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The method and the algorithm for the calculation of the thermomechanical status of bodies are proposed which connect the
mechanical behavior of a material at the interchange of heat with the environment. The nonlinear problem of the
thermomechanical status of heating of two-phase bodies is solved. The laws of motion of the phase boundary, the temperature
field and of the strained state in the rod are given. The outcomes are presented as a relation, of both, temperature and strain upon
time and location.
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Predlo`ena sta metoda in algoritem za izra~un termomehanskega statusa teles. Povezujeta mehansko vedenje materiala pri
izmenjavi toplote z okolico. Re{en je nelinearni problem termomehanskega statusa pri segrevanju dvofaznih teles. Predstavljeni
so zakoni, ki opisujejo premikanje fazne meje, temperaturnega polja in deformacijskega stanja v palici. Re{itve so prikazane kot
odvisnost temperature in deformacije od ~asa in kraja.

Klju~ne besede: termomehanika, segrevanje in mehanske zna~ilnosti, nelinearnost prvega tipa, dvofazna telesa, matemati~no
modeliranje

1 INTRODUCTION

The methods of linear simulation in thermomecha-
nics can not meet the requirements of recent trends in
engineering in conventional industrial areas, such as
power system, machine industry and especially
metallurgy. Therefore, the solution of problems related
to the nonstationarity, non-uniformity, nonlinearity and
other singularities, and for which the mathematical
methods of the classic (linear) theory of heat conduction
and mechanics of a deformable solid body are poorly
used, is necessary. It is evident, that the achievement of
engineering advances is possible only with the
application of nonlinear mathematical modeling.

The natural thermomechanical processes are mostly
nonlinear, f.i. the radiation heating in metallurgical
furnaces, the melting and the solidification of metal and
solid phase transitions. Correct mathematical solutions
of these nonlinearities of the I, II and III type are
necessary for the advance of metallurgical
manufacturing and the improvement of economics,
ecology, quality and costs. The mathematical
difficultness forced for a long time, and often still force,
to use a straight linearization of equations of
thermomechanics (heat conduction and
thermoelasticity). Also proper solutions for the nonlinear

boundary value of heat conduction were not found
untilly recently. The use of numerical methods
predominantly applied to find solution in engineering
practice is not always reliable. Therefore it is necessary
to develop more simple methods of calculation which
would allow to determine analytically solutions with
sufficient working accuracy.

In ref. 1,2,3 some problems related to problems of
nonlinearity in metallurgical thermomechanics are
reviewed, the approaches to their solution are explained
and the usefulness of the development of analytical
methods for the exploration of nonlinear thermal
processes is pointed out.

In the present paper and for the example of a hollow
two-phase barrel the method and algorithm for the
definition and the solution of the thermomechanical
status of a body is presented considering the heat
interchange with the environment. Also the problem of
solidification of a rod is reviewed.

2 MATHEMATICAL MODELLING AND
SOLUTION OF NONLINEAR TASKS OF THE
THERMOMECHANICS OF A TWO-PHASE BODY

We shall consider the hollow cylinder of circular
cross section with the internal radius b1 and the external
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radius b. Let’s enter in an undeformed configuration the
cylindrical coordinate system (r,ϑ,z), with the axis z
coinciding to an axis of the cylinder. Let’s further
assume that the material of the cylinder can be in two
modular statuses - liquid and solid. The behavior of this
material in liquid and solid phase is described with
equations of growth of an inhomogeneous visco-elastic
body. Let’s designate through θ 0 the phase transition
temperature: at θ2 < θ 0 the material is solid, and at θ1 >
θ 0 - it is in liquid, and assume that up to a strain level the
material of the cylinder in solid takes the area of ω2(t) =
{b0 ≤ r ≤ b} and in liquid the area of ω1(t) = {b1 ≤ r ≤
b0}. The heat interaction of an exterior surface of the
cylinder with the environment is characterized with the
convection coefficient of heat rejection αkoi and
radiation. The interior surface r = b1 remains at the
constant temperature f. When at t = 0 to the interior
surface of the cylinder the pressure P(t) is applied, the
reflux of heat begins to the external surface of a body.
After that part of the material of the cylinder changes to
a solid phase with its boundary moving according the
law r = a = a(t).

For the change of an external load we need to define
the law of the motion of the boundary of phases a = a(t),
of temperature θi = θi (t,r) (i = 1,2) and of the strained
state of the barrel assuming a plane stress mode and a
linear creep law.

The mathematical definition of the nonlinear task of
thermomechanics for the cylinder in occurrence of a
phase transition due to the heat interchange with the
environment requires the determination of unknowns
characteristics in the following equations:
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In this equation and further the index "1" is related to
the arguments of the liquid and the index "2" - the solid
material; and are G(t–τ*(r)) - the elastic and instanta-
neous shear modulus; R(t–τ*(x),τ–τ*(x)) - the core of the
relaxation of the visco-elastic material; τ*(x) - the
moment of transition of an element of the material to the
solid modular status; ρi = ρi(θi), ri = ri(θi), λi = λi(θi) - the
density, the thermal capacity and the coefficient of heat
conduction of a material and θi(t,x) - the allocation of
temperature in the phase.

The boundary and the initial conditions of the
relations are:
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The relations (1) and (2) are the nonlinear equations
of thermomechanics for the cylinder in presence of a
phase transition due to the heat interaction with the
environment. The problem is reduced to the solution of
connected nonlinear integro-differential equations. For
the solution the approximated analytical 1 and the a
step-by-step method 4 were used. In the solution the
nonlinear equations of heat conduction are treated as a
combination of solutions of linear equations with
different boundary conditions for each time interval. The
temperature and the mechanical properties of the
material vary between the time intervals in a stepwise
way. The connection between intervals is obtained with
the initial conditions. The selection of the time intervals
depends on the intensity of the thermal loading. For the
definition of the temperature field of an elements
exposed to thermal loading of major intensity the most
rational is the use of approximate relations for the
performances of materials and mediums constant within
the limits of the temperature range.

The interval of time [0,tkoi], in which the strained
state in the cylinder is examined, is divided to sub-
intervals tk = kD, D = tkoi/N, k = 0,1,...,N. In this way the
process of continuous growth or crystallization is
substituted with a digital process. For each period of
time the equation of heat conduction and the elastic
contact equations for two bodies ω1(t), ω2(t) are
established. Using a variation of the Gibbs principle, the
law of motion of a phase boundary is than determined,
which takes into account the relation position of
temperature and mechanical fields and their change in
time.

According to 4 the solution of the equation of heat
conduction for a system of two cylindrical bodies ω1(t)
and ω2(t) for the iteration k is:
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In this equation αk = αk(θ2,k) is the reduced coeffici-
ent of heat rejection 5 which describes the intensity of
convection and radiative heat interchange with the
environment.

The strained state in the barrel in the instant tk of the
k iteration 6 is determined with a Lame treatment and the
equation:
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i, k= ( ) - are the Poisson
constant and Young modulus for each phase.

Following a method explained in 1 for the condition
for an extreme of an entropy function (variation principle
of Gibbs)
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with A(k) - activity of external forces and V(k) - internal
energy. After some transformations, the following
expression is derived for the definition of the law of
motion of a phase boundary in the k interval:
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where Ψ is a function of time, temperature, heating,
mechanical properties, and the geometrical arguments
of the system. This function is developed in ref. 1,2.

The algorithm for the definition of the thermo-
mechanical status for the W phase transition of a body
and the j period of time is constructed in the following
way:
1) we fit the phase aj(tk) boundary and from the solution

of the equation for heat conduction the temperatures
θi

j (x) (i = 1,2) in the body W is deduced;
2) we solve a contact task for two bodies with the

constant area ω1
j(tk) and ω2

j(tk), and define the field
of movements uj

(k);
3) for available values (uj

(k), θj
(k), aj

(k)) we institute the
internal energy Vj

(k) and entropy Sj
(k) of the body W;

4) from the first law of thermodynamics and for the
maximum of entropy Sj

(k) for the body W the true
position the phase boundar a*j

(k) is determined;
5) at the found position of the phase a*j

(k) the true
boundary temperature θ*j

(k) and the true field of
movements u*j

(k) are determined;
6) in the following period of time j + 1 the reference

temperature and the position of the phase boundary
will match those at the j- interval, i.e.
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Thus, the deduced algorithm for the solution of the
equation of thermoviscoelasticity takes into accounts the
previous history of all processes in each period of time
and the motion of the boundary of phases, defined with
the variation principle of Gibbs.

The numerical solution of the equations (1) and (2)
for the shaping of the status of the strained state of the
rising visco-elastic cylinder in presence of the phase
transition due to the heat interaction of an exterior lateral
area with the environment are obtained with the solution
of the equation (5) and are shown in Figures 1 to 3 for
the following values b = 0.06 m, b0 = 0.05 m, b1 = 0.02
m, ν1 = 0.5, ν1 = 0.29.

In these figures the influence of heat interchange
between the cylinder external surface and the environ-
ment on the law of motion for the phase boundary, the
time change of the temperature field θ2 (t,b) and the
temporal θ2 (t,r) relation for different points of the barrel
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Figure 1: The law of motion of a phase boundary
Slika 1: Zakon o premikanju fazne meje

Figure 2: Change of temperature of a lateral area
Slika 2: Sprememba temperature lateralne povr{ine



cross section at fixed value αkoi = 4 · 103 Bm/(m2 · K) are
presented.

The functionability of the algorithm is checked with
comparison of the obtained results with data in ref. 7,8,9

for the motion of the phase boundary at αkoi = 3 · 103

Bm/(m2 · K) (material - pig iron) and for the temperature
change of an external surface at 100 < αkoi < 5 · 103

Bm/(m2 · K).

In Figures 4 and 5 the time evolution of the radial
and horizontal pressure αkoi for the cross section r =
0.053 m of the solid phase of the cylinder at different
values is shown. With the increase of the intensity of the
heat interchange of an exterior surface with the environ-
ment the stresses increase also. Also the increase of an
absolute value of growth αkoi with safe characteristic of
stress in time is watched.

The analysis of the obtained results shows that the
modification of heat interchange with the environment
and the geometrical shape influence the process of
crystallization and, consequently, and also the
temperature and the stress field.

3 THERMOMECHANICAL STATUS OF A
TWO-PHASE ROD IN DEPENDENCE OF
HEATING AND THE TEMPERATURE CHANGE

We shall consider a straight-line rod of length l. Let’s
enter in a undeformed configuration the Cartesian
coordinate system (x1, x2, x3) with the axis x3 in the axis
of the rod. One extremity x = 0 of the rod is rigidly
restrained, and the other x = l is free. Let’s assume, that
the matter of the rod consists of two phases - hyper-
thermal and cold. The heat conduction of the cold rod is
described with equations of state for the growth of a
visco-elastic field in a hyperthermal - elastic body. Let’s
assume that θ 0 is the phase transition temperature,
therefore, at θ 2 < θ 0 an element of the material is in solid
and at θ 1 > θ 0 - in hyperthermal phase. Let us further
assume, that up to a strain level the matter of the rod is a
solid phase in the range ω2(t) = {l0 ≤ x ≤ l}, and it is a
hyperthermal phase in the range ω1(t) = {0 ≤ x ≤ l0}. The
heat interaction of side and end surfaces of a solid phase
of the rod with the environment is characterized with the
convection coefficients for heat rejection, α1koi, α2koi

and irradiation. The hyperthermal phase is supposed to
be heat-insulated.

If at the instant t = 0 the longitudinal pressure load of
intensity P(t) is applied the removal of heat to the
environment begins on the free end of the rod at x = l.
Parallely, part of the rod solidifies and its length varies
accordingly to law x = a = a(t).

Let us define the law of motion of the phase
boundary with a = a(t), of the temperature with θi =
θi(t,x) (i = 1,2) and the strained state in the rod due to an
axial stress.

The mathematical solution of the equation for the
change of the conditions of phase transition requires the
calculations of unknown characteristics using the
following equations:
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Figure 5: Allocation of horizontal stresses
Slika 5: Vodoravne napetosti na razli~nih prerezih

Figure 4: Allocation of radial stresses
Slika 4: Radialne napetosti na razli~nih prerezih

Figure 3: Change of temperature for different points of the cross
section of the cylinder
Slika 3: Sprememba temperature za razli~ne to~ke na prerezu valja
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In the equations (6) and (7) the index "1" is related to
arguments of the matter in the hyperthermal, and the
index "2" - in the solid phase. In the equations are: E1 -
the Young’s modulus; E2(t–τ*(r)) - the elastic and
momentary strain module; R(t–τ*(x),τ–τ*(x)) - the core
of a relaxation of a visco-elastic material; τ*(x) - the
moment of transition of an element of the material to the
solid modular status; ρi,ci,λi = λi(θi), αi = αi(θi) - the den-
sity, the thermal capacity and the thermal conductivity of
the material related to the coefficient of heat rejection 5,
which describes the intensity of convection and radiative
heat interchange with the environment; θi(t,x) - the
allocation of temperature in the processed phase of the
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power of interior effluents of heat in a solid phase which
takes into account also the convection and radiative heat
interchange of the lateral area of the rod with the
environment.

The boundary and the initial conditions of the
equations are:
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The equations (6) to (10) are the formulation of the
thermoviscoelasticity for the phase boundary deplace-
ment in the two-phase rod in self contained shape. With
difference to the solutions in ref. 2,10 the volume is
considered also. The equations for heat conduction in the
relations (7), (9), (10) allow for the non linearity of first
kind with regard of the relation of the heating properties
of a material in dependence upon the temperature. For
the solution of the equations (6) to (10) the approximated
analytical method offered in the present paper is used.

According to 1 the tight-strained state in a rod on
each period of time can be determined with the solution

of the contact task of two bodies occupying the areas
ω1

j(tk) and ω2
j(tk) determined with the equations:
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where the index j means the fitting to j-period of time
and; a tj k( ) - the law of motion of a phase boundary.

According to 4 the temperature field for the j-period
of time is:
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For the definition of the function a(t) and the
connection of temperature and mechanical fields we
shall, as earlier, take advantage of the variation principle
of Gibbs, according to which the point aj = aj(tk) de-
scribing j-position of a phase boundary in the j-interval
conveys the maximum rating of the entropy function.

As result and similarly to the previous task, we will
have a differential equation for the law of motion of a
phase boundary with the solution in Figure 6, 8 and 9.

In Figure 6a the relation of temperature of a solid
phase in a two-phase rod as dependence upon the size of
the solid phase and of the time is shown. The relation of
temperature versus time in the section x = 0.38 is shown
in Figure 6b, and the law of motion of the phase boun-
dary in Figure 6c. In Figure 7 the stress distribution in
the solid rod in dependence of the cooling time is shown.

In case of combined effect of heat interaction of side
and end surfaces with the environment and of phase
transition, the results are shown in a Figure 8, 9.

It is clear from Figure 8 that in presence of heat
interchange of a lateral area with the environment the
solidification time of a material is essentially decreased.
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The curves in Figure 9 show that the heat
interchange from the lateral area of a rod has a greater
influence on the crystallization process, than the heat
interchange at the end, as already determined with
computation and verified with experimental data 8.

4 CONCLUSIONS

The developed algorithm and the obtained solutions
can be used for the simulation of nonlinear thermo-
mechanical processes related to phase transitions and
allow to take into account the interaction of fields of
different physical nature.
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Figure 7: The stress distribution in solid of rod
Slika 7: Porazdelitev napetosti v trdni palici

Figure 9: The law of motion of a phase boundary for different cooling
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Figure 8: The law of motion of a phase boundary for different
intensity of cooling
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