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The paper describes the application of Hadoop modules: MapReduce, Pig and Hive, for processing and 
analyzing large amounts of tabular data acquired from a computer simulation of heat transfer in bio 
tissues. The Apache Hadoop is an open source environment for storing and analyzing BigData. It was 
installed on a cluster of six computing nodes, each with four cores. The implemented MapReduce job 
pipeline is described and the essential Java code segments are presented. The Java implementation 
employing MapReduce is compared to the Pig and Hive implementations regarding execution time and 
programming overhead. The experimental measurements of execution times of the employed parallel
MapReduce tasks on 24 processor cores result in a speedup of 20, relative to the sequential execution, 
which indicates that a high level of parallelism is achieved. Furthermore, our test cases confirm that the 
direct employment of MapReduce in Java outperforms Pig and Hive by more than two times, while Hive 
being 20% faster than Pig. Still, Pig and Hive remain suitable and convenient alternatives for efficient 
operations on large data sets.

Povzetek: Prispevek opisuje uporabo Hadoop programskih modulov: MapReduce, Pig in Hive za 
procesiranje in analizo tabelaričnih podatkov o prenosu toplote v tkivih.

1 Introduction
Since 2004, when the famous publication “MapReduce: 
Simplified Data Processing on Large Clusters” [1] was 
published from the Google’s team, the MapReduce 
paradigm has become one of the most popular tools for 
processing large datasets, mostly because it allows users 
to build complex distributed programs using a very 
simple model.

Apache Hadoop [2] is a highly popular set of open 
source modules for distributed computing, developed 
initially to support distribution for the Nutch search 
engine project. One of the key Hadoop components is the
MapReduce on which the other, higher-level Hadoop-
related components rely, e.g., Pig and Hive.

With the increasing popularity of the MapReduce
and other non-relational data processing approaches, it 
became apparent that they can be used to construct
efficient computing infrastructures. Furthermore, the 
Hadoop has proved its ability to store and analyze huge 
datasets often referred to as the BigData [3]. It is used by 
Yahoo and Facebook for their batch processing needs. 
Hadoop and Hive are among cornerstones of the storage 
and analytics infrastructure at Facebook [4]. Facebook 
Message, in particular, is the first ever user-facing 
application built on the Apache Hadoop platform [5].

The MapReduce can be seen as a complement to the 
parallel Relational Database Management System
(RDBMS). It is a common opinion these days that the 
MapReduce is more suitable for batch processing 
analyzes of whole datasets and for applications where 
data is written once and read many times, whereas the 

RDBMS is better for databases that are continuously 
updated. 

In this paper, we investigate the differences in 
approaches, performances, and usability, between
MapReduce, Pig, and Hive Hadoop tools. Their
performances were compared in the analysis of tabular 
simulation data of heat transfer in a biomedical 
application, in particular, cooling of a human knee after 
surgery [6]. Similar data sources can be found also in
other scientific areas related to multi-parametric 
simulations [7], environmental data analysis [8], high 
energy physics [9], bioinformatics [10] etc., whereas 
some special problems may benefit from specific 
interfaces to the Hadoop [11].

2 Description of utilized Hadoop 
modules

Hadoop is composed of four modules:
 Common: support for other Hadoop modules,
 Hadoop Distributed file System (HDFS),
 YARN: a framework for job scheduling and cluster 

resource management, and
 MapReduce.

There is a number of Hadoop-related projects, but 
the ones most relevant to our data analyses are Pig and 
Hive.
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2.1 Map/Reduce paradigm
MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets [1]. Some problems that can be simply solved by 
MapReduce are: distributed grep, count of URL access 
frequency, various representations of the graph structure 
of web documents, term-vector per host, inverted index, 
etc.

A MapReduce program execution consists of the
four basic steps: (1) splitting the input, (2) iterating over 
each split and computing (key, value) pairs (parallel for 
each split), (3) grouping intermediate values by keys, (4)
iterating over values associated with each unique key (in 
parallel for different keys), computing (usually reducing 
values for a given key) and outputting final (key, value)
pairs.

The first step is done by the MapReduce framework, 
whereas for the second step a user provides a Map 
function, which is applied by the framework, commonly
on each line of every split. Each Map function invocation
outputs a list of (key, value) pairs. Note that each split is 
generally processed on different processor cores and
machines in parallel.

As a simple example, let’s consider the task of 
counting the number of occurrences for each word in a 
document. The Map function will count the number of 
occurrences of each word in a line and output a list of 
(key, value) pairs, for each line:

where i is the line index.
The MapReduce framework groups together all 

intermediate values associated with the same 
intermediate key (step 3). The resulting (key, values) 
pairs are one by one sent to the user-specified Reduce 
function which aggregates or merges together the values
to form a new, possibly smaller, set of values (step 4). In 
our example the Reduce function will accept each unique 
word, as a key, and the numbers of their occurrences in 
each line, as values, sum the numbers of occurrences and 
output one (key, value) pair per word:

The executions of the Map and Reduce functions are 
referred to as Map and Reduce tasks. A set of tasks 

executed for one application are referred to as a 
MapReduce job.

The main limitation of the MapReduce paradigm is 
that each Map and Reduce task must not depend on any 
data generated in other Map or Reduce tasks of the 
current job, as user cannot control the order in which the 
tasks execute. Consequently, the MapReduce is not 
directly applicable to recursive computations, and 
algorithms that depend on shared global state, like online 
learning and Monte Carlo simulations [12].

The MapReduce, as a paradigm, has different 
implementations. In the presented work, we have used 
MapReduce implemented in Apache Hadoop distributed 
in Cloudera [13]. A convenient comparison between 
MapReduce implementations is presented in [14].

2.2 Apache Hadoop MapReduce 
implementation

The splitting is introduced because it enables data 
processing scalability, which shortens the time needed to 
process the entire input data. The parallel processing can 
be better load-balanced if the splits are small. However, 
if the splits are too small, then the time needed to manage 
the splits and the time for the Map task creation may 
begin to dominate the total job execution time. 

Hadoop splits are fixed-size, whereas a separate Map 
task is created for each split (Figure 1). The default
Hadoop MapReduce split size is the same as the default 
size of an HDFS block, which is 64 MB. Hadoop 
performs data locality optimization by running the Map 
task on the node where the input data resides in the 
HDFS. With the default HDFS replication factor of three, 
files are concurrently stored on three nodes; hence, splits 
of the same file can be concurrently processed on three 
nodes without the need for being copied before.

In the Hadoop implementation, the Map tasks write 
their outputs to their local disks, not to the HDFS and are 
therefore not replicated. If an error happens on a node 
running a Map task before its output has been consumed 
by a Reduce task, then the Hadoop resolves the error by 
re-running the corrupted Map task on another node.

The Map tasks partition their outputs, creating one 
partition for each Reduce task (Figure 1 – each Map 
creates r output partitions). Each partition may contain 

Figure 1: Schematic representation of Hadoop’s MapReduce data flow (without using Combiners).
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various keys and associated values. All records sharing 
the same key are processed by the same Reduce task.
This is achieved by using the so-called Partitioner 
function. The default Hadoop MapReduce Partitioner 
employs a hash function on the keys from the Maps’
outputs. Modulo function by the number of reducers is 
subsequently applied to the hash values resulting in the 
Reduce task indexes for each key.

The data flow between Map and Reduce tasks is 
colloquially known as “shuffle”. The inputs for each 
Reduce task are pulled from the machines where the Map
tasks ran. The input to a single Reduce task is generally 
formed from outputs of multiple Map tasks (Figure 1 –
each reduce task receives m partitions, where m is the 
number of Map tasks); therefore Reduce tasks cannot 
convey on data locality. On nodes running Reduce tasks,
the sorted map outputs are merged before being passed to 
a Reduce task. The number of Reduce tasks is specified 
independently for a given job. Each Reduce task outputs 
a single file, which is usually stored in the HDFS (Figure 
1).

Hadoop allows a user to specify an additional so-
called Combiner function, which can be executed on 
each node that runs Map tasks. It receives all the data 
emitted by the Map tasks on the same node as an input 
and forms the output that is further processed in the same 
way as the direct output from a Map task would be. The 
Combiner function may achieve data reduction on a node 
level, consequently minimizing data transfer over the 
network between the machines executing Map and 
Reduce tasks. The use of Combiner functions reduces the 
impact of the limited communication bandwidth on the 
performances of a MapReduce job. The Combiner 
function code is usually the same as the Reduce function.

2.3 Pig
The development cycle of a MapReduce program may be 
quite long. Furthermore, it requires an experienced 
programmer that knows how to describe a given data 
processing task as a set of MapReduce jobs. 

Pig is a sequential language, called Pig Latin, which
expresses operation on data, together with execution 
environment that runs Pig Latin programs [15]. A Pig 
Latin program comprises a series of high level data 
operations, translated to the MapReduce jobs that can be 
executed on a Hadoop cluster. Pig is designed to reduce 
programming time by providing a higher level procedural 
utilization of the MapReduce infrastructure. It allows a
programmer to concentrate on the data rather than on the 
details of execution.

Pig runs as a client-side application and has an 
interactive shell named Grunt used for running Pig Latin 
programs.

2.4 Hive
A programmer familiar with SQL language may prefer to 
describe data operations with SQL language, even if the 
data is not stored in a RDBMS. Hive is Hadoop’s data 
warehouse system that provides mechanism to project 
structure onto data stored in HDFS or a compatible file 

system [16]. It provides a SQL-like language called 
HiveQL. It does not support the full SQL-92 
specification, but provides some extensions that are
consequences of the MapReduce infrastructure 
supporting each Hive query. The primary way of 
interacting with Hive is the Hive shell used to insert and 
execute HiveQL instructions.

Like RDBMS, Hive stores data in tables. When the 
tables are loaded with data, Hive stores them in its 
warehouse directory [17]. Before execution, usually 
when the select statement is called, Hive, like Pig, 
transforms the instructions to a set of MapReduce jobs 
executed on a Hadoop cluster. 

The most significant difference between Hive and 
Pig is that Pig Latin is a procedural programming 
language, whereas HiveQL is a declarative programming 
language. A Pig Latin program is a sequential list of 
operations on an input relation, in which each step is a
single transformation. On the other hand, HiveQL is a 
language based on constraints that, when taken together, 
define a data operation.

3 Analyzing simulation data

3.1 Description of the Hadoop cluster
The Apache Hadoop open source Cloudera distribution 
was installed on a cluster built of six computing nodes.
The nodes are connected with Gigabit Ethernet. Each 
node has a quad-core Intel Xeon 5520 processor, 6 GB of 
RAM and 500 GB hard disk. All nodes run 64-bit 
Ubuntu Server 12.04 operating system.
One of the nodes is designated as the namenode while 
others are the datanodes. The namenode also hosts the 
jobtracker. All machines in the cluster run an instance of 
a datanode and a tasktracker. For a description of the 
HDFS and MapReduce nodes please refer to [18, 19].

3.2 Input data
The computer simulation of two hours cooling of a 
human knee after surgery is performed for 10 different 
knee sizes, 10 different initial temperature states before 
cooling, and 10 different temperatures of the cooling pad. 
This results in 1000 simulation cases. The results of 
those simulation cases are gathered in 100 files, each for 
one knee size and one initial state, and for all cooling

CASE Parameters
1 T1
2 T1-T5

3 T1,T6,T11,T16,T21

4 T1-T21
5 T1,T6,T11,T16,T21,T46,T51,T56,T61

6 T1-T21,T46-T61
7 T1,T6,T11,T16,T21,T26,T31,T36,T41,T46,T51,

T56,T61,T66,T71,T76,T81
8 T1-T85

Table 1: List of test cases.
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temperatures. Each file contains 71970 rows or 
approximately 44 MB of data. Each data row is 
composed of the following parameters, i.e., columns: RT, 
D, IS, CT, T1, T2, … , T85, where are: RT - relative time 
in a simulation case, D - knee size, IS –initial state, CT –
cooling temperature, T1-T85 – inner and outer knee 
temperatures, i.e., temperatures at a particular location in 
the knee center, 8 locations on the knee skin and 8 
respective locations under the cooling pad, all taken in 
the current and in previous time steps. In order to assess 
the periodicities in the knee simulation results, we 
demand from the MapReduce to count the occurrences of
the same value arrays for a subset of knee temperatures 
T, more precisely, to count the occurrences of identical 
rows after having projected only columns of T that are of 
interest. For the SQL code of this operation please refer 
to the code in Figure 5. We will refer to, in the rest of the 
paper, the number of occurrences of identical rows as 
temperature frequencies.

We defined and examined 8 cases with different sets 
of T. The cases are given in Table 1. Cases with odd 
numbering take only the current values for the 
temperatures: Case 1 – the knee center; Case 3 – the knee 
center and 4 locations on the knee skin; Case 5 – the 
knee center, 4 locations on the knee skin, and 4 
respective locations under the cooling pad; Case 7 – all 
current temperatures. The cases with even numbering 
incorporate denoted temperatures T and their value in 4 
previous time steps, e.g., in Case 2, T1-T5 represents five 
temperature values at time steps ti, ti-1, ti-2, ti-3, ti-4, for 
each of T from T1-T5, etc.

3.3 MapReduce
The MapReduce jobs pipeline, used for solving our test 
cases, is illustrated in Figure 2. The sizes of the input 
files are smaller than the HDFS block size (in our case:
64 MB). Hence, the number of input Map tasks in Job 1 

is equal to the number of input files [20] (in our case: 
100), i.e., each input file is processed by a different Map 
task and no additional splitting is performed. Because the 
number of Reduce tasks is not explicitly set for Job 1, it 
becomes, by default, equal to the number of task tracker 
nodes (in our case: 6), multiplied by the value of the 
mapred.tasktracker.reduce.tasks.maximum configuration 
property [20] (in our case: 2). The output of Job 1 
consists therefore of 12 files. Each file contains a unique 
combination of temperatures and the number of their 
occurrences. Job 2 combines Reduce tasks’ outputs from 
Job 1 into a single file (in Job 2, the number of Reduce 
tasks is explicitly set to 1). It also sorts the input columns 
in the output file by temperature frequencies. The 
number of Map tasks in Job 2 depends on the test case
(Table 1) and varies between 12 for Case 1 and 36 for 
Case 8 as the amount of data emitted by Job 1 increases
with the case number. The details of the jobs 
implementations are given in Figure 3 and the following 
text.

In the Map function of Job 1, from each input row, 
only the relevant columns (see Table 1) are extracted.

For example, in Case 2, only the columns belonging 
to T1-T5 will be extracted in the SearchString variable. 
Reduce functions sum, i.e., count the number of 
occurrences of each combination of temperatures (the 
key) and outputs it as the new value for the current key. 
Because all the values for the same key are processed by 
a single Reduce task, it is evident that the output from 
Job 1 consists of unique combinations of temperatures 
and the number of their occurrences.

In Job 2, the Map function inverts its (key, value)
pairs, making temperature occurrences the keys, and 
emits them to the Reduce function that outputs the 
received pairs. The sorting by occurrence is done by the 
framework as explained in Section 2.2.

Figure 2: MapReduce jobs pipeline.
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Figure 3: Java code segments of Map and Reduce tasks 
for Job 1 and Job 2.

3.4 Pig
The Pig program that has the same functionality as the 
MapReduce code described before must be tailored for 
each specific case. The Pig code for Case 2 is shown in 
Figure 4.

After having loaded the data files, we group the 
records by columns with ordinal numbers 4 to 8 
corresponding to temperatures T1 to T5 (note that 
column indexes are zero based). For other cases, the 

Figure 4: The Pig program.

ordinal numbers of columns are as defined in Table 1. 
Then we count the number of temperatures in each group 
and afterwards we order the grouped records by the 
temperature occurrence. At the end, the results are stored 
in an output file. 

For the execution of the presented Pig program, we 
use the default settings with an exception: we use the 
keyword PARALLEL with the ORDER statements to 
specify that we want only one Reducer task to be 
executed for the ORDER statement. Hence, a single file
is produced as a final result, as in the MapReduce 
approach. For the three given instructions: GROUP,
FOREACH and ORDER, Pig generates three sequential 
MapReduce jobs named “GROUP BY”, “SAMPLER” 
and “ORDER BY”. We use the same names to refer to 
those generate jobs.

3.5 Hive
The Hive code that has the same functionality as the 
MapReduce and Pig programs described before is also 
tailored for each specific case. The Hive code for Case 2
is given in Figure 5.

First, we create the table Temp_Simul and load the 
simulation data in it. LOAD instruction is just a file
system operation in which Hive copies the input files into 
Hive’s warehouse directory. The resulting table
Results_Case_2 is generated for the results of the 
SELECT statement that evaluates temperature
frequencies. The SELECT statement is customized for 
columns determined by Case 2. For other cases, the 
columns should be named as defined in Table 1.

When executing the SELECT statement, Hive 
generates and executes only two MapReduce jobs, in 
contrast to the Pig that executes three MapReduce jobs. 
Hive allows a specification of a maximum or a constant 
number of reducers. We have not specified them; 
therefore we gave Hive freedom in specifying the 

Figure 5: The Hive program.

CREATE TABLE `Temp_Simul` (`col_0` INT ,  
`col_1` INT ,      
`col_2` INT ,     
`col_3` FLOAT ,     
...
col_88` FLOAT )     

COMMENT "Results from simulations"  
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ','

LOAD DATA INPATH 'path_to_data_files/*' 
INTO TABLE Temp_Simul;

CREATE TABLE Results_Case_2 AS 
SELECT col_4, col_5, col_6, col_7, col_8,
COUNT(1) AS NumOfOccurences

FROM Temp_Simul
GROUP BY col_4, col_5, col_6, col_7, col_8 
ORDER BY NumOfOccurences DESC; 

records = LOAD '/user/path_to_data_files/*'
USING PigStorage(','); 

grouped_records = GROUP records BY ($4, $5, $6, $7, $8); 
count_in_group = FOREACH grouped_records 

GENERATE group,
COUNT(records) AS count_temp; 

count_in_group_ordered = ORDER count_in_group
BY count_temp DESC 
PARALLEL 1; 

STORE count_in_group_ordered
INTO 'path_to_destination folder';

//Job 2
public void map(LongWritable key, Text value, 
OutputCollector<IntWritable,Text> output, Reporter reporter) 
throws IOException{

String line = value.toString();
//\t is the default delimiter used by a reducer
String[] lineElements  = line.split("\t"); 
output.collect(new 
IntWritable(Integer.parseInt(lineElements[1])), 

new Text(lineElements[0]));
}
public void reduce(IntWritable key, Iterator<Text> values, 
OutputCollector<IntWritable, Text> output, Reporter reporter) 
throws IOException{

//there is only one value
output.collect(key, values.next());

}

//Job 1
public void map(LongWritable key,Text value,
OutputCollector<Text,IntWritable> output, Reporter reporter) 
throws IOException{

String line = value.toString();
String[] lineElements  = line.split(",");
String SearchString = null
//depending on a case (Table I) concatenate different 
lineElements in //SearchString
…
word.set(SearchString);
output.collect(word, new IntWritable(1));

}
public void reduce(Text key, Iterator<IntWritable> values, 
OutputCollector<Text, IntWritable> output, Reporter reporter) 
throws IOException{

int sum = 0;
while (values.hasNext()){

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}



136 Informatica 37 (2013) 131–138 I. Tomašić et al.

Case:

1 2 3 4 5 6 7 8
11159 8933 391 387 298 294 298 294
11097 8860 323 319 228 224 228 224

10945 8778 298 294 227 217 215 211

10924 8351 271 267 221 216 199 181
10729 7807 264 232 220 211 194 168

Table 2: Top 5 temperature frequencies for each case.

number of reducers for each job. Still, the number of 
Reduce tasks for Job 2 was always equal to one.

4 Results and Discussion
As expected, the three presented approaches gave 
identical quantitative result. The five highest numbers of 
temperature frequencies, for each test case from Table 1, 
are given in Table 2. We have presented only
temperature frequencies since the temperature values that
are associated with these frequencies are specific to the 
knee simulation and are not in the scope of this paper.
We see that the lowest numbers appear in Case 8, which 
was expected because in Case 8 the largest number of 
parameters (T) is projected from the source data.

Job1 Job2

Case: 1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

No. of Map tasks 100 100 100 100 100 100 100 100 12 12 12 18 16 20 26 36

No. of Reduce tasks 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1

Tot. time maps (s) 1122 1080 1119 1187 1121 1287 1162 1826 9903 32 31 51 78 59 184 64 443 941

Tot. time red. (s) 100 80 91 148 108 207 118 413 1264 4 4 10 16 12 31 12 50 139

CPU time spent (s) 588 618 667 790 686 933 719 1,494 6494 7 9 55 95 70 185 73 330 823

Total duration (s) 40 37 38 43 49 51 40 79 377 13 14 22 28 26 48 24 73 248

Table 3: MapReduce approach: MapReduce tasks execution times.

Job1 (GROUP BY)

Case: 1 2 3 4 5 6 7 8 Total

No. of Map tasks 34 34 34 34 34 34 34 34

No. of Reduce tasks 5 5 5 5 5 5 5 5

Total time spent by all maps in (s) 517 543 527 807 540 874 723 1077 5608

Total time spent by all reduces (s) 31 24 45 180 58 297 109 597 1342

CPU time spent (s) 371 394 446 695 502 1098 582 1734 5822

Total duration (s) 31 34 38 76 40 100 59 330 708

Job2 (SAMPLER) Job3 (ORDER BY)

Case: 1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

No. of Map tasks 1 1 1 10 3 18 5 35 1 1 1 10 3 18 5 35

No. of Reduce tasks 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tot. time maps (s) 7 6 9 52 17 105 26 315 537 7 7 18 108 35 215 56 536 983

Tot. time red. (s) 4 4 4 4 4 6 4 4 32 4 4 15 64 25 124 42 202 481

CPU time spent (s) 2 2 5 35 11 70 17 139 282 2 5 31 176 62 346 100 669 1391

Total duration (s) 13 15 17 17 18 19 18 23 140 13 15 36 82 43 145 62 226 622

Table 4: Pig approach: MapReduce tasks execution times.

Job1 Job2

Case: 1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

No. of Map tasks 17 17 17 17 17 17 17 17 2 2 2 3 2 4 3 10

No. of Reduce tasks 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1

Tot. time maps (s) 119 153 166 254 193 364 224 652 2125 8 9 24 66 32 103 44 186 473

Tot. time red. (s) 17 22 31 82 42 136 52 810 1192 3 3 15 77 26 146 41 265 576

CPU time spent (s) 113 138 202 389 237 580 291 991 2941 4 7 39 156 63 272 92 501 1134

Total duration (s) 19 23 27 39 31 58 35 215 447 12 14 32 112 49 182 68 293 762

Table 5: Hive approach: MapReduce tasks execution times.
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Table 3 shows the MapReduce 
Job 1 and Job 2, for each test case. It also shows the total 
CPU time and associated total duration of the analysis for 
each case. Table 4 and Table 5 show corresponding 
execution times of the MapReduce 
Pig and Hive, respectively.

4.1 Execution time
Although the interpretation of the temperature values and 
their occurrence in a specified com
important for this paper, each execution case (
draws different amounts of data to the Map and Reduce 
functions in Job 1 and Job 2, which influences their 
execution times, as evident from Table 

We can calculate from Table 3 that t
spent for Map and Reduce in Job 1 and Job 2
cases on all executing nodes, is: ts = 9903 + 1264 + 941 + 
139 = 12247 s, while the total duration of the complete 
MapReduce analysis is: tm = 377 + 248 = 625 s. The ratio 
ts/tm, which can assess the level of parallelism achieved
is 19.6. Consequently, we can conclude that t
analysis is about 20 times faster, if implemented by 
MapReduce paradigm on 24 computing cores, relatively 
to the MapReduce execution time on a single core

Table 4 and Table 5 show execution times of the 
MapReduce tasks generated by the Pig and Hive. Th
durations, for all test cases and for all three approaches, 
are shown in Figure 6. The last triple 
execution times across all test cases. It is evident that the
MapReduce tasks, written and executed directly, take, in 
average, approximately two times less time 
generated by Pig or Hive. Furthermore, Hive outperforms 
Pig for approximately 20%.

One can also notice that the Hive 
faster than the direct MapReduce approach in the first 

Figure 6: Sum of jobs execution times for each test case. The last series represents the total sum
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three cases. By comparing Tables 3 and 5
that Hive gained the advantage in Job 1.
happened because the number of Map and Reduce tasks, 
i.e., 17 and 5, applied by Hive, were more appropriate for 
the smaller amount of data. The 
MapReduce approach is however more and more 
as the case number, therefore also the amount of data, 
increases.

5 Conclusion
In this paper, we have applied Hadoop tools for the 
analyses of tabular data coming from a complex 
computer simulation. Three approaches were applied; the 
first modeled the data operations directly with the 
MapReduce jobs, while the other two described the data 
operations using higher level languages Pig and Hive.

All three approaches gave the same quantitative 
result, but the execution times were different. From the 
presented time measurements it is evident that the 
directly programmed MapReduce 
two times faster than Pig or Hive. For our test cases, it is 
also evident that Hive outperforms Pig for 20%, probabl
because Hive generates one 
Pig. Hive outperformed the direct MapReduce approach 
in the cases with smaller amounts of data, probably 
because the number of Map and Reduced tasks employed 
by Hive was more optimal for smaller data set

As Pig and Hive use MapReduce 
it is expected that using the low
faster. However, the high-level approaches could have 
advantages over the direct 
design efforts are also considered. 
and reducers, compiling, debugging, 
submitting the jobs, and retrieving the resu
direct MapReduce approach takes developer's time. On

of jobs execution times for each test case. The last series represents the total sum

Informatica 37 (2013) 131–138 137

ables 3 and 5, it is evident 
the advantage in Job 1. This possibly 

number of Map and Reduce tasks, 
5, applied by Hive, were more appropriate for 

The superiority of the direct 
however more and more evident

as the case number, therefore also the amount of data, 

In this paper, we have applied Hadoop tools for the 
analyses of tabular data coming from a complex 

pproaches were applied; the 
first modeled the data operations directly with the 

jobs, while the other two described the data 
operations using higher level languages Pig and Hive.

All three approaches gave the same quantitative 
cution times were different. From the 

presented time measurements it is evident that the 
MapReduce tasks are in average 

two times faster than Pig or Hive. For our test cases, it is 
also evident that Hive outperforms Pig for 20%, probably 
because Hive generates one MapReduce job less than 
Pig. Hive outperformed the direct MapReduce approach 
in the cases with smaller amounts of data, probably 
because the number of Map and Reduced tasks employed 
by Hive was more optimal for smaller data sets.

MapReduce in the background, 
it is expected that using the low-level approach will be 

level approaches could have 
advantages over the direct MapReduce approach if
design efforts are also considered. Writing the mappers 
and reducers, compiling, debugging, packaging the code, 

, and retrieving the results using the 
approach takes developer's time. On

of jobs execution times for each test case. The last series represents the total sum
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the other hand, it is much easier to describe data 
operations with Pig or Hive for an user less familiar with 
the Java programing language. Users familiar with SQL 
language may prefer to use Hive, while users familiar 
with procedural languages would probably prefer to use 
Pig to describe the same data operations.

Future work is in implementing MapReduce
paradigm with the MPI library [21] that could support
more complex communication functions, which could 
result in more efficient execution of the computationally 
intensive services, on complex data sets in cloud 
environments [22].
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