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Generalized blockmodeling of sparse networks 
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Abstract 

The paper starts with an observation that the blockmodeling of relatively 

sparse binary networks (where we also expect sparse non-null blocks) is 

problematic. The use of regular equivalence often results in almost all units 

being classified in the same equivalence class, while using structural 

equivalence (binary version) only finds very small complete blocks. 

Two possible ways of blockmodeling such networks within a binary 

generalized blockmodeling approach are presented. It is also shown that sum 

of squares (homogeneity) generalized blockmodeling according to structural 

equivalence is appropriate for this task, although it suffers from “the null 

block problem”. A solution to this problem is suggested that makes the 

approach even more suitable. All approaches are also applied to an empirical 

example. 

My general suggestion is to use either binary blockmodeling according to 

structural equivalence with different weights for inconsistencies or sum of 

squares (homogeneity) blockmodeling with null and constrained complete 

blocks. The second approach is more appropriate when we want complete 

blocks to have rows and columns of similar densities and differentiate among 

complete blocks based on densities. If these aspects are not important the 

first approach is more appropriate as it does in general produce ‘cleaner’ null 

blocks. 

 

1 Introduction 
 

The generalized blockmodeling of relatively sparse binary networks, more 

specifically of networks where we expect relatively sparse non-null blocks and not 

completely empty null blocks, is problematic. Sparse networks are defined as 

networks where the number of ties is of the same order of magnitude as the number 

of units or where the average degree is much smaller than the number of units 

(Batagelj and Mrvar, 2001; Mrvar and Batagelj, 2004). Most larger (at least 100 

units or more) networks of current scientific interest (Newman, 2004) are sparse, 

although (generalized) blockmodeling is mainly applied to smaller networks. 

However, in this paper I limit the discussion to blockmodeling of sparse networks 

in cases where we also want to allow for sparse non-null blocks (that have densities 
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below 0.5). I do not discuss blockmodeling of sparse networks when the blocks that 

are to be found (are desired in the blockmodeling solution) should be dense (i.e. 

have a density above 0.5) since classical methods based on structural equivalence 

work well on such networks and therefore this is not a problem to be solved. 

Blockmodeling is a method for partitioning network units into clusters and, at 

the same time, partitioning a set of ties into a block (Doreian, Batagelj, and 

Ferligoj, 2005, p. 29). There are several approaches to blockmodeling, such as 

stochastic blockmodeling (Anderson, Wasserman, and Faust, 1992; Holland, 

Laskey, and Leinhardt, 1983; Snijders and Nowicki, 1997), conventional 

blockmodeling (e. g. Breiger, Boorman, and Arabie, 1975; Burt, 1976; see Doreian 

et al., 2005, pp. 25–26 for definition) and generalized blockmodeling  (Doreian et 

al., 2005). The main characteristic of generalized blockmodeling is that the 

equivalence (generalized equivalence (Doreian, Batagelj, and Ferligoj, 1994)) is 

defined by set of allowed block types (patterns of ties in blocks) and possibly their 

positions. 

Since regular blocks (non-null blocks conforming to regular equivalence) can 

also be (very) sparse, using regular equivalence (Batagelj, Doreian, and Ferligoj, 

1992; White and Reitz, 1983; Žiberna, 2009) for the (generalized) blockmodeling 

of such networks seems reasonable. However, several studies have shown that 

blockmodeling according to regular equivalence is very sensitive to small changes 

in the network (Žiberna, 2009; Žnidaršič, Ferligoj, and Doreian, 2012; Žnidaršič, 

2012) and is in addition a very weak requirement, often allowing many equally 

well-fitting partitions  (Ferligoj, Doreian, and Batagelj, 2011) or even suggesting 

that (almost) all units are in the same equivalence class. Yet for binary networks, 

structural equivalence, which has been shown to be very stable (Žiberna, 2009; 

Žnidaršič et al., 2012; Žnidaršič, 2012), often cannot be used, especially in sparse 

networks, because the units that should be equivalent do not necessarily have ties to 

exactly the same units. The use of structural equivalences in sparse networks is 

particularly problematic in binary generalized blockmodeling
2
 as all blocks with 

more 0 than 1 ties are classified as null, resulting in only very small  complete 

blocks. This happens with a ‘default’ setting, that is, with the equal weighting of 

inconsistencies of different block types. The problem can be overcome by choosing 

suitable weights. Another possibility for blockmodeling sparse networks within 

binary blockmodeling is to use a density block type (Batagelj, 1997) instead of a 

complete block type. These possibilities for generalized blockmodeling of sparse 

networks are explored in the second section.  

The problem of blockmodeling sparse networks can be overcome by using 

stochastic equivalence (Holland et al., 1983) which may be said to be the stochastic 

version of structural equivalence. Two units are stochastically equivalent i f they 

have the same probabilities of ties to all other units.  This means that the 
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probabilities of ties within a block are the same for the whole block. However, as 

these probabilities can also be low this allows for sparse blocks.  

Something very similar can also be achieved within generalized blockmodeling 

framework by using sum of squares blockmodeling
3
 according to structural 

equivalence (Žiberna, 2007a) on binary networks. When applied to binary 

networks, this means that sum of squares blockmodeling according to structural 

equivalence searches for blocks with similar means, which in binary networks 

comes down to similar densities. It could even be said that it searches for blocks 

where rows and columns (separately) have similar densities, since blocks gain or 

lose rows or columns when a unit changes its cluster membership. This makes it 

similar to stochastic equivalence and also to regular equivalence as it can be said 

that the attention is shifted from cells to rows and columns (because density does 

not have a meaning for cells). 

One problematic characteristic of sum of squares (homogeneity) blockmodeling 

is that a null block is a special (more restricted) case of a complete block (and in 

theoretical terms also f-regular and some other blocks) (Žiberna, 2007a), also 

referred to as “the null block problem” (Žiberna, 2007b, pp. 77–80). In 

homogeneity (and therefore also sum of squares) blockmodeling, the null block is 

defined as a block where all tie values are 0, while the complete block as such 

where all ties values are equal. The consequences of the null block problem appear 

in two areas. First, a pre-specified blockmodel with null blocks practically cannot 

be used in sum of squares blockmodeling without also pre-specifying ‘central’ 

values for non-null (e.g. complete) blocks
4
. Second, null blocks practically never 

occur in exploratory analysis since the less restricted versions of the complete 

blocks are a better fit. This also means that the approach does not optimize towards 

null blocks because a very sparse block does fit relatively well to a complete block 

with a very small mean (density in binary networks). In the third section, a solution 

to this problem is proposed. 

The main purpose of this paper is to explore ways to perform generalized 

blockmodeling of relatively sparse binary networks. In the second and third 

sections, possible approaches to generalized blockmodeling of sparse networks are 

identified. In the fourth section, these approaches are applied to an empirical 

example. In the conclusion (the last section), the main points of the paper are 

summarized and suggestions are given to researchers wishing to use generalized 

blockmodeling on sparse networks. 

My general suggestion is to use either binary blockmodeling according to 

structural equivalence with different weights for inconsistencies in null and 

complete blocks or sum of squares (homogeneity) blockmodeling with null and 

constrained complete blocks. The second approach is more appropriate when we 

want complete blocks to have rows and columns of similar densities and to 

differentiate among complete blocks based on densities. On the other hand, if these 
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aspects are not important the first approach is more appropriate since it generally 

produces ‘cleaner’ null blocks. 

2 Regular equivalence and other options for 

partitioning sparse networks 
 

Regular equivalence was first introduced by White and Reitz (1983), by building 

upon the work of Sailer (1978). Two (groups of) approaches exist for finding 

groups of regularly equivalent units. The first is to use some version of the REGE 

algorithm (Borgatti and Everett, 1993; White, 2013) initially developed by White 

and Reitz based on their 1983 paper, while the other is based on finding regular 

blocks using local optimization (Batagelj et al., 1992). More details of both 

approaches for binary and valued networks and a comparison of these two 

approaches can be found in Žiberna (2008). However, while regular equivalence 

has been quite extensively studied in the literature in the previously mentioned 

articles and numerous others (e.g. Borgatti and Everett, 1989; Everett and Borgatti, 

1994), it has never achieved widespread use in practice.  

This is not surprising given that several authors have noticed that finding 

reasonable groups of regularly equivalent units is problematic. REGE and its 

variants in the ‘global’ version are unable to find regular equivalence classes in 

symmetric networks, although there have been some attempts to circumvent this 

(Doreian, 1987, 1988), while using optimization approaches often leads to many 

equally well-fitting partitions or unsatisfying partitions (Doreian, Batagelj, and 

Ferligoj, 2004; Ferligoj et al., 2011). It has also been shown that regular 

equivalence is very sensitive to small changes in the network (Žiberna, 2009; 

Žnidaršič et al., 2012; Žnidaršič, 2012) .  

In addition, authors have questioned if regular equivalence is really useful as a 

concept. Boyd and Jonas (2001) say that it is rarely present in the data and that if 

their results are confirmed by other authors on other datasets, then “regular 

equivalence as a default model of social interaction must be abandoned”. Boyd 

(2002) further says that “Regular equivalence is very beautiful mathematically (see 

Boyd, 1991), but it is fundamentally flawed sociologically”, while also noticing 

that it is rarely present in the data.  

While it may be questionable whether regular equivalence should be used, there 

is definitely a need for a concept and a method that supports finding blocks that are 

neither null nor complete in sparse networks. These blocks should also preferably 

have rows and columns (separately) of similar densities, which would indicate that 

such rows/columns really are similar and therefore should be in the same blocks.   

As mentioned in the introduction, binary (generalized) blockmodeling according to 

structural equivalence (without weighting) or regular equivalence is not 

appropriate. Using regular equivalence on sparse networks often leads to almost all 

units being in the same equivalence class, while the remaining classes are usually 

singletons. The use of structural equivalence on such networks usually leads to 
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only very small complete blocks and relatively large and only slightly ‘below-

average’ dense null blocks. However, there are two possible ways this can be done 

using binary generalized blockmodeling.  

The most obvious one is through use of the density block type (Batagelj, 1997) 

instead of a complete or regular block type. The density block type has zero 

inconsistency if the density of the block is equal to or above γ (the parameter of the 

density block type), and equal to the number of ‘missing’ ties to achieve this 

density otherwise (the exact formulas for this and other block types are available in 

Batagelj (1997) and Doreian, Batagelj and Ferligoj (2005, p. 224), among others). 

As the inconsistency of the null block is simply the number of ties in the null block, 

a block will be classified as a density block and not null if its density is larger than 

  ⁄ . However, the downside of this approach is that there is no incentive
5
 for 

density blocks to have a density over γ or that the rows or columns in the blocks 

would have similar densities. 

Another possibility is by using structural equivalence with a different weighting 

of inconsistencies in null and complete blocks. Doreian, Batagelj and Ferligoj 

(2005, pp. 186–187) discuss the different weighting of null and complete blocks’ 

inconsistencies and state that the choice of weights “rests on substantive concerns”, 

although they do not suggest any specific way of setting these weights. Here I 

present a suggestion that works reasonably well in sparse networks when the aim is 

to find denser and sparser blocks, but not perfectly null and especially not perfectly 

complete blocks. If we want blocks with a density greater than d to be classified as 

complete and those with a density smaller or equal to d as null, the appropriate 

weights would be 1 for null blocks and  (   )⁄  for complete blocks (or 1 – d for 

null blocks and d for complete blocks, as only the ratio between the weights is 

important). The advantage of this approach is that, in spite of this weighting, 

complete blocks have an incentive to be as dense as possible, although there is still 

no incentive for similarities in the densities of rows or columns. 

Let us suppose that we want to find blocks characterized by similar densities of 

rows and columns. An appropriate concept for finding groups that leads to such 

blocks is stochastic equivalence (Holland et al., 1983). Based on this definition, 

numerous stochastic blockmodels have been developed (Airoldi, Blei, Fienberg, 

and Xing, 2008; Ambroise and Matias, 2012; Anderson et al., 1992; Daudin, 

Picard, and Robin, 2008; Holland et al., 1983; Latouche, Birmelé, and Ambroise, 

2012; McDaid, Murphy, Friel, and Hurley, 2013; Nowicki and Snijders, 2001; 

Snijders and Nowicki, 1997; Zanghi, Ambroise, and Miele, 2008)  which are useful 

for this task. However, they are currently incompatible with generalized 

blockmodeling. For applications where generalized blockmodeling is preferred, 

especially if the use of pre-specified blockmodels is desired, I suggest using sum of 

squares (homogeneity) blockmodeling. More precisely, the complete blocks from 

this approach can be used to find blocks compatible with stochastic equivalence , 
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that is to find blocks with similar densities of rows and columns. The approach is 

explained in more detail in the next section where a modification of the approach is 

also suggested that enables its use in pre-specified blockmodeling. 

3 Homogeneity blockmodeling and the null block 

problem 
 

Homogeneity blockmodeling (Žiberna, 2007a) was developed as an approach to the 

(generalized) blockmodeling of valued networks. The main idea is that blocks 

should be as homogenous as possible with respect to some property.  When using 

sum of squares blockmodeling, homogeneity is measured by the sum of squared 

deviations from the mean or pre-specified value.  For complete blocks, the cells’ 

values should be as homogeneous as possible, while for other blocks other 

properties within blocks should be homogenous. However, generally the value they 

should equal is not specified. As a result, this value can also be 0. In such cases, in 

terms of the ideal structure, practically all other block types reduce to the null 

block type. In terms of the way inconsistencies are computed, a null block can be 

seen as a restricted complete block where the value which all (off-diagonal) values 

should be equal to is restricted to 0. If the sum of squares approach is used, the 

optimal value for a complete block, that is the value from which sum of squares 

deviations (inconsistency) is the smallest, is the mean (density in the case of binary 

networks) of all the (off-diagonal) tie values and thus, if at least one value is not 

zero (and only positive values are present), the null block will have greater 

inconsistency than the complete block. As a result, null blocks are hardly ever 

identified and sparse blocks are classified as complete. As such, there are fewer 

penalties for them not being completely empty. This problem is already identified 

and was named “the null block problem” in Žiberna (2007b, pp. 77–80) where 

some solutions that more or less circumvent this problem are suggested.  

A solution that is suggested here is to restrict all non-null block types so that 

the value to which the values should be homogeneous is restricted to be larger than 

or equal to some pre-specified threshold. This means that when computing 

deviations for the computation of block inconsistencies (see Žiberna (2007a) for 

how inconsistencies are generally computed for homogeneity blockmodeling), 

these deviations within non-null blocks are computed from the optimal value if 

such a value is equal to or larger than the pre-specified value, and from the pre-

specified value otherwise. The formula for computing inconsistencies for the sum 

of squares blockmodeling of an off-diagonal complete block is given in Equation 

3.1: 
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Where: 

  is the computed block inconsistency 

 ̅ is the mean of the block 

   is the row cluster 

   is the column cluster 

    is the value of the tie from unit i to unit j 

  is the pre-specifed value 

In this way, if only null and complete blocks are used within the sum of squares 

approach, there are incentives for blocks to either have a mean equal to 0 (or close 

to 0) or higher than or equal to a pre-specified value. For complete blocks, a 

reasonable choice for the pre-specified value is twice the mean of the network. In 

case only null and complete blocks are allowed, the blocks will thereby be 

classified as complete if the block mean is larger than the mean of the whole 

network. Based on my experience and testing on several networks, such a selection 

of the pre-specified value produces very good or at least reasonable results in most 

networks, although other values can be used if a different ‘threshold’ for 

classification is desired (e.g. if driven by subject knowledge). However, the results 

in most cases are not very sensitive to the selection of this pre-specified value (so 

long as it is not too high) because the inconsistency in the constrained complete 

blocks can always be computed from a value higher than the threshold (and in most 

blocks it is). 

The use of constrained non-null blocks is appropriate whenever null blocks are 

desired. This is especially important in situations where pre-specified 

blockmodeling is performed. Of course, this constraint can be used in any non-null 

blocks, regardless of the type and whether they appear on the diagonal or not. For 

the diagonal block, the restriction is usually only implemented off the diagonal (if a 

special version of the diagonal blocks exists for the block type).  

4 Example: Application to network of the elite of 

cancer researchers in France 
 

The suggested approach is demonstrated on a network of the elite of cancer 

researchers in France (Lazega, Jourda, Mounier, and Stofer, 2008). Through 

interviews, Lazega et al. gathered several networks of researchers, several networks 

of labs (laboratories) and a two-mode network of researchers’ membership in labs. 

However, for this demonstration, only the aggregated  network of researchers 

(several relations were merged) is used (employing the same kind of aggregation 

performed by Lazega et al. (2008)). This aggregate network of researchers 

measures which researchers each researcher specified as their collaborator/s. 

The network is presented using the graph in Figure 1 and the matrix in Figure 

2. We can see from the figures and network statistics in Table 1 that the network is 

relatively sparse. While there are some researchers with many ties, most of them 
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only have a few ties. This is the kind of network where in most cases binary 

blockmodeling according to either structural or regular equivalence does not 

produce satisfactory results. The density value is used in several places in this 

example. A slightly rounded value is used and denoted as d = 0.06.  

 

 

Figure 1: Graph representation of the network 

 

Figure 2: Matrix representation of the network (researchers are ordered according to the 

all-degree) 
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Table 1: Basic network statistics 

Statistics Value 

Number of units 127 

Number of ties 986 

Density 0.061 

Average in-degree 7.764 

Centralization all-degree 0.167 

Centralization in-degree 0.122 

Centralization out-degree 0.210 

Centralization betweenness centrality 0.099 

Clustering coefficient 0.281 

Reciprocity 0.368 

 

In this example, both binary blockmodeling and sum of squares blockmodeling 

are applied to this network. For the binary blockmodeling, several approaches are 

tested: 

 Structural equivalence (null and complete blocks are allowed) with equal 

weighting of inconsistencies. 

 Structural equivalence where null blocks’ inconsistencies have a weight 1 

and complete blocks’ inconsistencies are weighted by  (   )⁄  ≈ 0.064, 

where d = 0.06 is (approximately) the density of the network. 

 Regular equivalence (null, complete and regular blocks are allowed).  

 Equivalence with allowed block types: 

o null block type 

o density block type with parameter γ = 2d = 0.12. 

In addition, two versions of sum of squares blockmodeling are used: 

 Structural equivalence with null and complete blocks allowed (however, null 

blocks are a special case of complete blocks) – not used in pre-specified 

designs. 

 Equivalence with allowed block types: 

o  Null block type 

o Restricted complete block type with the pre-specified restriction p = 

2d = 0.12. 

All approaches discussed are applied to the following two models: 

 A free (no pre-specifications) model 

 A cohesive groups (non-null blocks on the diagonal and null blocks off-

diagonal of the image matrix) model 

 An exception is sum of squares blockmodeling according to structural 

equivalence (with unrestricted complete blocks), which is unsuitable for 

pre-specified blockmodeling and is therefore not used for the second model.  

 The cohesive groups model was chosen as it is a very restrictive model 

(each blocks has only one allowed block type). Based on my experience in 

such cases, even binary blockmodeling according to structural equivalence 

with equal weights of inconsistencies can produce reasonable results.  
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4.1 The free model 

 

Under the free (no pre-specification) model, binary blockmodeling according to 

either structural (unweighted inconsistencies) or regular equivalence does not (as 

expected) produce satisfactory results. For structural equivalence, the most suitable 

number
6
 of clusters based on the plot of inconsistencies by the number of clusters 

(see Figure 3) is 3 (6 and 8 would also be possible candidates). The number of 

different solutions with the lowest inconsistency is indicated by the size of the 

points. The partitioned matrix into 2 to 7 clusters is presented in Figure 4. Here we 

can see that in the 3-cluster partition, two internally densely connected clusters are 

identified as well as one large cluster with no specific pattern of connections. When 

the number of clusters is further increased, this large cluster is only slightly 

reduced (from 110 units in the 3-cluster partition to 102 and 89 units in 7- and 8-

cluster partitions, respectively). Therefore, binary blockmodeling according to 

structural equivalence is appropriate for detecting dense blocks which translate to 

the identification of a few small groups, but it is inappropriate for determining a 

more general partition of the network. 

 

Figure 3: Inconsistencies by number of clusters for binary blockmodeling according to 

structural equivalence (unweighted). The point size indicates the number of different 

solutions with the lowest inconsistency. 

Binary blockmodeling according to regular equivalence produced, as expected, 

even worse results. Regardless of the number of clusters (2 – 8) we obtain one 

cluster with 117 units (out of 127) that is connected to itself with a perfect (zero 

inconsistency) regular block. Such a partition is obviously useless (the results are 

omitted here to save space).  

                                                 
6
 The most suitable number is the one after the highest reduction of the inconsistency.  
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Figure 4: Matrix partitioned using binary blockmodeling according to structural 

equivalence 

Somewhat better results are obtained with binary blockmodeling when allowing 

null and density block types, where the density threshold γ was set to 
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approximately twice the density (0.12) to classify blocks denser than the density of 

the whole network as density type blocks, and as null otherwise. From the 

inconsistencies presented in the left half of Figure 5 it is clear that 5-cluster 

solution is the most appropriate. The matrix partitioned according to this partition 

is presented in the right half of the same figure.  

 

Figure 5: Results of the binary blockmodeling with null and density blocks. In the left 

plot the point size indicates the number of different solutions with the lowest 

inconsistency. 

The corresponding block densities are shown in Table 2. The image matrix is 

indicated in Table 2 with a black background and with numbers being used for 

density blocks (those with a density above 0.06), and vice versa for null blocks. 

While this is a usable partition, most density blocks have a density approximately 

equal to the density threshold γ (0.12). They therefore have a very similar density 

and are thus not as dense as at least some could be. This is expected because this 

approach does not give any incentives for blocks to be denser than the density 

threshold γ of the density blocks. Denser blocks could of course be found by 

increasing this density threshold, albeit at the expense of more (even not very 

sparse) blocks being classified as null blocks. This also shows that the approach is 

very sensitive to the selection of the density threshold γ. 

Table 2: Block densities (ignoring the diagonal for diagonal blocks) for the binary 

blockmodeling with null and density blocks, 5-cluster partition. Black background 

indicates non-null blocks. 

 1 2 3 4 5 

1 0.132 0.121 0.123 0.111 0.021 

2 0.119 0.123 0.008 0.021 0.008 

3 0.118 0.009 0.121 0.021 0.014 

4 0.023 0.009 0.004 0.122 0.009 

5 0.008 0.008 0.009 0.009 0.026 

 



Generalized blockmodeling of sparse networks                         111 

 

 

The best approach within binary blockmodeling for partitioning such networks 

seems to be to use structural equivalence with different weights for null and 

complete blocks’ inconsistencies. As with the approach using density blocks, we 

set the weights so that blocks denser than the density of the whole networks are 

classified as complete and the rest as null. This criterion for the selection of 

weights (introduced in Section 2) leads to using weight 1 for null blocks’ 

inconsistencies and 0.064 for complete blocks’ inconsistencies. Based on the 

inconsistencies by number of clusters presented in the left half of  Figure 6, we can 

see that the 5- or 7-cluster solution is the most appropriate. I chose the 5-cluster 

solution for simplicity and to allow an easier comparison with the previous 

solution. The matrix partitioned according to this partition is presented in the right 

half of the same figure. The corresponding block densities are shown in Table 3. 

The image matrix is indicated in Table 3 with a black background and with 

numbers being used for complete blocks, and vice versa for null blocks. This could 

also be determined solely from the densities as all blocks with a density above 0.06 

are classified as complete and the others as null. Compared to the previous solution 

(with density blocks), here not all non-null
7
 blocks have practically the same 

densities. Some have much higher densities, while others are lower due to the fact 

that the criterion function does not ‘break’ at density of 0.12. However, ‘the costs’ 

of these differential densities are somewhat larger densities of null blocks and not 

such a clear distinction between the null and non-null blocks. However, I still 

prefer this solution as it tells more about the structure of the network (and less 

about the exploratory method used). 

 

Figure 6: Results of the binary blockmodeling according to structural equivalence with 

different weights for the null and complete blocks' inconsistencies. In the left plot the 

point size indicates the square root (due to big differences) of the number of different 

solutions with the lowest inconsistences. 

                                                 
7
 The term “non-null blocks” is used here as it includes all blocks other than null, therefore also 

both complete and density blocks.   
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Table 3: Block densities (ignoring the diagonal for diagonal blocks) for binary 

blockmodeling according to structural equivalence with different weights, 5-cluster 

partition. Black background indicates non-null blocks. 

 1 2 3 4 5 

1 0.283 0.130 0.182 0.172 0.037 

2 0.084 0.255 0.012 0.010 0.016 

3 0.144 0.021 0.140 0.015 0.009 

4 0.116 0.021 0.012 0.166 0.02 

5 0.016 0.014 0.014 0.014 0.027 

 

The same network was also analyzed using sum of squares blockmodeling 

according to structural equivalence. First the (null and) unconstrained complete 

blocks were used. Based on the inconsistencies by number of clusters presented in 

the left half of Figure 7, we can see that the 3-cluster solution is the most 

appropriate. The matrix partitioned according to this partition is presented in the 

right half of the same figure. The corresponding block densities are shown in Table 

4. The image matrix is not presented because under this approach all blocks are 

classified as complete (as discussed in Section 3). While this solution nicely 

discovers the two cohesive groups (one very cohesive, much more than any 

previously found), it fails to capture the structure evident from the two best 

solutions obtained using binary blockmodeling (in Figure 5 and Figure 6). Further, 

the ‘null-like’
8
 blocks are not as sparse as those in the previously mentioned 

solutions. 

 

Figure 7: Results of the sum of squares blockmodeling according to structural 

equivalence. In the left plot the point size indicates the number of different solutions with 

the lowest inconsistency. 

 

 

                                                 
8
 As mentioned in Section 3, true null blocks are almost impossible.  
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Table 4: Block densities (ignoring the diagonal for diagonal blocks) for sum of squares 

blockmodeling according to structural equivalence, 3-cluster partition 

 1 2 3 

1 0.628 0.050 0.069 

2 0.035 0.230 0.057 

3 0.025 0.034 0.032 

 

The final approach I applied to this network is sum of squares blockmodeling 

with null and constrained complete blocks. The null blocks are constrained so that 

the value from which the inconsistencies are computed is at least (p in Equation 

3.1) 0.12. Based on the inconsistencies by number of clusters presented in the left 

half of Figure 8, we can see that the 3-cluster solution is the most appropriate. The 

matrix partitioned according to this partition is presented in the right half of the 

same figure. The corresponding block densities are shown in Table 5. The image 

matrix is indicated in this table with a black background and white numbers being 

used for complete blocks, and vice versa for null blocks. 

 

Figure 8: Results of the sum of squares blockmodeling with null and constrained complete 

blocks. In the left plot the point size indicates the number of different solutions with the  

lowest inconsistency. 

Table 5: Block densities (ignoring the diagonal for diagonal blocks) for the sum of 

squares blockmodeling with null and constrained complete blocks, 3-cluster partition. 

Black background indicates non-null blocks. 

 1 2 3 

1 0.628 0.042 0.078 

2 0.034 0.184 0.045 

3 0.024 0.027 0.025 

 

We can see that the results are very similar to the unrestricted structural 

equivalence results. The only difference in partitions is that 11 units from the third 

cluster in the unrestricted structural equivalence partition have moved to the second 
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cluster. The result in terms of densities is that the destines that were the closest to 

the mean density have moved further from it, while one that was far away from it 

has moved closer. An additional benefit is that we automatically obtain the 

categorization of blocks into null and complete. While this could be done manually 

in this case, it also makes the use of pre-specified blockmodeling possible. 

The advantage of both of these two approaches (sum of squares blockmodeling) 

is that they not only differentiate among null and complete blocks, but also among 

complete blocks of different densities. The cost of this is, however, less ‘empty’ 

null blocks. 

4.2 The cohesive groups model 

A similar analysis was performed using the cohesive groups pre-specified model. In 

order to save space, only the best results are presented here. All approaches except 

binary blockmodeling according to regular equivalence produced sensible results, 

although for binary blockmodeling with null and density blocks this is only true 

when up to 4 clusters were requested. The best results were obtained using binary 

blockmodeling and sum of squares blockmodeling with null and constrained 

complete blocks. For these two approaches, 3- or 4-cluster solutions are the most 

appropriate and are presented in Figure 9. Here we can again notice that sum of 

squares blockmodeling differentiates based on densities. The consequences of this 

are that the complete blocks (on the diagonal in this case) usually have significantly 

different densities and that rows and columns (each separately) inside the complete 

blocks have similar densities. However, the consequence of this additional 

optimizational aspect (similar densities of rows and columns within complete 

blocks) is that there are more ties in the off-diagonal blocks and less in the blocks 

on the diagonal (where they should be). 

5 Software 
All of the approaches were applied using the development version of the  

blockmodeling 0.2.2 package (Žiberna, 2013a, 2013b) within the R 3.0.1 

software environment for statistical computing and graphics (R Core Team, 2013). 

The source code used for the results presented in the paper is available as 

supplementary material (without data).  

6 Discussion and conclusion 
The generalized blockmodeling of relatively sparse networks (where we also expect 

sparse non-null blocks) is problematic. I identified two ways that classical binary 

generalized blockmodeling could be used for blockmodeling such networks. The 

most obvious choice is to use density blocks, although a shortcoming of this 

approach is that there is no incentive for these density blocks to have densities 

above the selected threshold. The other approach is to use structural equivalence 

where different weights are given to inconsistencies in null and complete blocks, 
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noting that I suggested how these weights should be computed. The advantage of 

this second approach is that the incentive remains for complete blocks to be as 

dense as possible. Another possible approach is to use sum of squares 

(homogeneity) blockmodeling according to structural equivalence. Two versions of 

this approach, with restricted and unrestricted complete blocks, are discussed. The 

advantage of this approach (both versions) is that it searches for complete blocks 

with similarly dense rows and columns and consequently differentiates complete 

blocks of different densities; however, the cost of this additional optimization 

criterion is that more ties are present in the null blocks.  

 

 

Figure 9: Matrix partitioned into 3 and 4 clusters according to the cohesive groups pre-

specified blockmodel by binary blockmodeling according to structural equivalence and by 

sum of squares blockmodeling with null and restricted complete blocks 

All these approaches/versions produce reasonable results when applied to the 

analyzed network and all other sparse binary networks on which I tested them. 
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They therefore represent a general way of blockmodeling sparse networks when the 

aim is to find groups that are connected with relatively weak ties (sparse blocks). It 

should be noted that structural equivalence with equal weights for null and 

complete blocks’ inconsistencies can also produce very good results when used 

with a very stringently pre-specified blockmodel (e.g. a cohesive groups model or 

any model where only one block type is allowed per position).  

We have seen that several approaches produce satisfactory results. While the 

most suitable approach may vary by the type of problem, the desired characteristics 

of blocks sought and the network analyzed, a general suggestion is to use either 

binary blockmodeling according to structural equivalence with different weights for 

inconsistencies in null and complete blocks or sum of squares blockmodeling with 

null and constrained complete blocks. The second approach is more appropriate 

when we want complete blocks to have rows and columns of similar densities and 

to differentiate complete blocks based on densities. Conversely, if these aspects are 

not important the first approach
9
 is more appropriate because it generally produces 

‘cleaner’ null blocks. 

Of course, this paper has some limitations that represent possibilities for future 

research. The first one is that the approach was only tested on a limited number of 

sparse networks and further testing is required. As mentioned above, the suggested 

approaches are appropriate when the aim is to find groups connected with relatively 

weak ties (sparse blocks). The second limitation is that it is, however, not clear 

when such partitions are of substantial interest. Further research is needed to 

answer this question, although initial results indicate that these approaches are 

more appropriate for finding a smaller number of larger, more general, groups. 
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