
RAZPRAVE

B ESUP-Portail: open source Single
Sign-On uuith CAS (Central
Authentication Service)
Pascal Aubry1, Vincent Mathieu2, Julien Marchal2
'IFSIC, University of Rennes 1, France,
Pascal.aubry@univ-rennes1 .fr
2University of Nancy 2, France,
vincent.mathieu@univ-nancy2.fr, julien.marchal@univ-nancy2.fr

Abstract
The universality of the HTTP protocol seduced developers for quite a long time; in fact, today, most applications are web-based.
LDAP directories may make life easier on our users' brains by making them memorize only one passvvord, but their fingers are stili
very busy vvith ali the authentications they need to type — in practice, each time they access an application.
Many Solutions for Single Sign-On (SSO) are already available. In this article, we describe a free, simple, complete and reliable
solution: the CAS (Central Authentication Service), developed by Vale University (New Kaven, CT; USA). CAS has been chosen by the
French ESUP-Portail consortium, vvhich provides a complete and open solution to Universities and University-level colleges who wish
to offer integrated access to their Services and information for their students and staff.
Keywords: Single Sign-On (SSO), open-source, authentication.

Povzetek
ESUP-Portail: odprtokodna rešitev problema enkratne prijave z uporabo CAS
Univerzalnost protokola HTTP že dolgo privlači razvijalce tako, da danes do večine aplikacij dostopamo po svetovnem spletu. Direktoriji
vrste LDAP nam prihranijo miselni napor, ker omogočajo, da si je potrebno zapomniti le eno geslo, vendar imajo prsti še vedno "polne
roke dela", ker je potrebno geslo vnašati večkrat - v praksi vsakič, ko dostopamo do neke aplikacije.
Za enkratno prijavo (Single Sign-On ali SSO) obstaja več rešitev. V pričujočem članku opišemo odprtokodno, enostavno, popolno in
zanesljivo rešitev, ki se ji pravi CAS (Central Authentication Service), razvita pa je bila na univerzi Vale (Nevv Kaven, Connecticutt,
ZDA). CAS uporablja tudi francoski konzorcij ESUP-Portail, ki ponuja odprtokodno in popolno rešitev naloge zagotavljanja integriranega
dostopa do storitev in informacij na univerzah in visokih šolah s strani študentov in zaposlenih.
Ključne besede: enkratna prijava, odprta koda, avtentikacija.

1 UVhy do uve need Single Sign-On?
VVeb-hased applications (mailers, forums, agendas, other

specific applications) have spread uvideli/ oven our netuvorks

during recent years. These applications often reguire authen­
tication.

Using LDAP directories provides users vvith a sin­
gle account, vvhich is obviously a real improvement.
Hovvever, some issues remain:
• Multiple authentications: it is stili necessary to

give a netld/passvvord for each application;
• Security: because user accounts are unique, pass­

vvord stealing is really a critical problem; for this
reason, the security of the authentication process
is essential. In addition, security concerns indicate
that user čredentials should no longer be given to
applications.

• Several authentication mechanisms: there are a
variety of authentication mechanisms. LDAP is one
vvidely used standard today, but it can be replaced
by other user databases. In addition, some users
possess personal X509 certificates |1[, vvhich can be
used for authentication. In any čase, bypassing au­
thentication mechanisms vvould be interesting be­
cause it vvould permit the use of mixed authentica­
tion, for instance.

• Cooperation: particularly in the educational com-
munity, close institutions vvould like to be able to
share resources and applications. Such coopera­
tion implies that users should be identified by an
establishment vvhen only authenticated vvith an-
other one.

2004 - številka 4 - letnik XII UPORABNA INFORMATIKA 187

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

. Authorization: applications often need to knovv
user profiles to allovv (or deny) the performance of
specific actions.
The principle of ali SSO Solutions is to remove au­

thentication from the applicative code. The goal is
then to offer a globally secured softvvare environment:

vvithout SSO with SSO

Figure 1: The principle of Single Sign-On

Most SSO mechanisms [2] try to achieve this goal
using similar techniques:
. Authentication is centralized via an encrypted

tunnel in a unique server, vvhich is the only ma-
chine to receive user credentials;

. HTTP redirections are sent from applications to
the authentication server for unauthenticated us-
ers, and then back to the applications once a user
is authenticated;

. Information is passed by the authentication serv­
er to applications during the redirections, via cook-
ies [3] and/or CGI parameters.
Among the commercial Solutions offered to system

administrators and developers, tvvo leaders stand out:
Sun One Identity Server [4] and Microsoft Pass-
port [5]. Hovvever, because the ESUP-Portail project
is based on open-source softvvare only, neither of the-
se commercial Solutions vvas a feasible choice for this
project (hovvever, none of them vvas fitting to our
needs). After testing several free implementations, the
ESUP-Portail SSO group chose CAS (Central Authen­
tication Service [6], developed by Vale University) for
its Single Sign-On mechanism.

2 The reasons uvhy uue chose CAS
We chose for a number of reasons. CAS is made up of
java servlets, can be run on any (JSP spec 1.2 compli-

ant) serviet engine, and offers a vveb-based authenti­
cation Service. Its strong points include security, and
flexibility, as vvell as its proxying features and numer-
ous client libraries.

2.1 Security
Security is insured the follovving ways:
. Passvvords are always sent through an encrypted

tunnel, and pass only from the brovvser to the au­
thentication server (Figure 2);

. Re-authentications are transparent to users, pro-
viding that they accept a single cookie, called the
'Ticket Granting Cookie' (TGC). This cookie is
opaque (no personal Information), protected (HT-
TPS) and private (only presented to the authenti­
cation server);

- Applications learn user identities from opaque
one-time 'Service Tickets' (ST). Those tickets are
emitted by the authentication server, transmitted
to applications by the brovvsers, and finally validat-
ed by the authentication server (returning the cor-
responding identity). Thus, as it is the čase for al-
most ali serious SSO mechanisms, applications
never see any passvvord.

2.2 Flexibility
The package proposed by CAS developers offers a
complete implementation of the authentication proto-
col, but the authentication itself (against a user data-
base) is left to the administrator. We vvrote a generic
handler that provides several connectors (LDAP, X509
certificates, NIS domains, databases). These connec­
tors can be used separately, or they can be used in com-
bination to permit mixed authentication. This generic

Figure 2: A softvvare environment secured by CAS

188 uporabna INFORMATIKA 2004 - številka 4 - letnikXII

Pascal Aubry. Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

handler can also been extended to allovv system ad-
ministrators access to other authentication methods,
such as Kerberos or Active Directory.

2.3 Authentication praxying
Classic SSO mechanisms demand direct communica-
tion between the browser and the application, which
prohibits the use of multi-tier installations in which an
application must request a back-end Service requiring
authentication (for instance, a portal requesting a web
Service).

CAS v2.0 solves this problem by providing an ele-
gant way to propagate authentication vvithout prop-
agating passvvords; dedicated tickets (PGT: Proxy
Granting Ticket and PT: Proxy Ticket) ensure the va-
lidity of user identities to third-party applications.
This feature is obviously the strongest point of CAS,
inherited from Kerberos concepts.

2.4 Client libraries
The code that handles the basic protocol (apart from
proxying) is very simple to vvrite on the client-side
(applications). CAS provides Client libraries for Perl,
Java, ASP and PL/SQL. We added a strong (proxy-able)
PHP library. These libraries make it possible to CAS-ify
existing applications by simply adding a few lines of
code, offering an impressive degree of flexibility.

An Apache module (mod_cas) lets vveb servers
authenticate users for static resources, since client li­
braries can not be used in such circumstances.

A PAM (Pluggable Authentication Module (7[)
module (pam_cas) allows non web-based applications
to be integrated at a very low level.

2.5 Moreover...
In addition to the reasons described above, CAS has
another overvvhelming argument in its favor: it is
used by many American Universities, in conjunction
with LDAP or Kerberos-based authentication, making
us confident of its durability over time.

Even better, CAS can be plugged directly into uP-
ortal [8], (used in the ESUP-Portail) vvhich is on the
way to becoming a standard for open source portals.

This article shovvs hovv Single Sign-On is achieved
with CAS, and focuses on a precise technical issue:
CAS-ifying a vvebmail (Horde IMP) and an IMAP Serv­
er (Cyrus IMAP).

3 Houv CAS uuorks

3.1 Architecture

3.1.1 TheCASseruer

Authentication is centralized on a single machine,
called the CAS server. This machine is the only actor
that knovvs user passvvords. It has a double role:
. Authenticating users;
. Transmitting and certifying the identities of au-

thenticated users to CAS clients.

3.1.2 VUeb brouvsers

Web brovvsers must meet the follovving requirements
to take advantage of ali CAS's easy features. They
must:
. Ovvn an encryption engine so that it can use HT-

TPS;
. Perform HTTP redirections (access a URL given

by a Location header vvhen receiving 30x respons-
es) and understand basic JavaScript;

- Store cookies, as defined in Š3C. In particular, for
security purposes, private cookies should be trans-
mitted only to the machines that emitted them.
These requirements are met by ali classic vveb

brovvsers, such as Microsoft Internet Explorer (since
5.0), Netscape Navigator (since 4.7) and Mozilla.

3.1.3 CAS clients

A vveb application equipped vvith a CAS client library,
or a vveb server using mod_cas, is called a CAS client.
It delivers resources only to clients previously authen-
ticated by the CAS server.

CAS clients include:
. Libraries, compatible vvith the most vvidely used

vveb-programming languages (Perl, Java, JSP, PHP,
ASP);

. An Apache module, used in particular to protect
static documents;

e A PAM module, used to perform system level au­
thentication.

3.2 Basic operating procedure

3.2.1 User authentication

A previously non-authenticated user (or a user vvhose
authentication has expired) accessing the CAS server

2004 - številka 4 - letnik XII UPORABNA INFORMATIKA 189

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

is presented vvith an authentication form, on which
(s)he is invited to enter a netld and a password (Fig­
ure 3).

CAS
server

(...-

E
web brovvser

Central Authentication Service

jgUPPortail

For securhy rcasons, quityour web browsor tvhen you aro
done acccssing scrviccs that rcguirc authentication!

NetID: r~

Figure 3: First access of a brovvser to the CAS server

appllcation

|tgc| dl

web brovvser

Figure 5: Redirection of an unknovvn brovvser to the CAS server

If the netld and passvvord are correct, the server
sends a cookie called TGC (Ticket Granting Cookie) to
the browser (Figure 4).

user
database

netld
passvvord

CAS
server

web brovvser

For $%curity reusons ouit y<xvr brovvser wheny.
done acccssing serviet s that reguiro authentlcatk

$SUP Poitail

Central Authentication Service

You heve been logged in
•ucce»»fully

Figure 4: Authentication of a brovvser against the CAS server

This TGC is the user's passport to the CAS server.
Its validity is limited, typically to a few hours. The
TGC allovvs web browsers to get CAS client tickets
from the CAS server, vvithout needing to re-authen-
ticate. A private cookie that is transmitted only to the
CAS server, it is also proteeted ensuring that ali re-
quests to the CAS server are secured. Like ali CAS tick­
ets, it is opaque, containing no Information about the
user. It is simply a session identifier operating be-
tvveen the web brovvser and the CAS server.

3.2.2 Accessing proteeted weh resources after authentication

When accessing a resource proteeted by a CAS client,
the vveb brovvser is redireeted to the CAS server. The
brovvser, if previously authenticated, presents its TGC
to the CAS server (Figure 5).

On presentation of the TGC, the CAS server deliv-
ers a Service Ticket (ST), an opaque ticket providing
no user information, that is usahle only by the Service
that asks for it. At the same time, the CAS server re­

ti irects the brovvser to the calling Service (the Service
Ticket is a CGI parameter) (Figure 6).

Figure 6: Redirection of the brovvser to the calling Service after
aothentication

The ST is then validated by the CAS client vvith the
CAS server (via an HTTP request) and the desired re­
source can be delivered to the brovvser (Figure 7).

appllcation
........(st)

[tgc| o. 1 ST I

vveb brovvser

Figure 7: Validation of a Service Ticket

190 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with C AS (Central Authentication Service)

Ali the redirections mentioned above are transpar­
ent for the user: (s)he accesses the resource vvithout
being authenticated, vvithout any interaction at ali
(Figure 8).

application

web browser

Figure 8: User vievu of the CAS redirections

The Service Ticket (ST) is the brovvser's passport to
a CAS client. This One-Time Ticket can not be pre-
sented tvvice to the CAS server, is valid only for the
CAS client to whom it vvas delivered, and can be used
only for a very short period of time (typically a fevv
seconds).

3.2.3 flccessing protected vveh resources vvithout
authentication

The non-authenticated web brovvser attempting to
access a resource protected by a CAS client is stili re-
directed to the CAS server. As no TGC is given, the
CAS server returns an authentication form.

Once the brovvser has submitted the form and is
correctly authenticated, the CAS server:
• Sends the brovvser a TGC, that vvill exempt it from

re-authenticating later;
• Provides a Service Ticket and redirects the brovvs­

er to the CAS client calling Service.
Thus, there is no need to be previously authenti­

cated to access a protected resource: authentication is
automatically performed the first time a user requests
a protected resource.

3.3 Multi-tier installations

proxy credentials is called a CAS proxy. Most used
CAS proxies are:
• Web portals, vvhich need to access external appli-

cations (vveb Services [9] for instance) under user
identities;

• VVebmail applications, vvhich need to connect to
an IMAP server to retrieve email under user iden­
tities.
In a multi-tier CAS installation, CAS clients no

longer have access to the brovvser's cookie cache, and
so redirections can not be used.

3.3.2 2-tier installations

A CAS proxy, vvhen validating a Service Ticket to au-
thenticate a user, also asks for a PGT (Proxy Granting
Ticket) from the CAS server (Figure 9).

Figure 9: PGT retrieval by a CAS praxy

A PGT is the CAS proxy's passport, representing a
user, to the CAS server. It allovvs the CAS proxies to
obtain tickets for CAS back-end Services from the CAS
server, vvithout needing to validate an ST. The PGT is
an opaque and re-playable ticket, delivered by the
CAS server in response to a secured request, to insure
TGC integrity and confidentiality. PGT validity is lim-
ited, like that of TGC, to a fevv hours.

PGT are to applications vvhat TGC are to vveb
brovvsers. A PGT allovvs applications (CAS proxies) to
authenticate a user vvith the CAS server, and to obtain
Proxy Tickets (PT are to CAS proxies vvhat ST are to
vveb brovvsers). Proxy Tickets, like Service Tickets, are
validated by the CAS server before allovving access to
protected resources (Figure 10).

3.3.1 CAS proxies

The CAS multi-tier feature makes it possible for a CAS
client to access a back-end Service under the authen­
ticated user's identity. A CAS client that is able to

3.3.3 N-tier installations

Obviously, the back-end Service accessed by the CAS
proxy in 2-tier installation can itself be a CAS proxy.
CAS proxies can be chained, as shovvn in Figure 11.

2004-številka4-letnikXII UPORABNA INFORMATIKA 191

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

Service

••'..♦v*-'

application
• (CAS proxy)

web browser

Figure 10: Validatian of a Proxy Ticket by a back-end Service

At this time, CAS is the only open-source and free
SSO mechanism that allovvs n-tier installations vvith-
out propagating user passwords.

4 CAS user authentication
The original CAS distribution does not include user
authentication. If such authentication is needed, au­
thentication classes can be vvritten by administrators
to fulfill their exact needs. Some example classes are
provided by the cas-server distribution, for test pur-
poses only.

4.1 The GenericHandler class
Developed by the ESUP-Portail project [10J, the Ge­
nericHandler class [11] allovvs the implementation of
many authentication methods: LDAP directories, da-
tabases, NIS (Unix Vellovv Pages), NT domains, etc.
Furthermore, this class can be easily extended to fit
other needs (Novell, Kerberos, Active Directory, etc.).

The configuration is done in an XML format, in
vvhich one or more authentication methods are spec-
ified. They are sequentially tested until one succeeds.

Because LDAP has become the standard for stor-
ing and authenticating users, vve provide an example
of hovv Generic Handler can be used with an LDAP
directory.

4.2 Authentication using an LDAP directory
Two different access modes are proposed, depending
on the internal structure (DIT) of the LDAP directory.

4.2.1 Direct access mode (ldap_fastbind)
ldap_fastbind mode can be used vvith LDAP directo­
ries in vvhich user DN (Distinguished Name) can be
directly deduced from their netld. In practice, these
are directories in vvhich users are stored at the same
hierarchical level, in the same OU for instance.

In this čase, CAS tries to connect the directory us­
ing the DN and passvvord provided by the user. Clas-
sically, the user is authenticated if the connection suc­
ceeds.

web brovvser CAS proxy #1 CAS proxy #2 Service

Figure 11: A Chain of CAS proxies

LDAP databases NIS X509 Kerberos Windows NT file
directory domain certificates domain domain

Figure 12: User authentication vvith ESUP-Portail GenericHandler

192 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

The follovving configuration can be used:

<authentication>

<ldap version=”3" timeout=’’5">
<ldap_fastbind filter=”uid=%u,dc=univ-rennes1 ,dc=fr” />
<ldap_server host=”ldap.ifsic.univ-rennes1 .fr”

port=”389"
secured=”no" />

</ldap>
</authentication>

4.2.2 Search mode (Idap_bind)

When the DN can not be deduced from the netld,
administrators must use the ldap bind mode to seek
out the user's DN before attempting a connection.

The follovving configuration can be used:

<authentication>
cldap version=”3" timeout="5">

<ldap_bind search_base=”dc=univ-rennes1 ,dc=fr”
scope=”sub" filter=”uid=%u”
bind_dn=”admin" bind_pw="secret” />

<ldap_server host=’’ldap.ifsic.univ-rennes1 .fr”
port=”389" secured=”no” />

</ldap>
< /authentication>

4.2.3 LDAP Redundanci;
Generic Handler permits redundancy in order to be
more fault-tolerant: it is possible to specify a list of
LDAP servers, vvhich are considered as replicas.

5 CAS-ifying a uveb application
CAS-ifying a web application is very easy, thanks to
CAS client libraries.

Three kinds of CAS applications exist:
. CAS "simple" clients only need to authenticate

users.
■ CAS proxies need to both authenticate users, and

use tier Services. They need to be able to retrieve
PGT from the CAS server, and later to transmit PT
to back-end Services in order to authenticate the
users for vvhom they act.

. CAS back-end Services need to validate the PT
given by CAS proxies and to obtain user identities.

5.1 “simple” CAS clients
The principle is to use a function (or method) that vvill
run the authentication mechanism and return the user's
netld. This function must perform the follovving tasks:

- If the user is not already authenticated and no ST
is provided, redirect the vveb brovvser to the CAS
server (providing its ovvn URL for redirection as
shovvn in 3.2.2);

- If the user is not already authenticated and a ST is
provided, validate the ST by using an HTTPS re-
quest to the CAS server. The CAS server should
then return the corresponding user's netld.
To illustrate the simplicity of the CAS-ification of

such a "simple" CAS client, we shovv belovv how a CAS
client can be vvritten in PHP. Of course, in a real appli­
cation, a client library - in our čase, phpCAS [12] -
should be used instead.

5.1.1 UUriting a PHP CAS Client
If this script (script.php) is called vvithout any param­
eter, it redirects the vveb brovvser to the CAS server,
giving its ovvn URL as a CGI parameter:

https://cas.univ.fr/login?service=http://test.univ.fr/script.php

The user is authenticated vvith the CAS server,
vvhich redirects the brovvser to the calling Service, giv­
ing a ST as a CGI parameter. The access URL vvould
be something like:

http://test.univ.fr/script.php?ticket=ST-2
uw2KEWinSFeZ9fotZlio

Our script vvill then try to validate the Service Tic-
ket vvith the CAS server, by accessing the follovving
URL:
http(s)://auth.univ.fr/serviceValidate?service=http://
test.univ.fr/script.php&ticket=ST-2-uw2KEWinSFeZ9fotZlio

The CAS server validates the ticket and returns the
user's netld, in an XML response:

<cas:serviceResponse xmlns:cas=’http://www.yale.edu/tp/
cas’>

<cas:authenticationSuccess>
<cas:user>paubry</cas:user>

</cas:authenticationSuccess>
</cas:serviceResponse>

A possible implementation of this script is:

<?php /* PHP simple Cas client 7
// localization of the CAS server
define(‘CAS_BASE’,'https://auth.univ.fr’);

// ovvn URL

2004 - številka 4 - letnik XII UPORABNA INFORMATIKA 193

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

$service=’http://

’.$_SERVER[‘SERVER_NAME’].$_SERVER[‘REQUEST_URI’];
/** Authenticate with the CAS server
* @return the user’s netld, or FALSE on failure
7

function authenticate() {

global $service;

// retrieve the ticket
if (!isset($_GET[‘ticket’])) {

header(‘Location: ‘.CASJ3ASE.’/
login?service=’.$service));

exit();

}
// try to validate the ST with the CAS server
Sfpage = topen (CAS_BASE . 7serviceValidate?service=’

. preg_replace(7&/’,'%26',$service)
. ‘&ticket=’. Sticket, ‘r’);

it (Sfpage) {
while (tfeof (Sfpage)) {Spage .= fgets (Sfpage, 1024);}

}
// analyze the CAS server’s response
if (preg_match(‘|<cas:authenticationSuccess>|mis’, Spage))

{
if(Preg_match(‘|<cas:user>(.*)</cas:user>|’,

Spage,$match)){
return($match[1]);

}

}
// validation failed
return FALSE;

}
if ((Slogin = authenticateO) === FALSE) {

echo ‘failure (Retry).’;
exit();

}
echo ‘vvelcome user ‘.$login’!
’
echo ‘(logout</bx/a>)’;
?>

5.1.2 Using the phpCAS Client library
The phpCAS library [12] was developed by the
ESUP-Portail project. Bere is one way that it can bc
used:

<?php /* a simple CAS Client using phpCAS 7
include_once(‘CAS.php’);

phpCAS::client(CAS_VERSION_2_0,‘cas.univ.fr’,443,’’);

phpCAS::authenticatelfNeeded();

?>
<html>

<body>
<h 1 >Authentication succeeded!</h 1 >
<p>User is <?php echo phpCAS::getUser(); ?x/b>.</p>

</body>

</html>

5.2 CAS proKies
The procedure begins exactly as the one for "simple"
CAS clients: retrieve a Service Ticket.

Next, vvhen validating the ST, an additional pa­
rameter is given to the CAS server: a callback URL. In
response, the CAS server returns:
■ The user's netld (as for an ordinary CAS client);

and
. A PGT, using the callback URL.

As seen in 3.3.2 ("2-tie"), the PGT will be used la-
ter to authenticate a user with the CAS server and to
obtain the Proxy Tickets needed to access back-end
Services.

Java and PHP libraries mask the complexity of ali
this vvhen developing a CAS proxy. The follovving is
an example of the way a CAS proxy can be imple-
mented using the phpCAS library:
<?php /* a CAS proxy using phpCAS 7

include_once(‘CAS.php’);

phpCAS::proxy(CAS_VERSION_2_0,'auth.univ.fr’,443,’’);
phpCAS::authenticatelfNeeded();

?>

<htmlxbody>
<p>User’s netld: <?php echo phpCAS::getUser(); ?>.</p>
<?php

flush();

if (phpCAS::serviceWeb(‘http://test.univ.fr/ws.php’,
$err_code, Soutput)) {

echo $output;

}
?>

</bodyx/html>

5.3 CAS back-end Services
Back-end Services are as easy to CAS-ify as "simple"
CAS clients because they do exactly the same job, i.e.
validating a Proxy Ticket vvith the CAS server (instead
of a Service Ticket).

The back-end Service called by the CAS proxy
shovvn before could be:

194 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service!

<?php /* a simple CAS back-end Service 7
include_once(‘CAS.php’);

phpCAS::client(CAS_VERSION_2_0,'cas.univ.fr’,443,”);
phpCAS::authenticatelfNeeded();
echo ‘<p>User is ' . phpCAS::getUser() . ‘.</p>’;

?>

5.4 Precautions to take uuhen CAS-ifying uveb
applications

5.4.1 Sessioning

For obvious performance reasons, applications should
maintain sessions so that the CAS mechanism is fired
only once, rather than for each request.

This remark is true for CAS clients and proxies,
vvhich should maintain a session with the browser, as
vvell as for back-end Services, vvhich should maintain
a session vvith the CAS proxy.

5.4.2 Asynchronism

When using CAS client libraries, retrieving a PGT for
a user in a CAS proxy is easy. Hovvever, developers
should be avvare of the possibi!ity of desynchroniza-
tion betvveen the different sessions of a multi-tier CAS
installation.

Imagine that a user connects to a vveb portal,
vvhich vvill act as a CAS proxy. The user is authenticat-
ed vvith the CAS server, the portal retrieves a PGT for
the user, and a session is set betvveen the portal and
the brovvser. This session is set to last a few hours.

Let us novv imagine that the PGT becomes invalid
(expiration or user logout from another vvindovv of the
brovvser). In this particular configuration, it is impos-
sible for the portal to obtain the nevv PTs needed to
access back-end Services.

This situation should be handled by CAS proxies,
by forcing the disconnection of the user, for instance.

5.5 CAS authentication for static uveb pages
The CAS mechanism can be used to protect static re-
sources (typically HTML vveb pages), thanks to the
mod_cas Apache module.

With simple Apache directives, access to a site (or
part of it) can require an authentication from a CAS
server. For instance, the follovving directives vvill redi-
rect users to the CAS server located at https://
cas.univ.fr/cas if no valid ST is given by brovvsers:

CASServerHostname cas.univ.fr
CASServerPort 8443

CASServerBasellri /cas

CASServerCACertFile /etc/x509/cert.root.pem
<Location /protected>

AuthType CAS
Require valid-user

</Location>

6 CAS-ifying a non-uveb application
The main goal of an SSO mechanism is, of course, to
provide a single authentication Service for vveb appli­
cations that is both simple and efficient. CAS offers
more by allovving the CAS-ification of non-vveb Servic­
es, such as IMAP, FTP, etc.

In order to do this, these Services must use PAM
(Pluggable Authentication Module), as most Unix Ser­
vices novv do.

B.1 The PAM pam_cas module
Pam_cas is included in CAS client distribution. Though
it is povverful, it is also light (about 300 lines of C, half
of them shared vvith mod_cas).

This module allovvs a Service to authenticate a user
by receiving an identifier (usually a netld) and a tick-
et (instead of a passvvord). The ticket received by the
Service is then validated vvith the CAS server by
pam_cas.

Pam_cas can not be used outside of a multi-tier
installation: the CAS-ified Service must be accessed by
a CAS proxy. Indeed, it is inconceivable for a human
being (a human user of an FTP Service, for instance)
to provide a CAS ticket.

Fortunately, the PAM modular concept allovvs
pam_cas to be used in conjunction vvith other PAM
modules. It is possible for a Service to authenticate a
user both using a traditional method (a netld and a
passvvord) and using a CAS method (netld and ticket).

The example belovv shovvs hovv this can be done.

6.2 Using pam_cas to CAS-ify an IMAP seruer
Our goal here is to CAS-ify an IMAP server in order
to accept connections from a vveb portal using Proxy
Tickets, vvhile continuing to accept connections from
traditional mail clients using passvvords.

If the IMAP server is PAM-compliant (vvhich is
generally the čase), the PAM configuration can be, for
instance:

auth sufficient /lib/security/pam_ldap.so

auth sufficient /lib/security/pam_pwdb.so shadovv nullok

2004 - številka 4 - letnik XII UPORABNA INFORMATIKA 195

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

auth required /lib/security/pam_cas.so \
-simap://mail.univ.fr \

-phttps://ent.univ.fr/uPortal/CasProxyServlet

In this example, authentication will be attempted
in three different ways: with an LDAP directory, with
the local Unix user database, and eventually with
pam_cas. The secret provided is validated with the
CAS server (internally, only if it is ticket-shaped tor
obvious performance reasons).

B.3 CflS-ifying the Cyrus-IMAP server
The IMAP protocol is very specific, and is probably
the most difficult to CAS-ify. IMAP clients and vveb-
mails in general have the odd habit of generating
large numbers of requests, by closing and opening
connections repeatedly. This, of course, leads to nu-
merous authentication requests for the CAS server.

When using a traditional vvebmail (vvhere users
authenticate vvith their netld and password), the only
consequence is a heavier load for the web server run-
ning the webmail. Hovvever, vvithin a CAS multi-tier
installation, the load increase is supported both by the
web server running the webmail, and by the CAS
server.

Asking for and validating tickets for each request
is clearly prohibitive from the point of vievv of perfor­
mance. Consequently, a cache is needed on the IMAP
server to allovv the vvebmail to re-play the PT.

The implementation of such a cache comes straight
vvith Cyrus. Indeed, Cyrus IMAP server uses Cyrus-
SASL for authentication; novv, Cyrus-SASL can also
use other authentication mechanisms (PAM, LDAP,
Kerberos, etc.) or call a Unix daemon, saslauthd.

This daemon, vvhich communicates vvith Cyrus-
SASL via a Unix socket, proposes a cache mechanism.
This cache allovvs the mail client to play the same PT
more than once, because saslauthd vvill not use PAM
once the ticket is stored in its cache.

CAS-ifying Cyrus-IMAP this vvay reduced authen­
tication requests by 95%. Only 5% vvere really played,
i.e. vvith the tickets being validated by the CAS serv­
er.

6.4 CAS-ifying Horde IMP
Our primary goal vvas to add a vvebmail product into
the ESUP-Portail softvvare, if possible completely in-
tegrated into our SSO. We decided to try Horde
IMP [13J.

At first, IMP vvas adapted to become a CAS proxy.
This vvas easily done by using the phpCAS library, as
shovvn in 5.2 ("CAS proxies"). It vvas then possible to
acquire a Proxy Ticket and make the IMAP server au­
thenticate users, by validating PTs vvith the CAS serv­
er.

Next, the behavior of the vvebmail vvas modified to
take into account the versatility of this nevv kind of
passvvord. Indeed, PTs are manipulated in the same

Client login/passvvord login/ticket
f \

Client
application application

login/password

login/password

LDAP directory\

/etc/password

server
application

J
>

pamjdap

Sa

?

.... J pampvvdb

N

Z' |

pamcas * - - - - ticket

CAS server

Figure 13: Using pam cas

196 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

login/passvvord login/PT

Cyrus IMAP server

Unix socket

saslauthd

> - +•

cache
sasl_authd daemon

pamjdap
login/passvvord

pampvvdb

pam_cas

LDAP directory

/etc/password

traditional
mail Client

CAS server

web brovvser
CAS-ifield vvebmail

(IMP+phpCAS)

Figure 14: CflS-ification of Cgrus-IMflP

way that passwords are, although their validity is
limited. In other vvords, the vvebmail can use a PT se­
vera! times thanks to the IMAP cache, but a PT stored
in the IMAP cache can be erased (because of the gar-
bage collector of the IMAP cache), supplanted in the
cache by another PT (if another vvebmail instance is
running for the same user), or simply replaced by the
user's passvvord if the user concurrently accesses a tra­
ditional mail client. In ali of these situations, the next
connection vvith the PT vvould be refused by the
IMAP server. To get around this problem, the vveb­
mail vvas modified to allovv a nevv PT to be acquired
from the CAS server, in order to make a second at-
tempt at an IMAP connection.

Obviously, using CAS client libraries are not as
simple as vvas implied in 5.1.1 ("VVriting a PHP CAS
client").

7 Restrictions and perspectives
In the first 6 sections of this article, vve have described
the strong points of CAS:
. CAS is an open-source, free product;
. CAS offers a more than satisfactory level of security;

. A CAS server is very easy to set up and configure;

. VVeb applications are very easy to CAS-ify.
In this section, vve vvill examine its limitations, and

offer some ideas for getting around these vveak points.

7.1 CAS brings SSO, nothing else
CAS is a Single Sign-On mechanism that can also run
at the system-level, thanks to pam_cas. On the other
hand, it is strictly limited to user authentication: it
does not (and probably never vvill) deal vvith authori-
zations or vvith the propagation of user attributes.

Moreover, the user databases are local, at the estab-
lishment-level. CAS does not address multi-establish-
ments issues. Recent developments on Sympa [14]
shovv an elegant way to allovv users from several estab-
lishments to be authenticated, by relying on several
CAS servers. Hovvever, the most promising vvay to per-
mit different establishments to cooperate using CAS is
certainly the Shibboleth internetZ project [15].

7.2 Performance and fault-tolerance
In a CAS installation, ali the vveb applications depend
on the CAS server. Its availability is critical.

2004-številka A-letnik XII UPORABNA INFORMATIKA 197

Pascal Aubry, Vincent Mathieu, Julien Marchal: ESUP-Portail: open source Single Sign-On with CAS (Central Authentication Service)

In its current release, load balancing can not be
implemented. Indeed, for reasons of efficiency and
simplicity, CAS tickets are stored by in the CAS serv-
er's memory, making sharing betvveen several CAS
servers impossible.

In practice, universities deploying CAS have nev-
er encountered performance problems, certainly be-
cause the processes involved are stili quite light. Hovv-
ever, the absence of fault tolerance could easily be-
come a serious problem, because the CAS server really
becomes a pivot of an establishmenfs vveb software
suite.

It is, of course, possible to maintain a špare sleep-
ing server, vvhich can be used in čase of failure, or
during maintenance operations. Svvitching betvveen
tvvo Tomcat servers behind an Apache frontal is rela-
tively easy, and this is the solution recommended by
the ESUP-Portail consortium. Hovvever, this solution
is not transparent for connected users: ali valid tick­
ets (especially TGCs and PGTs) are lost.

Another possibility is to store granting tickets
(TGCs and PGTs) in a database. This is conceivable
since in this čase, svvitching from one CAS server to
another vvould have a very limited effect on tickets
(only STs and PTs vvould be lost), vvhile preserving
simplicity and thus performance.

8 UVhat about CAS in the future?
The ESUP-Portail consortium has taken an active part
in popularizing CAS, notably by distributing a CAS
server quick-start, vvhich allovvs any system adminis­
trator to setup and configure a CAS server in a fevv
minutes.

We have every confidence in CAS. CAS has been
adopted by the ESUP-Portail consortium as its SSO
softvvare, and vvill be deployed in the coming months
in ali those French Universities vvho choose the ESUP-
Portail softvvare. We strongly believe that it can be-
come a standard.

References
[1] Autorite de certification du CRU, in French,

http://igc.cru.fr

[2] Single Sign-On architectures, Jan de Clercq, RSA2003,
November 2003, Amsterdam,
http://www.rsaconference.com/rsa2003/europe/tracks/
pdfs/implementers_wl4_declercq.pdf

[3] Persistent Client State (HTTP cookies).
http://wp.netscape.com/newsref/std/cookie_spec.html

[4] Sun One ldentity Server,
http ://www. sun.com

[5] Microsoft .NET Passport: One easy way to sign in online.
http://www.passport.com

[6] ITS Central Authentication Service,
http://www.yale.edu/tp/cas/

[7] Linux-PAM: Pluggable Authentication Modulesfor Linux,
www.us.kernel.org/pub/linux/libs/pam/Linux-PAM-html/

[8] JASIG (Java Architectures Special Interest Group),
Evolving portal implementations.
http://misl05.mis.udel.edu/ja-sig/uportal/

[9] Web Services,
http://www.w3. org/2002/ws/

[10] ESUP-Portail,
http://www.esup-portail.org

[11] CAS GenericHandler,
http://esup-casgeneric.sourceforge.net

[12] PhpCAS,
http://esup-phpcas.sourceforge.net

[13] The Horde Project,
http://www.horde.org

[14] Authentication and access control in Sympa mailing list
sen/er, Serge Aumont & Olivier Salaun, TERENA2004,
June 2004, Rhodes,
http ://www. sy m pa. o rg

[15] The Shibboleth Project,
http://shibboleth.internet2.edu/

Acknowledgements

■ Shawn Bayern and Drew Mazurek, for their great work on
CAS.

• The ESUP-Portail SSO group for their feedback and
contributions.

Pascal Aubry played with real-time systems at ECP until 1993. In the succeeding years, he worked at IRISA on the distribution of synchronous
programs and received his Ph.D. in Computer Science in 1997. Currently at IFSIC, University of Rennes 1, he manages web-projects. He has
been part of the ESUP-Portail project since its beginning in late 2002, working on web security (SSO, authorizations) and data storage.

Vincent Mathieu is in charge of network deployment and administration at University of Nancy 2. An LDAP expert, he also manages some
internet Services. He is the leader of the ESUP-Portail SSO group.

Julien Marchal is in charge of email Services and other network-related web applications at University of Nancy 2. He is also part of the ESUP-
Portail group, working on SSO and communication Services, and is the leader of the ESUP-Portail uPortal group.

198 uporabna INFORMATIKA 2004 - številka 4 - letnik XII

