
Informatica 37 (2013) 131–138 131

A Comparison of Hadoop Tools for Analyzing Tabular Data

Ivan Tomašić, Aleksandra Rashkovska, Matjaž Depolli and Roman Trobec
Jožef Stefan Institute, Slovenia
E-mail: ivan.tomasic@ijs.si, aleksandra.rashkovska@ijs.si, matjaz.depolli@ijs.si, roman.trobec@ijs.si

Keywords: Hadoop, MapReduce, Pig, Hive, BigData

Received: December 24, 2012

The paper describes the application of Hadoop modules: MapReduce, Pig and Hive, for processing and
analyzing large amounts of tabular data acquired from a computer simulation of heat transfer in bio
tissues. The Apache Hadoop is an open source environment for storing and analyzing BigData. It was
installed on a cluster of six computing nodes, each with four cores. The implemented MapReduce job
pipeline is described and the essential Java code segments are presented. The Java implementation
employing MapReduce is compared to the Pig and Hive implementations regarding execution time and
programming overhead. The experimental measurements of execution times of the employed parallel
MapReduce tasks on 24 processor cores result in a speedup of 20, relative to the sequential execution,
which indicates that a high level of parallelism is achieved. Furthermore, our test cases confirm that the
direct employment of MapReduce in Java outperforms Pig and Hive by more than two times, while Hive
being 20% faster than Pig. Still, Pig and Hive remain suitable and convenient alternatives for efficient
operations on large data sets.

Povzetek: Prispevek opisuje uporabo Hadoop programskih modulov: MapReduce, Pig in Hive za
procesiranje in analizo tabelaričnih podatkov o prenosu toplote v tkivih.

1 Introduction
Since 2004, when the famous publication “MapReduce:
Simplified Data Processing on Large Clusters” [1] was
published from the Google’s team, the MapReduce
paradigm has become one of the most popular tools for
processing large datasets, mostly because it allows users
to build complex distributed programs using a very
simple model.

Apache Hadoop [2] is a highly popular set of open
source modules for distributed computing, developed
initially to support distribution for the Nutch search
engine project. One of the key Hadoop components is the
MapReduce on which the other, higher-level Hadoop-
related components rely, e.g., Pig and Hive.

With the increasing popularity of the MapReduce
and other non-relational data processing approaches, it
became apparent that they can be used to construct
efficient computing infrastructures. Furthermore, the
Hadoop has proved its ability to store and analyze huge
datasets often referred to as the BigData [3]. It is used by
Yahoo and Facebook for their batch processing needs.
Hadoop and Hive are among cornerstones of the storage
and analytics infrastructure at Facebook [4]. Facebook
Message, in particular, is the first ever user-facing
application built on the Apache Hadoop platform [5].

The MapReduce can be seen as a complement to the
parallel Relational Database Management System
(RDBMS). It is a common opinion these days that the
MapReduce is more suitable for batch processing
analyzes of whole datasets and for applications where
data is written once and read many times, whereas the

RDBMS is better for databases that are continuously
updated.

In this paper, we investigate the differences in
approaches, performances, and usability, between
MapReduce, Pig, and Hive Hadoop tools. Their
performances were compared in the analysis of tabular
simulation data of heat transfer in a biomedical
application, in particular, cooling of a human knee after
surgery [6]. Similar data sources can be found also in
other scientific areas related to multi-parametric
simulations [7], environmental data analysis [8], high
energy physics [9], bioinformatics [10] etc., whereas
some special problems may benefit from specific
interfaces to the Hadoop [11].

2 Description of utilized Hadoop
modules

Hadoop is composed of four modules:
 Common: support for other Hadoop modules,
 Hadoop Distributed file System (HDFS),
 YARN: a framework for job scheduling and cluster

resource management, and
 MapReduce.

There is a number of Hadoop-related projects, but
the ones most relevant to our data analyses are Pig and
Hive.

132 Informatica 37 (2013) 131–138 I. Tomašić et al.

2.1 Map/Reduce paradigm
MapReduce is a programming model and an associated
implementation for processing and generating large data
sets [1]. Some problems that can be simply solved by
MapReduce are: distributed grep, count of URL access
frequency, various representations of the graph structure
of web documents, term-vector per host, inverted index,
etc.

A MapReduce program execution consists of the
four basic steps: (1) splitting the input, (2) iterating over
each split and computing (key, value) pairs (parallel for
each split), (3) grouping intermediate values by keys, (4)
iterating over values associated with each unique key (in
parallel for different keys), computing (usually reducing
values for a given key) and outputting final (key, value)
pairs.

The first step is done by the MapReduce framework,
whereas for the second step a user provides a Map
function, which is applied by the framework, commonly
on each line of every split. Each Map function invocation
outputs a list of (key, value) pairs. Note that each split is
generally processed on different processor cores and
machines in parallel.

As a simple example, let’s consider the task of
counting the number of occurrences for each word in a
document. The Map function will count the number of
occurrences of each word in a line and output a list of
(key, value) pairs, for each line:

where i is the line index.
The MapReduce framework groups together all

intermediate values associated with the same
intermediate key (step 3). The resulting (key, values)
pairs are one by one sent to the user-specified Reduce
function which aggregates or merges together the values
to form a new, possibly smaller, set of values (step 4). In
our example the Reduce function will accept each unique
word, as a key, and the numbers of their occurrences in
each line, as values, sum the numbers of occurrences and
output one (key, value) pair per word:

The executions of the Map and Reduce functions are
referred to as Map and Reduce tasks. A set of tasks

executed for one application are referred to as a
MapReduce job.

The main limitation of the MapReduce paradigm is
that each Map and Reduce task must not depend on any
data generated in other Map or Reduce tasks of the
current job, as user cannot control the order in which the
tasks execute. Consequently, the MapReduce is not
directly applicable to recursive computations, and
algorithms that depend on shared global state, like online
learning and Monte Carlo simulations [12].

The MapReduce, as a paradigm, has different
implementations. In the presented work, we have used
MapReduce implemented in Apache Hadoop distributed
in Cloudera [13]. A convenient comparison between
MapReduce implementations is presented in [14].

2.2 Apache Hadoop MapReduce
implementation

The splitting is introduced because it enables data
processing scalability, which shortens the time needed to
process the entire input data. The parallel processing can
be better load-balanced if the splits are small. However,
if the splits are too small, then the time needed to manage
the splits and the time for the Map task creation may
begin to dominate the total job execution time.

Hadoop splits are fixed-size, whereas a separate Map
task is created for each split (Figure 1). The default
Hadoop MapReduce split size is the same as the default
size of an HDFS block, which is 64 MB. Hadoop
performs data locality optimization by running the Map
task on the node where the input data resides in the
HDFS. With the default HDFS replication factor of three,
files are concurrently stored on three nodes; hence, splits
of the same file can be concurrently processed on three
nodes without the need for being copied before.

In the Hadoop implementation, the Map tasks write
their outputs to their local disks, not to the HDFS and are
therefore not replicated. If an error happens on a node
running a Map task before its output has been consumed
by a Reduce task, then the Hadoop resolves the error by
re-running the corrupted Map task on another node.

The Map tasks partition their outputs, creating one
partition for each Reduce task (Figure 1 – each Map
creates r output partitions). Each partition may contain

Figure 1: Schematic representation of Hadoop’s MapReduce data flow (without using Combiners).

A Comparison of Hadoop Tools for… Informatica 37 (2013) 131–138 133

various keys and associated values. All records sharing
the same key are processed by the same Reduce task.
This is achieved by using the so-called Partitioner
function. The default Hadoop MapReduce Partitioner
employs a hash function on the keys from the Maps’
outputs. Modulo function by the number of reducers is
subsequently applied to the hash values resulting in the
Reduce task indexes for each key.

The data flow between Map and Reduce tasks is
colloquially known as “shuffle”. The inputs for each
Reduce task are pulled from the machines where the Map
tasks ran. The input to a single Reduce task is generally
formed from outputs of multiple Map tasks (Figure 1 –
each reduce task receives m partitions, where m is the
number of Map tasks); therefore Reduce tasks cannot
convey on data locality. On nodes running Reduce tasks,
the sorted map outputs are merged before being passed to
a Reduce task. The number of Reduce tasks is specified
independently for a given job. Each Reduce task outputs
a single file, which is usually stored in the HDFS (Figure
1).

Hadoop allows a user to specify an additional so-
called Combiner function, which can be executed on
each node that runs Map tasks. It receives all the data
emitted by the Map tasks on the same node as an input
and forms the output that is further processed in the same
way as the direct output from a Map task would be. The
Combiner function may achieve data reduction on a node
level, consequently minimizing data transfer over the
network between the machines executing Map and
Reduce tasks. The use of Combiner functions reduces the
impact of the limited communication bandwidth on the
performances of a MapReduce job. The Combiner
function code is usually the same as the Reduce function.

2.3 Pig
The development cycle of a MapReduce program may be
quite long. Furthermore, it requires an experienced
programmer that knows how to describe a given data
processing task as a set of MapReduce jobs.

Pig is a sequential language, called Pig Latin, which
expresses operation on data, together with execution
environment that runs Pig Latin programs [15]. A Pig
Latin program comprises a series of high level data
operations, translated to the MapReduce jobs that can be
executed on a Hadoop cluster. Pig is designed to reduce
programming time by providing a higher level procedural
utilization of the MapReduce infrastructure. It allows a
programmer to concentrate on the data rather than on the
details of execution.

Pig runs as a client-side application and has an
interactive shell named Grunt used for running Pig Latin
programs.

2.4 Hive
A programmer familiar with SQL language may prefer to
describe data operations with SQL language, even if the
data is not stored in a RDBMS. Hive is Hadoop’s data
warehouse system that provides mechanism to project
structure onto data stored in HDFS or a compatible file

system [16]. It provides a SQL-like language called
HiveQL. It does not support the full SQL-92
specification, but provides some extensions that are
consequences of the MapReduce infrastructure
supporting each Hive query. The primary way of
interacting with Hive is the Hive shell used to insert and
execute HiveQL instructions.

Like RDBMS, Hive stores data in tables. When the
tables are loaded with data, Hive stores them in its
warehouse directory [17]. Before execution, usually
when the select statement is called, Hive, like Pig,
transforms the instructions to a set of MapReduce jobs
executed on a Hadoop cluster.

The most significant difference between Hive and
Pig is that Pig Latin is a procedural programming
language, whereas HiveQL is a declarative programming
language. A Pig Latin program is a sequential list of
operations on an input relation, in which each step is a
single transformation. On the other hand, HiveQL is a
language based on constraints that, when taken together,
define a data operation.

3 Analyzing simulation data

3.1 Description of the Hadoop cluster
The Apache Hadoop open source Cloudera distribution
was installed on a cluster built of six computing nodes.
The nodes are connected with Gigabit Ethernet. Each
node has a quad-core Intel Xeon 5520 processor, 6 GB of
RAM and 500 GB hard disk. All nodes run 64-bit
Ubuntu Server 12.04 operating system.
One of the nodes is designated as the namenode while
others are the datanodes. The namenode also hosts the
jobtracker. All machines in the cluster run an instance of
a datanode and a tasktracker. For a description of the
HDFS and MapReduce nodes please refer to [18, 19].

3.2 Input data
The computer simulation of two hours cooling of a
human knee after surgery is performed for 10 different
knee sizes, 10 different initial temperature states before
cooling, and 10 different temperatures of the cooling pad.
This results in 1000 simulation cases. The results of
those simulation cases are gathered in 100 files, each for
one knee size and one initial state, and for all cooling

CASE Parameters
1 T1
2 T1-T5

3 T1,T6,T11,T16,T21

4 T1-T21
5 T1,T6,T11,T16,T21,T46,T51,T56,T61

6 T1-T21,T46-T61
7 T1,T6,T11,T16,T21,T26,T31,T36,T41,T46,T51,

T56,T61,T66,T71,T76,T81
8 T1-T85

Table 1: List of test cases.

134 Informatica 37 (2013) 131–138 I. Tomašić et al.

temperatures. Each file contains 71970 rows or
approximately 44 MB of data. Each data row is
composed of the following parameters, i.e., columns: RT,
D, IS, CT, T1, T2, … , T85, where are: RT - relative time
in a simulation case, D - knee size, IS –initial state, CT –
cooling temperature, T1-T85 – inner and outer knee
temperatures, i.e., temperatures at a particular location in
the knee center, 8 locations on the knee skin and 8
respective locations under the cooling pad, all taken in
the current and in previous time steps. In order to assess
the periodicities in the knee simulation results, we
demand from the MapReduce to count the occurrences of
the same value arrays for a subset of knee temperatures
T, more precisely, to count the occurrences of identical
rows after having projected only columns of T that are of
interest. For the SQL code of this operation please refer
to the code in Figure 5. We will refer to, in the rest of the
paper, the number of occurrences of identical rows as
temperature frequencies.

We defined and examined 8 cases with different sets
of T. The cases are given in Table 1. Cases with odd
numbering take only the current values for the
temperatures: Case 1 – the knee center; Case 3 – the knee
center and 4 locations on the knee skin; Case 5 – the
knee center, 4 locations on the knee skin, and 4
respective locations under the cooling pad; Case 7 – all
current temperatures. The cases with even numbering
incorporate denoted temperatures T and their value in 4
previous time steps, e.g., in Case 2, T1-T5 represents five
temperature values at time steps ti, ti-1, ti-2, ti-3, ti-4, for
each of T from T1-T5, etc.

3.3 MapReduce
The MapReduce jobs pipeline, used for solving our test
cases, is illustrated in Figure 2. The sizes of the input
files are smaller than the HDFS block size (in our case:
64 MB). Hence, the number of input Map tasks in Job 1

is equal to the number of input files [20] (in our case:
100), i.e., each input file is processed by a different Map
task and no additional splitting is performed. Because the
number of Reduce tasks is not explicitly set for Job 1, it
becomes, by default, equal to the number of task tracker
nodes (in our case: 6), multiplied by the value of the
mapred.tasktracker.reduce.tasks.maximum configuration
property [20] (in our case: 2). The output of Job 1
consists therefore of 12 files. Each file contains a unique
combination of temperatures and the number of their
occurrences. Job 2 combines Reduce tasks’ outputs from
Job 1 into a single file (in Job 2, the number of Reduce
tasks is explicitly set to 1). It also sorts the input columns
in the output file by temperature frequencies. The
number of Map tasks in Job 2 depends on the test case
(Table 1) and varies between 12 for Case 1 and 36 for
Case 8 as the amount of data emitted by Job 1 increases
with the case number. The details of the jobs
implementations are given in Figure 3 and the following
text.

In the Map function of Job 1, from each input row,
only the relevant columns (see Table 1) are extracted.

For example, in Case 2, only the columns belonging
to T1-T5 will be extracted in the SearchString variable.
Reduce functions sum, i.e., count the number of
occurrences of each combination of temperatures (the
key) and outputs it as the new value for the current key.
Because all the values for the same key are processed by
a single Reduce task, it is evident that the output from
Job 1 consists of unique combinations of temperatures
and the number of their occurrences.

In Job 2, the Map function inverts its (key, value)
pairs, making temperature occurrences the keys, and
emits them to the Reduce function that outputs the
received pairs. The sorting by occurrence is done by the
framework as explained in Section 2.2.

Figure 2: MapReduce jobs pipeline.

A Comparison of Hadoop Tools for… Informatica 37 (2013) 131–138 135

Figure 3: Java code segments of Map and Reduce tasks
for Job 1 and Job 2.

3.4 Pig
The Pig program that has the same functionality as the
MapReduce code described before must be tailored for
each specific case. The Pig code for Case 2 is shown in
Figure 4.

After having loaded the data files, we group the
records by columns with ordinal numbers 4 to 8
corresponding to temperatures T1 to T5 (note that
column indexes are zero based). For other cases, the

Figure 4: The Pig program.

ordinal numbers of columns are as defined in Table 1.
Then we count the number of temperatures in each group
and afterwards we order the grouped records by the
temperature occurrence. At the end, the results are stored
in an output file.

For the execution of the presented Pig program, we
use the default settings with an exception: we use the
keyword PARALLEL with the ORDER statements to
specify that we want only one Reducer task to be
executed for the ORDER statement. Hence, a single file
is produced as a final result, as in the MapReduce
approach. For the three given instructions: GROUP,
FOREACH and ORDER, Pig generates three sequential
MapReduce jobs named “GROUP BY”, “SAMPLER”
and “ORDER BY”. We use the same names to refer to
those generate jobs.

3.5 Hive
The Hive code that has the same functionality as the
MapReduce and Pig programs described before is also
tailored for each specific case. The Hive code for Case 2
is given in Figure 5.

First, we create the table Temp_Simul and load the
simulation data in it. LOAD instruction is just a file
system operation in which Hive copies the input files into
Hive’s warehouse directory. The resulting table
Results_Case_2 is generated for the results of the
SELECT statement that evaluates temperature
frequencies. The SELECT statement is customized for
columns determined by Case 2. For other cases, the
columns should be named as defined in Table 1.

When executing the SELECT statement, Hive
generates and executes only two MapReduce jobs, in
contrast to the Pig that executes three MapReduce jobs.
Hive allows a specification of a maximum or a constant
number of reducers. We have not specified them;
therefore we gave Hive freedom in specifying the

Figure 5: The Hive program.

CREATE TABLE `Temp_Simul` (`col_0` INT ,
`col_1` INT ,
`col_2` INT ,
`col_3` FLOAT ,
...
col_88` FLOAT)

COMMENT "Results from simulations"
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','

LOAD DATA INPATH 'path_to_data_files/*'
INTO TABLE Temp_Simul;

CREATE TABLE Results_Case_2 AS
SELECT col_4, col_5, col_6, col_7, col_8,
COUNT(1) AS NumOfOccurences

FROM Temp_Simul
GROUP BY col_4, col_5, col_6, col_7, col_8
ORDER BY NumOfOccurences DESC;

records = LOAD '/user/path_to_data_files/*'
USING PigStorage(',');

grouped_records = GROUP records BY ($4, $5, $6, $7, $8);
count_in_group = FOREACH grouped_records

GENERATE group,
COUNT(records) AS count_temp;

count_in_group_ordered = ORDER count_in_group
BY count_temp DESC
PARALLEL 1;

STORE count_in_group_ordered
INTO 'path_to_destination folder';

//Job 2
public void map(LongWritable key, Text value,
OutputCollector<IntWritable,Text> output, Reporter reporter)
throws IOException{

String line = value.toString();
//\t is the default delimiter used by a reducer
String[] lineElements = line.split("\t");
output.collect(new
IntWritable(Integer.parseInt(lineElements[1])),

new Text(lineElements[0]));
}
public void reduce(IntWritable key, Iterator<Text> values,
OutputCollector<IntWritable, Text> output, Reporter reporter)
throws IOException{

//there is only one value
output.collect(key, values.next());

}

//Job 1
public void map(LongWritable key,Text value,
OutputCollector<Text,IntWritable> output, Reporter reporter)
throws IOException{

String line = value.toString();
String[] lineElements = line.split(",");
String SearchString = null
//depending on a case (Table I) concatenate different
lineElements in //SearchString
…
word.set(SearchString);
output.collect(word, new IntWritable(1));

}
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException{

int sum = 0;
while (values.hasNext()){

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}

136 Informatica 37 (2013) 131–138 I. Tomašić et al.

Case:

1 2 3 4 5 6 7 8
11159 8933 391 387 298 294 298 294
11097 8860 323 319 228 224 228 224

10945 8778 298 294 227 217 215 211

10924 8351 271 267 221 216 199 181
10729 7807 264 232 220 211 194 168

Table 2: Top 5 temperature frequencies for each case.

number of reducers for each job. Still, the number of
Reduce tasks for Job 2 was always equal to one.

4 Results and Discussion
As expected, the three presented approaches gave
identical quantitative result. The five highest numbers of
temperature frequencies, for each test case from Table 1,
are given in Table 2. We have presented only
temperature frequencies since the temperature values that
are associated with these frequencies are specific to the
knee simulation and are not in the scope of this paper.
We see that the lowest numbers appear in Case 8, which
was expected because in Case 8 the largest number of
parameters (T) is projected from the source data.

Job1 Job2

Case: 1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

No. of Map tasks 100 100 100 100 100 100 100 100 12 12 12 18 16 20 26 36

No. of Reduce tasks 12 12 12 12 12 12 12 12 1 1 1 1 1 1 1 1

Tot. time maps (s) 1122 1080 1119 1187 1121 1287 1162 1826 9903 32 31 51 78 59 184 64 443 941

Tot. time red. (s) 100 80 91 148 108 207 118 413 1264 4 4 10 16 12 31 12 50 139

CPU time spent (s) 588 618 667 790 686 933 719 1,494 6494 7 9 55 95 70 185 73 330 823

Total duration (s) 40 37 38 43 49 51 40 79 377 13 14 22 28 26 48 24 73 248

Table 3: MapReduce approach: MapReduce tasks execution times.

Job1 (GROUP BY)

Case: 1 2 3 4 5 6 7 8 Total

No. of Map tasks 34 34 34 34 34 34 34 34

No. of Reduce tasks 5 5 5 5 5 5 5 5

Total time spent by all maps in (s) 517 543 527 807 540 874 723 1077 5608

Total time spent by all reduces (s) 31 24 45 180 58 297 109 597 1342

CPU time spent (s) 371 394 446 695 502 1098 582 1734 5822

Total duration (s) 31 34 38 76 40 100 59 330 708

Job2 (SAMPLER) Job3 (ORDER BY)

Case: 1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

No. of Map tasks 1 1 1 10 3 18 5 35 1 1 1 10 3 18 5 35

No. of Reduce tasks 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tot. time maps (s) 7 6 9 52 17 105 26 315 537 7 7 18 108 35 215 56 536 983

Tot. time red. (s) 4 4 4 4 4 6 4 4 32 4 4 15 64 25 124 42 202 481

CPU time spent (s) 2 2 5 35 11 70 17 139 282 2 5 31 176 62 346 100 669 1391

Total duration (s) 13 15 17 17 18 19 18 23 140 13 15 36 82 43 145 62 226 622

Table 4: Pig approach: MapReduce tasks execution times.

Job1 Job2

Case: 1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 Total

No. of Map tasks 17 17 17 17 17 17 17 17 2 2 2 3 2 4 3 10

No. of Reduce tasks 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1

Tot. time maps (s) 119 153 166 254 193 364 224 652 2125 8 9 24 66 32 103 44 186 473

Tot. time red. (s) 17 22 31 82 42 136 52 810 1192 3 3 15 77 26 146 41 265 576

CPU time spent (s) 113 138 202 389 237 580 291 991 2941 4 7 39 156 63 272 92 501 1134

Total duration (s) 19 23 27 39 31 58 35 215 447 12 14 32 112 49 182 68 293 762

Table 5: Hive approach: MapReduce tasks execution times.

A Comparison of Hadoop Tools for…

Table 3 shows the MapReduce
Job 1 and Job 2, for each test case. It also shows the total
CPU time and associated total duration of the analysis for
each case. Table 4 and Table 5 show corresponding
execution times of the MapReduce
Pig and Hive, respectively.

4.1 Execution time
Although the interpretation of the temperature values and
their occurrence in a specified com
important for this paper, each execution case (
draws different amounts of data to the Map and Reduce
functions in Job 1 and Job 2, which influences their
execution times, as evident from Table

We can calculate from Table 3 that t
spent for Map and Reduce in Job 1 and Job 2
cases on all executing nodes, is: ts = 9903 + 1264 + 941 +
139 = 12247 s, while the total duration of the complete
MapReduce analysis is: tm = 377 + 248 = 625 s. The ratio
ts/tm, which can assess the level of parallelism achieved
is 19.6. Consequently, we can conclude that t
analysis is about 20 times faster, if implemented by
MapReduce paradigm on 24 computing cores, relatively
to the MapReduce execution time on a single core

Table 4 and Table 5 show execution times of the
MapReduce tasks generated by the Pig and Hive. Th
durations, for all test cases and for all three approaches,
are shown in Figure 6. The last triple
execution times across all test cases. It is evident that the
MapReduce tasks, written and executed directly, take, in
average, approximately two times less time
generated by Pig or Hive. Furthermore, Hive outperforms
Pig for approximately 20%.

One can also notice that the Hive
faster than the direct MapReduce approach in the first

Figure 6: Sum of jobs execution times for each test case. The last series represents the total sum

Informatica

MapReduce execution times for
test case. It also shows the total

and associated total duration of the analysis for
show corresponding

MapReduce tasks generated by

Although the interpretation of the temperature values and
their occurrence in a specified combination are not

, each execution case (Table 1)
draws different amounts of data to the Map and Reduce
functions in Job 1 and Job 2, which influences their

Table 3.
We can calculate from Table 3 that the total time

spent for Map and Reduce in Job 1 and Job 2, for all test
= 9903 + 1264 + 941 +

139 = 12247 s, while the total duration of the complete
= 377 + 248 = 625 s. The ratio

, which can assess the level of parallelism achieved,
nsequently, we can conclude that the above

if implemented by the
on 24 computing cores, relatively

to the MapReduce execution time on a single core.
show execution times of the

tasks generated by the Pig and Hive. The job
s and for all three approaches,

triple presents the total
execution times across all test cases. It is evident that the

tasks, written and executed directly, take, in
less time than those

generated by Pig or Hive. Furthermore, Hive outperforms

that the Hive approach was
faster than the direct MapReduce approach in the first

three cases. By comparing Tables 3 and 5
that Hive gained the advantage in Job 1.
happened because the number of Map and Reduce tasks,
i.e., 17 and 5, applied by Hive, were more appropriate for
the smaller amount of data. The
MapReduce approach is however more and more
as the case number, therefore also the amount of data,
increases.

5 Conclusion
In this paper, we have applied Hadoop tools for the
analyses of tabular data coming from a complex
computer simulation. Three approaches were applied; the
first modeled the data operations directly with the
MapReduce jobs, while the other two described the data
operations using higher level languages Pig and Hive.

All three approaches gave the same quantitative
result, but the execution times were different. From the
presented time measurements it is evident that the
directly programmed MapReduce
two times faster than Pig or Hive. For our test cases, it is
also evident that Hive outperforms Pig for 20%, probabl
because Hive generates one
Pig. Hive outperformed the direct MapReduce approach
in the cases with smaller amounts of data, probably
because the number of Map and Reduced tasks employed
by Hive was more optimal for smaller data set

As Pig and Hive use MapReduce
it is expected that using the low
faster. However, the high-level approaches could have
advantages over the direct
design efforts are also considered.
and reducers, compiling, debugging,
submitting the jobs, and retrieving the resu
direct MapReduce approach takes developer's time. On

of jobs execution times for each test case. The last series represents the total sum

Informatica 37 (2013) 131–138 137

ables 3 and 5, it is evident
the advantage in Job 1. This possibly

number of Map and Reduce tasks,
5, applied by Hive, were more appropriate for

The superiority of the direct
however more and more evident

as the case number, therefore also the amount of data,

In this paper, we have applied Hadoop tools for the
analyses of tabular data coming from a complex

pproaches were applied; the
first modeled the data operations directly with the

jobs, while the other two described the data
operations using higher level languages Pig and Hive.

All three approaches gave the same quantitative
cution times were different. From the

presented time measurements it is evident that the
MapReduce tasks are in average

two times faster than Pig or Hive. For our test cases, it is
also evident that Hive outperforms Pig for 20%, probably
because Hive generates one MapReduce job less than
Pig. Hive outperformed the direct MapReduce approach
in the cases with smaller amounts of data, probably
because the number of Map and Reduced tasks employed
by Hive was more optimal for smaller data sets.

MapReduce in the background,
it is expected that using the low-level approach will be

level approaches could have
advantages over the direct MapReduce approach if
design efforts are also considered. Writing the mappers
and reducers, compiling, debugging, packaging the code,

, and retrieving the results using the
approach takes developer's time. On

of jobs execution times for each test case. The last series represents the total sum

138 Informatica 37 (2013) 131–138 I. Tomašić et al.

the other hand, it is much easier to describe data
operations with Pig or Hive for an user less familiar with
the Java programing language. Users familiar with SQL
language may prefer to use Hive, while users familiar
with procedural languages would probably prefer to use
Pig to describe the same data operations.

Future work is in implementing MapReduce
paradigm with the MPI library [21] that could support
more complex communication functions, which could
result in more efficient execution of the computationally
intensive services, on complex data sets in cloud
environments [22].

Acknowledgement
The research was funded in part by the European Union,
European Social Fund, Operational Programme for
Human Resources, Development for the Period 2007-
2013.

References
[1] J. Dean, and S. Ghemawat, “Mapreduce: Simplified

data processing on large clusters,” in OSDI'04,
2004, pp. 137-149.

[2] "Welcome to Apache™ Hadoop®!," Oct., 2012;
http://hadoop.apache.org/.

[3] B. Franks, "What is big data and why does it
matter?," Taming the big data tidal wave: finding
opportunities in huge data streams with advanced
analytics, pp. 3-29, Hoboken, New Jersey: John
Wiley & Sons, Inc., 2010.

[4] A. Thusoo, Z. Shao, S. Anthony et al., “Data
warehousing and analytics infrastructure at
facebook,” in SIGMOD 2010, International
conference on Management of data, pp. 1013-1020.

[5] D. Borthakur, J. Gray, J. S. Sarma et al., “Apache
hadoop goes realtime at Facebook,” in ACM
SIGMOD International Conference on Management
of Data, 2011, pp. 1071-1080.

[6] R. Trobec, M. Šterk, S. Almawed et al., “Computer
simulation of topical knee cooling,” Comput. biol.
med, vol. 38, pp. 1076-1083, 2008.

[7] G. Kosec, Šarler, Božidar, “Solution of a low
Prandtl number natural convection benchmark by a
local meshless method.,” International journal of
numerical methods for heat & fluid flow, vol. 23,
no. 1, pp. 189-204, 2013.

[8] U. Stepišnik, and G. Kosec, “Modelling of slope
processes on karst,” Acta Carsologica, vol. 40, no.
2, pp. 267-273, 2011.

[9] L. Wang, J. Tao, R. Ranjan et al., “G-Hadoop:
MapReduce across distributed data centers for data-
intensive computing,” Future Generation Computer
Systems, vol. 29, no. 3, pp. 739-750, 2013.

[10] R. C. Taylor, “An overview of the
Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics,” BMC
Bioinformatics, vol. 11, no. SUPPL. 12, 2010.

[11] M. Niemenmaa, A. Kallio, A. Schumacher et al.,
“Hadoop-BAM: Directly manipulating next

generation sequencing data in the cloud,”
Bioinformatics, vol. 28, no. 6, pp. 876-877, 2012.

[12] J. Lin, and C. Dyer, "Limitations of MapReduce,"
Data-Intensive Text Processing with MapReduce,
Synthesis Lectures on Human Language
Technologies, pp. 143-145: Morgan & Claypool
Publishers, 2010.

[13] I. Cloudera. "CDH Proven, enterprise-ready
Hadoop distribution – 100% open source," Oct,
2012; http://www.cloudera.com/hadoop/.

[14] Z. Fadika, E. Dede, M. Govindaraju et al.,
"Benchmarking MapReduce Implementations for
Application Usage Scenarios." 12th IEEE/ACM
International Conference on Grid Computing
(GRID). pp. 90-97, 2011.

[15] "Welcome to Apache Pig!," December, 2012;
http://pig.apache.org/.

[16] "Welcome to Hive!," December, 2012;
http://hive.apache.org/.

[17] T. White, "Hive," Hadoop: The Definitive Guide,
pp. 365-409, Gravenstein Highway North,
Sebastopol: O’Reilly Media, Inc., 2010.

[18] T. White, "The Hadoop Distributed Filesystem,"
Hadoop: The Definitive Guide, pp. 41-73,
Gravenstein Highway North, Sebastopol: O’Reilly
Media, Inc., 2010.

[19] T. White, "MapReduce," Hadoop: The Definitive
Guide, pp. 15-40, Gravenstein Highway North,
Sebastopol: O’Reilly Media, Inc., 2010.

[20] T. White, "MapReduce Types and Formats,"
Hadoop: The Definitive Guide, pp. 189-224,
Gravenstein Highway North, Sebastopol: O’Reilly
Media, Inc., 2010.

[21] T. Hoefler, A. Lumsdaine, and J. Dongarra,
"Towards efficient mapreduce using MPI," 16th
European Parallel Virtual Machine and Message
Passing Interface Users' Group Meeting,
EuroPVM/MPI, 2009, pp. 240-249.

[22] H. Mohamed, and S. Marchand-Maillet,
"Distributed media indexing based on MPI and
MapReduce," 2012 10th International Workshop on
Content-Based Multimedia Indexing, CBMI 2012.
pp. 236-241.

