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0  INTRODUCTION

Nowadays most production processes are designed 
to increase economic efficiency while, at the same 
time, not influencing product quality, especially 
when dealing with large serial production. In order 
to improve the forming process from the economic 
point of view, the main objective is to minimize the 
number of operation phases involved in the forming 
process. The cutting phase, as the final operation, is 
the phase most often targeted for elimination. Along 
with less material required for product production, 
the elimination of the cutting phase may also reduce 
the occurrence of manufacturing defects during the 
forming process, such as tearing and wrinkling. 
In some cases, however, the sheet cutting phase is 
unavoidable since excess material under the blank-
holder is required to achieve proper holding of the 
sheet metal [1]. 

When the cutting phase is eliminated, the accuracy 
of the product edge geometry should be provided 
by proper blank shape geometry. In most cases, the 
proper blank shape is determined experimentally by 
a trial and error procedure which requires several 
try-outs, causing the forming process design to be 
extremely time consuming and costly. Nowadays, this 
can be done virtually, based on computer simulations 
of the technological process under consideration, see, 
for example, [1] to [4]. Besides choosing a proper 
numerical approach and computational technique 
[5] and [6], advanced constitutive modelling [2], [4], 
[7] and [8] and proper material characterisation [4] 
and [7] to [9] is crucial for the computer simulation 

to be physically objective and trustful. Although, 
in contrast to direct analysis, a Finite Element (FE) 
inverse analysis approach, see [10] to [14], could 
possibly be used in sheet metal forming simulation in 
order to reduce the computer time consumption, such 
an approach is not recommended because it results in 
less accurate strain–stress state determination. This, 
in turn, can considerably influence the subsequent 
springback analysis, which is a key element in tool 
design optimisation.

This paper describes a blank shape optimisation 
method, which allows determination of a blank 
shape such that the edge geometry deviation of the 
produced product with respect to the specified product 
geometry is obtained within a given tolerance. In 
this method, the optimal blank shape is determined 
in an iterative way, starting with an initial blank of 
approximately adequate shape, which over a series of 
subsequent iterations gets automatically adjusted to 
meet the tolerance criterion. Following the principal 
idea, which is a gradual changing of the given blank 
shape based on the computed product geometry and 
manifested edge deviation, the product geometry must 
be determined in each iteration by a corresponding 
forming process simulation, considering the blank 
shape as determined in the previous iteration.

The method is designed in such a way that it 
enables optimal blank shape determination of products 
having a general 3D shape. That the method is capable 
of tackling rather complex product geometries 
efficiently is demonstrated in Section 4, where 
results of the numerical optimisation process are also 
experimentally validated.
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1  REVIEW OF SOME APPROACHES  
TO BLANK SHAPE OPTIMISATION

The problem of finding an appropriate blank shape, 
which would allow the production of a formed 
product with the edge geometry meeting the geometry 
tolerance requirements, as specified by the design, has 
been addressed by many authors. In the section, we 
give a brief review of different numerical approaches 
developed in this regard.

An optimisation method, where the initial 
blank shape approximation is determined by inverse 
FEM simulation and the blank shape is optimised 
iteratively afterwards using direct FEM computer 
simulations, is presented in [15] and [16] by Azaouzi 
et al. The applied blank shape modification consists 
of displacing, in each iteration, the blank edge nodes 
in the direction opposite to the geometry deviation 
obtained by comparing the computed and reference 
product geometry. After the new blank shape is 
determined, its domain is remeshed automatically 
using triangular FEs. Naceur et al. [17] presented a 
blank shape optimisation approach that is based on 
the coupling between the inverse approach used for 
the forming simulation and an evolutionary algorithm. 
Their goal was to minimize the size of the blank 
shape and still ensure that the product is made without 
tearing the sheet metal. Park et al. [18] introduced a 
deformation path method. The Ideal Forming direct 
inverse design method, see [13] and [14], was used 
to determine initial blank shape, which was further 
improved by an iterative procedure. In [19], Yeh et 
al. use the inverse true strain method (TSM) to obtain 
an initial approximation of the blank shape, whereas 
for the optimal blank shape determination a method 
based on adaptive-network-based fuzzy inference 
system (ANFIS) is applied. To achieve satisfactory 
results on the optimised initial blank shape, at least for 
the case considered in the paper, 200 learning cycles, 
each requiring a complete computer simulation of 
the corresponding forming process, had to be used 
in building the appropriate ANFIS database. Another 
approach, where the abductive network is used to 
predict the optimal blank shape for forming an elliptic 
cup using FEM computer simulations, is presented by 
Lin and Kwan in [20]. In the optimisation procedure, 
the initially elliptic blank shape, with its geometry 
being specified in a polar coordinate system by 
four characteristic points, is subject to change by 
considering adequate variation of the respective 
points’ radial coordinates, while keeping their angular 
coordinates fixed. An iterative method, where the 
product geometry is also computed using inverse 

FEM while the blank shape correction is made in each 
iteration manually, is introduced by Parsa and Pournia 
in [21]. Due to the application of the inverse analysis 
approach, the computational time is significantly 
reduced, but it is achieved at the expense of loss of 
accuracy in the product geometry determination. 

The objective of the blank shape optimisation 
presented in [22] by Pegada et al. is to determine 
the blank shape that allows forming of a circular 
cup of uniform height, where the respective material 
properties are assumed to be orthotropic. In each 
iteration, considering the established deviation in the 
cup height, the blank shape is adapted proportionally, 
assuming a value of 0.75 as an adequate scaling 
factor to obtain satisfactory convergence to the 
method. In the method introduced by Son and Shim 
in [23], the blank shape correction is made in the 
direction opposite to the geometry deviation obtained 
by comparing the computed and reference product 
geometry. Furthermore, correction of each edge point 
is computed by applying a scaling factor between 
0.5 and 0.9, its actual value being defined by a ratio 
of the initial velocity to the total deformation path 
length. In [24], Hamammi et al. propose a method 
where the blank shape correction is made in the 
direction described by the positions of each node lying 
on the blank edge at the beginning and at the end of 
the forming process. Another method, where the 
correction of the blank shape is also based on taking 
the displacement path of the product edge nodes into 
account, is proposed by Fazli and Arezoo in [25]. They 
proved that their method is slightly better in terms of 
accuracy and also in convergence than the previous 
two methods, [23] and [24]. 

The optimal blank shape can also be obtained 
by parameterisation of the blank geometry and using 
a sequential programming method for finding the 
optimal set of parameters, which is elaborated in [26] 
by Sattari et al. Similarly, in [27], Padmanabhana 
et al. investigate blank shape optimisation using 
parameterisation of the blank shape carried out by 
using parametric NURBS curves and the blank shape 
correction based on the control points displacement. 
The convergence of the latter method can be further 
improved by including the sensitivity analysis shown 
in [28] by Shim et al.

In principle, all those approaches to blank 
shape optimisation have in common a sequence of 
rather similar logical steps, which can be roughly 
summarised by the flow chart in Fig. 3. The approach 
we are going to propose in this paper does not differ 
in this regard. 
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The iterative approach we present here is 
implemented in such a way that the user must provide 
an approximately determined blank shape, which is 
taken as the initial blank shape for the optimisation 
procedure. As demonstrated by the study case, 
elaborated in Section 4, the proposed numerical 
approach is efficient enough that it does not require a 
very accurate determination of the initial blank shape, 
which is the case in [15], [16], [18] and [19]. By using 
different strategies the user can still provide a better 
approximation for the initial blank shape, which is 
certainly advantageous. One thing that is common to 
all the methods presented in the review is that, in each 
iteration, a remeshing of the blank is required after 
blank shape correction. In our case, on the other hand, 
the mesh element topology is kept unchanged through 
the entire iterative procedure, while the corresponding 
FE mesh nodal points’ adjustment in the iteration 
is performed in accordance with the displacement 
field obtained by solving an associate linear elastic 
boundary value problem. In this boundary value 
problem, the blank with the actual shape geometry 
before correction is subjected to prescribed boundary 
displacements, the imposed boundary displacements 
taken equal the required blank edge geometry 
correction in the iteration. With the blank FE mesh 
correction dealt with in this way, any type of FEs can 
be used and no sophisticated remeshing methods are 
needed. 

2  MATHEMATICAL, MODELLING AND PHYSICAL 
PRELIMINARIES

In order to provide a corresponding mathematical 
framework for the numerical analysis, in this section 
we give some definitions and conventions on the 
geometry terminology used, which is followed by 
a determination of some related point topology 
quantities, such as surface and edge normal vectors’ 
determination, and, finally, an approximation for 
analytical surface reconstruction. 

Some modelling and simulation assumptions are 
given in the last part of the section in order to focus 
our investigation on the key elements of the proposed 
numerical procedure for the blank shape optimisation 
described in Section 3.

2.1 Geometry and Point Topology Terminology

In this paper, we adopt the same geometry 
terminology as introduced by Cafuta et al. in [29]. The 
product geometry prescribed by the design engineer 
is referred as the “reference geometry”, whereas the 

product geometry computed in the simulation will be 
referred as the “actual geometry”. Considering that 
the forming process simulations are performed on the 
basis of FEM, we are actually dealing with discretised 
geometries. In accordance with the notation G ,  
introduced for a general surface point topology 
definition, we will use notations Gref  and Gact  to 
specify point topologies related to the reference and 
actual product geometry, respectively. Similarly, 
notation Gbl  will be used to denote point topology 
related to the sheet blank geometry. Furthermore, 
Γref , Γact  and Γbl  will be used to specify the 
associated edge point topologies notations. All those 
surface and edge topologies will exclusively refer 
to the sheet’s mid-surface. In addition, to support 
a numerical procedure of automatic sheet blank 
geometry adjustment, an auxiliary virtual surface 
with its point topology notation being Σ

G will be 
generated, emanating from the reference product edge 
Γref  considering its surface topological properties. 
The surface Σ

G having properties Γref ⊂  Σ
G may be 

considered as a target surface which is to be attained 
iteratively by the edge points ΓPi

k  of the actual 
product Γact

k  as closely as possible.
Since, in the numerical procedure, the unit normal 

vectors ni  at point Pi  perpendicular either to the 
surface or to the edge will also be referenced, it is 
reasonable to make a symbolic distinction between 
them. Accordingly, the notations ni  and Σni  will be 
used for the surface normal vectors, whereas 
Γni  will be used for the edge normal vectors. 
Similarly, to make a distinction between the points 
appertaining either to the product surfaces, Gref  and 
Gact , or to the auxiliary surface ΣG , the notations Pi  
and Σ Pi  will be used with respective position vectors 
being Pi  and ΣPi . If point Pi  is located on the edge Γ, 
it will be denoted as ΓPi  and its position specified by 
vector ΓPi .

2.2  Surface Normal Vector Determination

The accuracy of the surface normal vector 
determination at points of discretely given surface 
geometries plays an important, if not crucial, role 
in attaining convergence and speeding up the 
convergence rate of the entire optimisation procedure. 
A general surface point topology G  given, we apply 
in this paper a two-step procedure in which for a point 
of interest, say Pi , two auxiliary vectors, ′ni  and ′′ni , 
are computed, respectively.

In the first step, the auxiliary vector ′ni  at point Pi  
is determined, considering FE surface discretisation.
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The following equation is used:
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with Ni  being the number of neighbouring FEs 
connected to point Pi  and ni

e  being their respective 
normal vectors at that point. The latter are determined 
by considering the respective FE’s edge vectors v1

e   
and v2

e  emanating from point Pi  (Fig. 1a). 

a) 

b) 

Fig. 1.  Surface normal vector determination: a) FE’s nodal normal 
vector ni

e  determination, and b) auxiliary vector ′′ni  determination

In the second step, the normal vector ni  is 
determined considering the analytically defined 
smooth surface Si  through point Pi . This surface is 
obtained by a corresponding interpolation through a 
point set Π i , built from points P ji

j ( = 1,2,...,9)  of the 
FE mesh. Those points are chosen from a sub-domain 
area surrounding the considered point P Pi i≡ 1   on a 
closest point’s basis, which is applicable regardless of 
whether point P Pi i≡ 1  belongs to the interior of the FE 
mesh or to its boundary. 

Mathematical representation of the surface Si , 
F x y zi ( , , ) = 0 , is built by considering coordinates of 
the respective points of the set Π i . To avoid round-off 
error due to possible computing with large numbers, it 
is advantageous to have the surface Si  representation 
defined with respect to a particular local coordinate 
system, say ( , , )  x y z , having its origin at point P Pi i≡ 1   
(Fig. 1b). The base vectors e e e  x y z, , , defining the 
respective local coordinate system ( , , )  x y z  at point 
Pi  in accordance with the above stated properties, are 
determined by expressions:

 e e n r e e e e n    x z i y z x z i= = , = , = ,× ′ × ′  (2)

where the base vector ez = (0,0,1)  defines the global 
coordinate axis z.

The rotation of the global coordinate system  
(x, y, z) to the local coordinate system ( , , )  x y z  is given 
by the rotational transformation matrix ℜ( , )r θ :
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where the matrix coefficients are determined as:
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Above, rx , ry  and rz  are the components of 
vector r = ( , , )r r rx y z  and quantity v( )θ  is defined 
by v( ) = 1 ( )θ θ− cos , the angle θ denoting the angle 
between the base vectors ez  and e z .

To enable analytical surface Si  representation 
f x y zi ( , , ) = 0    with respect to the local coordinate 

system ( , , )  x y z , the coordinates of the position vector  
Pi
j  are mapped to the local coordinate system in 

accordance with:

 P r P Pi
j

i
j

i= ( , )ℜ −( )θ .  (5)

With the points set Π i  consisting of nine points
Pi
j  (Fig. 1b), it is appropriate to approximate surface  

Si  in accordance with:

 f x y z z a x yi
m n

mn
m n( , , ) = = 0 ,

=0

2

=0

2

     −∑∑  (6)

where nine coefficients amn  are determined such that 
the surface Si  is interpolated through the points Pi

j .
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Finally, the auxiliary vector ′′ni  normal to the 
surface f x y zi ( , , ) = 0    at point Pi

1(0,0,0)  can be 
determined by the gradient operator:

 ′′ni i

i

f
f

= (0,0,0)
(0,0,0)

.grad
grad

 (7)

By applying to the components of the above 
vector, given in the local coordinate system, the 
inverse mapping ℜ−1( , )r θ , the components of the 
normal vector ni  to the surface Si  at point Pi  in the 
global coordinate system are obtained such that: 

 n r ni i= ( , ) .1ℜ ′′− θ  (8)

If the point, at which the normal vector is to be 
computed, is positioned on the symmetry plane, the 
normal vector ni  is computed by the same procedure 
considering the mirror elements over the symmetry 
plane.

The abovedescribed procedure of the surface 
normal vectors’ determination is general. In Section 3, 
it will be carried out with reference to the reference 
and actual product geometry, Gref  and Gact , as well as 
to the auxiliary surface ΣG .

2.3  Edge Normal Vector Determination

We will refer generally to a surface point topology 
G  and associate edge point topology Γ also in the 
determination of the unit vectors normal to the edge 
of a bounded surface. At a point of interest on the 
boundary Γ, say ΓPi , the edge normal vector Γni  
will be determined considering respective surface and 
boundary curvatures. While the surface curvature is 
characterised by the respective surface normal vector 
ni , with its determination being described in Section 
2.2, the boundary curvature can be characterised by a 
unit vector Γ t i  tangential to the surface boundary at 
point ΓPi . 

The tangential vector Γ t i  can be correspondingly 
approximated considering actual discretisation of the 
boundary Γ in the closest vicinity of the point ΓPi .  
With points ΓPi−1  and ΓPi+1  being the points adjacent 
to point ΓPi  (see Fig. 2) the following equation may 
be applied:

 Γ
Γ Γ

Γ Γ
t P P

P Pi
i i

i i

= 1 1

1 1

+ −

+ −

−
−

.  (9)

Finally, by evaluating the vector product:

 Γ Γn t ni i i= × ,  (10)

the edge normal vector Γni , defined in the global 
coordinate system, can be determined. The 
corresponding graphical representation, with vector  
Γni  lying in the tangential plane to surface Si  and 
pointing to its exterior, is given in Fig. 2.

If the point, at which the edge normal vector is 
to be computed, is positioned on the symmetry plane, 
in order to achieve geometric symmetry conditions, 
the tangential vector Γ t i  is defined by a unit vector 
normal to the symmetry plane. The edge normal vector 
Γni  is afterwards computed by the same procedure.

Fig. 2.  Edge normal vector Γni  determination

2.4  Analytical Surface Reconstruction

Assuming that the considered FE surface 
discretisations are all based on a quadrilateral surface 
element meshing (see Fig. 1), we will develop, 
in this section, an approximation to the analytical 
surface reconstruction of a single quadrilateral 
surface element, considering its particular topological 
properties. 

Let a quadrilateral surface Si  be discretely 
defined by its nodal points P ji

j ( = 1,2,3,4)  and 
respective surface normal vectors ni

j  at those 
points, determined following the procedure described 
in Section 2.2. This set of data represents twelve 
independent parameters, which can be used in 
analytical surface reconstruction of surface Si , 
F x y zi ( , , ) = 0 . This can be achieved by considering 
the following functional form:

 

F x y z z a a x a y a x y
a x a y a x y a

i
i i i i

i i i i
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8
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2

9
2 2
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3
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3
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3 3 ) = 0

+

+ + + +  ,  (11)

with twelve coefficients a mm
i ( = 1,2,...,12)  to be 

determined. By imposing that the above surface 
representation meets given requirements at four 
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interpolation points Pi
j  the following system of linear 

equations is obtained:

 

F x y z
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,

; = 1,2,3,4 ,  (12)

whose solution yields the value of the coefficients  
am
i . Here, it should be emphasised that by fulfilling 

the nodal surface properties in the above way element 
after element C1 continuity at discrete points of the 
surface Si  is achieved, which is significant for the 
quality of the overall surface approximation. 

2.5  Modelling and Simulation Assumptions

When the blank shape optimisation is based on the 
results of a corresponding computer simulation of 
the considered forming process, it is exceedingly 
important that the springback numerical estimation 
should be as reliable as possible. In this regard, the 
resulting stress-strain state in the formed product prior 
to the springback, as well as the established change 
in the sheet metal thickness itself, are crucial for 
determining the extent of the manifested springback. 
To attain reliability of the computed results, the process 
parameters, such as the sheet material behaviour, tools’ 
kinematics, sheet blank shape geometry, the clearance 
between the punch and the die, the blank-holder force 
and tribological conditions between the surfaces 
in contact, should be considered as realistically as 
possible in the simulation. For the purpose of this 
investigation, let us assume that all above parameters, 
except sheet blank shape geometry, are defined 
adequately and after the computer simulation yield a 
product of a shape, whose deviation from the shape of 
the reference product, when measured in the direction 
perpendicular to the product surface, is within the 
prescribed tolerance (see Cafuta et al. [29]). A possible 
deviation in the circumference contour, larger than is 
allowed, is subject to a corresponding adjustment in 
the sheet blank shape geometry, which is actually the 
topic of this paper. 

Accordingly, we also assume that all issues 
associated with FEM, such as adequate choice of 
the finite element type and the integration of the 
constitutive equations, are not disputable.

3  NUMERICAL IMPLEMENTATION  
OF THE PROPOSED BLANK SHAPE OPTIMISATION

The proposed blank shape optimisation method 
consists basically of a sequence of steps executed 
iteratively following the flow chart in Fig. 3. Along 
with the initial blank shape geometry Gbl

0  and 
reference product geometry Gref  provided, a complete 
FE model with the tool geometry and forming process 
parameters (blank-holder forces, friction conditions, 
tool movement, etc.) must be specified in order to 
start the procedure. Since the initial blank shape 
geometry Gbl

0  plays an important role in attaining 
convergence and computational efficiency of the 
described blank shape optimisation procedure, this 
geometry should be determined in a way that the edge 
geometry Γact

0  of the product, obtained by the 
corresponding forming process simulation under 
given process conditions, does not experience too 
excessive a deviation with respect to the reference 
edge geometry Γref . Before starting the procedure the 
auxiliary surface ΣG  is determined as explained in 
Section 3.1. 

Fig. 3.  Flow chart of the iterative procedure

The iterative procedure essentially consists 
of performing in iteration, say kth iteration, three 
consecutive steps. In the first step, the complete 
technological process, consisting of the forming stage 
with the actual blank shape geometry Gbl

k  considered 
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and subsequent springback stage occurring after 
removal of the tools, is simulated. This is followed by 
computing the deviation between the actual product 
edge geometry Γact

k  and its reference edge geometry 
Γref , measured with respect to the auxiliary surface 
ΣG . The edge deviation computation is performed 
in each iteration following the procedure described 
in Section 3.2. In the last step, the actual blank shape 
geometry Gbl

k  is either confirmed as appropriate or, 
if the considered edge deviation being found greater 
than the prescribed tolerance, its further correction 
and adjustment to Gbl

k+1  is required (see Section 
3.3). Fulfilment of the tolerance requirements means 
stopping of the iteration loop, whereas non-fulfilment 
means that the iteration procedure goes on to the 
subsequent (k + 1)th iteration. A detailed description of 
how the above general procedure is managed is given 
in the following sections.

3.1  Determination of the Auxiliary Surface ΣG

The appropriateness of the actual blank shape 
geometry Gbl

k  can be established by measuring the 
deviation of the actual product edge geometry Γact

k  
from the reference edge geometry Γref , which can be 
done in many ways. Here, the deviation will not be 
measured directly with respect to Γref , but indirectly 
by making use of an auxiliary virtual surface ΣG  
emanating from the reference product edge Γref . This 
surface can be generated considering surface 
topological properties of the reference product 
geometry Gref  on its edge Γref . Lines li , aligned 
along the surface normal vectors ref in  at points ref iP

Γ   
of the discretised edge, are used, accordingly, as the 
building basis for the auxiliary surface construction 
(Fig. 4). To enable numerical control of the actual 
product edge adequacy this surface is further 
discretised by quadrilateral sub-domains, yielding 
point topology ΣG . Having those properties, i.e. 
emanating from points ref iP

Γ  of the discretised 
reference product edge Γref  (Γref  ⊂  ΣG ) and being 
at those points perpendicular to the reference product 
geometry Gref , the surface ΣG  may be considered in 
the iteration process as the target surface, which is to 
be attained by the edge points act i

kPΓ  of the actual 
product Gact

k , as closely as possible. 
For a determination of the auxiliary surface ΣG , 

which is computed before starting the optimisation 
procedure, computation of the surface normal vectors 
at points lying on the edge Γref  of the reference 
product geometry Gref  is required.

Fig. 4.  Auxiliary surface ΣG  determination

3.2  Determination of the Actual Product Edge Deviation

In the k-th iteration, the deviation di
k  of individual 

edge point act i
kPΓ  of the actual product geometry 

k
actG  is determined by identifying its distance to the 

auxiliary surface ΣG  in the direction normal to the 
edge. The applied procedure may be divided into 
three parts. In the first part, the edge normal vector 
act i

kΓn  at point act i
kPΓ  is determined in accordance 

with the procedure, described in Section 2.3. With 
the surface normal vector act i

kn  and tangential vector 
act i

kΓ t  computed by Eqs. (8) and (9), respectively, 
considering surface and edge topology properties of 
the actual product geometry Gact

k , the vector act i
kΓn  is 

determined by Eq. (10). 

Fig. 5.  Finding surface element  ΣSi  on  ΣG  intersected by a 
line collinear with vector act i

kΓn

In the second part, intersection with the auxiliary 
surface ΣG  is sought in the direction collinear with 
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vector act i
kΓn . As the auxiliary surface ΣG  is described 

discretely by quadrilaterals (Fig. 2), it may be assumed 
that only one surface element on ΣG  is intersected. 
Being actually related to the edge point act i

kPΓ  in the 
corresponding determination of the deviation di

k , let 
us denote this surface by ΣSi  (see Fig. 5) and its nodal 
points by ΣP ji

j ( = 1,2,3,4) .
To enable evaluation of the deviation di

k  
analytical surface reconstruction of surface ΣSi , 
ΣF x y zi ( , , ) = 0 , is required, which is carried out in 
the third part. Apart from the given position vectors 
ΣPi

j j( = 1,2,3,4) , the respective surface normal 
vectors Σni

j j( = 1,2,3,4)  at those points are also 
needed in accordance with Section 2.4. The respective 
normal vectors’ determination follows the procedure 
described in Section 2.2. 

Although the analytical surface reconstruction of 
surface ΣSi  could be done using the global coordinate 
system ( , , )x y z , as demonstrated in Section 2.4, it is 
better to have the surface ΣSi  representation defined 
with respect to a local coordinate system, say ( , , )  x y z , 
which is built by taking the vector triple act i

kΓ t , act i
kn , 

act i
kΓn  as the system basis and setting the edge point 

act i
kPΓ  as its origin (Fig. 6), act i

kΓ P = ( , , )0 0 0 . In this 
way, occurrence of round-off error due to possible 
computing with large numbers is avoided and 
accuracy of the computation ensured. 

After performing all coordinate transformations 
on the position vectors ΣPi

j j( = 1,2,3,4)  and 
surface normal vectors Σni

j j( = 1,2,3,4) , as shown 
in Section 2.2, and obtaining vectors Σ Pi

j  and Σ ni
j , 

the geometry of the considered surface element ΣSi  
can now be functionally approximated in the local 
coordinate system ( , , )  x y z . By adopting the same 
functional representation as considered in Section 2.4, 
we have:

 

Σ f x y z z a a x a y
a x y a x

i
i i i

i i

( , , ) = ( 1 2 3

4 5
2

        

     

− + + +

+ + +  aa y
a x y a xy a x y
a x a

i

i i i

i i

6
2

7
2

8
2
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10
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11



       

   

+
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+ +

  

yy a x yi3
12

3 3 ) = 0+    .  (13)

As in Eq. (12), but expressed in terms of the local 
coordinate system, the evaluation of the polynomial 
coefficients a mm

i ( = 1,2,...,12)  is based on given 
topological requirements fulfilment. 

Finally, with the interpolation function  
Σ f x y zi ( , , ) 0   =  fully defined, the deviation di

k  of 
the considered edge point act i

kPΓ  of the actual product 
geometry Gact

k  can be readily determined. Let us first 
remember that the coordinate z  axis has been chosen 
in such a way as to coincide with the edge normal 

vector act i
kΓn  with the origin set at point ΓPi

k , i.e. 
act i

kΓ P = ( , , )0 0 0 . Thus, since the deviation is quantified 
by the distance measured from point act i

kPΓ  to the 
auxiliary surface ΣG  in the direction normal to the 
edge, it can be retrieved directly from the functional 
representation Σ f x y zi ( , , ) 0   = , when taking  x y= = 0   
in Eq. (13). The established deviation is evidently:

 d ai
k i= ,1  (14)

and the respective deviation vector di
k  is:

 d ni
k

i
k
act i

kd= .⋅ Γ  (15)

Fig. 6.  Edge geometry deviation determination

The deviation of the actual product edge 
geometry from the reference one, which is established 
by the deviation vector set di

k{ } , determines the 
appropriateness of the blank shape geometry Gbl

k   
used in the forming process simulation in the given 
iteration. The maximal shape deviation has been 
chosen as a measure of this appropriateness:

 d d i Nmax
k

i
k

act= , = 1,2,..., .max{ }  (16)

The deviation of the actual product edge 
geometry is computed in each, say, kth iteration. Its 
determination requires computation of edge normal 
vectors act i

kΓn  at points lying on the edge Γact
k  of 

the actual product geometry Gact
k  and finding a 

corresponding surface element ΣSi  on the auxiliary 
surface ΣG . The respective surface normal vectors 
Σni

j j( = 1,2,3,4)   at points of the surface element ΣSi ,  
which are also required in computation of the actual 
product edge geometry deviation, are computed only 
once, i.e. after the auxiliary surface ΣG  determination 
(see Section 3.1).



Strojniški vestnik - Journal of Mechanical Engineering 59(2013)4, 237-250

245A Method for Optimal Blank Shape Determination in Sheet Metal Forming Based on Numerical Simulations

3.3  Blank Shape Geometry Correction

In the case where the convergence criterion is not 
met, i.e. d dmax

k
tol> , a correction of the blank shape 

geometry Gbl
k  is required. In our approach, this is 

carried out on two levels separately, first, by carrying 
out the repositioning of the edge points bl i

kPΓ , which 
is then followed by readjustment of the interior 
points bl i

kP  appertaining to the FE mesh. Correction 
of the edge blank shape geometry ΓGbl

k  is carried out 
based on the established deviation vector set di

k{ } , 
Eq. (15), with repositioning of points bl i

kPΓ  applied 
in the direction of the edge normal vectors bl i

kΓn , 
Eq. (10), considering deviation magnitudes di

k . The 
positions of the points lying on the edge Γbl

k+1  of the 
newly defined blank shape are thus computed by the 
equation:

 bl i
k

bl i
k

i
k
bl i

kdΓ Γ ΓP P n+ + ⋅1 = .  (17)

In order to preserve the quality of the simulation 
in the subsequent iteration, the aspect ratio of the 
existing FE mesh, used in the description of the blank 
shape geometry Gbl

k , should not be significantly 
changed by repositioning of the edge points bl i

kPΓ . 
However, this threat can be efficiently neutralised 
by adequate readjustment of the interior points bl i

kP   
considering the applied edge repositioning, Eq. 
(17). Numerically, this can be achieved by exposing 
the blank having shape geometry Gbl

k  to given 
displacement boundary conditions (Fig. 7a) and 
solving the corresponding boundary value problem, 
while assuming isotropic linear elastic behaviour. The 
blank edge nodes are displaced in accordance with 
the prescribed correction of the blank shape, Eq. (17), 
while nodes lying on the symmetry planes are subject 
to symmetric boundary conditions. The result of such 
computer analysis is the adjusted FE mesh specifying 
the blank shape geometry Gbl

k+1 , which will be used in 
the subsequent iteration. The adjustment is carried out 
in accordance with the computed displacement field 
(Fig. 7b).  

4  CASE STUDY - BLANK SHAPE OPTIMISATION

In this section, the developed blank shape optimisation 
method is validated by considering a particular product 
with the prescribed edge geometry, manufactured by 
sheet metal forming (Fig. 8). The product’s geometry, 
which is originally double planar symmetric by design 
specification, is characterised by two deep cut outs 
extending downwards to the cup’s bottom. 

a) 

b) 
Fig. 7.  Blank shape geometry correction G Gbl

k
bl
k→ +1 ;   

a) applied displacement boundary conditions, and b) adjustment 
of the FE’s mesh

Computer simulations supporting the blank shape 
geometry optimisation in the considered case study 
have been treated as three-dimensional and carried 
out using the FEM computer program ABAQUS. 
The numerical simulation of the complete production 
cycle of the formed product, which consists of a 
loading and unloading stage, associated respectively 
with irreversible plastic deformation and elastic 
strain relaxation, has been carried out considering 
particularities in the numerical treatment of the 
problem. Accordingly, the forming process simulation 
is carried out using an explicit time integration scheme 
in ABAQUS Explicit [30], whereas the springback 
simulation is carried out by ABAQUS Standard 
[31] using an implicit time integration scheme. 
For computationally efficient integration of the 
constitutive equations, the NICE scheme, an explicit 
integration scheme developed in our laboratory, 
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see Halilovič et al. [3] and Vrh et al. [4], has been 
implemented into ABAQUS/Explicit via the VUMAT 
subroutine [32]. The optimisation procedure is carried 
out using a closed loop Fortran program that has 
been upgraded by an Abaqus’ Python script to enable 
display of the optimisation results in each iteration. 

After the optimisation blank shape geometry 
procedure is completed, which is treated in Section 
4.2, both the conceived forming process simulation 
model and the proposed blank shape geometry 
optimisation procedure are validated experimentally, 
which is presented in Section 4.3.

4.1  Initial Blank Shape, Reference Product Geometry and 
Tool Geometry

The geometry of the considered product (referred as 
the “reference geometry” in this paper) to be obtained 
by a sheet metal forming process, where a further 
sheet metal cutting phase is excluded, is shown in Fig. 
8a. An aluminium sheet blank of 1.0 mm thickness is 
used. The cross-section of the corresponding forming 
tool assembly is shown in Fig. 8b. The forming tool 
is defined in such a way that its die geometry is 
determined by the reference product geometry, with a 
constant clearance of 1.2 mm ensured between the die 
and the punch, when the tool is in a closed position. 
In accordance with the assumptions given in Section 
2.5, the tool geometry is considered fixed and not 
subject to possible variation. The design parameters 
specifying the initial blank shape geometry, used to 
start the described numerical optimisation blank shape 
geometry procedure, are displayed in Fig. 8c. 

4.2  Determination of Optimal Blank Shape

Determination of the blank shape geometry 
appropriate for the production of the product, 
displayed in Fig. 8a, is carried out iteratively following 
the optimisation procedure, described in Section 3. 
Thus, a corresponding forming process computer 
simulation is performed in each iteration, considering 
the actualised blank shape geometry. 

In simulation, the following material and 
technology process data have been taken into 
consideration. It is assumed that the product is made 
from a 1mm thick aluminium sheet exhibiting 
orthotropic material behaviour, with a Young’s 
modulus of 72500 MPa, a Poisson’s ratio of 0.3, an 
initial yield limit of 105 MPa, and coefficients 
describing orthotropic material properties in relation 
to the potential function Hill 48 being: Rxx = 1 0. , 
Ryy = 0 95.  and Rxy = 0 97. . The yield curve specifying 

the hardening plastic behaviour of the given material 
is plotted in Fig. 9. Since no significant reversed 
plastic bending occurs during the considered forming 
process, possible kinematic hardening is neglected 
and isotropic hardening is assumed. 

a) 

b) 

c) 
Fig. 8.  Product and forming process geometry design 

specification; a) product reference geometry, b) forming tool 
assembly, and c) initial blank shape geometry

To avoid wrinkling a blank-holder force of  
5.2 kN in total is applied. The design prescribed 
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clearance between the die and the punch in a closed 
position, which is set to 1.2 mm, allows for a potential 
increase in the sheet thickness during progressing 
of the punch. For the forming process simulation 
to be realistic the tribological conditions between 
the surfaces in contact with one another have to 
be adequately described. In this investigation the 
Coulomb friction law is adopted with the friction 
coefficient between the sheet metal and the tool parts 
assumed to equal 0.12. 

Fig. 9.  Yield curve of aluminium sheet

Fig. 10.  Numerical model of the forming process

The forming process simulations are based on 
a FE model, which is conceived in such a way as to 
cope efficiently with all peculiarities encountered 
when numerically modelling such a complex problem. 
Since both the tool and the blank shape geometries 
exhibit planar symmetry with respect to the xz and 
yz planes and orthotropic material properties are 
taken into account, only a quarter of the product can 
be considered in the model (Fig. 10), with symmetry 
boundary conditions applied and a given blank-
holder force of magnitude 1.3 kN. In the FE model, 
the tool surfaces are modelled by rigid FEs with a 
characteristic size of 1.0 mm, while the sheet metal 
is modelled by deformable reduced integration 

quadrilateral shell FEs with a characteristic size of 1.2 
mm and with 11 integration points evenly distributed 
through the shell thickness. 

Once the numerical simulation model is 
completely defined, the steps in the optimisation 
procedure, given by the flow chart in Fig. 3, can be 
carried out and the optimal blank shape geometry is 
achievable iteratively. In Fig. 11, the deviation of the 
product edge geometry from its reference geometry 
along the edge contour, as determined by the computer 
simulation in the considered iteration, is plotted. From 
these plots it is evident that the developed optimisation 
procedure is computationally very efficient. Namely, 
the maximal product edge deviation computed when 
the initial blank shape is considered in the forming 
simulation is equal to 3.1 mm. After the first iteration 
this deviation is reduced to less than 0.3 mm and after 
two additional iterations to less than 0.001 mm. The 
shape variation, to which the blank of initial shape 
geometry is subject when it is optimised using the 
presented approach, is displayed in Fig. 12. 

4.3  Experimental Validation of the Blank Shape 
Optimisation

In order to validate the developed approach to blank 
shape geometry optimisation in the investigated case 
study experimentally, the forming tool parts have been 
manufactured and assembled in accordance with the 
design scheme (Fig. 8b). In fact, the forming tool is 
designed in as simple a way as possible. The punch 
movement is guided by four cylindrical guides, which 
also have the function of limiting the punch bottom 
position. The blank-holder is attached to the tool die 
by eight sets of bolts and springs under tension so that 
required blank-holder force is ensured. The blanks 
used in the experiment are cut out of an aluminium 
sheet by a water jet cutter.

The experiment was carried out on a HI-KON 
(model HK250S2) forming press with corresponding 
measurements of the product edge geometry done by 
the 3D measuring machine Brown & Sharpe, Mistral 
7-10-7, its accuracy classified as being ±0.004 mm. 
The product edge geometry was measured at 6 control 
points along the edge contour (see Fig. 13 for their 
position). 

To validate the accuracy of the determined blank 
shape geometry and computed product shape, two 
experiments were performed, considering different 
blank shapes. In the first experiment, the product is 
formed from the blank of initially defined shape 
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geometry (Fig. 8c) in order to confirm the physical 
and numerical appropriateness of the forming process 
simulation model definition used in the blank shape 
optimisation procedure. The difference between 
experimentally (Fig. 13, Exp. initial) and numerically 
(Fig. 13, Num. initial) obtained product edge geometry 
deviation is less than 0.20 mm.

Fig. 11.  Product edge deviations during iteration process

Fig. 12.  Optimised vs. initial blank shape geometry

The difference between the computer simulation 
and experiment being in the same range as the 
accuracy of the cutting machine (±0.1 mm), the 
adequacy of the simulation model can be confirmed. 
The second experiment was carried out to confirm 

the adequacy of the numerically optimised blank 
shape geometry. As it can be seen from the plots in 
Fig. 13, the difference between experimentally (Fig. 
13, Exp. optimised) and numerically (Fig. 13, Num. 
optimised) determined product edge geometry is of 
the same order of magnitude as in the first experiment 
and is less than 0.22 mm. Therefore, we can confirm 
that the applied optimisation procedure is appropriate. 
Photographs of the formed products, produced by the 
blanks having initial and optimised shape geometry, 
are displayed in Fig. 14.

Fig. 13.  Product edge deviation

Fig. 14.  Formed product with initial and optimised blank shape

5  CONCLUSION

In this paper, a blank shape optimisation method that 
enables determination of appropriate blank shape 
geometry, by which a formed product of prescribed 
geometry can be produced, has been presented. The 
developed method is based on an iterative procedure 
where in each iteration the adequacy of the actual 
blank shape geometry is checked by identifying the 
edge geometry deviation of the resulting product 
geometry, which is obtained by means of the 
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corresponding forming process computer simulation. 
As demonstrated numerically and subsequently 
validated experimentally, the blank shape optimisation 
method used here for a specific case study with 
rather complex product geometry is characterised by 
computational efficiency and robustness.

6  ACKNOWLEDGMENT

The second author appreciates the support provided 
in the operation part financed by the European 
Union, European Social Fund. The operation was 
implemented within the framework of the Operational 
Programme for Human Resources Development for 
the Period 2007 to 2013.

7  REFERENCES

[1] Volk, M., Nardin, B., Dolšak, B. (2011). Application of 
numerical simulation in the deep-drawing process and 
the holding system with segments and inserts. Strojniški 
vestnik - Journal of Mechanical Engineering, vol. 57, 
no. 9, p. 697-703, DOI:10.5545/sv-jme.2010.258.

[2] Menezes, L.F, Teodosiu, C. (2000). Three-dimensional 
numerical simulation of the deep-drawing process using 
solid finite elements. Journal of Materials Processing 
Technology, vol. 97, no. 13, p. 100-106, DOI:10.1016/
S0924-0136(99)00345-3.

[3] Fan, J.P., Tang, C.Y., Tsui, C.P., Chan, L.C., Lee, T.C. 
(2006). 3d finite element simulation of deep drawing 
with damage development. International Journal of 
Machine Tools and Manufacture, vol. 46, no. 9, p. 
1035-1044, DOI:10.1016/j.ijmachtools.2005.07.044.

[4] Vrh, M., Halilovič, M., Starman, B., Štok, B., Comsa, 
D., Banabic, D. (2011).  Earing prediction in cup 
drawing using the bbc2008 yield criterion. AIP 
Conference Proceedings, vol. 1383 no.1, p. 142-149, 
DOI:10.1063/1.3623604.

[5] Halilovič, M., Vrh, M., Štok, B. (2009). Nice-an explicit 
numerical scheme for efficient integration of nonlinear 
constitutive equations. Mathematics and Computers in 
Simulation, vol. 80, no. 2, p. 294-313, DOI:10.1016/j.
matcom.2009.06.030.

[6] Vrh, M., Halilovič, M., Štok, B. (2010). Improved 
explicit integration in plasticity. Inernational Journal 
of Numerical Methods in Engineering, vol. 81, no. 7, 
p. 910-938.

[7] Vrh, M., Halilovič, M., Štok, B. (2011).  The evolution 
of effective elastic properties of a cold formed stainless 
steel sheet. Experimental Mechanics, vol. 51, p. 677-
695, DOI:10.1007/s11340-010-9371-1.

[8] Vrh, M., Halilovič, M., Starman, B., Štok, B. (2011). A 
new anisotropic elasto-plastic model with degradation 
of elastic modulus for accurate springback simulations. 
International Journal of Material Forming, vol. 4, no. 
2, p. 217-225, DOI:10.1007/s12289-011-1029-8.

[9] Koc, P., Štok, B. (2008). Usage of the yield curve in 
numerical simulations. Strojniški vestnik - Journal of 
Mechanical Engineering, vol. 54, no. 12, p. 821-829.

[10] Batoz, J.L., Duroux, P., Guo, Y.Q., Detraux, J. 
M. (1989). An efficient algorithm to estimate the 
large strains in deep drawing. Proceedings of the 
NUMIFORM, p. 383-388.

[11] Batoz, J.L., Guo, Y.Q. (1997). Analysis and design of 
sheet forming parts using a simplified inverse approach. 
COMPLAS V, Barcelona, p. 178-185.

[12] Batoz, J.L., Guo, Y.Q., Mercier, F. (1998). The inverse 
approach with simple triangular shell elements for 
large strain predictions of sheet metal forming parts. 
Engineering Computations, vol. 15, no. 7, p. 864-892, 
DOI:10.1108/02644409810236894. 

[13] Chung, K., Richmond, O. (1992). Ideal Forming-I. 
Homogeneous deformation with minimum plastic 
work. International Journal of Mechanical Sciences, 
vol. 34, no. 7, p. 575-591, DOI:10.1016/0020-
7403(92)90032-C.

[14] Chung, K., Richmond, O. (1992). Ideal Forming-II. 
Sheet forming with optimum deformation. International 
Journal of Mechanical Sciences, vol. 34, no. 8, p. 617-
633, DOI:10.1016/0020-7403(92)90059-P.

[15] Azaouzi, M., Belouettar, S., Rauchs, G. (2010). A 
numerical method for the optimal blank shape design. 
Materials and Design, vol. 32, no. 2, p. 756-765, 
DOI:10.1016/j.matdes.2010.07.027.

[16] Azaouzi, M., Naceur, H., Delamoziere, A., Batoz, 
J.L., Belouettar, S. (2008). An heuristic optimization 
algorithm for the blank shape design of high precision 
metallic parts obtained by a particular stamping process. 
Finite Elements in Analysis and Design, vol. 44, no. 14, 
p. 842-850, DOI:10.1016/j.finel.2008.06.008.

[17] Naceur, H., Guo, Y.Q., Batoz, J.L. (2004) Blank 
optimization in sheet metal forming using an 
evolutionary approach. Journal of Materials 
Processing Technology, vol. 151, no. 1-3, p. 183-191, 
DOI:10.1016/j.jmatprotec.2004.04.036.

[18] Park, S.H., Yoon, J.W., Yang, D.Y., Kim, Y.H. (1999) 
Optimum blank design in sheet metal forming by 
the deformation path iteration method. International 
Journal of Mechanical Sciences, vol. 41 no. 10, p. 
1217-1232, DOI:10.1016/S0020-7403(98)00084-8.

[19] Yeh, F.H., Wu, M.T., Li, C.L. (2007). Accurate 
optimization of blank design in stretch flange based 
on a forward inverse prediction scheme. International 
Journal of Machine Tools and Manufacture, vol. 
47, no. 12-13, p. 1854-1863, DOI:10.1016/j.
ijmachtools.2007.04.002.

[20] Lin, C.T., Kwan, C.T. (2009).  Application of abductive 
network and fem to predict the optimal blank contour of 
an elliptic cylindrical cup from deep drawing. Journal 
of Materials Processing Technology, vol. 209, no. 3, p. 
1351-1361, DOI:10.1016/j.jmatprotec.2008.03.042.

[21] Parsa, M.H., Pournia, P. (2007). Optimization of initial 
blank shape predicted based on inverse finite element 

http://dx.doi.org/10.5545/sv-jme.2010.258
http://dx.doi.org/10.1016/S0924-0136(99)00345-3
http://dx.doi.org/10.1016/S0924-0136(99)00345-3
http://dx.doi.org/10.1016/j.ijmachtools.2005.07.044
http://dx.doi.org/10.1063/1.3623604
http://dx.doi.org/10.1016/j.matcom.2009.06.030
http://dx.doi.org/10.1016/j.matcom.2009.06.030
http://dx.doi.org/10.1007/s11340-010-9371-1
http://dx.doi.org/10.1007/s12289-011-1029-8
http://dx.doi.org/10.1108/02644409810236894
http://dx.doi.org/10.1016/0020-7403(92)90032-C
http://dx.doi.org/10.1016/0020-7403(92)90032-C
http://dx.doi.org/10.1016/j.matdes.2010.07.027
http://dx.doi.org/10.1016/j.finel.2008.06.008
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.036
http://dx.doi.org/10.1016/S0020-7403(98)00084-8
http://dx.doi.org/10.1016/j.ijmachtools.2007.04.002
http://dx.doi.org/10.1016/j.ijmachtools.2007.04.002
http://dx.doi.org/10.1016/j.jmatprotec.2008.03.042


Strojniški vestnik - Journal of Mechanical Engineering 59(2013)4, 237-250

250 Mole, N. – Cafuta, G. – Štok, B.

method. Finite Elements in Analysis and Design, vol. 
43, no. 3, p. 218-233, DOI:10.1016/j.finel.2006.09.005.

[22] Pegada, V., Chun, Y., Santhanam, S. (2002). An 
algorithm for determinig optimum blank shape for 
the deep drawing of the alluminium cups. Journal of 
Materials Processing Tehnology, vol. 125-126, p. 743-
750, DOI:10.1016/S0924-0136(02)00382-5.

[23] Son, K., Shim, H. (2003). Optimal blank shape design 
using the initial velocity of the boundary nodes. Journal 
of Materials Processing Technology, vol. 134, no. 1, p. 
92-98, DOI:10.1016/S0924-0136(02)00927-5.

[24] Hamammi, W., Padmanbhan, R., Oliveira, M.C., 
BelHadjSalah, H., Alves, J.L., Menzes, L.F. (2009), 
A deformation based blank design method for 
formed parts. International Journal of Mechanics 
and Materials in Design, vol. 5, no. 4, p. 303-314, 
DOI:10.1007/s10999-009-9103-9.

[25] Fazli, A., Arezoo, B. (2012). A comparison of numerical 
iteration based algorithms in blank optimization. Finite 
Elements in Analysis and Design, vol. 50, p. 207-216, 
DOI:10.1016/j.finel.2011.09.011.

[26] Sattari, H., Sedaghati, R., Ganesan, R. (2007).  Analysis 
and design optimization of deep drawing process part 

ii: Optimization. Journal of Materials Processing 
Technology, vol. 184, no. 1-3, p. 84-92, DOI:10.1016/j.
jmatprotec.2006.11.008.

[27] Padmanabhana, R., Oliveiraa, M.C., Baptistaa, 
A.J., Alvesb, J.L., Menezesa, L.F. (2009). Blank 
design for deep drawn parts using parametric nurbs 
surfaces. Journal of Materials Processing Technology, 
vol. 209, no. 5, p. 2402-2411, DOI:10.1016/j.
jmatprotec.2008.05.035.

[28] Shim, K., Son, H., Kim, K. (2000).  Optimum blank 
shape design by sensitivity analysis. Journal of 
Materials Processing Technology, vol. 104, no. 3, p. 
191-199, DOI:10.1016/S0924-0136(00)00556-2.

[29] Cafuta, G., Mole, N., Štok, B. (2012). An enhanced 
displacement adjustment method: Springback and 
thinning compensation. Materials and Design, vol. 40, 
p. 476-487, DOI:10.1016/j.matdes.2012.04.018. 

[30] SIMULIA. (2008). ABAQUS/Explicit, 6.8-1, Simulia, 
Providence.

[31] SIMULIA. (2008). ABAQUS/Standard, 6.8-1, Simulia, 
Providence.

[32] RI Simulia (2006). User’s Manual.  ABAQUS Version 
6.6, Simulia, Providence. 

http://dx.doi.org/10.1016/j.finel.2006.09.005
http://dx.doi.org/10.1016/S0924-0136(02)00382-5
http://dx.doi.org/10.1016/S0924-0136(02)00927-5
http://dx.doi.org/10.1007/s10999-009-9103-9
http://dx.doi.org/10.1016/j.finel.2011.09.011
http://dx.doi.org/10.1016/j.jmatprotec.2006.11.008
http://dx.doi.org/10.1016/j.jmatprotec.2006.11.008
http://dx.doi.org/10.1016/j.jmatprotec.2008.05.035
http://dx.doi.org/10.1016/j.jmatprotec.2008.05.035
http://dx.doi.org/10.1016/S0924-0136(00)00556-2
http://dx.doi.org/10.1016/j.matdes.2012.04.018

