ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 24 (2024) #P1.05 https://doi.org/10.26493/1855-3974.2805.b49 (Also available at http://amc-journal.eu) Saturated 2-plane drawings with few edges János Barát * Department of Mathematics, University of Pannonia and Alfréd Rényi Institute of Mathematics, Budapest, Hungary Géza Tóth † Alfréd Rényi Institute of Mathematics, Budapest, Hungary Received 12 January 2022, accepted 24 May 2023, published online 18 August 2023 Abstract A drawing of a graph is k-plane if every edge contains at most k crossings. A k-plane drawing is saturated if we cannot add any edge so that the drawing remains k-plane. It is well-known that saturated 0-plane drawings, that is, maximal plane graphs, of n vertices have exactly 3n−6 edges. For k > 0, the number of edges of saturated n-vertex k-plane graphs can take many different values. In this note, we establish some bounds on the minimum number of edges of saturated 2-plane graphs under various conditions. Keywords: Saturated drawing, 2-planar, graphs, discharging. Math. Subj. Class. (2020): 05C10, 05C35 *Corresponding author. Supported by NKFIH grant K-131529 and ERC Advanced Grant “GeoScape” No. 882971. †Supported by NKFIH grant K-131529 and ERC Advanced Grant “GeoScape” No. 882971. E-mail addresses: barat@mik.uni-pannon.hu (János Barát), toth.geza@renyi.mta.hu (Géza Tóth) cb This work is licensed under https://creativecommons.org/licenses/by/4.0/ ISSN 1855-3966 (tiskana izd.), ISSN 1855-3974 (elektronska izd.) ARS MATHEMATICA CONTEMPORANEA 24 (2024) #P1.05 https://doi.org/10.26493/1855-3974.2805.b49 (Dostopno tudi na http://amc-journal.eu) Nasičene 2-ravninske risbe z malo povezavami János Barát * Department of Mathematics, University of Pannonia and Alfréd Rényi Institute of Mathematics, Budapest, Hungary Géza Tóth † Alfréd Rényi Institute of Mathematics, Budapest, Hungary Prejeto 12. januarja 2022, sprejeto 24. maja 2023, objavljeno na spletu 18. avgusta 2023 Povzetek Risba grafa je k-ravninska, če vsaka povezava vsebuje največ k presečišč. k-ravninska risba je nasičena, če ne moremo dodati nobene povezave, tako da bi risba ostala k-ravninska. Dobro znano je, da imajo nasičene 0-ravninske risbe – maksimalni ravninski grafi na n vo- zliščih – natančno 3n−6 povezav. Za k > 0 lahko število povezav nasičenih n-vozliščnih k-ravninskih grafov zavzame mnogo različnih vrednosti. V tem prispevku določimo nekate- re meje minimalnega števila povezav nasičenih 2-ravninskih grafov pri različnih pogojih. Ključne besede: Nasičena risba, 2-ravninski, grafi, praznjenje. Math. Subj. Class. (2020): 05C10, 05C35 *Kontaktni avtor. Podprt z NKFIH dotacijo K-131529 in s sredstvi ERC Advanced Grant “GeoScape” št. 882971. †Podprt s strani NKFIH dotacijo K-131529 in s sredstvi ERC Advanced Grant “GeoScape” št. 882971. E-poštna naslova: barat@mik.uni-pannon.hu (János Barát), toth.geza@renyi.mta.hu (Géza Tóth) cb To delo je objavljeno pod licenco https://creativecommons.org/licenses/by/4.0/