer 
is associated with interference in cell adhesion, 
polarity, and proliferation, all caused by H. pylori 
infection, leading to the cleavage of E-cadherin, 

abnormal intracellular accumulation of β-catenin, 
TP53 mutations, and reduced p27 protein expres-
sion.15 On the other hand, intestinal-type gastric 
adenocarcinoma emerges later in life and consists 
of irregular glandular structures formed by well-
differentiated cancer cells. This type represents 
the terminal phase of the chronic inflammation-at-
rophy-metaplasia-dysplasia-carcinoma sequence, 
initiated by H. pylori-induced gastritis.16 Atrophic 
gastritis and gastric intestinal metaplasia, which 
evolve over decades of chronic infection, are thus 
established pre-neoplastic lesions for intestinal-
type gastric adenocarcinoma.17 This sequence al-
lows for the possibility of primary prevention 
strategies involving either population-based or 
targeted screening to identify patients with pre-
cancerous lesions who may need subsequent sur-
veillance.18 

H. pylori utilizes urease activity to neutralize 
the acidic conditions in the host stomach at the in-
fection’s onset. The bacterium’s flagella-mediated 
motility enables movement toward host gastric 
epithelium cells. This movement, followed by in-
teractions between bacterial adhesins and host cell 
receptors, facilitates successful colonization and 
persistent infection. Some strains of H. pylori re-
lease effector proteins and toxins, such as cytotox-
in-associated gene A (CagA) and vacuolating cy-
totoxin A (VacA), which can damage host tissue.19 
A direct correlation exists between the number 
of virulence factors in an H. pylori strain and the 
frequency of associated advanced gastric mucosa 
pathology.20 However, the characterization of H. 
pylori virulence genes’ individual roles is complex 
due to the interaction of methodological21, bacte-
rial, and host factors19, often leading to conflicting 
results and interpretations.

Intrabacterial urease activity is required for H. 
pylori acid resistance, and this activity is regulated 
by the proton-gated urea channel UreI, which per-
mits urea entry only under acidic conditions and 
thus prevents lethal alkalization during times of 
relative neutrality. The urease gene cluster is com-
posed of seven genes, including catalytic subunits 
(ureA/B), an acid-gated urea channel (ureI), and ac-
cessory assembly proteins (ureE-H).22 Urease can 
also protect against host innate immune response 
by modulation of phagosome pH following phago-
cytosis and promotion of H. pylori survival inside 
megasomes.23

Flagella-mediated motility is essential for colo-
nization of the gastric mucosa by H. pylori. Loss 
of any component of the motility and chemo-
taxis systems abolishes the ability of H. pylori to 
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infect the stomach and establish colonization.24-26 
Infection with H. pylori that exhibits higher motil-
ity may show enhanced bacterial density, trigger-
ing a more pronounced inflammatory response 
in the upper stomach, and can thus be associated 
with severe pathological outcomes.27 The flagellar 
filament consists of two flagellins (FlaA and FlaB) 
encoded by flaA and flaB.28 FIaA elicits host anti-
body response and can be used as a marker of H. 
pylori infection; host anti-FlaA titer correlates with 
H. pylori colonization density29 and the presence of 
gastric intestinal metaplasia.30

The interaction of bacterial adhesins with host 
cellular receptors protects H. pylori from displace-
ment by the forces generated by peristalsis. This 
bacterial adherence plays an important role in both 
the initial colonization and long-term persistence 
of H. pylori in the human gastric mucosa31 and is 

necessary for the tight adherence of the bacteria 
to gastric epithelial cells, which facilitates subse-
quent delivery of bacterial toxins.32 The H. pylori 
genome encodes a variety of outer membrane pro-
teins (OMPs); several OMPs have been described in 
detail to date, with most studies focusing on babA2, 
oipA, homB, and sabA genes.19 BabA is one of the 
most studied H. pylori adhesins. BabA is capable 
of binding to Lewis b and related ABO antigens on 
gastric epithelial cells33, which may play a crucial 
role in the development of H. pylori related gastric 
pathology such as severe gastritis, peptic ulcers, 
and gastric adenocarcinoma.21,34 BabA positive 
strains appear to be associated with worse clini-
cal outcomes in several studies35-37, while another 
study found no correlation between the presence 
of babA2 positive strains and atrophy or intestinal 
metaplasia.21 HomB may be strongly associated 
with gastric cancer in certain populations38 and 
display little measurable virulence in others.39 

Attachment of cagA-positive H. pylori to host 
gastric epithelial cells initiates and facilitates the 
formation of the bacterial type IV secretion sys-
tem, involved in the delivery of CagA into host epi-
thelial cells.32 The translocated CagA protein local-
izes to the inner surface of the plasma membrane 
via interactions with phosphatidylserine and sub-
sequently undergoes tyrosine phosphorylation by 
the Src family protein tyrosine kinase. However, 
once injected into the cytoplasm, CagA can alter 
host cell signaling in both a phosphorylation-de-
pendent and phosphorylation-independent man-
ner. The phosphorylated CagA binds to the phos-
phatase SHP-2, forming CagA-SPH-2 complex, and 
affects the adhesion, spreading, and migration of 
the cell.40,41 CagA can also affect the host cell in a 
phosphorylation-independent manner by stimu-
lating the gastric epithelium cells to secrete IL-8, 
which strongly affects the level of mucosal inflam-
mation.42,43 

The CagA-SHP-2 complex is predominantly lo-
cated in atrophic gastric mucosa and is associated 
with the transition to atrophic gastritis and pos-
sibly intestinal metaplasia.41 Deregulation of the 
SHP-2 role by CagA is functionally similar to the 
effect of the gain-of-function mutation of the SHP-
2 gene observed in other human malignancies.44 
CagA interference with intracellular signaling may 
thus lead to deregulation of cellular growth, apop-
tosis, and elevated cell motility. This can result in 
increased cell turnover, which in turn leads to the 
accumulation of further genetic changes favoring 
neoplastic cell transformation.45 Unsurprisingly, 
infection with cagA-positive strains markedly in-

FIGURE 1. Gastric intestinal metaplasia, endoscopic (A, B) and histological  
(C, D) appearance. Gastric intestinal metaplasia is endoscopically characterized 
by the presence of grey-white velvety or slightly nodular elevated patches, 
which are clearly demarcated against the surrounding pink gastric mucosa, as 
illustrated in image A of antral gastric mucosa under white light. Narrow band 
imaging (NBI, depicted in image B) further enhances the visualization of mucosal 
and vascular patterns by employing optical filters to narrow the bandwidth of 
light. This technique offers superior contrast compared to white light endoscopy, 
thereby improving the detection of metaplastic transformation. Histologically, 
gastric intestinal metaplasia can be classified into either complete (as seen in 
image C) or incomplete types (as shown in image D). Image C demonstrates 
preserved oxyntic mucosa (on the left) adjacent to intestinal metaplasia of the 
complete type, which features enterocytes with a well-defined brush border, 
alongside well-formed goblet cells and Paneth cells. In contrast, image D 
illustrates the intestinal metaplasia of the gastric mucosa of the incomplete type, 
characterized by goblet cells of variable size and intervening mucin-secreting 
columnar cells that lack a brush border (both images are hematoxylin and eosin-
stained, original magnification 10x).

A B

C D
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creases the risk of gastric cancer.46 CagA-positive 
strains are responsible for 60% of H. pylori infec-
tions in individuals worldwide.47-49 Strains isolated 
in East Asian countries such as Japan, China, and 
Korea are almost all CagA-positive.50 Furthermore, 
CagA protein can be divided into the Western-type 
CagA and East Asian-type CagA. The affinity of 
the East Asian-type CagA to SHP-2 is significantly 
higher than that of the Western-type CagA and is 
more likely to be associated with gastric cancer.40,51 

VacA, another key toxin involved in H. pylori 
pathogenesis, binds to host epithelial cells after 
secretion from the bacteria. It is then internalized 
and causes the accumulation of large intracellular 
vesicles (vacuolation), interferes with mitochon-
dria, and causes apoptosis of host cells.52 VacA also 
appears to disrupt the balance of cell proliferation 
and death by affecting genes that regulate the cell 
cycle.53 H. pylori strains producing VacA differ in 
the potency of cytotoxin, in both its activity (al-
lele s1 is more active than s1) and binding (allele 
m1 is more effective than m2).54 A meta-analysis 
of 33 studies (1,446 cases and 2,697 controls in to-
tal) confirmed the correlation between the vacA s1 
genotype and the risk of atrophic gastritis, intes-
tinal metaplasia, and gastric cancer. The vacA m1 

genotype was associated with intestinal metapla-
sia and gastric cancer but did not significantly cor-
relate with atrophic gastritis.55

Pathogenesis of gastric 
intestinal metaplasia

Gastric intestinal metaplasia is defined as the re-
placement of normal gastric epithelium in the 
antral or oxyntic mucosa with intestinal epithe-
lium, consisting of intestinal cell types including 
Paneth, goblet, and absorptive cells.56 These meta-
plastic glands are characterized by modification 
of the surrounding stroma and by reorganization 
of the crypts, with displacement of the prolifera-
tive zone from the neck region to the base of the 
crypts.57 Intestinal metaplasia can be classified as 
either limited (when confined to one anatomical 
region) or extensive, if two gastric regions are in-
volved (Figure 1).

Complete intestinal metaplasia is characterized 
by small intestinal-type mucosa with mature ab-
sorptive cells, and a brush border, with a notable 
loss of gastric mucin markers (MUC1, MUC5AC, 
MUC6) and an acquisition of the intestinal mucin 

TABLE 1. Patients’ related predictive risk factors for gastric intestinal metaplasia

Risk Factor Odds ratio (OD) Key findings References

Race
    White
    Asian
    Hispanic

1
2.83–3
2.10–5.6

Hispanic and Asian patients have an increased 
risk for GIM

Tan MC et al. (2022)94

Akpoigbe K et al. (2022)95

Age (> 50 years) 1.5–2.03 Risk increases with age, possibly due to 
accumulated exposure to risk factors.

Aumpan N et al. (2021)96

Tan MC et al. (2020)97

Male gender 1.55–2.09 Probably due to genetics and exposure to other 
risk factors 

Aumpan N et al. (2020)98

Leung WK et al. (2005)99

Chronic gastritis 3.68–5.76 Chronic inflammation is leads to IM. Yoo YE et al. (2013)100

Tatsuta M et al. (1993)101

H. pylori infection 2.47–3.65 Strong correlation with IM, especially with CagA 
positive strains.

Aumpan N et al. (2021)96

Nguyen T et al. (2021)102

Family history of gastric cancer 1.5–3.8
Patients with a first-degree relative with gastric 
cancer  have an increased risk of neoplastic 
progression

Nieuwenburg SAV et al. (2021)103

Reddy KM et al. (2006)104

Alcohol consumption 1.27–1.54 Alcohol intake was independently associated with 
increased risk of developing AG and IM

Holmes HM et al. (2021)105

Kim K et al.
(2020)106

Tobacco smoking 1.54–2.75 Tobacco smoking is a risk factor for gastric IM. Morais S et al. (2014)107

Thrift AP et al. (2022)108

Blood group A 1.39–1.42 Blood group A is associated with higher risk of GIM Mao Y et al. (2019)109

Rizatto C et al. (2013)110

Bile reflux unknown Bile acids not only interefere with gastric mucosa 
but also regulate multiple carcinogenic pathways

Wang M et al. (2023)111

Yu  J et al. (2019)112

Salt consumption 0.37–1.53 Salt intake may increase progression to advanced 
gastric precancerous lesions

Dias-Neto M et al. (2010)113

Song JH et al. (2017)114

Industrially processed food unknown
Dietary exposure to N-nitroso–containing 
compounds has been shown to increase the 
promotion of gastric carcinogenesis

Wiseman M (2008)115

Jencks DS et al. (2018)116
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MUC2. On the other hand, incomplete intestinal 
metaplasia is characterized by columnar “inter-
mediate” cells at various differentiation stages, 
irregular mucin droplets, and a lack of a brush 
border, while still maintaining gastric mucin 
markers alongside the presence of intestinal mucin 
MUC2.58,59 Earlier gastric metaplasia classifications 
relied on traditional mucin staining methods (such 
as periodic acid-Schiff, Alcian blue, and high iron 
diamine) and cell morphology. This methodology 
defined three intestinal metaplasia grades: Type I, 
which encompasses absorptive cells, Paneth cells, 
and goblet cells that secrete sialomucins; Type II, 
consisting of goblet and columnar cells secreting 

sialomucins; and Type III, involving goblet and 
columnar cells secreting sulfomucins. Presently, 
Type I aligns with the complete type, while Types 
II and III correspond to the incomplete type in the 
contemporary classification.58

The Correa cascade is a widely accepted model 
of the pathogenesis of gastric cancer (Figure 2).3 
This cascade commences with the emergence of 
chronic mucosal inflammation, mediated by poly-
morphonuclear and mononuclear cells. It evolves 
through a multifactorial process, steered by vari-
ous factors including H. pylori, host genetics, envi-
ronmental elements, and diet, propelling further 
alterations in the gastric mucosa towards atrophy, 
metaplasia, and ultimately, cancer.60-62

Annually, an estimated 0.1%, 0.25%, 0.6%, and 
6% of Western patients with atrophic gastritis, 
intestinal metaplasia, and mild-to-moderate or 
severe dysplasia, respectively, progress to gastric 
cancer.62 In contrast, East Asian populations dem-
onstrate a higher risk, with about 1.8%, 10%, and 
73% of patients with atrophic gastritis, intestinal 
metaplasia, and dysplasia, respectively, progress-
ing to gastric cancer each year.63 Patients with in-
complete intestinal metaplasia encounter a 3.3-fold 
higher relative risk of developing gastric cancer 
compared to those with complete intestinal meta-
plasia. Furthermore, extensive intestinal metapla-
sia is linked with a 2.1-fold higher relative risk of 
progression compared to limited gastric metapla-
sia.64,65

Host factors that are associated with higher risk 
for non-cardia gastric cancer are similar to risk 
factors for development of intestinal metaplasia 
(Table 1) and include advanced age, male sex, fam-
ily history, and smoking. More than two thirds of 
all gastric cancers are diagnosed after the age of 55, 
and roughly two thirds of non-cardia cancers are 
found in male patients.66 The reason for the latter 
observation is most likely multifactorial. The dif-
ference can be partly attributed to smoking (which 
is more prevalent in men) and partly to the protec-
tive role of estrogen, since increased fertility and 
late menopause both reduce the risk of gastric can-
cer in women.67 Individuals with blood type A have 
a 20% higher chance of developing gastric cancer 
when compared to other blood types, according to 
a prospective blood donor cohort study.68 

Ethnicity also plays an important role in gastric 
cancer risk. The incidence of non-cardia gastric 
cancer in individuals of African-American, East 
Asian, or Pacific Islander descent is almost twice 
that observed in Caucasians.69 A similar pattern 
was seen in the analysis of intestinal metaplasia 

H. pylori and its 
virulence factors

Normal gastric mucosa

Superficial chronic gastritis

Atrophic gastritis

Dysplasia

Carcinoma

Intestinal metaplasia

Reactive oxygen species, 
nitric

oxide metabolites

Loss of gastric acidity, 
bacterial overgrowth,
N- nitroso compounds

Tobacco, high salt diet

FIGURE 2. Pathogenesis of intestinal metaplasia and gastric adenocarcinoma – the 
Corea cascade. This stepwise process starts with chronic gastritis triggered by H. 
pylori infection. The likelihood of developing gastric cancer is higher in individuals 
infected with virulent strains of H. pylori, unhealthy diets (rich in salt and smoked 
foods), low iron levels, and harmful lifestyle choices, including smoking. Persistent 
inflammation results in the damage and eventual loss of acid-producing parietal 
cells, causing reduced stomach acidity (hypochlorhydria) and eventually no 
stomach acid production (achlorhydria). This reduction in acidity allows for 
the colonization of the stomach by detrimental, pro-inflammatory microbiota. 
These bacteria can produce genotoxic and pro-inflammatory metabolites and 
carcinogens, directly contributing to the transformation of stomach epithelial 
cells into malignant cells.
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prevalence. A study that reviewed 800,000 gastric 
biopsies taken in the United States showed 20% 
prevalence of gastric metaplasia in people of East 
Asian descent, 12% prevalence in Hispanics, and 
8% in all other ethnic backgrounds.62

Tobacco smoking is the second most important 
environmental factor in gastric cancer pathogen-
esis, accounting for 11% of all cases.70 Tobacco use 
increases the risk of intestinal metaplasia and dou-
bles the risk of its progression to dysplasia, accord-
ing to a large Chinese population-based study.71

Bile acid reflux into the gastric lumen produces 
repetitive gastric mucosal injury, which predis-
poses patients to intestinal metaplasia and gastric 
cancer in H. pylori-positive patients.72 Bile acids 
increase the expression of CDX2, an intestinal-
specific transcription factor that directs and main-
tains intestinal differentiation in gastric mucosa73, 
and indirectly damage cellular DNA by induction 
of oxidative stress and production of reactive oxy-
gen species74, which promote intestinal metaplasia 
and the further accumulation of mutations, lead-
ing to increased cancer risk.

The role of diet (being an obvious potential 
factor in gastric disorders) has been extensively 
studied in gastric cancer pathogenesis. High salt 
consumption is associated with increased risk of 
H. pylori infection and upregulation of cagA ex-
pression.75,76 Dietary use of processed or preserved 
meat using smoke or salt is positively and dose-de-
pendently associated with non-cardia gastric can-
cer.77 Nitrite and nitrate additives form N-nitroso 
carcinogenic compounds when they combine with 
amino acids. 

Similar carcinogens are formed by ingestion 
of haem (and meat) in the human gastrointesti-
nal tract.78 Vegetables and fruits in the diet have 
a protective role79, and folic acid supplementation 
has been shown to reduce H. pylori related gastric 
inflammation and dysplasia in murine models.80

Reversibility of intestinal 
metaplasia

Large prospective trials of H. pylori eradication 
for non-cardia gastric cancer prevention failed to 
show a reduction in gastric cancer incidence after 
eradication in a subpopulation of patients with 
pre-existing gastric intestinal metaplasia or exten-
sive atrophic gastritis.7,81 Intestinal metaplasia has 
thus been considered irreversible, and its occur-
rence is considered to be the histological point of 
no return in the carcinogenic cascade. 

These assumptions appeared to be confirmed 
by prospective studies designed to evaluate the 
effect of H. pylori eradication on intestinal meta-
plasia and atrophic gastritis in eradicated sub-
jects. A marked regression of histologic changes 
associated with acute and chronic gastritis was 
observed after eradication in one of these studies; 
however, the level of mucosal atrophy and intesti-
nal metaplasia remained unchanged one year af-
ter H. pylori eradication.82 Similar results with no 
regression in intestinal metaplasia were reported 
in a more recent detailed histological analysis of 
88 antral biopsies taken in patients with intestinal 
metaplasia prior to and several months after H. py-
lori eradication.83 Several other smaller studies, all 
with short intervals of observation, reported simi-
lar results.84,85 On the other hand, a number of pro-
spective studies with longer observation intervals 
report the partial regression of intestinal metapla-
sia.10,86-87 Hwang et al. postulated that the reason for 
this apparent discrepancy might stem simply from 
the slow pace of the process under observation.10 
The partial reversibility of intestinal metaplasia 
after H. pylori eradication is also indirectly sup-
ported by a meta-analysis that confirmed reduced 
gastric cancer incidence in all levels of baseline 
risk, including patients with gastric metaplasia.88 
Another recent meta-analysis directly addressed 
the natural course of intestinal metaplasia. Its re-
gression was observed in 32%, and its persistence 
in 43%, of 20 relevant studies.89

A recent study of genomic and epigenomic 
profiling of intestinal metaplasia by Huang et al.90 
also addressed the regression of intestinal meta-
plasia. Eighty-two eradicated patients with intesti-
nal metaplasia were included in an assessment of 
correlates between molecular features and clini-
cal outcome. At the end of surveillance period, 6 
patients had developed dysplasia or cancer, 61 
showed no change, and regression of intestinal 
metaplasia was observed in 15 patients. The level 
of DNA methylation changes correlated with the 
tendency to progress and was highest among pro-
gressors, intermediate in the stable group, and low 
in patients with intestinal metaplasia regression. 
Furthermore, H. pylori burden correlated with 
DNA methylation levels only in the intermedi-
ate group, but not in the methylation-high group, 
which could explain the failure of H. pylori eradi-
cation to stabilize or reverse intestinal metaplasia 
in these patients. Levels of aberrant DNA meth-
ylation could thus indicate the point of no return 
within the scope of intestinal metaplasia.
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Folate is water soluble vitamin that acts a as 
a methyl group donor in DNA methylation and 
plays an important role in epigenetic regulation.91 
Folic acid (FA) supplementation has been shown 
to reduce the risk of gastric cancer in 7-year pro-
spective randomized trial of 216 patients with 
chronic atrophic gastritis.92 All 5 observed gastric 
cancer cases occurred outside the group of FA-
treated patients. Furthermore, the use of FA for 
12 months was associated with more frequent re-
versal of both, atrophy and intestinal metaplasia 
in comparison to patients receiving placebo. These 
observations were confirmed by recent meta-anal-
ysis of the role of FA supplementation in reversal 
of gastric precancerous conditions.93 Daily doses 
of 20–30 mg of FA in the duration of 3-6 months 
were associated with significant reversal of both, 
atrophic gastritis and intestinal metaplasia (RR: 
1.77, 95% CI: 1.32–2.37).93

Conclusions

The long-held belief that intestinal metaplasia of 
the gastric mucosa represents an irreversible pre-
cursor to cancer has increasingly been questioned 
in recent years. The concept of a ‘point of no re-
turn’ in the progression toward gastric cancer is 
now understood to be more complex than histo-
morphological changes alone. Consequently, the 
histological subtypes of gastric intestinal meta-
plasia must be considered during the planning of 
patient surveillance due to their varying potential 
for neoplastic transformation. Additionally, epig-
enomic alterations and molecular profiling could 
prove valuable in identifying the pro-carcinogenic 
transformation of intestinal metaplasia in patients 
without established risk factors. The eradication of 
H. pylori remains a critical step towards the poten-
tial reversibility of intestinal metaplasia; however, 
identifying patients at high risk of progression to 
cancer continues to be essential. The question of 
intestinal metaplasia progression despite H. py-
lori eradication could be addressed by examining 
changes in DNA methylation levels. Furthermore, 
non-H. pylori related host risk factors in the patho-
genesis of gastric cancer are under thorough in-
vestigation. Significant challenges remain, such as 
accurately quantifying these factors and determin-
ing their exposure duration to assess their actual 
impact on intestinal metaplasia progression accu-
rately. Recent studies highlighting the role of bile 
acids, N-nitroso–containing compounds, and defi-
ciencies in vitamin C and folate have shown prom-

ise, yet their clinical relevance remains to be fully 
elucidated. An enduring unresolved issue is the 
long-term monitoring of these individuals, where 
the patchy nature of intestinal metaplasia could 
lead to sampling errors and potentially incorrect 
assessments of intestinal metaplasia reversibility.
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