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Abstract. Nearly one-third of children suffer from sleep disorders. Although many researches have been conducted 

on the automatic sleep-stage classification for adults, the sleep stages of children have different characteristics. 

Therefore, there is an urgent need for sleep-stage classification specifically for children. The paper proposes a deep-

learning model for the children automatic sleep-stage classification based on raw single-channel EEG. In the model, 

we utilize 1D convolutional neural networks (1D-CNN) to extract time-invariant features, and gated recurrent unit 

(GRU) to learn transition rules among sleep stages automatically from 30 s EEG epochs. Our method is tested on 

a dataset for children from 2 to 12 years of age. We use six different single-channel EEGs (F3-M2, F4-M1, C3-

M2, C4-M1, O1-M2, O2- M1) to train the model separately, where the F4-M1 channel achieves the best results. 

Experimental results show that our method yields an overall classification accuracy of 83.36% and macro F1-score 

of 80.98%. This result indicates that our method has a great potential and lays the foundation for further research 

on the children sleep-stage classification. 
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Uporaba enokanalnega EEG za samodejno razvrščanje 

stopenj spanja pri otrocih 

Skoraj tretjina otrok trpi zaradi motenj spanja. Čeprav so bile 

izvedene številne raziskave o samodejnem razvrščanju stopenj 

spanja za odrasle, imajo stopnje spanja otrok različne 

značilnosti. Zato je nujno treba razvrstiti stopnje spanja posebej 

za otroke. Prispevek predlaga model globokega učenja za 

samodejno razvrščanje stopenj spanja pri otrocih, ki temelji na 

surovem enokanalnem signalu EEG. V modelu uporabljamo 1D 

konvolucijske nevronske mreže (1D-CNN) za pridobivanje 

časovno nespremenljivih funkcij in zaprto ponavljajočo se 

enoto (gated recurrent unit - GRU) za samodejno učenje pravil 

prehoda med stopnjami spanja iz 30 sekundnih EEG obdobij. 

Naša metoda je preizkušena na naboru podatkov pri otrocih, 

starih od 2 do 12 let. Za učenje našega modela ločeno 

uporabljamo šest različnih enokanalnih signalov EEG: F3-M2, 

F4-M1, C3-M2, C4-M1, O1-M2, O2-M1; pri čemer je kanal 

F4-M1 dosegel najboljše rezultate. Eksperimentalni rezultati 

kažejo, da naša metoda daje skupno natančnost razvrščanja 

83,36% in makro oceno F1 80,98%. Ta rezultat kaže, da ima 

naša metoda velik potencial in postavlja temelje za nadaljnje 

raziskave na področju razvrščanja otrokovega spanca. 

 

1 INTRODUCTION  

With the improvement of modern medicine, the 

incidence of infectious and nutritional diseases that 

seriously affected the children's health in the past has 

dropped significantly. However, nearly one-third of the 

children suffer from sleep disorders [1]. Sleep disorders 

affect the children's physical and intellectual 

development, and can cause their psychological and 

behavioral problems, especially cognitive functions. 

Therefore, an adequate high-quality sleep plays a vital 

role in promoting the children's growth and development 

and physical and mental health. Polysomnography 

(PSG), as a standard diagnosing sleep-related disease, 

detects various physiological parameters during sleep. 

Sleep-stage scoring divides the physiological parameters 

in the PSG into 30-second continuous epochs according 

to the time axis and divide these epochs into different 

sleep stages according to the American Academy of 

Sleep Medicine (AASM) and R&K rules [2] [3]. The 

hypnogram obtained from the results of the sleep-stage 

scoring can intuitively reflect the sleep of subjects 

throughout the night and is used to evaluate the sleep 

quality and sleep-related problems [4]. Therefore, the 

sleep-stage classification is a key research topic to 

improve the sleep quality of children. 

The age may be the most critical factor in 

differentiating the sleep pattern between the children and 

adults, due to the EEG variation reflected by PSG 

monitoring [5]. The AASM rules also include the sleep-

stage scoring methods for children. However, the 

technicians need to spend a lot of time and effort on sleep 
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stage scoring. In addition, the quality of the sleep-stage 

scoring depends on the experience and fatigue of 

technicians, and the agreement between the technicians 

is usually less than 90% [6]. Therefore, it is necessary to 

develop an automatic sleep-stage classification algorithm 

for children.  

In the past few decades, some sleep-stage scoring 

methods based on machine learning have been proposed. 

Agarwal et al. [7] apply Maximum Overlap Wavelet 

Transform and Shift Invariant Transform to extract 

features in the time and frequency domain, and the 

Support Vector Machine (SVM) for the sleep-stage 

classification. Estrada et al. [8] propose three different 

schemes to extract characteristics of the EEG signals: 

relative spectral band energy, harmonic parameters and 

Itakura distance. See et al. [9] apply the sample entropy 

and the power spectrum of the harmonic parameters of 

the infinite impulse response filter and wavelet transform 

to extract features from the EEG data obtained from the 

Physionet database, and SVM for the sleep-stage 

classification. Hassan et al. [10] use a Tunable-Q factor 

Wavelet Transform to decompose EEG signals to extract 

various spectral features, and adaptive boosting for the 

sleep-stage classification. Alickovic et al. [11] use a 

multi-scale principal component analysis to denoise the 

Pz-Oz channel EEG signal, and use the discrete wavelet 

transform (DWT) to extract the most informative feature. 

The extracted features are the input into the integrated 

classifier. 

In recent years, deep-learning algorithms have also 

been applied to the sleep-stage classification. Hsu et al. 

[12] extract energy features from the Fpz-Cz channel 

EEG signal, and propose a recursive neural classifier 

based on energy features for sleep staging. Zhang et al. 

[13] combine complex-valued anti-propagation and 

Fisher criterion, and propose a new model called fast 

discriminative complex-valued convolutional neural 

network to learn discriminative features and overcome 

the negative effects of unbalanced data sets. Supratak et 

al. [14] propose DeepSleepNet based on the original 

single-channel EEG, which uses CNNs to extract time-

invariant features and bidirectional memory to 

automatically learn the transition rules between sleep 

stages from the EEG cycle. Sors et al. [15] use a 14-layer 

CNN to perform supervised learning of a 5-stage sleep-

stage classification based on a single-channel EEG. 

Fraiwan et al. [16] research the application of long short-

term memory learning system in the automatic sleep-

stage scoring. Zhang et al. [17] develop a new 

unsupervised competitive CNN, which overcomes the 

difficulty of obtaining labeled data. Zhang et al. [18] 

propose a novel hybrid manifold-deep CNN with a 

hyperbolic attention for sleep staging. 

The machine learning methods manually extract 

corresponding features based on the characteristics of 

EEG, leading to a poor generalization. Although the 

accuracy of the deep-learning methods is generally not as 

good as machine learning they can independently learn 

the EEG features and have a better generalization. In 

addition, the existing automatic sleep-stage classification 

methods are for adults by default. However, children and 

adults have different EEG characteristics, therefore these 

methods are not necessarily suitable for children. 

In the paper, we propose an automatic sleep-stage 

classification method for children. Our contributions can 

be summarized as follows: 

• We update the Alexnet to design our 1D-CNN 

architecture for the sleep-stage classification of 

children based on a labeled single-channel EEG.  

• We introduce batch normalization and GRU to 

improve our model and use real clinical EEG signals 

to verify the effectiveness of our method. 

• We verify the effect of different EEG channels for the 

children's automatic sleep-stage classification and lay 

the foundation for further research. 

The paper is structured as follows. Section 2 

introduces our sleep dataset, data processing and 

automatic sleep-stage classification of the proposed 

method. Section 3 describes our experiment and provides 

our analysis results. Section 4 draws conclusions of our 

work and presents plans for our future research. 

 

2 DATA AND METHODS 

2.1 Sleep Dataset of Children 

The experimental raw dataset is collected from the 

Beijing Children's Hospital, China. It contains 26 PSG 

recordings of children from 2 to 12 years of age (8 

females and 18 males). Among them, 15 have an 

obstructive sleep apnea and 11 are healthy. According to 

the sleep time of each child, the collected multi-channel 

physiological signal is 8 to 11 hours long from the 

evening to the next morning. The PSG recordings of the 

26 children contain six EEG channels: F3-M2, F4-M1, 

C3-M2, C4-M1, O1-M2, O2-M1. The sampling 

frequency of the EEG signal is 256 Hz. For the PSG 

recordings, every 30 s time interval corresponds to a 

label, representing one of the five sleep stages (e.g., W, 

REM, N1, N2 and N3). The labels are provided by sleep 

experts according to the AASM sleep-scoring rules. 

Table 1 shows different distribution sleep stages in our 

sleep dataset. 

 

Table 1. Proportion of the sleep-stage labels in sleep dataset of 

children (%). 

W N1 N2 N3 REM 

12.17 10.07 42.86 17.94 16.96 
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2.2 Data Processing 

A F4-M1channel EEG signal is used to study the 

automatic sleep-stage classification taking 30s EEG 

epochs as the input. In order to extract 30s EEG epochs 

from a single-channel EEG signal, two steps in the data 

processing are follow: 

• Dividing the continuous raw single-channel EEG into 

a sequence of 30s epochs and assigning a label to each 

epoch according to the annotation file. In this way, 

each 30s epoch can be used as an example of the 

sleep-stage classification. The EEG recordings of 

each child can be divided into 900 to 1300 30s epochs 

according to the length of sleep. 

• Normalizing the 30s EEG epochs such that each one 

has a zero mean and unit variance. There are noises 

in real clinical EEG signals due to various reasons. 

Normalization operation can effectively reduce the 

impact of these noises. 

2.3 Model 

The architecture of our model is shown in Figure 1. We 

firstly use a 1D-CNN which can be trained to extract 

time-invariant features from each epoch. Then, we apply 

GRU which can be trained to encode the temporal 

information such as stage transition rules from an epoch 

in the extracted features. The last part is composed of 

fully-connected layers and a softmax layer that provides 

the sleep-stage classification result of 30s EEG epochs.  

We update the Alexnet to design our 1D-CNN 

architecture. The input data of our model is a 30s EEG 

epoch. As this is a 1×7680 one-dimensional time 

sequence, we apply a 1D convolutional kernel to replace 

the 2D convolutional kernel. We add the batch 

normalization layers to the 1D-CNN and adjust the 

network structure according to our data characteristics. 

The 1D convolution operation is defined as: 

 

 𝑦𝑖
𝑙 = 𝜎𝑔𝑝𝑙(∑ 𝜔𝑛

𝑙 ∙ 𝑦𝑛+1
𝑙−1𝑑

𝑛=1 + 𝑏𝑙), 𝑖 ∈ (1, 𝑁 − 𝑑 + 1) (1) 

 

𝑦𝑖
𝑙  is the i-th feature map of the output feature map set 

on layer l. 𝜔𝑛
𝑙  and 𝑏𝑙 are the weight vector and bias unit 

of the convolution kernel of layer l, respectively. d is the 

size of the convolution kernel. N is the length of input 

feature vector 𝑦𝑖
𝑙−1 . 𝑔𝑝𝑙  is a 𝑝𝑙 -strided subsampling 

operator, and 𝜎  is the activation function of 

convolutional layer l. 

a 1×22 kernel with a stride of 1×16 is applied to the 

first convolutional layer. It is applied to replace the 

traditional filtering methods. It can be trained to reduce 

the data dimensions and retain useful information. A 1×7 

kernel with a stride of 1×2 is applied to the second 

convolutional layer. A 1×5 kernel with a stride of 1×2 is 

applied to the third and the fourth convolutional layer. A 

1×3 kernel with a stride of 1×1 is applied to the fifth and 

the sixth convolutional layer. In this way, the 1D-CNN 

part can be divided into four blocks. After each block, 

there is a 1×3 max-pooling layer with a step of 1×2. We 

apply a batch normalization layer after each of the first 

three max-pooling layers to reduce the internal covariate 

shift, accelerate the training process, and improve the 

model training accuracy and generalization ability. The 

principle of the batch normalization is as follows: 

 

 �̂�𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜀

  (2) 

 

 𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽   (3) 

 

Expression (2) is used to normalize the training data of 

the batch. B represents a small batch that contains m 

examples. 𝜇𝐵 and 𝜎𝐵
2 represent the mean and variance of 

B, respectively, and 𝜀 is used to avoid the tiny positive 

number used when the divisor is zero. 

Expression (3) is used to perform a scale 

transformation and shift: multiply �̂�𝑖  by 𝛾 to adjust the 

 

Figure 1. Architecture of our automatic sleep stage classification for children. 
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value, plus 𝛽 to increase the shift to get 𝑦𝑖 , where 𝛾 is the 

scale factor and 𝛽 is the translation factor. 𝛾 and 𝛽 are 

learned by the network during training. They solve the 

problem that normalized �̂�𝑖  is basically limited to a 

normal distribution, which reduces the expressive ability 

of the network. 

After the last max pooling layer, a GRU layer is 

applied to learn the temporal information. There are two 

fully-connected layers with 512 and 128 neurons after the 

GRU layer, respectively. Finally, the softmax layer 

outputs the results of the sleep-stage classification. All 

convolutional layers and fully connected layers use Relu 

(𝑓(𝑥) = max(0, 𝑥)) as the activation function.  

2.4 Optimization 

We apply a multi-class cross-entropy as the cost function 

and perform a mini-batch training for stochastic 

optimization of the weights and biases. The expression of 

the mini-batch cost L is: 

 

 𝐿(𝑤, 𝐵) = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑝𝑖(𝑤) 𝑚
𝑖    (4) 

 

w represents the set of all learnable parameters, m is 

the number of examples of the mini-batch, B represents 

the training examples of the mini-batch, 𝑦𝑖  is the one-hot 

encoded target classes, and 𝑝𝑖  is the probability 

distribution of the sample prediction output by the 

softmax layer. 

With the softmax activation function, minimizing the 

cross-entropy corresponds to maximizing the log-

likelihood of the model-predicted class being equal to the 

true class. Classically, the backpropagation algorithm is 

applied to get the gradient. For optimization, we use the 

Adam optimizer with parameters (lr = 1×10−5, 𝛽1= 0.9, 

𝛽2 = 0.999).  

In order to avoid overfitting, we apply dropout and L2 

regularization. The expression of the cross- entropy loss 

function with the L2 regularization term is: 

 

 𝐿𝐿2 = 𝐿 + 𝜆‖𝜔‖2   (5) 

 

L is the basic cross-entropy loss function. 𝜆‖𝜔‖2  is 

the L2 regularization term. 𝜆 and 𝜔 are the penalty factor 

and network parameter, respectively. We set 𝜆 = 10−3. 

 

3 EXPERIMENTS 

3.1 Implementation Details 

From the 26 children, we randomly select five children 

as the test set, and use a ten-fold cross-validation to train 

our model. The performance of the model is evaluated 

according to the following test criteria: confusion matrix, 

accuracy and F1 score. 

Our experimental models are implemented using the 

Keras in the Tensorflow framework under the Python 

environment. Our experiments are conducted with a 

desktop PC equipped with Intel Intel i7-8700K CPU, 64 

GB RAM and a NVIDIA GeForce GTX 1080Ti GPU. 

3.2 Experimental results 

To apply our model to portable wearable devices, an 

appropriate sensor channel is employed to collect the 

EEG recordings. Therefore, we use six different single-

channel EEGs to train our model separately. Table 2 

shows the performance of the model trained. Four of the 

six channels (F3-M2, F4-M1, C3-M2, and C4-M1) 

achieve an acceptable result with an accuracy above 

80%. The F4-M1 channel achieves the best result, with 

the accuracy of 83.36% and the F1 score of 80.98%. 

However, the performance of the other two channels is 

not sufficiently satisfactory. The O1-M2 channel 

accuracy is 73.04%, and the O2-M1 channel EEG 

accuracy is 75.03%. Therefore, the F4-M1 channel is our 

first choice, and the F3-M2, C3-M2 and C4-M13 

channels can be considered as substitutes and as 

references in our future research of automatic sleep 

staging for children. 

 

Table 2. The performance of the model trained with different 

single-channel EEGs. 

EEG channel Accuracy F1-score 

F3-M2 80.13 76.70 

F4-M1 83.36 80.98 

C3-M2 80.38 75.12 

C4-M1 81.90 78.78 

O1-M2 75.03 72.05 

O2-M1 73.04 70.49 

 

The performance of our model is compared to 1D-CNN 

to verify the effect of GRU(Table 3). It indicates that 1D-

CNN can be used for the sleep-stage classification of 

children, however the result is not very satisfactory. The 

1D-CNN accuracy is 78.08% and the F1-score is 74.26%.  

Based on 1D-CNN, GRU is applied to learn the temporal 

information. The performance of the model is improved 

accordingly. The model overall classification accuracy is 

83.36% and the macro F1-score is 80.98%. 

 

Table 3. The 1D-CNN and model performance. 

Model Accuracy F1-score 

1D-CNN 78.08 74.26 

1D-CNN_GRU 83.36 80.98 

 

Table 4 details the performance of the model trained with 

the F4-M1 channel. The left part shows the confusion 

matrix and the right part shows the precision, recall, and 

F1score of the sleep stages (e.g., W, REM, N1, N2 and 

N3). A further analysis is given in Section 3.3. 
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Table 4. The performance of the model trained with the  F4-

M1 channel EEG. 

 W N1 N2 N3 REM Pre Rec F1 

W 93.4 3.0 0.3 0.1 3.2 90.3 93.4 91.8 

N1 2.1 54.4 0.8 0.0 42.7 39.5 54.4 45.8 

N2 2.2 18.2 75.2 0.3 4.1 98.7 75.2 85.4 

N3 0.2 0.1 1.6 98.0 0.1 99.4 98.0 98.7 

R 0.2 1.3 0.1 0.0 98.4 72.1 98.4 83.2 

 

3.3 Discussion 

We combine 1D-CNN and GRU to set-up our deep-

learning model for an automatic sleep-stage classification 

for children. The model itself automatically learns the 

appropriate features. The experimental results show that 

using a single-channel EEG and deep learning for the 

sleep-stage classification without any feature-extraction 

stage provides an acceptable performance. The model 

training is end-to-end needing no expert knowledge for 

feature selection or signal preprocessing. This enabled 

training the model can be trained to learn the features that 

are most suitable for the sleep-stage classification of 

children. Training a deep learning model takes a lot of 

time and hardware equipment of an adequate 

performance, but once the model training is completed, 

the prediction is relatively cheap and can be carried out 

on PCs or portable wearable devices.  

As seen from the confusion matrix of Table 4, the 

classification performance of stage W, stage N3 and 

stage REM is satisfactory. Some of the stage N2 epochs 

are mistakenly classified as stage N1. As stage N1 and 

stage N2 are contiguous in the sleep cycle, therefore stage 

N2 may contain similar patterns to stage N1. Stage N2 

accounts for a large proportion of the sleep recordings 

(see Table 1), therefore the accuracy of stage N2 has a 

greater impact on the overall accuracy. A large number 

of stageN1 is mistakenly classified as stage REM. Stage 

N1 is a transitional stage in sleep, and the EEG features 

of stage N1 are not obvious. It is also difficult for sleep 

experts to classify stage N1 accurately. Therefore, the 

focus of our further work will be on how to improve the 

classification accuracy of the stage N1 and stage N2. The 

performance of such a supervised sleep-stage 

classification for children is inherently limited by the size 

of the available dataset and the quality of the available 

annotations. 

 

4 CONCLUSION 

To realize an automatic sleep-stage classification for 

children, we propose a sleep-staging deep learning model 

based on labeled single-channel EEG signals. We design 

1D-CNN to extract time-invariant features and apply 

CRU to learn the temporal information. The end-to-end 

learning model requires no specific field feature 

extraction steps and overcoming the limitations of the 

manual feature extraction and improves the accuracy of 

the sleep-stage classification for children. 

In the future work, our focus will be on collecting more 

PSG recordings for children with reliable annotations. 

We will conduct more experiments based on a larger 

amount of data to further improve our model. We will 

also take on effort to improve the performance of the 

automatic sleep-stage classification for children using 

multi-channel EEG signals. 
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