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SUMMARY 

To understand properly the various phenotypes associated with hereditary disorders due to abnormal 
keratinization, we need to understand the physiology of keratinocytes and the role of the proteins that 
keratinocytes synthesize to perform their function. There are two physiologic pathways open to keratinocytes, 
differentiation and activation, each with characteristic function and battery of proteins produced. The 
biologically active substances can be far didactic purposes categorized into four groups: signaling molecules, 
receptors, transducing molecules and transcription factors. 
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To understand properly the various phenotypes 
associated with hereditary disorders due to abnormal 
keratinization, we need to understand the physiology 
of keratinocytes and the roles of the proteins that 
keratinocytes synthesize to perform their function. 
There are two physiologic pathways open to kera­
tinocytes, differentiation and activation, each with 
characteristic function and battery of proteins pro­
duced. 

Keratinocyte differentiation is associated with changes 
in gene expression, specifically of keratin genes, 
keratins being the most abundant epidermal proteins. 
The epidermis is composed of ten to twenty layers 
of keratinocytes, the predominant celi type of this 
tissue. During normal epidermal differentiation, four 
types of keratinocytes can be distinguished through 
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their phenotypic and biochemical properties: basal, 
spinous, granular, and cornified [1][2]. Basal cells 
are characterized by their contact with the basement 
membrane, mitotic activity, and the expression of 
keratins K5 and K14 [3). In response to unknown 
stimuli, the basal keratinocytes are triggered to 
differentiate terminally. They detach from the basement 
membrane, stop dividing, become spinous, and initiate 
their migration and maturation through the suprabasal 
layers. Concomitantly, they start to express the earliest 
markers of terminal differentiation, keratins Kl and 
KlO, which are fully expressed only in the spinous 
and granular layers [4] [5][6). In the granular layers, 
filaggrin and precursors of the cornified envelopes 
such, as loricrin and involucrin, as well as epidermal 
transgulatminase are expressed [7][8][9][10). The fina! 
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stages of the process of differentiation occur after 
the dissolution of nuclei and organelles and the 
formation of cornified envelopes that are assembled 
into a metabolically inert stratum corneum. 

The role of epidermal keratinocytes in defense 
from mechanical injury and desiccation bas been 
appreciated for a long tirne, but their role in 
immunological defense became apparent only recently, 
when it was realized that keratinocytes can produce 
a cornucopia of growth factors, chemoattractants and 
cytokines [l 1][12][13]. Furthermore, keratinocytes 
express receptors for many polypeptide factors, respond 
to autocrine stimulation, and also respond to the 
signals produced by the immune system. In response 

to epidermal injury, keratinocytes become "activated": 
they produce and respond to growth factors and 
cytokines, become migratory and can produce compo­
nents of the basement membrane. Activated keratino­
cytes express a specific pair of keratin proteins, 
distinct from the keratins in the healthy epidermis. 
In healthy epidermis, basal keratinocytes express K5 
and Kl4, whereas suprabasal, differentiating keratino­
cytes express Kl and KlO. However, in suprabasal 
keratinocytes of the activated epidermis, the expression 
of Kl and KlO is suppressed and replaced by K6 
and K16. Thus, expression of K6 and K16 marks 
keratinocyte activation [14][15, 16]. In certain infla­
mmatory processes, especially those characterized by 

Table l. The list of most 
biologically active molecules 
molecular biology. 

frequently mentioned abbreviations. An attempt has been made to categorize the 
in order to facilitate the understanding of the text f or the readers les s f amiliar with 

IFNa, IFN~, IFNy 
EGF 
TNFa 
IL-1 to IL-12 

JAK 
STAT (1-6) 
Rafl 
ERK 
MEK 
TRADD 
TRAF2 

APl 
C/EBP~ 
Elkl 
NFKB 
SAPl 

interferons 
epidermal growth factor 
tumor necrosis factor a 
interleukins 

Janus activated kinase, transduces IFN signals 
signal transducing activator of transcription (responsive to IFNs inter alia) 
Ras activated factor 1 
extracellular signal responsive kinase (responds to EGF inter alia) 
mitogen activated ERK kinase (activates ERK) 
TNFR associated death domain (involved in apoptosis) 
TNFR associated factor 2 (activates transcription) 

Especially relevant review articles are references [19), [23) and [40). 
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the infiltration of Th-1 type lymphocytes, such as 
psoriasis, the Kl 7 keratin is also present [17]. 

The extracellular signals that induce keratinocytes 
to start differentiating or to become activated are at 
present the subject of intensive investigation. One of 
the initial signals for activation of keratinocytes may 
be the release of pre-stored IL-1. Once activated, 
keratinocytes synthesize additional signaling growth 
factors and cytokines. Severa! extracellular markers 
are specifically expressed by the activated keratinocytes. 
The various signaling molecules may be synergistic 
or antagonistic with each other. This allows the 
activated phenotype to be specifically modified, which 
can lead to different activated phenotypes. (Table 1). 

Signals from the extracellular environment initiate 
enzymatic cascades which lead to the activation of 
transcription factors. Activated transcription factors 
then regulate gene expression by diverse mechanisms 
that include binding to specific DNA sequences and 
interaction with other transcription factors or nuclear 
receptors. They can also induce expression of additional 
regulatory factors as well as of the differentiation or 
activation markers. Three such pathways, IFNy, the 
EGF family and TNFcx/IL-1, are known to be 
important in keratinocyte activation and we have 
shown that they regulate expression of keratin genes. 

The most extensively studied signaling molecules 
of the immune system are the interferons, IFNcx, 
IFN~, and IFNy, a subset of cytokines originally 
described as factors that protect cells from vira! 
infections [18] [19]. IFN cx and IFN~ share a cell 
surface receptor, whereas IFNy binds to a different 
receptor and has distinct effects. Certain diseases, 
such as psoriasis, are associated with high levels of 
IFNy in epidermis [20]. Although the role of interferons 
in pathologic processes has not been clearly defined, 
they have been used in therapeutic trials for severa! 
dermatologic diseases [21]. 

Activation of IFN receptors initiates a cascade of 
protein phosphorylation events [18][19]. The receptors 
internet with JAK kinases, which phosphorylate 
tyrosines both on the receptors, and on the STAT 
(for Signal Transducing Activator of Transcription) 
family of transcription factors (Fig. 1). The phospho­
rylation of STATs causes their activation and 
translocation to the nucleus, where ST ATs bind to 
specific DNA sites and activate transcription of 
nearby genes. The regulatory specificity of the cytokine 
signals at the cell surface is mirrored in the nucleus 
by the activity of specific members of the STAT 
family: IFNy leads to activation of STATl, IFNcx of 
STATI and 3, IL-6 and OsM of STAT3, IL-12 of 
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STAT3 and 4, IL-3, IL-5 and GMCSF of STAT5, 
while IL-4 of STAT6 [19]. 

Among the most extensively studied cellular receptor 
signaling pathways are those involving epidermal 
growth factor, EGF, and its receptor EGFR [22][23]. 
A simplified scheme of the cascade is shown in Fig. 
2. Severa! ligands can bind to and activate EGFR 
including TGFcx, amphiregulin, HB-EGF and herre­
gulin. The binding of the ligand causes receptor 
dimerization with concomitant activation of its intra­
cellular protein tyrosine kinase. A substrate for this 
kinase is the receptor itself, the two monomers 
phosphorylate each other. The phosphotyrosines serve 
as docking sites for SH2 domain containing proteins 
(such as Grb2 or SHC) that internet with proteins 
capable of activating Ras. Severa! growth factor 
receptors, via different adaptor molecules activate 
Ras, which makes Ras a fulcrum for signal transduction 
pathways (see Fig. 2). Activated Ras, in turn, activates 
a cascade of three protein kinases, Rafl, MEK and 

ACTIVATION OF STATs 

OsM IFNY 

p130 RECEPTOR 

Figure l. Activation of the JAK-STAT pathway. Binding 
oj the ligand to the receptor causes its association 
with the JAK/TYK kinases, which, in tum phosporylate 
STATs. STATs, when phosphorylated, dimerize and 
translocate to the nucleus where they activate trans­
cription. 
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Erk. The last one, Erk, translocates to the nucleus 
where it phosphorylates, and thus activates transcription 
factors such as Elkland SAPl. 

Successive activation of a cascade of three protein 
kinases is a recurrent motif in signal transduction. 
Stress, exemplified by osmotic shock and UV irra­
diation, or proinflammatory cytokines, exemplified 
by TNFa and IL-1, can activate two parallel cascades 
(see below), thus activating partially overlapping sets 
of transcription factors (Fig. 2). Specifically, UV 
irradiation primarily activates JNK, which results in 
activation of Jun and ATF2, whereas osmotic shock 
activates p38 and consequently ATF2 and Max. 
There can be significant crosstalk among the cascades. 
For example UV can activate the p38 pathway and 
in certain cell types, EGF can activate JNK. All 

three cascades are present and functional in kera­
tinocytes. 

TNFa has been discovered from two independent 
lines of research, first as an inducer of necrosis in 
some tumor cells and second as a cause of cachexia 
in septic animals. Subsequently it has been established 
that TNFa is one of the proinflammatory cytokines 
that induce many inflammatory effects, such as fever 
and shock. In response to infection or injury a wide 
variety of cells produce TNFa, primarily macrophages 
and monocytes but also epithelial cells including 
keratinocytes [24]. 

A low level of TNFa is present in the upper 
layers of the healthy epidermis, but its synthesis and 
release from keratinocytes are greatly augmented 
under a variety of conditions, such as allergic and 

MAP CASCADES 
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GROWTH 
FACTORS 
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Figure 2. The MAPK signal transduction cascades. Growth factors, such as EGF, bind to their receptor activating 
Ras. Ras activates Rafl, which is a MAPKKK Rafl activates MEKs, which activate ERKs. When activated, 
ERKs translocate to the nucleus, where they phosphorylate and thus activate transcription factors, such as SAPI 
and Elkl. Stress, such as heat, UV, or TNFa and IL-1, activate their own sets of MAPKKKs. These, in turn 
activate specific MAPKKs, which activate JNKs and p38. The last two MAPKs (presumably in the nucleus) 
phosphorylate and thus activate transcription factors shown on the bottom. White there is crosstalk at the top 
and the bottom of the cascades, the phosphorylation by MAPKKs and MAPKs is quite specific. Most of the 
initial events that sense stress signals have not been elucidated so far. 
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irritant contact dermatitis, infection, and UV irradiation 
[11]. In these pathological conditions TNFa activates 
immune responses by inducing production of additional 
signaling molecules, cytokines, growth factors, their 
receptors and adhesion proteins [25]. 

The signal transduction pathway triggered by TNFa 
appears to be much more complicated than the 
EGF-triggered one [26][27]. A currently known version 
of the cascade is shown in Fig. 3. There are two 
TNFa receptors, but keratinocytes express mainly 
the Type 1 receptor (55kd). There are three major 
intracellular effects of TNFa. One is the induction 
of apoptosis (Box 1 in Fig. 3). The second involves 
production of ceramides, which in turn act as second 
messengers activating arachidonic acid synthesis and 
regulating downstream effects (Box 2 in Fig. 3). The 

third signaling pathway involves proteins TRADD 
and TRAF2, which activate transcription factors 
NFKB and C/EBP~ (Box 3 in Fig. 3). 

Environmental signals, such as growth factors and 
cytokines, modulate the activity of nuclear transcription 
factors, thus regulating gene expression. Modulated 
transcription factors fall into well characterized classes. 
The best studied of these are the STAT proteins, the 
APl family and the NFKB family. First discovered 
as mediators of interferon signaling, STATs are 
unusual because they can convey the signal directly 
from the plasma membrane into the nucleus without 
second messengers or cytoplasmic kinase cascade 
intermediates. STATs range in size from 80 to 110 
kD [19]. STAT proteins are cytoplasmic in their 
ground state, but upon activation of appropriate 

THE SIGNAL TRANSDUCTION PATHWAYS 

IL-1 
celi \ 
membrane 

(1) 

APOPTOSIS 

nuclear 
membrane 

TNFU TNFU 

OVEREXPRESSION 
CAUSES 
HYPERKERA TOSIS 

✓ 

(2) 

Figure 3. The TNFa signal transduction pathways. There are two receptors, although only the p55 seems to be 
expressed in keratinocytes. There are three principal signal transduction pathways: (1) the apoptosis pathway, (2) 
the ceramide pathway and (3) the TRAF2 pathway. The apoptosis pathway proceeds through "death domain" 
containing proteins TRAD and FADD. Through TRAK, and independently through PKC the other two MAPK 
pathways can get activated as well. Mechanisms by which INK and NFkB are activated have not been fully 
characterized. Interestingly, the effects of IL-1 partially overlap those of TNF a. 
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receptors, STATs become phosphorylated and, through 
their SH2 domains, dimerize and translocate into 
the nucleus. In the nucleus STATs bind to specific 
DNA recognition elements and activate transcription 
of nearby genes. 

Perhaps the most widely studied regulated trans­
cription factors are those belonging to the AP-1 
family. AP-1 is a nuclear transcription complex 
composed of dimers encoded by the fos and jun 
families of proto-oncogenes [28]. Whereas Fos proteins 
only heterodimerize with members of the Jun family, 
Jun proteins may homo- or heterodimerize with 
both Fos and other Jun proteins. The AP-1 activity 
is induced by growth factors such as serum, EGF, 
and TGFa, by cytokines such as IL-1 and TNFa, as 
well as tumor promoters such as TP A and UV light 
[28][29]. 

In the epidermis, AP-1 regulates cell growth, 
differentiation and transformation [30][31][32][33]. 
However, the expression of individual APl proteins 
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Figure 4. (A) Computer analysis of transcription 
factor binding sites in the sequences of the promoters 
of keratin genes. (B) Gel shift analysis results showing 
clusters of transcription factor binding sites in keratin 
gene promoters. 
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in epidermal layers is a controversial issue that 
awaits resolution. Certain authors find c-Fos in 
lower layers of the epidermis [34][30][35] while 
others do not find any cFos [33] , which agrees with 
the Jack of an epidermal phenotype in fos knockout 
mice [32]. The differing results could be explained 
by varied different epitopes of the antibodies used, 
or functional redundancy of Fos family members. Be 
that as it may, it is clear that the AP-1 proteins in 
keratinocytes can regulate the expression of differen­
tiation markers [36][37][38] and may convey the 
calcium- and PKC-dependent signals [35][33]. Functi­
onal AP-1 sites have been found in many keratin 
genes (see below), including in the first intron of the 
human and murine K18 and in the KS gene [39]. 

The NFKB family includes proteins p65, p50 and 
c/rel, which both homo- and heterodimerize amongst 
themselves [ 40] . Activation of these proteins is not 
dependent upon new protein synthesis, rather, they 
are stored in the cytoplasm bound to the inhibitory 
protein, 1-KB. Inflammatory processes that induce 1-
KB phosphorylation and degradation result in the 
nuclear translocation and activation of the NFKB 
complex. Signaling by EGF, TNFa and IL-1 results 
in NFKB activation. 

Severa! transcriptional factors were found to be 
specific for epidermal keratinocytes. Among these is 
Basonuclin, an unusual transcription factor that contains 
many pairs of Zn fingers and a serine stripe running 
down its alpha-helical segment [41]. Importantly, 
this protein is found exclusively in the nuclei of the 
basal and the first suprabasal layer of epidermal 
keratinocytes and it is possible that it plays a role 
in specifying basal layer specific transcription. Sknl 
and Skn2 are also specifically found in skin. They 
are functionally distinct and belong to a family of 
transcription factors that specify differentiation pathways 
of various cell types. It is not yet known whether 
Sknl and Skn2 play a similar role in epidermal 
differentiation. 

AP2 binding sites have been found in most keratin 
gene promoters analyzed. Although not the sole 
determinant of epithelia-specific expression [ 42] they 
are essential for appropriate transcription of many 
keratin genes [43]. The promoters of KS, K6, K14, 
K16 and Kl 7 keratin genes contain functional AP2 
sites. One of the first transcription factors to be 
purified and cloned [44], Spl also belongs to a gene 
family. Different members of the Spl family can 
exert opposite regulation of target promoters. Inte­
restingly, the differentiation-specific keratin genes do 
not have Spl sites in their promoters, whereas the 
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basal and activation-specific ones do. Spl interacts 
with other transcription factors, such as NFl and 
Ets, which often have adjacent or overlapping binding 
sites in DNA Spl protein has several trans-activation 
domains and can multimerize while bound to distant 
sites on DNA, looping out sequences between the 
Spl sites and bringing additional factors into proximity 
of each other [45, 46]. This, process seems important 
for expression of keratin genes [ 47]. Several NFl 
binding sites have been found using computer analysis 
of available keratin gene promoter sequences [ 48]. It 
is important to note however that the NFl transcription 
factor interacts with members of the STAT trans­
cription factor family [ 49] and thus may be important 
for the interferon-dependent induction of Kl 7 keratin 
expression. 

Regulation of keratin gene expression occurs 
predominantly, if not exclusively at the level of 
transcription initiation [6]. As expected, most of the 
important sites for regulation are found in the 
upstream region although in several instances introns 
and even the downstream sequences contain regulatory 
elements. 

The first cell type specific element in keratin 
genes was described by Blessing et al. [50] for the 
bovine K6 gene. Within a 650 bp sequence upstream 
from the gene exists an enhancer functional in 
proliferating cells of stratified epithelial origin, but 
nonfunctional in simple epithelial cells. This enhancer 
may be specific for either stratified or hyperproliferating 
cells, or both. It can confer enhancement of trans­
cription to other promoters including those for Kl 
and KlO keratins, which are expressed only in 
differentiating cells and thus are not expressed without 
the K6 gene enhancer in cells in culture. 

The upstream sequences for the following human 
keratin genes are known: Kl, K3, KS, K6, K7, KS, 
KlO, K14, K16, K17, KIS, K19 and a hair keratin 
(Fig. 4). Work from our laboratory and several 
others has characterized many of the transcription 
factors and DNA sites that play important roles in 
regulation of keratin gene expression. All promoters 
have a canonical TATA box, or a variant of it. 
Thus, the transcription factor TFIID, which binds 
the TATA box, is essential for the transcription 
initiation of keratin genes. This is apparently the 
only transcription factor common to all keratin 
genes. In addition to the TATA box, keratin promoters 
contain several consensus sequences recognized by 
other transcriptional factors. The CAA T box is 
present in Kl, K6, K7, KlO and K19 genes in the 
upstream region. NF-1 half-sites are present in Kl, 
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K3, KS, KS, KlO, K14, K16 and KIS genes. Also 
common are the retinoic acid responsive elements, 
RAREs. Functional interactions have been demon­
strated between AP-2 and epidermal keratin genes. 
The consensus sequence for AP-2 is GCCNNNGCC 
and similar sequences have been found in Kl, KS, 
K6, KlO, K14 and K16 genes [51]. The importance 
of AP-2 sites in regulating keratin gene transcription 
is not fully understood because disruption of the 
AP-2 site in the K14 gene promoters results in only 
a twofold reduction of transcriptional activity [51]. 

Keratin promoters also contain binding sites for 
less well known or even hitherto uncharacterized 
transcription factors. Transcription factors often bind 
to keratin genes at adjacent sites in tight clusters. 
Specifically, in the promoter of the KS keratin gene, 
we find a complex protein binding site that binds 
multiple transcription factors [ 47]. Five different 
proteins, including Spl and AP2 independently bind 
to the complex. The complex is functional, as shown 
by point-mutagenesis and transfection assays. Inte­
restingly, some of the same five proteins also bind 
to complex sites in several other keratin genes, 
however, while the binding proteins are the same, 
the sequences and the structures of the complex sites 
are completely different. It is as if each of these 
keratin gene promoters assembled a complex trans­
cription regulatory site appropriate for the transcription 
factors present in epithelial cells. It is possible that 
such clusters confer cell type specificity to the 
expression of keratin genes. 

Mutations currently known to cause hereditary 
disorders due to abnormal keratinization have all 
been found in genes encoding structural proteins in 
keratinocytes, or the enzymes that cross-link these. It 
is to be expected that additional mutations will be 
found in the regulatory circuits that govem their 
expression. 
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