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0  INTRODUCTION

The design considerations of aircraft structures based 
on damage tolerance approach often require the 
prediction of mixed-mode fatigue crack growth. In this 
approach, the propagation path of a crack in a part is 
an essential aspect for the fatigue life simulation using 
the methodology of fracture mechanics. However, 
most of the existing approaches are limited to the 
mode-I fatigue crack growth cases (e.g. [1] to [4]). 
These approaches are generally based on correlations 
between the fatigue crack growth rate (da/dN) and the 
range of the mode-I stress intensity factor (ΔKI). The 
commonly used fatigue crack growth rate equation is 
[5]:

 
da
dN

C K
n

= ( )∆ ,  (1)

involving the experimentally determined constants C 
and n may not be adequate, because they are restricted 
to cracks running in a straight line. In the damage 
tolerance approach, the propagation path of a crack in 
a part is an essential aspect for fatigue life simulation 
using fracture mechanics methodology. For these 
cases, the cracks do not propagate in the direction 
normal to the applied load; these models need the 
stress intensity factor history along the crack path.

Interesting attempts to predict the angle of crack 
propagation, as well as the fatigue crack growth 
rate for mixed-mode cracks, are divided into two 
categories. The first incorporates the methodologies 
that consider the stress or the strain as the fatigue crack 
growth driving force, e.g. the maximum tangential 

stress (MTS) criterion [6] and [7], the tangential stress 
factor and tangential strain factor [8], the maximum 
tangential strain criterion [9], etc. The second category 
contains the methodologies that recognize the material 
strain energy density as the fatigue crack growth 
driving force, e.g. the minimum strain energy density 
(S) criterion [10] to [12], the dilatational strain energy 
density (T) criterion [13] and [14], etc. 

In previously mentioned works, the distribution 
of the total or the dilatational elastic strain energy 
density around the crack tip is evaluated along a 
circular core or the elastic-plastic boundary region 
before the crack extension. It is postulated that 
the mixed-mode fatigue crack propagates along a 
direction defined by a minimum for the total strain 
energy density [10] to [12] or by a maximum for the 
dilatational component of the strain energy density 
[13] and [14]. However, these postulations are mostly 
based on hypothetical approaches [15]. The accuracy 
of their predictions depends on several parameters, 
including the material ductility [13], load mixities 
[15], etc. In this paper, the development of a method 
supported by a better physical basis is attempted. To 
this scope, the tendency of the elastic stress field to 
minimize the accumulated elastic strain energy (e.g. 
[9] to [15]) (not the energy density) is taken into 
account. The proposed methodology differs from 
the previous methodologies in the following points: 
a) The factor controlling the mixed-mode crack 
propagation is the accumulated energy, while in the 
above works [10] to [16] it is the accumulated energy 
density; and b) The criterion for the prediction of the 
path of the mixed-mode fatigue crack propagation is 
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the value of the accumulated elastic strain energy after 
the crack propagation, which incorporates the resulted 
new stress distribution due to the crack increment. In 
contrast in the aforementioned works of [10] to [15], 
the criterion for the crack path prediction is the energy 
density before the crack growth.

In order to verify the computation procedure 
shown in this work, experimental tests have been 
undertaken. 

The main scientific contribution of this paper 
is the developed computation method for residual 
fatigue life estimation along to curve mixed-mode 
crack growth trajectory that is verified with own 
experiments.

1  DETERMINATION OF THE CRACK GROWTH TRAJECTORY

With the stress and strain fields around the crack-tip, 
fracture parameters for mixed-mode problems are 
calculated to predict the crack propagation path of the 
plate with crack. For this purpose, fracture parameters 
such as KI, KII are used. Having the fracture 
parameters, a criterion is needed to predict the crack 
growth direction in a mixed-mode problem. Several 
criteria have already been proposed for this purpose. 
Previous research [15] and [16] shows that there 
are no significant differences between the obtained 
crack trajectories based on various crack propagation 
criteria. Using stress as a parameter, the (MTS) 
criterion was presented by Erdogan and Sih [6].

This criterion states that a crack propagates in a 
direction corresponding to the direction of maximum 
tangential stress along a constant radius around the 
crack-tip. Using the Westergaurd stress field in the 
polar co-ordinates and applying the (MTS) criterion, 
Eq. (2) is obtained to predict the crack propagation 
direction in each incremental step [16].

The fracture toughness for a brittle material is 
usually measured in a pure mode-I loading conditions, 
noted by KIC. For a general mixed-mode case, we 
need a criterion to determine the angle of incipient 
propagation with respect to crack direction, and a 
critical combination of stress intensity factors that 
lead to crack propagation. Various criteria have 
been proposed by researchers of mixed-mode crack 
propagation, including the maximum energy release 
rate, the minimum strain energy density criteria, the 
maximum circumferential tensile stress, etc.

The maximum energy release rate was 
demonstrated by Erdogan and Sih [6] by assuming the 
Griffith theory as a valid criterion for crack growth. 
Based on this theory, the crack propagates in the 
direction for which the elastic energy release rate per 

unit crack extension becomes maximal. In this case, 
the crack begins to grow when the energy release 
reaches a critical value [6]. The minimum strain 
energy density theory, proposed by Sih [6], postulates 
that a crack propagates when the strain energy density 
at a critical distance reaches a minimum value. The 
numerical implementation of this theory can be seen 
in [9] to [15]. The maximum circumferential tensile 
stress theory was presented by Erdogan and Sih [6] 
based on the state of stress near the crack tip. 

Based on the maximum circumferential tensile 
stress, the hoop stress reaches its maximum value on 
the plane of zero shear stress. Assuming that the size 
of plastic zone at the crack tip is negligible, we can 
use the singular term solutions of stress at the crack 
tip to determine the crack propagation angle, where 
the shear stress becomes zero. The crack propagation 
angle θ0 can be expressed by using the angle between 
the line of crack and the crack growth direction, 
with the positive value defined in the anti-clockwise 
direction, as:
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To initiate crack propagation, the maximum 
circumferential tensile stress σ must reach critical 
value. This results in an expression for the equivalent 
stress intensity factor SIF in mixed-mode condition 
as:

 K K Keq I II= cos - cos sin .3 0 0
02

3
2 2

Θ Θ
Θ  (3)

However, when the plastic zone size cannot 
be ignored, it is necessary to use the stress state at a 
material-dependent finite distance from the crack tip.

2  COMPUTATION AND EXPERIMENTAL RESULTS

In this work, two types of problems are considered: 
i) determination of the crack growth trajectory and  
ii) estimation of the residual life along the ‘curve’ 
mixed-mode crack growth trajectory.

2.1  Crack Growth Trajectory

To illustrate determination of the crack growth 
trajectory under mixed modes I/II, a duraluminum 
plate with two holes and an initial crack under 
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tension load Fy are considered, as shown in Fig. 1. To 
determine stress intensity factors KI and KII, the Msc/
Nastran software code [17] is used here. In Fig. 2, the 
finite element model with stress distributions of the 
cracked specimen is shown.

Fig. 1.  Geometry of specimen for modelling of crack growth 
trajectory

Fig. 2.  Stress distributions of cracked specimen using finite 
elements (Fy = 60000 N)

To predict the crack growth direction in a mixed-
mode problem, in this analysis, the MTS criterion 
[15] and [16] is used in combining Msc/Nastran code 
[17]. Combining finite elements for determination 
of the stress intensity factors and MTS criterion, the 
computation crack trajectory is obtained, Fig. 3. 

Fig. 3.  Computation crack growth trajectory

To validate the computation procedure for 
determination of the crack growth trajectory, an 
experimental test is included; it was carried out using 
a servo-hydraulic MTS system, Figs. 4 and 5.

Fig. 4.  Specimen in servo hydraulic MTS system

Fig. 5.  Experimentally determined of crack growth trajectory

Fig. 6 illustrates good agreement between 
computation crack growth trajectories and those of the 
experiments.

2.2  Residual Life Estimation

Here, the residual life of cracked structural element, 
Fig. 6. is considered, numerically and experimentally. 
To determine the computation of residual life for this 
structural element Eq. (1) is used, along the mixed-
mode crack growth trajectory. For that purpose, an 
analytic formula for equivalent stress intensity factor 
Keq is necessary. For determination of the analytic 
formula of Keq, discrete values of the stress intensity 
factors along the crack trajectory are used. Discrete 
values of SIF’s are given in Table 1.
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a) 

b) 
Fig. 6.  Comparison computation with experimental crack growth 

trajectory: a) complete crack growth trajectory,  
b) right part trajectories

Using discrete values of SIFs from Table 1 and 
the relation  for equivalent SIF in the next form [21]:

 K K Keq I II= +





4 4 1 4
8

/
,  (4)

we can obtain analytic formulae for the stress intensity 
factor along the crack growth trajectory, in accordance 
to Fig. 6, in the next form:

Keq = – 2E+07a3 + 820616a2 – 5217.1a + 20.311, (5)

in which a is the crack length along crack trajectory. 
To determine the residual life of the cracked 

structural component, the analytic formula Eq. (5) 
has been used in Paris’s law, Eq. (1). Paris’s constants 
for considered steel (1.7225) are C = 0.00000000058, 
n = 2.57. Specimens are tested under cyclic load of 
constant amplitude in which σmax = 250 MPa and σmin 
= 25 MPa. The crack length versus number of loading 
cycles is shown in Fig. 6.

The experimentally determined number of cycles 
before failure is Nexp = 32200 cycles, as shown in 
Fig. 7. Residual life estimation under mixed-mode 
crack growth is computed from point a0 to point a4 in 
accordance Fig. 6b.

Fig.7.  Comparisons computation with experimental crack growth 
trajectory

3  CONCLUSIONS

During the service of various structures, including 
those of aircraft, crack directions are not often normal 
to the loading direction. In such practical cases, the 
direction of crack growth is not obvious. Tests to 
predict the fatigue crack growth trajectory for mixed-
mode cracks are not only costly, but they also do not 
explain how each structural component in a complex 
structure could be optimized with another’s so that the 
fatigue life of the overall structure can be predicted 
within reasonable limits for establishing the periods of 
inspection.

In this work, a computation procedure to predict 
the direction and the growth rate of a mixed mode 
fatigue crack, using mode-I and mode-II data from 
finite elements, has been attempted. Computation 
of the crack growth trajectory is compared with 
experimental results. Good agreement between 
computation and experimental trajectories has been 
obtained. The residual fatigue life along mixed 
mode crack growth trajectory has been determined 
analytically and experimentally. Good agreement 
between residual life estimation with experiment has 
also been obtained.
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Table 1.  Discrete values of SIF’s along mixed-mode crack growth trajectory 

a [mm] a0 = 3 a0 +a1 = 7 a0 + ... + a2 = 9.5 a0 + ... + a3 = 11.5 a0 + ... + a4 = 12.9
KI [daN/mm3/2] 37.6 90.8 123.5 162.5 177
KII [daN/mm3/2] 21 9.5 2.2 -1 2.5
θi [o] 45 32 5.9 0.7 3.2
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