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Abstract

Let S denote the set of positive integers that appear as the symmetric genus of a finite
abelian group and let S0 denote the set of positive integers that appear as the strong sym-
metric genus of a finite abelian group. The main theorem of this paper is that S = S0. As
a result, we obtain a set of necessary and sufficient conditions for an integer g to belong to
S. This also shows that S has an asymptotic density and that it is approximately 0.3284.

Keywords: Symmetric genus, strong symmetric genus, Riemann surface, abelian groups, genus spec-
trum, density.
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1 Introduction
Let G be a finite group. Among the various genus parameters associated with G, one of
the most important is the symmetric genus σ(G), the minimum genus of any Riemann
surface on which G acts faithfully. The origins of this parameter can be traced back over a
century to the work of Hurwitz, Poincare, Burnside and others. The modern terminology
was introduced in the important article [10].

A natural problem is to determine the positive integers that occur as the symmetric
genus of a group (or a particular type of group), that is, to determine the symmetric genus
spectrum for the particular type of group. Important results about the symmetric genus
spectrum of all finite groups were obtained by Conder and Tucker [1]. They showed that
the symmetric genus spectrum of finite groups contains well over 88 percent of all positive
integers. In particular, they showed that if g is any non-negative integer such that g is not
congruent to 8 or 14 (mod 18), then g is in the spectrum [1, Theorem 1.2]. However, there
are no known gaps in the spectrum, and evidence suggests that there are none. Here see [1,
Conjecture 1.3].

Our focus here is the symmetric genus spectrum of abelian groups. Let

S = {g ∈ N : g = σ(A) for some abelian group A}
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denote the symmetric genus spectrum of abelian groups. Henceforth, we will refer to S
simply as the “spectrum.”

Closely related to the symmetric genus is the strong symmetric genus σ0(G), the mini-
mum genus of any Riemann surface on which G acts faithfully and preserving orientation.
Obviously σ(G) ≤ σ0(G) always, but in some (important) cases, the two parameters agree.
If the group G does not have a subgroup of index 2, then G cannot act on a surface revers-
ing orientation and thus σ(G) = σ0(G). In particular, if G is a group of odd order, then
σ(G) = σ0(G). Spectrum questions about this parameter have been considered, with some
success. The basic problem was settled for the family of all finite groups in [6]: there is a
group of strong symmetric genus g, for all g ∈ N. The strong symmetric genus spectrum
of abelian groups was studied in [3]. Let

S0 =
{
g ∈ N : g = σ0(A) for some abelian group A

}
.

Necessary and sufficient conditions were developed in [3] for an integer g to belong to the
spectrum of abelian groups for this parameter; further, this spectrum was shown to have
an asymptotic density, approximately equal to 0.3284. In addition, the strong symmetric
genus spectrum of nilpotent groups was shown to have lower asymptotic density greater
than or equal to 8

9 in [9].
Our original expectation was that the two spectra S and S0 would have a significant

intersection, but that there would be integers that are in each spectrum but not the other.
Interestingly, this is not the case. Our main result is the following.

Theorem 1.1. S = S0.

Our fundamental tool here is the result that determines the symmetric genus σ(A) of
an abelian group A [5, Theorem 5.7]. An easy but important consequence of this result is
that the spectrum S contains the entire congruence class g ≡ 1 (mod 4).

To establish the containment S ⊂ S0, we show that, given an abelian group A, either
σ(A) ≡ 1 (mod 4) or σ(A) = σ0(A) (or both), unless the Sylow 2-subgroup group of A
has rank 2 and is isomorphic to Z2×Z2` , for some ` ≥ 1. Our approach utilizes the strong
constraints on the Sylow 2-subgroup of a group (not necessarily abelian) acting on a surface
of even genus or a surface of genus congruent to 3 (mod 4); here see [7, Theorem 8] and
[8, Theorem 5]. In the exceptional case (in which the Sylow 2-subgroup has a special
form), we show that there exists an abelian group A1 such that σ(A) = σ0(A1).

To establish the reverse containment S0 ⊂ S, we utilize the characterization of the
integers in the spectrum S0 in [3, Theorem 1]. For each integer g satisfying one of the five
conditions in that result, we exhibit an abelian group G such that g = σ(G).

2 Background results
Let A be a non-trivial finite abelian group of rank r. Then A has the standard canonical
representation

A ∼= Zm1
× Zm2

× · · · × Zmr
, (2.1)

with invariants m1,m2, . . . ,mr subject to m1 > 1 and mi | mi+1 for 1 ≤ i < r.
The abelian group A also has another canonical form that is useful in calculating genus

parameters of abelian groups. Define the alternate canonical form for A as the direct
product of three subgroups T , B and D of A. First, the group D is the subgroup of A
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generated by the factors Zms , where ms is divisible by 4. Then write A = D ×D. Now
let T be the Sylow 2-subgroup of D, which is elementary abelian, and B be its direct
summand of odd order. Therefore, A = T × B ×D. Define t = rank(T ), b = rank(B),
d = rank(D). It follows that r = rank(A) = d+max(b, t). We point out that this notation
differs from that used in [5].

The groups of symmetric genus zero are the classical, well-known groups that act on
the Riemann sphere (possibly reversing orientation) [2, §6.3.2]. The abelian group A has
symmetric genus zero if and only if A is Zn, Z2 × Z2n, or (Z2)3; see [2, §6.3.2].

The groups of symmetric genus one have also been classified, at least in a sense. These
groups act on the torus and fall into 17 classes, corresponding to quotients of the 17 Eu-
clidean space groups [2, §6.3.3]. Each class is characterized by a presentation, typically a
partial one. The abelian group A has symmetric genus one if and only if A is Zm × Zmn
with m ≥ 3, Z2 × Z2 × Z2n with n ≥ 2, or (Z2)4; see [2, §6.3.3].

Let A be a finite abelian group. The strong symmetric genus of A has been completely
determined by Maclachlan [4, Theorem 4], and if A has odd order, then σ(A) = σ0(A).

The focus of [5] was the determination of the symmetric genus of an abelian group of
even order. The approach was to show that, among the various genus actions of A, there is
one induced by an NEC group with a signature of one of three types. We established the
following result [5, Theorem 3.10].

Theorem A. Let A be an abelian group of even order. Among the NEC groups with min-
imal non-euclidean area that act on A, there is a group Γ whose signature has one of the
following forms:

(I) (g,+, [λ1, . . . , λn], { });

(II) (0,+, [λ1, . . . , λs], {( )k}) for some k ≥ 1;

(III) (0,+, [ ], {( )u, (2v)}) for some v ≥ 2.

Furthermore, in cases (I) and (II), λi divides λi+1 for 1 ≤ i ≤ r − 1.

In (III) the notation (2v) means, as usual, a period cycle with v link periods equal to 2.
We denote by τ(A) (here and in [5]) the minimum genus of any action of A induced

by an NEC group of Type II. The size of the largest elementary abelian 2-group factor of A
determines whether σ(A) is given by an action induced by a group of Type I, II or III. The
main result of [5] is the following [5, Theorem 5.7].

Theorem B. Let A be an abelian group of even order with canonical form

A ∼= (Z2)a × Zm1
× Zm2

× · · · × Zmq
,

where m1 > 2. If the symmetric genus σ(A) ≥ 2, then

(i) σ(A) = 1 + |A| · (a+ 3q − 4)/8, if a ≥ q + 2;

(ii) σ(A) = τ(A), if 1 ≤ a ≤ q + 1;

(iii) σ(A) = min{σ0(A), τ(A)}, if a = 0.

Thus Theorem B gives the symmetric genus of an abelian groupA in terms of the invariants
of A and the numbers σ0(A) and τ(A).

The main result in [3] is the characterization [3, Theorem 1] of the integers in the
spectrum S0, and this will be important here.
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Theorem C. Let g ≥ 2. Then g ∈ S0 if and only if g satisfies one of the following
conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);

(ii) g − 1 is divisible by p4 for some odd prime p;

(iii) g − 1 is divisible by a2 for some odd integer a with (a− 1) | g;

(iv) g−1 is divisible by b2a2(a−1) for some odd integers a, b > 1, with a ≡ 3 (mod 4).

3 S0 ⊂ S
To establish the containment S0 ⊂ S, we use the characterization of the integers in the
spectrum S0 in Theorem C. For each integer g satisfying one of the five conditions in that
result, we exhibit an abelian group G such that g = σ(G). This is quite easy, as we shall
see.

In this section, we will assume that A is always written in alternate canonical form,
A = T ×B ×D.

We begin by noting some consequences of Theorem B. Directly from part (i) we have
the following; this formula was also pointed out in [7, p. 4094].

Proposition 3.1. σ(Z3
2 × Z2m) = 1 + 4m for any integer m ≥ 2.

Since σ((Z2)4) = 1 and σ((Z2)5) = 5 [7] (the general genus formula is σ((Z2)n) =
1 + 2n−3(n − 4) [5, Corollary 5.4]), it follows that the spectrum S contains the entire
congruence class g ≡ 1 (mod 4). These odd integers are also in S0 [3, p. 342].

A special case of Theorem B [5, p. 423] will be important here.

Theorem 3.2. Let the abelian group A have alternate canonical form A = T ×B ×D. If
T is trivial, then σ(A) = σ0(A).

Let A be a finite abelian group. Then σ(A) = σ0(A) in another important case.

Lemma 3.3. Let A be an abelian group of rank three or more. If the Sylow 2-subgroup S2

of A is cyclic, then σ(A) = σ0(A).

Proof. By Theorem 3.2, we may assume that T is non-trivial. If S2 is cyclic, then we must
have S2 = Z2 and D = 1. Now write A ∼= Z2 × B ∼= Z2 × Zβ1

× Zβ2
× · · · × Zβb

for
b ≥ 3, where each βi is odd. In this case, t = 1, d = 0 and b ≥ 3. Since t ≤ d + 1, [5,
p. 416] gives

τ(A) = 1 +
1

2
|A|

(
−1 +

b∑
i=1

(
1− 1

βi

))
(see also (4.1) in Section 4).

The group A has canonical form A = Zβ1 × Zβ2 × · · · × Z2βb
, and is the image of

a Fuchsian group Γ with signature (0,+, [β1, . . . , 2βb, 2βb], { }). When we calculate the
genus arising from the action of this Fuchsian group on A, we get that it is equal to τ(A).
Now applying Maclachlan’s formula shows that σ0(A) ≤ τ(A) and hence σ(A) = σ0(A)
by Theorem B.

Theorem 3.4. S0 ⊂ S.
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Proof. First suppose that g ≡ 1 (mod 4). Then g ∈ S by Proposition 3.1 (and the com-
ments after its statement).

Next suppose that g ≡ 55 (mod 81). Write g = 55+81j. LetG = Z3×Z3×Z3×Z3n,
where n = j + 1. Then by Maclachlan’s formula, g = σ0(G); here also see [3, p. 344].
But since the Sylow 2-subgroup of G is clearly cyclic, we also have σ(G) = σ0(G) = g
by Lemma 3.3.

Now assume that g = 1 + mp4 for an odd prime p. First let p ≥ 5 and set G =
Zp×Zp×Zp×Zmp. Then g = σ0(G); see [3, p. 344]. Again the Sylow 2-subgroup of G
is cyclic, and σ(G) = σ0(G) = g. For the prime p = 3, see the calculations in [3, p. 344]
and use Lemma 3.3.

Suppose that g satisfies condition (iii) of Theorem C for some odd a. Then, as shown
in the proof of Proposition 5 of [3, p. 343], g is the strong symmetric genus of the group
G = Za × Za × Zan for some n. Once again, σ(G) = σ0(G) = g by Lemma 3.3.

Finally, assume that g satisfies condition (iv) of Theorem C for some odd a, b > 1, with
a ≡ 3 (mod 4). Then g = σ0(G), where G is a group of the form Za × Zab × Zabn
[3, p. 343], a group with a cyclic Sylow 2-subgroup, so that σ(G) = σ0(G) = g by
Lemma 3.3.

4 The Type II genus
The Type II genus τ(A) was considered in [5, §4]. The genus τ(A) is the minimum genus
of any action of A induced by an NEC group with signature (0,+, [λ1, . . . , λs], {( )k}) for
some k ≥ 1 (the integer k is the number of empty period cycles). Among the signatures of
the NEC groups that induce the Type II genus τ(A), Lemmas 4.2 and 4.3 of [5] identify one
value of k that can be used to calculate τ(A). These two lemmas are correct. Unfortunately,
there is a mistake in [5, Formula (4.5)], which is used in the final determination of τ(A).
We correct that here.

LetA = T×B×D be the alternate canonical form forA. Remember that t = rank(T ),
b = rank(B), d = rank(D) and so r = rank(A) = d + max(b, t). The odd order group
B is generated by elements with orders β1, . . . , βb, where βi divides βj for i < j.

In the case in which t ≤ d + 1, the formula for τ(A) [5, p. 416] is correct. Note that
k = t gives minimal area by [5, Lemma 4.2]. In the new notation, this formula is

τ(A) = 1 +
1

2
|A|

(
k − 2 +

b∑
i=1

(
1− 1

βi

)
+

d+1−t∑
i=1

(
1− 1

δi

))
, (4.1)

where the group D is generated by elements with orders δ1, . . . , δd satisfying δi divides δj
for i < j.

Next, we consider the case t > d+ 1.

Theorem 4.1. Let A be an abelian group in alternate canonical form. Suppose that t >
d + 1 and k is given by [5, Lemma 4.3]. There are two cases and in each case, define
ν = b+ d− k + 1.

(i) Suppose that t+ d is odd. Then k = (t+ d+ 1)/2;

(a) If b ≤ (k − 1)− d, then τ(A) = 1 + 1
2 |A|(k − 2);
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(b) If b > (k − 1)− d, then ν ≥ 1 and

τ(A) = 1 +
1

2
|A|

(
k − 2 +

ν∑
i=1

(
1− 1

βi

))
;

(ii) Suppose that t+ d is even. Then k = (t+ d)/2;

(a) If b ≤ (k − 1)− d, then τ(A) = 1 + 1
2 |A|(k −

3
2 );

(b) If b > (k − 1)− d, then ν ≥ 1 and

τ(A) = 1 +
1

2
|A|

(
k − 2 +

ν−1∑
i=1

(
1− 1

βi

)
+

(
1− 1

2βν

))
.

Proof. Among the NEC groups that induce the Type II genus τ(A), let Γ be one with sig-
nature (0; +; [λ1, . . . ;λs]; ( )k) in which the number k of empty period cycles is given by
k = [(t + d + 1)/2] [5, Lemma 4.3, p. 414]. It follows that k ≥ d + 1. The group Γ has
generators x1, . . . , xs, e1, . . . , ek, and involutions c1, . . . , ck. The defining relations for Γ
consist of x1 · · ·xse1 · · · ek = 1, conditions on the order of the elements xi and certain ele-
ments commuting. Clearly, one generator is redundant, and, since µ(Γ) is minimal, we may
assume that ek is that generator. Now let a1, . . . , ar be a generating set for A in canonical
form so that the orders of these elements satisfy the standard divisibility condition. With
µ(Γ) minimal, the elements e1, . . . , ek−1 are mapped onto the subgroup generated by the
k−1 elements ar−k+2, . . . , ar of highest order. In particular, since k−1 ≥ d, the subgroup
D of A is contained in the image of 〈e1, . . . , ek−1〉.

If t + d is odd, then 2k − 1 = t + d. Since t + d is the rank of the Sylow 2-subgroup
S2 of A, we have that S2 is contained in the image of 〈c1, . . . , ck, e1, . . . , ek−1〉. It follows
that 〈T,D〉 is contained in the image of 〈c1, . . . , ck, e1, . . . , ek−1〉. If t + d is even, then
2k = t + d. In this case, there is an additional generator x` so that 〈T,D〉 is contained in
the image of 〈x`, c1, . . . , ck, e1, . . . , ek−1〉.

If b ≤ (k − 1) − d, then the images of the generators ei which are not mapped into D
generate all of B. Therefore, if t + d is odd, then A is the image of the NEC group with
signature (0; +; [ ]; {( )k}) and τ(A) = 1 + 1

2 |A|(k − 2). If t + d is even, then we need
a generator x1 in order to map onto A, and with µ(Γ) minimal, |x1| = 2. Therefore, if
t + d is even, then A is the image of the NEC group with signature (0; +; [2]; {( )k}) and
τ(A) = 1 + 1

2 |A|(k −
3
2 ).

The last case is when b > (k − 1) − d. Let E be the subgroup of A generated by the
images of e1, . . . , ek−1. Then the subgroup B can be decomposed as B = B1×B2, where
B2 = B ∩ E. Let ν = b + d − k + 1 so that ν is the rank of B1 and ν ≥ 1. We need
generators x1, . . . , xν to map onto B1. If t + d is odd, then A is the image of the NEC
group with signature (0; +; [β1, . . . , βν ]; {( )k}) and

τ(A) = 1 +
1

2
|A|

(
k − 2 +

ν∑
i=1

(
1− 1

βi

))
.

Suppose that t + d is even. As in the previous case, we need generators x1, . . . , xν to
map onto B1. However, the generator xν must map onto an element of order 2βν for the
NEC group to map onto A. This is because there is the extra involution not in the image
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of 〈c1, . . . , ck〉. If t + d is even, then A is the image of the NEC group with signature
(0; +; [β1, . . . , βν−1, 2βν ]; {( )k}) and

τ(A) = 1 +
1

2
|A|

(
k − 2 +

ν−1∑
i=1

(
1− 1

βi

)
+

(
1− 1

2βν

))
.

5 General results
Again in this section, we assume that A is written in alternate canonical form, A = T ×
B ×D.

Let A be a finite abelian group so that the integer g = σ(A) is in the spectrum S. We
want to show that g is in S0 as well. This is clearly the case if A has rank one or two or A
has a trivial factor T in its alternate canonical form. Thus we may assume that A has rank
at least 3 and T is not trivial. In particular, A has even order.

Our approach utilizes the Sylow 2-subgroup S2 of A.

Lemma 5.1. Let A be an abelian group of rank three or more with σ(A) ≥ 2. If the Sylow
2-subgroup of A is isomorphic to (Z2)3, then τ(A) ≡ 1 (mod 4).

Proof. Since S2
∼= (Z2)3, we have T = S2, D = 1 and A = T × B. Now t = 3, d = 0,

and k = 2. Since b = 1 would imply σ(A) = 1, b ≥ 2. We have t > d + 1 with t + d
odd. The Type II genus is τ(A) = 1 + |A| ·M/2, where M = (k− 2 +

∑ν
i=1(1− 1

βi
)) by

Theorem 4.1(i)(b). Since M · |B| is an integer and |A| = 8|B|, we clearly have τ(A) ≡ 1
(mod 4).

Lemma 5.2. Let A be an abelian group of rank three or more with σ(A) ≥ 2. If the Sylow
2-subgroup of A is isomorphic to Z2×Z2×Z2` for some ` ≥ 2, then τ(A) ≡ 1 (mod 4).

Proof. In this case we have T = Z2 × Z2 and D is cyclic with order divisible by 2`.
Therefore, t = 2 and d = 1. This implies that k = t = 2 by [5, Lemma 4.2]. Since
b = 1 would imply σ(A) = 1, b ≥ 2. We have t = d + 1 and by (4.1), the Type II genus
τ(A) = 1 + |A| ·M/2 where M = (k − 2 +

∑b
i=1(1− 1

βi
)). Since M · |B| is an integer

and |A| = 4 · |D| · |B| with |D| divisible by 2`, again τ(A) ≡ 1 (mod 4).

Lemma 5.3. Let A be an abelian group. If the Sylow 2-subgroup of A is isomorphic to
(Z2)4, then τ(A) ≡ 1 (mod 4).

Proof. Since S2
∼= (Z2)4, we have T = S2, D = 1 and A = T × B. Now t = 4, d = 0,

k = 2 and b ≥ 1. We have t > d+1 with t+d even. We apply Theorem 4.1(ii) and get that
k = 2. If b = 1, thenM = 1/2 by Theorem 4.1(ii)(a). If b ≥ 2, then by Theorem 4.1(ii)(b),
M · 2|B| is an integer. In either case, 2M · |B| is an integer. Since |A| = 16|B|, we again
have τ(A) ≡ 1 (mod 4).

Theorem 5.4. Let A be an abelian group of rank three or more with σ(A) ≥ 2. Then
either σ(A) ≡ 1 (mod 4) or σ(A) = σ0(A) (or both), unless the Sylow 2-subgroup of A
has rank 2 and is isomorphic to Z2 × Z2` , for some ` ≥ 1.

Proof. First, if A has odd order, then σ(A) = σ0(A). Assume, then, that A has even order
so that σ(A) is given by Theorem B. Let A have canonical form

A ∼= (Z2)a × Zm1
× Zm2

× · · · × Zmq
,
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as in Theorem B. It is easy to see in case (i), we always have that σ(A) ≡ 1 (mod 4).
Suppose a ≤ q + 1. By Theorem B, σ(A) is either equal to σ0(A) or τ(A). Let A act

on a surface X of genus g = σ(A) ≥ 2, and write |A| = 2n ·m, where m is odd.
Assume first that g is even. Then by [7, Theorem 9], A is not a 2-group so that m 6= 1.

We consider the possibilities for the Sylow 2-subgroup S2 of A. If S2 is cyclic, then by
σ(A) = σ0(A) by Lemma 3.3. Assume then that S2 is not cyclic. If A contains an element
of order 2n−1 with |S2| = 2n, then S2 is isomorphic to Z2 × Z2n−1 , the exceptional case.

Assume then that A has no elements of order 2n−1, and apply [7, Theorem 8]. Since A
and S2 are abelian, the only possibility is that S2 is isomorphic to (Z2)3. But in this case
τ(A) ≡ 1 (mod 4) by Lemma 5.1.

Therefore, by Theorem B, if g is even, then either σ(A) ≡ 1 (mod 4) or σ(A) =
σ0(A), unless S2

∼= Z2 × Z2` , for some ` ≥ 1.
Now suppose g ≡ 3 (mod 4), and use [8, Theorem 5]. The Sylow 2-subgroup S2 also

acts of the surface X of genus g ≥ 2. By [8, Theorem 5], S2 contains an element of order
2n−3 or larger. Further, if Exp(S2) = 2n−3, then S2 contains a dihedral subgroup of index
4. We consider the possibilities for Exp(S2).

If S2 is cyclic, then by σ(A) = σ0(A) by Lemma 3.3.
If S2 is not cyclic and contains an element of order 2n−1, then S2 is isomorphic to

Z2 × Z2n−1 , the exceptional case.
Suppose Exp(S2) = 2n−2. Then S2 is isomorphic to either Z2 × Z2 × Z2n−2 or

Z4×Z2n−2 . If S2
∼= Z2×Z2×Z2n−2 , then by Lemma 5.2, τ(A) ≡ 1 (mod 4). If on the

other hand, S2
∼= Z4 × Z2n−2 , then by Theorem 3.2, σ(A) = σ0(A).

Suppose Exp(S2) = 2n−3 and S2 has a dihedral subgroup of index 4. Since S2 is
abelian, this forces n = 4 and S2

∼= (Z2)4. In this case, τ(A) ≡ 1 (mod 4) by Lem-
ma 5.3.

Therefore, by Theorem B, if g ≡ 3 (mod 4), then either σ(A) = τ(A) ≡ 1 (mod 4)
or σ(A) = σ0(A), unless S2

∼= Z2 × Z2` , for some ` ≥ 1.

A consequence of the proof is perhaps worth noting, in connection with the well-known
conjecture that “almost all” groups are 2-groups.

Theorem 5.5. If A be an abelian 2-group of positive symmetric genus, then

σ(A) ≡ 1 (mod 4).

Proof. Assume A is an abelian 2-group with σ(A) ≥ 2. Then σ(A) is not even by [7,
Theorem 9]. The proof of Theorem 5.4 shows that σ(A) cannot be congruent to 3 (mod 4)
either, since A = S2 and A is not an abelian group of genus zero or one.

Next we handle the exceptional case in Theorem 5.4.

Theorem 5.6. Let A be an abelian group of rank three or more with σ(A) ≥ 2. If the
Sylow 2-subgroup of A is isomorphic to Z2 × Z2` , for some ` ≥ 1, then there exists an
abelian group A1 such that σ(A) = σ0(A1).

Proof. LetA have alternate canonical formA = T ×B×D. We consider two cases, ` = 1
and ` ≥ 2.



C. L. May and J. Zimmerman: The symmetric genus spectrum of abelian groups 635

First assume that S2
∼= (Z2)2. Now T = S2, D = 1 and A = T × B, with t = 2,

d = 0, and k = 1. Write A ∼= Z2 × Z2 × B ∼= Z2 × Z2 × Zβ1
× Zβ2

× · · · × Zβb
for

b ≥ 3, where each βi is odd. By Theorem 4.1(ii)(b), the Type II genus is

τ(A) = 1 +
1

2
|A|

(
−1 +

b−1∑
i=1

(
1− 1

βi

)
+

(
1− 1

2βb

))
.

By Theorem B, σ(A) = min{σ0(A), τ(A)}. If σ(A) = σ0(A), then set A1 = A
and we are done. So we assume that τ(A) < σ0(A). Maclachlan’s formula uses the non-
euclidean areas of the groups ∆0 with signature (0,+, [β1, . . . , 2βb−1, 2βb, 2βb], { }) and
Γp with signatures (p,+, [β1, . . . , βb−2p, βb−2p], { }) for p ≥ 1 to obtain σ0(A) .

Let A1 = Zβ1
× · · · × Zβb−1

× Z4βb
be an abelian group. Maclachlan’s formula for

σ0(A1) uses the minimum non-euclidean areas of the Fuchsian groups Γ0 with signature
(0,+, [β1, . . . , βb−1, 4βb, 4βb], { }) and Γp for p ≥ 1 as in the calculation of σ0(A). By
assumption the Fuchsian groups Γp for p ≥ 1 give genus larger than τ(A). The Fuchsian
group Γ0 gives the same genus as τ(A). Therefore, τ(A) = σ0(A1) and so σ(A) =
σ0(A1).

Now assume that S2
∼= Z2 × Z2` , for some ` ≥ 2. Now T = Z2 and D is isomorphic

to Zm2` , where m is odd. We have alternate canonical form A = Z2 × B × Zm2`
∼=

Z2 × Zβ1
× Zβ2

× · · · × Zβb−1
× Zm2` , where each βi is odd, βi divides βj for i < j and

m is divisible by βb−1. It follows that t = 1, b ≥ 3, d = 1, and k = 1 by [5, Lemma 4.2].
By (4.1) the Type II genus is

τ(A) = 1 +
1

2
|A|

(
−1 +

b∑
i=1

(
1− 1

βi

)
+

(
1− 1

m2`

))
.

By Theorem B, σ(A) = min{σ0(A), τ(A)}. If σ(A) = σ0(A), then let A1 = A
and we are done. So we will assume that τ(A) < σ0(A). Now let A1 = Zβ1

× · · · ×
Zβb
×Zm2`+1 . The Fuchsian group with signature (0,+, [β1, . . . , βb,m2`+1,m2`+1], { })

has genus action equal to τ(A). As in the previous case, τ(A) = σ0(A1) and so σ(A) =
σ0(A1).

Combining Theorems 5.4 and 5.6 yields the following.

Theorem 5.7. S ⊂ S0.

Of course, Theorems 5.7 and 3.4 provide the proof of Theorem 1.1. Theorem 1.1 and
the results in [3] give some interesting results about the symmetric genus spectrum S of
abelian groups. Now Theorem C gives a necessary and sufficient condition for a positive
integer to be in the spectrum S. Two other consequences are perhaps worth stating.

Corollary 5.8. The spectrum S has an asymptotic density δ(S) ≈ 0.3284.

Corollary 5.9. If g − 1 is a square-free integer, then g /∈ S.
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