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1 Introduction

Textile industry is one of the important industries, 
especially for developing countries like Kenya, due to 
its labour-intensive nature. Th e industry is vast and 
produces a variety of products that include fi bres, 

yarns, fabrics and garments. Th e manufacture of cot-
ton ring-spun yarn involves the assembling together 
of a group of fi bres and then passing them through a 
chain of processes that include opening, cleaning, 
draft ing and twisting to bind the fi bres together, so 
that they form a continuous strand. Th e raw material 
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Abstract
The optimization of the manufacture of cotton yarns involves several processes, while the prediction of yarn 

quality parameters forms an important area of investigation. This research work concentrated on the pre-

diction of cotton yarn elongation. Cotton lint and yarn samples were collected in textile factories in Kenya. 

The collected samples were tested under standard testing conditions. Cotton lint parameters, machine pa-

rameters and yarn elongation were used to design yarn elongation prediction models. The elongation pre-

diction models used three network training algorithms, including backpropagation (BP), an extreme learn-

ing machine (ELM), and a hybrid of diff erential evolution (DE) and an ELM referred to as DE-ELM. The 

prediction models recorded a mean squared error (mse) value of 0.001 using 11, 43 and 2 neurons in the 

hidden layer for the BP, ELM and DE-ELM models respectively. The ELM models exhibited faster training 

speeds than the BP algorithms, but required more neurons in the hidden layer than other models. The DE-

ELM hybrid algorithm was faster than the BP algorithm, but slower than the ELM algorithm.

Keywords: cotton yarn, elongation, backpropagation, extreme learning machines, prediction

Izvleček
Optimizacija izdelave bombažne preje vključuje različne procese, zato je napovedovanje kakovostnih parametrov 

preje pomembno področje raziskav. V naši raziskavi smo se osredotočili na napovedovanje raztezka bombažne 

preje. Vzorce bombažnih vlaken in prej smo zbrali v tovarnah v Keniji. Zbrane vzorce smo testirali pod standardni-

mi pogoji testiranja. Parametre bombažnih vlaken, strojne parametre in raztezek preje smo uporabili za izdelavo 

modelov napovedovanja raztezka preje z uporabo treh mrežnih učnih algoritmov – algoritma vzvratnega razšir-

janja (BP), algoritma ekstremnega strojnega učenja (ELM) in hibridnega algoritma diferencialne evolucije (DE) v 

kombinaciji z EML, poimenovanega DE-ELM. Modeli za napovedovanje raztezka preje so zabeležili vrednost sre-

dnje kvadratne napake (mse) 0,001 pri uporabi 11, 43 in 2 nevronov v skritem nivoju za BP, ELM oziroma DE-ELM. 

V primerjavi z algoritmi BP so modeli ELM dosegli največje hitrosti, vendar so potrebovali največ nevronov. Algori-

tem hibridnega DE-ELM je bil hitrejši od algoritma BP, vendar počasnejši od algoritma ELM.

Ključne besede: bombažna preja, raztezek, vzvratno razširjanje, ekstremno strojno učenje, napovedovanje
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(fi bre) used in cotton spinning is normally character-
ised by variations that may be attributed to the varie-
ty or type, and to cotton growing conditions. Th e 
task of the spinner is to ensure that fi bre selection 
and spinning processes produce yarn of acceptable 
quality at the lowest cost.Th is may entail the use of 
optimisation techniques for maximum productivity 
and profi tability.
Prediction models for cotton yarn properties can be 
designed by using statistical, mathematical and arti-
fi cial neural network (ANN) models. Ever since 
Cheng and Adams [1] reported the use of ANN 
models to predict yarn quality properties, the use of 
ANN in yarn quality property prediction models 
has grown in leaps and bounds, to the point where 
such models are used in the yarn spinning industry 
[2]. Th e need to improve the prediction of yarn 
quality properties thus cannot be overemphasised. 
Th is research paper compared the use of an extreme 
learning machine (ELM) with conventional back-
propagation (BP) prediction models.

1.1 Yarn prediction models
Th e prediction of yarn quality properties using ANN 
can be accomplished using a single hidden layer 
feedforward network, whose network parameters in-
clude input to hidden layer weights (W1), hidden 
layer biases (b1), a hidden layer transfer function (f1), 
hidden layer to output layer weights (W2), output 
layer biases (b2) and an output layer transfer func-
tion (f2) as shown in Figure1. One of the most com-
monly used techniques to train a feedforward net-
work is the backpropagation algorithm, where the 
weights and biases are iteratively updated until the 
set target error is attained. Feedforward networks 

have been used by several researchers to predict yarn 
quality properties [1–3]. According to Huang et al, 
[4–5] the weights and biases of a single hidden layer 
network can be randomly selected and then proc-
essed through the hidden layer transfer function (f1). 
Eliminating the output layer function (f2) in a single 
hidden layer network can render a single hidden lay-
er feedforward network a linear system. Th e hidden 
layer to output layer weights (W2) can thus be ana-
lytically determined using a generalised inverse op-
eration. Such modifi ed networks were given the 
name extreme learning machines (ELM).
Since an ELM chooses the input weights and hid-
den layer biases randomly, much of the training 
time traditionally spent in iteratively updating these 
parameters is saved. However, because the output 
weights are computed based on the prefi xed input 
weights and hidden layer biases, there is a possibili-
ty that a set of non-optimal or unnecessary input 
weights and hidden layer biases could be selected. 
Research by Zhu et al [6] suggested that the prob-
lems associated with the ELM algorithms can be 
minimised by using the DE algorithm for the selec-
tion of initial weights and biases. Th is idea was im-
plemented by combining the diff erential evolution 
(DE) and ELM algorithms to form a hybrid training 
algorithm. Th e hybrid algorithm, thereaft er referred 
to as DE-ELM, works as follows: the DE algorithm 
selects the initial weights by using mutation, crosso-
ver and selection processes to search for the most 
suitable weights and biases. Th e selected weights 
and biases are sent to the ELM algorithm and used 
to train the yarn quality prediction model. It can 
thus be stated here that the diff erence between the 
operation of the ELM and the DE-ELM algorithms 
lies in the fact that the initial weights and biases of 
the ELM algorithm are selected randomly and then 
used for training, while in the DE-ELM algorithm 
the initial weights are also randomly selected, but 
are fi rst put through the DE process (mutation, 
crossover and selection) before being used for net-
work training.

2 Materials and methods

2.1 Materials
Th e aim of this research work was to design a yarn 
quality prediction model with special emphasis on 
Kenyan cotton lint and ring-spun yarn. Cotton lint Figure 1: Single hidden layer feedforward network
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and ring-spun yarn samples were collected from 
textile mills in Kenya, with care being taken to en-
sure that the selected factories were similar in terms 
of machinery, work culture, technology, quality and 
maintenance policies. Th is was done with the aim of 
minimising sample variances that could arise due to 
inter-factory diff erences. Th e details of the cotton 
lint and yarn samples collected are presented in Ta-
ble1. Th e data used in this research work were com-
piled aft er the collection and testing of the samples.
Th e collected data consisted of 144 samples each 
having 14 factors that were deemed as input factors, 
as shown in Table 2.Th e 14 factors included cotton 
fi bre properties, machine parametersand yarn qual-
ity properties. Th e output of the prediction model 
was yarn elongation.

2.2 Methods
Th ree types of prediction models were designed in 
this research work. As is the practice in network 
training, the input data were pre-processed. Data 
pre-processing included the data normalisation 
process, where the inputs were scaled to fall within 
a set limit [7]. As mentioned earlier, a total of 144 
input data were used. Th e data were subdivided into 
three sets: training, validation and testing sets in a 
ratio of 4:1:1 respectively. Th is was done randomly.
All the networks used a single hidden layer feedfor-
ward network with one output (yarn elongation). 
Th e BP-trained prediction model was designed us-
ing three layers (e.g. input, hidden and output lay-
ers), as discussed by Mwasiagi et al [3]. Th e BP al-
gorithm referred to as the Levenberg-Marquardt 

Table 1: Details of cotton lint and yarn samples

Cotton lint Mill code Yarn linear density[tex] No. ofcops Spindle speed [revolutions/min]
Voi AR B 19.68 24 11,000
Voi AR B 29.525 24 10,000
WT AR A 19.68 24 12,000
Kitui AR A 19.525 24 12,000
Kitui AR A 24.604 24 11,000
Kitui AR C 24.604 24 8,000

Table 2: Inputs for yarn elongation prediction models

No. Input Type Input factor
Input value

Minimum Maximum Mean
1 HVI fi bre property Length [mm] 24.77 33.45 29.30
2 HVI fi bre property Length uniformity [%] 78.30 87.30 83.44
3 HVI fi bre property Micronaire 3.27 5.89 3.90
4 HVI fi bre property Maturity ratio 0.82 0.93 0.86
5 HVI fi bre property Spinning consistency index (SCI) 108 187 157
6 HVI fi bre property Short fi bre index (SFI) 5.90 9.70 7.39
7 HVI fi bre property Strength [cN/tex] 21.09 35.81 29.10
8 HVI fi bre property Elongation [%] 3.98 8.84 6.13
9 HVI fi bre property Trash Grade 1 4 2

10 HVI fi bre property Yellowness (+b) 8.90 12.30 10.69
11 Yarn parameter Yarn count [tex] 19.41 31.56 23.59
12 Yarn parameter Twist [m-1] 701.18 936.61 848.425
13 Machine parameter Spindle speed [revolutions/min] 8,000 12,000 10,851
14 Machine parameter Ring diameter [mm] 42 50 43
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algorithm (LM) [8] was used to train the elongation 
prediction model, while performance was assessed 
using a mean squared error (mse) and correlation 
coeffi  cient (R-value), as explained by Ham and Kos-
tanic et al [7] and applied by Mwasiagi et al [3]. Th e 
performance of the BP algorithm was monitored as 
the number of neurons in the hidden layer was var-
ied from 2 until the network-set mse level of 0.001 
was attained. Th e training error, time and R-value 
were recorded.
Th e second training algorithm used to train the 
elongation prediction models was the ELM algo-
rithm. Th is was done in similar manner as the BP 
algorithm, until the set mse level was attained. Th e 
ELM model was improved by using the DE-ELM 
hybrid algorithm, which used the DE algorithm for 
the selection of the initial weights and biases. Th e 
network was trained thereaft er using the ELM mod-
el.Th e performance of the DE-ELM yarn quality 
property prediction models was monitored as the 
number of generations was varied from 1 to 10 in 
increments of 1. For comparison purposes, the 
number of neurons attained by the BP algorithm to 
achieve the set mse level of 0.001 (which was 11) 
was varied from 11 to 2 in increments of 1.

3 Results and discussion

3.1 Prediction of yarn elongation using BP 
algorithms
Using the BP algorithms, the elongation predic-
tion model was trained starting from 2 neurons in 
the hidden layer. Th e number of neurons was in-
creased in steps increments of 1 until the set target 
error (0.001) was attained. Th e results of the elon-
gation prediction model, as presented in Table3, 
showed that the yarn prediction model attained 
the set target error when the number of neurons 
in the hidden layer reached 11. Th at process took 
1.58 seconds. Th e fully trained yarn elongation 
model with 11 neurons in the hidden layer was ex-
posed to the testing data and the R-value of the BP 
yarn elongation model was 0.894 (Figure 2). Table 4 
presents the predicted and measured values of 
yarn elongation.

Table 3: Results of the BP elongation prediction model

Neurons (mse)tr Time [s] Iteration
2 0.064 1.282 15
3 0.039 1.297 18
4 0.0211 1.307 19
5 0.0137 1.32 18
6 0.0091 1.36 20
7 0.0073 1.39 22
8 0.0052 1.42 24
9 0.0032 1.45 24

10 0.00199 1.51 26
11 0.00089 1.58 25

Table 4: Predicted and measured values for the BP 
model

No. Predicted value 
[%]

Measured value 
[%]

1 7.71 7.35
2 7.27 7.25
3 7.10 7.33
4 7.67 7.40
5 7.4 6.91
6 6.89 7.11
7 6.96 7.27
8 7.02 6.84
9 6.73 6.87

10 6.76 6.77
11 6.91 6.91
12 6.59 6.60
13 7.32 7.20
14 7.21 7.09
15 6.65 6.82
16 6.27 6.92
17 6.75 6.54
18 5.66 6.32
19 6.60 6.68
20 6.63 6.65
21 5.77 6.08
22 6.18 6.16
23 5.85 6.01
24 5.59 6.28
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Figure 2: Predicted and measured values of the BP al-
gorithm

3.2 Prediction of yarn elongation using the 
ELM algorithm
Th e experiments for the prediction of yarn elonga-
tion using the ELM algorithms were carried out 
starting with 2 neurons in increments of 1 until the 
set target error was attained. Th e results of the ELM 
elongation prediction model, as shown in Table 5, 
improved rapidly, especially when the number of 
neurons was varied from 2 to 12 in increments of 1.

Table 5: Results of the ELM elongation prediction model

No. of neurons (mse)tr Time [s]
2 0.09554 0.01516
3 0.08128 0.0155
4 0.07258 0.0160
5 0.05929 0.0164
6 0.04840 0.0166
7 0.04000 0.0169
8 0.03168 0.0173
9 0.02111 0.0177

10 0.01646 0.0180
11 0.01000 0.0183
12 0.00941 0.0189
13 0.00810 0.0191
14 0.00774 0.0194
15 0.00706 0.0196
16 0.00624 0.0202
17 0.00518 0.0205
18 0.00436 0.0208
19 0.00372 0.0215
20 0.00281 0.0216
21 0.00260 0.0219
22 0.00230 0.0224
23 0.00221 0.0226
24 0.00203 0.0229
25 0.00194 0.0233
26 0.00197 0.0236
27 0.00185 0.0239
28 0.00185 0.0244
29 0.00185 0.0247
30 0.00182 0.0251
31 0.00176 0.0255
32 0.00168 0.0258
33 0.00166 0.0262
34 0.00160 0.0265
35 0.00157 0.0269
36 0.00152 0.0273
37 0.00150 0.0276
38 0.00116 0.0279
39 0.00112 0.0282
40 0.00112 0.0313
41 0.00111 0.0301
42 0.00102 0.0301
43 0.00097 0.0317
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Figure 3: Predicted and measured values of the ELM 
model



70 The Prediction of Yarn Elongation of Kenyan Ring-Spun Yarn 

using Extreme Learning Machines (ELM)

Tekstilec, 2017, 60(1), 65-72

Th ereaft er, the change in the mse value was very 
small, requiring an increase of over 30 neurons to 
change from an mse value of 0.00941 to 0.00097, 
when the set target error was attained. Th e elonga-
tion prediction model needed 43 neurons in the 
hidden layer, and for that it took only 0.0317 sec-
onds for training. Th is is much faster than the BP 
model, which needed 1.58 seconds to attain the set 
mse level of 0.001. When exposed to the testing 
data, the 43-neuron elongation prediction model 
had an R-value of 0.986 (Figure 3). Table 6 presents 
the predicted and measured values of the ELM elon-
gation model.

3.3 Prediction ofyarn elongation using the 
DE-ELM algorithm
Th e ELM elongation prediction model needed 43 
neurons in the hidden layer in order to achieve the 
set target error of 0.001. An improvement was made 
to the ELM algorithm using the DE-ELM model, 
which as previously mentioned is a hybrid of the DE 
and ELM algorithms. Th e training of the DE-ELM 
elongation model was carried out in a similar man-
ner as that of the yarn elongation model discussed 
in section 3.1. Th e results of the training of the DE-
ELM elongation model are presented in Table 7. Th e 
level at which the model attained the set target error 
are marked in Table 7, while the model is presented 
in detail in Table 8.
As is evident from the table above, the two-neuron 
model required fi ve generations to attain the set tar-
get mean square error (mse) of 0.001. As the number 

Table 6: Predicted and measured values for the ELM 
model

No. Predicted value [%] Measured value[%]
1 7.41 7.35
2 7.19 7.25
3 7.26 7.33
4 7.45 7.4
5 6.89 6.91
6 7.05 7.11
7 7.35 7.27
8 6.96 6.84
9 6.81 6.87

10 6.81 6.77
11 6.95 6.91
12 6.79 6.6
13 7.27 7.2
14 7.16 7.09
15 6.84 6.82
16 6.74 6.92
17 6.5 6.54
18 6.41 6.32
19 6.68 6.68
20 6.46 6.65
21 6.19 6.08
22 6.13 6.16
23 5.92 6.01
24 6.29 6.28

Table 7: Variation of (mse)tr for the DE-ELM elongation model

G
Number of neurons in the hidden layer

11 10 9 8 7 6 5 4 3 2
1 0.00326 0.0033 0.004134 0.005446 0.006856 0.008317 0.015876 0.017983 0.024461 0.028023
2 0.00127 0.0019 0.00254 0.00149 0.001632 0.001731 0.003238 0.005141 0.008281 0.011881
3 0.00035 0.0002 0.000462 0.000595 0.000784 0.000912 0.00103 0.001303 0.002362 0.006336
4 7.6x10–5 2.6x10–5 6.6x10–6 3.0x10–5 7.6x10–5 0.000112 0.000306 0.000396 0.000586 0.002411
5 1.8x10–7 3.2x10–8 2.7x10–10 7.3x10–10 1.0x10–8 7.1x10–5 5.6x10–5 7.8x10–6 4.6x10–5 5x10–5

6 1.9x10–16 1.9x10–13 3.3x10–13 2.3x10–15 1.7x10–12 8.3x10–7 8.8x10–7 3.2x10–10 1.2x10–6 2.25x10–6

7 9.8x10–16 7.9x10–23 1.1x10–25 1.2x10–22 1.9x10–16 1.4x10–13 1.4x10–12 5.1x10–16 6.8x10–8 4x10–8

8 2.6x10–31 1.5x10–31 2.6x10–29 8.4x10–26 3.0x10–23 2.2x10–21 3.2x10–24 3.7x10–19 1.4x10–17 6.4x10–11

9 1.7x10–34 2.1x10–33 7.8x10–32 1.7x10–30 1.2x10–28 3.6x10–27 2.6x10–26 1.2x10–26 6.2x10–21 7.9x10–19

10 0 1.2x10–34 2.1x10–33 8.9x10–33 1.9x10–31 8.7x10–31 6.3x10–30 2.6x10–28 3.3x10–25 9.8x10–23
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of neurons was reduced from 11 to 2 in increments 
of 1, the number of generations needed to attain the 
set target error increased from 3 to 5. Th e two-neu-
ron, fi ve-generation model was exposed to the test-
ing data. Th e results are presented in Figure 4 and 
Table 9. Th e R-value for the DE-ELM elongation 
was 0.994.

Table 8: Results of the DE-ELM elongation predicti-
on model

Neuron G (mse)tr R-value Time [s]
11 3 0.00035 0.987 10.000
10 3 0.0004 0.986 0.8925
9 3 0.000462 0.986 0.875
8 3 0.000695 0.986 0.8906
7 3 0.000784 0.985 0.6719
6 3 0.000912 0.981 0.625
5 4 0.000306 0.981 0.9328
4 4 0.000396 0.98 0.6706
3 4 0.0006 0.978 0.6563
2 5 0.00005 0.977 0.6875

Figure 4 presents the measured and predicted val-
ues of the optimum elongation prediction model 
(DE-ELM) when exposed to the testing data. Th e 
predicted elongation values tracked the measured 

elongation values so closely that a success rate of 
99.4% was achieved. Th is could be an indication of 
the model’s very good generalisation property. It is 
evident from the graph in Figure 4 that a high pro-
portion of the predicted values are either on or close 
to the best fi t line. Th is could be an indication of the 
network’s good generalisation.

3.4 Comparison of the BP, ELM, and DE-ELM 
elongation models
Table 10 presents a comparison of the elongation 
prediction models obtained using the BP, ELM and 
DE-ELM. Th e ELM model needed 43 neurons in 
the hidden layer to reach the set target error of 
0.001. Th is is one of the disadvantages of the ELM 
algorithm, i.e. that it requires more neurons than 
the BP prediction models.

Table 9: Predicted and measured values of yarn elon-
gation

No. Predicted value [%] Measured value [%]
1 7.41 7.35
2 7.25 7.25
3 7.34 7.33
4 7.46 7.40
5 6.92 6.91
6 7.10 7.11
7 7.27 7.27
8 6.89 6.84
9 6.78 6.87

10 6.54 6.77
11 7.09 6.91
12 6.67 6.60
13 7.08 7.20
14 7.20 7.09
15 7.07 6.82
16 6.97 6.92
17 6.53 6.54
18 6.31 6.32
19 6.64 6.68
20 6.66 6.65
21 6.00 6.08
22 6.17 6.16
23 6.03 6.01
24 6.27 6.28
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Th e ELM algorithm was however faster than the 
other models. Th e time required by the ELM model 
for training was over 80 times faster than that need-
ed by the BP model. Th e DE-ELM model provides 
very good performance with a signifi cantly reduced 
number of neurons in the hidden layer. Its training 
speed is, however, slower than that of the ELM 
model, but still much faster than that of the BP 
models. Th e DE-ELM elongation prediction model 
can therefore be considered the optimum model.

4 Conclusion

Yarn elongation prediction models using BP, ELM 
and DE-ELM models were designed and trained.
Th e performance of the BP algorithms was com-
pared to two non-BP algorithms, i.e. ELM and DE-
ELM algorithms, during the prediction of yarn 
elongation. Th e model recorded an mse value of 
0.001 using 11, 43 and 2 neurons in the hidden lay-
er for the BP, ELM and DE-ELM models respective-
ly. Th e ELM models exhibited the fastest training 
speeds relative to the BP algorithms, but needed 
more neurons in the hidden layer than the other 
models. Th e hybrid model (DE-ELM) was second 
in terms of speed aft er the ELM model. Th e per-
formance of the DE-ELM model is thus far better 
than that of the BP model in terms of training time 
and better than the ELM model in terms of the 
number of neurons in the hidden layer.
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Table 10: Comparison of elongation prediction models

Model Input 
factors

No. of 
neurons

No. of 
generations (mse)tr R-value Iteration Time [s]

BP 14 11 N/A 0.00089 0.894 25 1.58
ELM 14 43 N/A 0.00097 0.986 N/A 0.0317
DE-ELM 14 2 5 0.00005 0.994 N/A 0.6875


