
BLED WORKSHOPS
IN PHYSICS
VOL. 16, NO. 1
p. 16

Proceedings of the Mini-Workshop
Exploring Hadron Resonances

Bled, Slovenia, July 5 - 11, 2015

Analytic structure of nonperturbative quark
propagators and meson processes?

Dalibor Kekeza and Dubravko Klabučarb
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Abstract. The analytic structure of certain Ansätze for quark propagators in the nonper-
turbative regime of QCD is investigated. When choosing physically motivated parameter-
ization of the momentum-dependent dressed quark mass function M(p2), with definite
analytic structure, it is highly nontrivial to predict and control the analytic structure of the
corresponding nonperturbative quark propagator. The issue of the Wick rotation relating
the Minkowski-space and Euclidean-space formulations is also highly nontrivial in the
nonperturbative case. A propagator form allowing the Wick rotation and enabling equiva-
lent calculations in Minkowski and Euclidean spaces is achieved. In spite of its simplicity,
this model yields good qualitative and semi-quantitative description of some pseudoscalar
meson processes.

Lattice studies of QCD are complemented by the continuum QCD studies uti-
lizing Dyson–Schwinger equations (DSE). Both ab initio DSE studies and DSE
studies for models of QCD provide an important approach for the study of phe-
nomena in hadronic physics both at zero and finite temperatures and densities –
see, for example, Refs. [1, 2]. Just like lattice QCD studies, the large majority of
DSE calculations (including those of our group, e.g., [3]) are implemented in the
Euclidean metric.

Nevertheless, solutions of the Bethe–Salpeter equation require analytic con-
tinuation of DSE solutions for dressed quark propagators Sq(p), into the complex
p2–plane. Similar situation is with the processes that involve quark propagators
(QP) and Bethe–Salpeter amplitudes: it is not enough to know propagators and
the Bethe–Salpeter amplitude only in the spacelike region, for real and positive
p2. It is important to know the analytic properties in the whole p2 complex plane.

Alkofer et al. [4] have explored the analytic structure of the Landau gauge
gluon and quark propagators. They have proposed some simple analytic Ansätze
for these propagators. Based on their Ansätze, Jiang et al. [5] provide an analytical
approach to calculating the pion decay constant fπ and and the pion mass Mπ at
finite density.

We want to investigate and further improve the analytic structure of the
quark propagator S(p). It can be conventionally parameterized (in Minkowski
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space) as

S(p) = −σv(−p
2) 6p+ σs(−p2) = Z(−p2)

6p+M(−p2)

p2 −M2(−p2)
,

and correspondingly in Euclidean space as

S(p) = i6pσv(p2) + σs(p2) =
Z(p2)

−i 6p+M(p2)
= Z(p2)

i 6p+M(p2)

p2 +M2(p2)
,

where M(x) is the dressed quark mass function and Z(x) is the wave function
renormalization. Alkofer et al. [4] have explored the analytic structure of the
quark (and gluon) propagator in the Landau gauge, using numerical solutions of
the pertinent Dyson-Schwinger equations and fits to lattice data as inputs. Their
Ansätze for Z andM (or σv and σs) include meromorphic functions (poles on the
real axes or/and pairs of the complex conjugate poles) and functions with branch
cut structures. Positivity violation in the spectral representation of the propagator
shows the presence of the negative–norm contributions to the spectral function,
i.e., the absence of asymptotic states from the physical part of the state space,
which is sufficient (but not necessary) criterion for the confinement. While in the
gluon propagator a clear evidence for positivity violation is found, the similar
analysis shows that there is probably no such violation in the quark propaga-
tor [4]. The propagator with pairs of complex conjugate poles violates causality.
It has been argued [6,7] that the corresponding S-matrix remains both causal and
unitary (see also Ref. [1]).

Furthermore, complex conjugate poles can pose a problem for the analytic
continuation from Minkowski to Euclidean space (Wick rotation) used by lattice
gauge theory and functional methods. It has been also shown that complex con-
jugate poles in S(p) cause thermodynamical instabilities at nonvanishing temper-
ature and density [8].

Of crucial importance is the following question: Is it possible to find an an-
alytic Ansatz for the quark propagator solely with branching cut (or cuts) on the
real timelike axes, with no additional structures (isolated singularities or cuts) in
the complex plane? Such an Ansatz could be used for practical calculation of the
processes involving quark loops.

Because of a complicated interplay between analytic structure of the func-
tions Z and M on one side, and σs and σv on the other side, the approximation
A = 1 has been applied. Then, the problem reduces to finding of appropriate
functions M(x) and σ(x) = 1/(x +M2(x)). The most rigorous constraint is that
the propagator S(p) → 0 for all directions |p2| → ∞ in the complex p2 plane [9].
Furthermore, for large and positive values of x = p2 (spacelike momenta), func-
tionM(x) must be positive and approach to zero from above [4]. In the Euclidean
regime, for real and positive values of x, the mass function should be fitted to
match the form known from lattice and Dyson-Schwinger calculations.

Number of Ansätze for the quark mass function has been investigated. When
choosing certain parametrization of the functionM(x), with definite analytic struc-
ture, it is highly nontrivial to predict and control the analytic structure of the ac-
companying σ(x) function. Relevant mathematical theory and possibly related
theorems (like Rouches theorem) are hardly applicable for this concrete problem.
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The best results were achieved with the Ansatz of the formM(x) = log(R(x)),
where R is a rational function with certain good properties. The functionM(x) has
a few cuts on the real timelike axes, while the propagator dressing function σ(x)
has both branch cuts and poles on the real timelike axes. No additional struc-
ture are present in the complex momentum plane. The quark propagator based
on this Ansatz should allow for the Wick rotation and equivalent calculation in
Minkowski and Euclidean spacetime.

Future work will include an improved fitting of the mass functionM(x) and
refinement of calculation with Z(x) = 1. Furthermore, we are planning to check
whether our Ansatz satisfies the requirements of positivity violation.

The quark propagator obtained in this way, endowed with good analytic
properties, should then be tried and adjusted so that it gives good results in var-
ious applications: the γγ-transition and charge form factors of pions, σ and ρ
form factors and decays, are just some of the interesting potential applications of
the quark propagator Ansatz with good analytic structure. It is also necessary to
investigate the related issue of the Bethe-Salpeter equation in Minkowski space.
The quark loop contribution to various processes should also be studied using
these improved quark propagators. Besides the processes like π, η, η′ → γγ that
are described by an anomalous triangle diagram, there are interesting anoma-
lous processes based on the pentagon diagram, like η, η′ → 4π. (We could ex-
pect new results from high-statistics η′ experiments like BES-III, ELSA, CB-at-
MAMIC, CLAS at Jefferson Lab.) The non–anomalous processes η → 3π is espe-
cially interesting because it is sensitive to the isospin violation. While the average
u and d-quark mass, (mu +md)/2, is well known, there exists significant uncer-
tainty in their mass difference,md−mu. The η→ 3π decay is particularly suitable
formd−mu difference determination because of the suppressed electromagnetic
contributions [10, 11].

Since the microscopic understanding of strongly interacting matter (both in
hadronic phase and in quark-gluon phase) is of great importance also for the
physics of heavy ion collisions and compact stars, extending the quark propa-
gator Ansatz with good analytic structure to finite densities and temperatures
should also be investigated. This is necessary, for example (to name one concrete
task), for extending our analyses of the η-η ′ complex [12,13] to finite densities and
temperatures. Of particular interest is extending to finite density our analysis of
the possible UA(1) symmetry restoration [14] in the η-η ′ complex.
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Abstract. We have designed a soluble model similar to the Nambu–Jona-Lasino model,
regularized in a box with periodic boundary conditions, in order to explore the properties
of resonances when only discrete eigenvalues are available. The study might give a lesson
to similar problems in Lattice QCD.

1 The quasispin NJL-like model

It is very instructive to understand the key features of a simplified model con-
taining the spontaneous chiral symmetry breaking. Some time ago we have con-
structed a soluble version of the Nambu–Jona-Lasino model [1, 2]. Now we ex-
plore what it tells about the sigma meson.

We make the following simplifications:

1. We assume a sharp 3-momentum cutoff 0 ≤ |pi| ≤ Λ;
2. The space is restricted to a box of volume V with periodic boundary condi-

tions. This gives a finite number of discrete momentum states, N =

NhNcNfVΛ3/6π2 occupied by N quarks. (Nh, Nc and Nf are the number
of quark helicities, colours and flavours.)

3. We take an average value of kinetic energy for all momentum states: |pi| →
P = 3

4
Λ .

4. While in the NJL model the interaction conserves the sum of momenta of
both quarks we assume that each quark conserves its momentum and only
switches from the Dirac level to Fermi level.

5. Temporarily, we restrict to one flavour of quarks, Nf = 1.

Let us repeat the “Quasispin Hamiltonian” [1, 2].

H =

N∑
k=1

(
γ5(k)h(k)P +m0β(k)

)
+

−
g

2

( N∑
k=1

β(k)

N∑
l=1

β(l) +

N∑
k=1

iβ(k)γ5(k)
N∑
l=1

iβ(l)γ5(l)
)

.
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Here γ5 and β are Dirac matrices,m0 is the bare quark mass and g = 4G/V where
G is the interaction strength in the original (continuum) NJL.

We introduce the quasispin operators which obey the spin commutation re-
lations

jx =
1

2
β , jy =

1

2
iβγ5 , jz =

1

2
γ5 ,

Rα =

N∑
k=1

1+ h(k)

2
jα(k) , Lα =

N∑
k=1

1− h(k)

2
jα(k) , Jα = Rα + Lα =

N∑
k=1

jα(k) .

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J
2
x + J

2
y) .

The three model parameters

Λ = 648MeV, G = 40.6MeV fm3, m0 = 4.58MeV

have been fitted (in a Hartree-Fock + RPA approximation) to the observables

M =

√(
Eg(N) − Eg(N− 1)

)2
− P2 = 335MeV

Q = 〈g|ψ̄ψ|g〉 = 1

V 〈g|
∑
i

β(i)|g 〉 = 1

V 〈g|Jx|g 〉 = 250
3MeV3

mπ = E1(N) − Eg(N) = 138MeV .

The values of our model parameters are very close to those of the full Nambu-
Jona Lasinio model used by the Coimbra group [3] and by Buballa [4].

2 The spectrum of 0− and 0+ excitations –
Emergence of the σmeson

It is easy to evaluate the matrix elements of the quasispin Hamiltonian using the
angular momentum algebra. IfN is not too large the corresponding sparse matrix
can be diagonalized using Mathematica.

Excited levels of the ground state band (R=L=N/4) in Fig. 1 are almost equidis-
tant and are suggestive of n-pion states (in s-state). The level spacings ∆E are
slightly decreasing with the assumed number of pions nπ due to the attractive
interaction between pions. Inbetween appear also “intruder states” which can be
interpreted as sigma excitations. The interpretation as σ meson is further sup-
ported by the large value of the matrix element of Jx between the ground state
and the “intruder state”. (Odd ”multipion states” have zero value and even ones
have a rather small value.)
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np   parity    E [MeV]      DE [MeV] Intruder 

8      +       866             63 

        -        816 s(667)+p(136)+13 MeV 

7      -        803             93 

6      +       710             99 

        +       667 s(667) 

5       -       611           108     

4      +       503           115             

3      -        388           123             

2      +       265           129                 

1      -        136           136             

0      +           0               0              

Fig. 1. Levels of the ground state band (R=L=N/4), level spacing between opposite parity
states, and the assumed number of pions nπ pions

3 The width of the σmeson

In the attempt to describe resonances when only discrete eigenvalues are avail-
able we get a discrete sigma resonance energy, but not its width. We are trying to
get the complex pole. For that purpose, we explore the method of analytic con-
tinuation from the bound state [5]. For this purpose, we vary one of the model
parameters, the bare quark massm from the region where the σmeson would be
bound (Eσ < E2π) down to the physical value ofm→ m0 (where Eσ � E2π).

At m > 64 MeV there are two positive parity states between the first and
second negative parity states (the one-pion and three-pion excitations); the lower
one is the intruder (σ meson) and the upper one is the correlated two-pion state.
At m = 64 MeV both positive parity states coincide – the threshold for σ → 2π.
When we decrease m further, the energy of the σ meson decreases slower than
the 2π energy and it appears at higher multipion states. For the physical value
m = m0 = 4.58MeV σ is already the sixth excited state, next to the six-pion state.
It is obviously in the continuum, prompt to decay into 2π, in a more complete
choice of interaction.

The method consists of the following steps:

• Determine the threshold value mth and calculate ε = Eσ − E2π as a function
ofm form > mth.

• Introduce a variable x =
√
m−mth; calculate k(x) = i

√
−ε in the bound state

region (Fig. 2).
• Fit k(x) by a polynomial k(x) = i(c0 + c1x+ c2x2 + . . .+ c2Mx2M) .
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• Construct a Padé approximant:

k(x) = i
a0 + a1x+ . . .+ aMx

M

1+ b1x+ . . .+ bMxM
.

• Analytically continue k(x) to the region m < mth (i.e. to imaginary x) where
k(x) becomes complex.

• Determine the position and the width of the resonance as analytic continua-
tion inm (Fig. 3 and Fig. 4):

Eres = Re (contm→m0k2) , Γ = −2 Im (contm→m0k2) .

2 4 6 8 10 12
x @MeV

1�2D

5

10

15

20

k @MeV
1�2D

Fig. 2. The fit of k(x) with quadratic(lower middle) and quartic polynomial (upper middle)
and with Padé approximants of order 1 (below) and 2 (above)

We notice that the results for Eres and Γ in Fig. 3 and 4 deviate strongly for
first and second order Padé approximants. This is due to the large stretch for the
analytic continuation so that convergence at higher orders cannot be expected.
Nevertheless, it is rewarding that the physical values for Eres and Γ lie some-
where in the middle between both curves.

To conclude, the method of analytic continuation in this case is just a game,
but it is instructive. Intentionally, we have plotted the energy and width of the
σ meson as a function of the corresponding pion mass rather than as a function
of the model parameter m. This is reminiscent of the extrapolation of pion mass
from about 500 Mev towards its physical value the way tha lattice people have to
struggle.
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Fig. 3. The resonance energy Eres of the σ meson as a function of the pion mass – extrapo-
lation using Padé approximants of order 1 (below) and 2 (above)
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Fig. 4. The width Γ of the σ meson as a function of the pion mass – extrapolation using
Padé approximants of order 1 (below) and 2 (above)
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Analitična zgradba neperturbativnih kvarkovih propagatorjev in
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Raziskujemo analitično zgradbo nekaterih nastavkov za kvarkove propagatorje
v neperturbativnem področju kromodinamike. Če izberemo fizikalno motivirano
parametrizacijo masne funkcije M(p2) oblečenih kvarkov, odvisne od gibalne
količine in z določeno analitično zgradbo, je skrajno težavno napovedati in obvla-
dati analitično zgradbo ustreznega neperturbativnega kvarkovega propagatorja.
Tudi problem Wickove rotacije, ki povezuje izražavo v prostoru Minkowskega in
Evklida, je skrajno težaven v neperturbativnem območju. Izpeljemo obliko prop-
agatorja, ki omogoča Wickovo rotacijo in dopušča enakovredne račune v prostoru
Minkowskega in Evklida. Kljub preprostosti nudi ta model dober kvalitativen in
semikvantitativen opis nekaterih procesov z psevdoskalarnimi mezoni.

Primerjava med mezoni in resonancami WLWL pri energijah več
TeV

Antonio Dobadoa, Rafael L. Delgadoa, Felipe J. Llanes-Estradaa and Domenec
Espriub

a Dept. Fisica Teorica I, Univ. Complutense, 28040 Madrid
b Institut de Ciencies del Cosmos (ICCUB), Marti Franques 1, 08028 Barcelona, Spain.

Mikavni signali z Velikega hadronskega trkalnika (LHC) namigujejo, da morda
obstajajo v področju zloma elektro-šibke simetrije resonance v območju več TeV.
Spomnimo na nekaj ključnih resonanc mezon-mezon v območju GeV, ki bi uteg-
nile imeti analogne resonance pri visokih energijah in nam služijo za primer-
javo, hkrati z odgovarjujočo unitarizirano efektivno teorijo. Čeprav je podrobna
dinamika lahko različna, pa zahteve po unitarnosti, kavzalnosti in globalnem
zlomu simetrije (z uporabo metode inverzne amplitude) dovoljujejo prenos intu-
icije v večinoma neizmerjeno območje visokih energij. Če bo povečano število do-
godkov na ATLASU okrog 2 TeV podprlo tako novo resonanco, to lahko pomeni
anomalno sklopitev qq̄W.

Resonance v konstituentnem kvarkovem modelu.

R. Kleinhappel and W. Plessas

Theoretical Physics, Institute of Physics, University of Graz, A-8010 Graz, Austria

Na kratko poročamo o današnjem opisu barionskih resonanc v realističnem mod-
elu s konstituentnimi kvarki, v katerem običajno obravnavamo resonance kot


