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Abstract

We classify the regular toroidal hypertopes of rank 4. Their automorphism groups are
the quotients of infinite irreducible Coxeter groups of euclidean type with 4 generators. We
also prove that there are no toroidal chiral hypertopes of rank 4.
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1 Introduction
A toroidal polytope is an abstract polytope that can be seen as a tessellation on a torus.
By abstract polytope we mean a combinatorial structure resembling a classical polytope
described by incidence relationships. Highly symmetric types of these polytopes are well
known and understood, in particular the regular and chiral toroidal polytopes have been
classified for rank 3 by Coxeter in 1948 [5], see also [6], and for any rank by McMullen
and Schulte [10]. Regular toroidal polytopes and also regular toroidal hypertopes, which
we define below, are strongly related to a special class of Coxeter groups, the infinite irre-
ducible Coxeter groups of euclidean type which are also known as affine Coxeter groups
(see, for example [11, page 73]). The symmetry groups of regular tessellations of euclidean
space are precisely the affine Coxeter groups with string diagrams (see [11, Theorem 3B5]).

When we talk about a tessellation we mean, informally, a locally finite collection of
polytopes which cover En in a face-to-face manner. A toroidal polytope can then be seen
as a "quotient" of a tessellation by linearly independent translations. For a precise definition
of a toroidal polytope see [8]. The concept of a hypertope has recently been introduced by
Fernandes, Leemans and Weiss (see [7]). A hypertope can be seen as a generalization of
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a polytope. Or, from another perspective, as a generalization of a hypermap. For more
infomation on hypermaps see [4]. In this paper we will classify the rank 4 regular toroidal
hypertopes.

Each affine Coxeter group in rank 4 (which are usually denoted by C̃3, B̃3 and Ã3),
as we shall see, can be associated with the group C̃3 = [4, 3, 4], the symmetry group of
the cubic tessellation of E3. The Coxeter Complex, denoted by C, of C̃3 can be seen as
the simplicial complex obtained by the barycentric subdivision of the cubic tessellation
{4, 3, 4}. The Coxeter complex for the other two rank 4 affine Coxeter groups can be
obtained by doubling the rank 3 simplicies for B̃3 and quadrupling them for Ã3. For
details on the construction of C see [9, Section 6.5] or [11, Section 3B]. We note that C
partitions E3.

A regular toroidal hypertope (see Section 2 for a precise definition) can be seen as
a quotient C/ΛI by a normal subgroup of translations, denoted ΛI where I represents
a generating set identifying the normal subgroup. In particular the quotient induced by
a normal subgroup of translations in the string affine Coxeter group C̃3 yields the three
families of regular rank 4 toroidal polytopes, while the other two affine Coxeter groups
with non-string diagrams do not yield regular polytopes, but as we shall see below, regular
hypertopes.

2 C-groups and hypertopes
Details of the concepts we review here are given in [7] and [11]. A C-group of rank p is a
pair (G,S) such thatG is a group and S = {r0, . . . , rp−1} is a generating set of involutions
of G that satisfy the following property:

∀I, J ⊆ {0, . . . , p− 1}, 〈ri : i ∈ I〉 ∩ 〈rj : j ∈ J〉 = 〈rk : k ∈ I ∩ J〉.

This is known as the intersection property which will be referred to later.
A subgroup ofG generated by a subset of S is called a parabolic subgroup. A parabolic

subgroup generated by a single element of S is called minimal and a parabolic subgroup
generated by all but one element of S is called maximal. For J ⊆ {0, . . . , p−1}, we define
GJ := 〈rj : j ∈ J〉 and Gi := 〈rj : rj ∈ S, rj 6= ri〉.

A C-group is a string C-Group if (rirj)
2 = 1G for all i, j with |i− j| > 1. A Coxeter

diagram C(G,S) of a C-group (G,S) is a graph whose vertex set is S and two vertices, ri
and rj are joined by an edge labelled by o(rirj), the order of rirj . We use the convention
that if an edge is labeled 2 it is dropped and not labeled if the order of the product of the
corresponding generators is 3. Thus the Coxeter diagram of a string C-group is a string.

Affine Coxeter groups are C-groups and those with string diagrams are associated with
toroidal polytopes. Hypertopes are generalizations of polytopes and we can, however, find
toroidal hypertopes whose automorphism groups are quotients of any affine Coxeter group.
We start with the definition of an incidence system.

Definition 2.1. An incidence system Γ := (X, ∗, t, I) is a 4-tuple such that

• X is a set whose elements are called elements of Γ;

• I is a set whose elements are called types of Γ;

• t : X → I is a type function that associates to each element x ∈ X of Γ a type
t(x) ∈ I;
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• ∗ is a binary relation of X called incidence, that is reflexive, symmetric and such that
for all x, y ∈ X , if x ∗ y and t(x) = t(y) then x = y.

A flag is a set of pairwise incident elements of Γ and the type of a flag F is {t(x) : x ∈
F}. A chamber is a flag of type I . An element x is said to be incident to a flag F when x
is incident to all elements of F and we write x ∗ F .

Definition 2.2. An incidence geometry is an incidence system Γ where every flag is con-
tained in a chamber. The rank of Γ is the cardinality of I .

Let Γ := (X, ∗, t, I) be an incidence system and F a flag of Γ. The residue of F in Γ
is the incidence system ΓF := (XF , ∗F , tF , IF ) where

• XF := (x ∈ F : x ∗ F, x /∈ F );

• IF := I\t(F );

• tF and ∗F are the restrictions of t and ∗ to XF and IF .

If each residue of rank at least 2 of Γ has a connected incidence graph then Γ is said to
be residually connected. Γ is thin when every residue of rank 1 contains exactly 2 elements.

Furthermore, Γ is chamber-connected when for each pair of chambers C and C ′, there
exists a sequence of chambers C =: C0, C1, . . . , Cn := C ′ such that |Ci∩Ci+1| = |I|−1
(here we say that Ci and Ci+1 are adjacent). An incidence system is strongly chamber-
connected when all of its residues of rank at least 2 are chamber-connected.

Proposition 2.3 ([7, Proposition 2.1]). Let Γ be a thin incidence geometry. Then Γ is
residually connected if and only if Γ is strongly chamber-connected.

A hypertope is a strongly chamber-connected thin incidence geometry. To reinforce the
relationship between polytopes and hypertopes we will sometimes refer to the elements of
a hypertope Γ as hyperfaces of Γ, and elements of type I as hyperfaces of type I.

Let Γ := (X, ∗, t, I) be an incidence system. An automorphism of Γ is a mapping
α : (X, I)→ (X, I) : (x, t(x)) 7→ (α(x), t(x)) where

• α is a bijection on X inducing a bijection on I;

• for each x, y ∈ X,x ∗ y if and only if α(x) ∗ α(y);

• for each x, y ∈ X, t(x) = t(y) if and only if t(α(x)) = t(α(y)).

An automorphism α is type-preserving when, for each x ∈ X, t(α(x)) = t(x). We de-
note by Aut(Γ) the group of automorphisms of Γ and by AutI(Γ) is the group of type-
preserving automorphisms of Γ.

An incidence system Γ is flag transitive if AutI(Γ) is transitive on all flags of type J
for each J ⊆ I . It is chamber-transitive if AutI(Γ) is transitive on all chambers of Γ.
Furthermore, it is regular if the action of AutI(Γ) is semi-regular and transitive.

Proposition 2.4 ([7, Proposition 2.2]). Let Γ be an incidence geometry. Γ is chamber-
transitive if and only if it is flag-transtive.

A regular hypertope is a flag transitive hypertope. We note that every abstract regular
polytope is a regular hypertope. The last concept we introduce here before we construct all
rank 4 regular toroidal hypertopes is that of coset geometries.
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Proposition 2.5 ([14]). Let p be a positive integer and I := {1, . . . , p} a finite set. Let G
be a group together with a family of subgroups (Gi)i∈I , X the set consisting of all cosets
Gig, g ∈ G, i ∈ I and t : X → I defined by t(Gig) = i. Define an incidence relation ∗ on
X ×X by :

Gig2 ∗Gjg2 if and only if Gig1 ∩Gjg2 is non-empty in G.

Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. Moreover, the
group G acts by right multiplication as a group of type-preserving automorphisms of Γ.
Finally, the group G is transitive on the flags of rank less than 3.

Whenever Γ is constructed as in the above proposition it is written as Γ(G; (Gi)i∈I)
and if it is an incidence geometry it is called a coset geometry. If G acts transitively on all
chambers of Γ (thus also flags of any type) we say that G is flag transitive on Γ or that Γ is
flag transitive.

Now we note that we can construct a coset geometry Γ(G; (Gi)i∈I) using a C-group
(G,S) or rank p by setting Gi := 〈rj : rj ∈ S, j ∈ I\{i}〉 for all i ∈ I := {0, . . . , p− 1}.

We introduce the following proposition which lets us know that constructions we use
produce regular hypertopes.

Proposition 2.6 ([7, Theorem 4.6]). Let (G, {r0, . . . , rp−1}) be a C-group of rank p and
let Γ := Γ(G; (Gi)i∈I) withGi := 〈rj : rj ∈ S, j ∈ I\{i}〉 for all i ∈ I := {0, . . . , p−1}.
If Γ is flag transitive, then Γ is a regular hypertope.

Henceforth, we restrict our considerations to rank 4. Let G = 〈r0, r1, r2, r3〉 be an
affine Coxeter group where each ri is a reflection through an associated affine hyperplane,
Hi. Let C be the Coxeter complex of G formed from the hyperplanes H ′is. Here r1, r2 and
r3 will stabilize a point which, without loss of generality, can be assumed to be the origin
o in E3. Then the maximal parabolic subgroup G0 is a finite crystallographic subgroup,
which is a group that leaves a central point fixed. For details, see [3, pages 108–109]. The
normal vectors to the reflection planes of the generators ofG0 are called the fundamental
roots. The images of the fundamental roots under G0 form a root system for G0.

The lattice, Λ, generated by the root system is called the root lattice, and the funda-
mental roots form the integral basis for Λ. The region enclosed by the fundamental roots
is called the fundamental region. This lattice gives us (and can be identified with) the
translation subgroup T ≤ G generated by the root lattice of G0, note that G = G0 o T
[3]. For convenience we identify the translations with its vectors in addition a lattice also
corresponds with its generating translation.

If I is a set of linearly independent translations in T , and let TI ≤ T be the subgroup
generated by I . Then the sublattice ΛI ≤ Λ is the lattice induced by oTI , the orbit of the
origin under TI . We note that C is a regular hypertope and each simplex in C represents
a chamber where each vertex of the simplex is an element of a different type. In rank 4,
when the quotient C/ΛI is a regular hypertope, we say it is a regular toroidal hypertope
of rank 4. C/ΛI is a regular hypertope (and thus a regular toroidal hypertope) when ΛI

is large enough to ensure the corresponding group satisfies the intersection condition and
when ΛI invariant under G0, i.e. riΛIri = ΛI for i = 1, 2, 3. It is important to note that,
in addition to denoting a lattice, ΛI is also denotes a set of vectors as well as a translation
subgroup of G along those vectors. If I consists of all permutations and changes in sign of
the coordinates of some vector s then we will write Λs.
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3 Toroidal polytopes constructed from the group C̃3 = [4, 3, 4]

We begin, necessarily, with generating regular toroidal hypertopes (or, in this case, poly-
topes) whose automorphism groups are quotients of the group C̃3, the affine Coxeter Group
[4, 3, 4]. As generators of [4, 3, 4] we take ρ1, ρ2, ρ3 to be reflections in the hyperplanes
with normal vectors (1,−1, 0), (0, 1,−1), (0, 0, 1) respectively, and ρ0 the reflection in the
plane through (1/2, 0, 0) with normal vector (1, 0, 0) (see Figure 1). Then,

(x, y, z)ρ0 = (1− x, y, z),
(x, y, z)ρ1 = (y, x, z), (3.1)
(x, y, z)ρ2 = (x, z, y),

(x, y, z)ρ3 = (x, y,−z).

Figure 1: Fundamental simplex of [4, 3, 4].

In this case, the construction described in Section 2 will yield the regular polytopes
since [4, 3, 4] is a string group. We denote by τ the corresponding tessellation {4, 3, 4} of
the Euclidean plane by cubes and by T it’s full translation subgroup, where T is generated
by the usual basis vectors, T = 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉.

Let Hi be the planes fixed by ρi. The simplex bounded by the reflection planes Hi is
a fundamental simplex of [4, 3, 4] and is denoted ε, it is a simplex in the Coxeter complex
of C̃3. Let Fi be the vertex of the fundamental simplex not on Hi then {F0, F1, F2, F3}
represents a flag of τ , and the set of all j-faces of τ = {4, 3, 4} is represented by the orbit
of Fj under C̃3.

The regular polytope which results from factoring the regular tesselation τ = {4, 3, 4}
by a subgroup Λ of T which is normal in [4, 3, 4], is denoted by τ/Λ (as above).

We let Λs be the translation subgroup (or lattice) generated by the vector s and its images
under the stabilization of the origin in [4, 3, 4] and hence under permutations and changes of
sign of its coordinates. The regular polytope τ/Λs is denoted by {4, 3, 4}s := {4, 3, 4}/Λs
and the corresponding group [4, 3, 4]/Λs is written as [4, 3, 4]s. The following Lemma lists
all possible such subgroups of T .

Lemma 3.1. Let Λ be a subgroup of T , and if for every a ∈ Λ, the image of a under
all changes of sign and permutations of coordinates (which is conjugation of a by the
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stabilization of the origin in [4, 3, 4]) is also in Λ, then Λ = 〈(x, 0, 0), (0, x, 0), (0, 0, x)〉,
〈(x, x, 0), (−x, x, 0), (0,−x, x)〉 or 〈(x, x, x), (2x, 0, 0), (0, 2x, 0)〉.

Proof. As adapted from page 165 from Abstract Regular Polytopes [11].
Let s be the smallest positive integer from all coordinates of vectors in Λ, then we can

assume that (s, s2, s3) ∈ Λ. Then (−s, s2, s3) ∈ Λ and thus 2se1 ∈ Λ and so too are
each 2sei. By adding and subtracting multiples of these we can find a vector all of whose
coordinates are values between −s and +s. It then follows that Λ is generated by the all
permutations of (sk, 03−k) with all changes of sign for some k ∈ {1, 2, 3}. (Note that in
rank n, k can be only 1, 2 or n. Since otherwise (sk, 0n−k)− (0, sk, 0n−k−1) ∈ Λ and so
(s, s, 0n−2) ∈ Λ if k is odd or (s, 0n−1) is if k is even. Though n = 3 in rank 4.)

If k = 1 then we have the first basis mentioned in the Lemma, the second if k = 2 and
the third when k = 3.

It follows that Λs = sΛ(1k,0n−l), and thus, as can be seen in [11, Theorem 6D1], we
have the following theorem.

Theorem 3.2. The only regular toroidal polytopes constructed from [4, 3, 4] are {4, 3, 4}s
where s = (s, 0, 0), (s, s, 0) or (s, s, s) and s ≥ 2.

Proof. Since conjugation of vectors in Λ by ρ1, ρ2 and ρ3 are precisely all permutations of
coordinates and changes of sign, this theorem follows directly from Lemma 3.1.

The following theorem also appears in [11] along with its proof. This theorem describes
the group of each toroid. To arrive at the following result (and subsequent related results in
sections 4 and 5) we note that the mirror of reflection ρ0 is x = 1/2 while the mirrors for
ρ1, ρ2 are x = y and y = z respectively and the mirror for ρ3 is z = 0.

Theorem 3.3 ([11, Theorem 6D4]). Let s = (sk, 03−k), with s ≥ 2 and k = 1, 2, 3. Then
the group [4, 3, 4]s is the Coxeter group [4, 3, 4] = 〈ρ0, ρ1, ρ2, ρ3〉, where the generators
are specified in (3.1), factored out by the single extra relation which is

(ρ0ρ1ρ2ρ3ρ2ρ1)s = id, if k = 1,

(ρ0ρ1ρ2ρ3ρ2)2s = id, if k = 2,

(ρ0ρ1ρ2ρ3)3s = id, if k = 3.

As explained in [11], a geometric argument can be used to verify the intersection prop-
erty for these groups when s ≥ 2. However, note that [4, 3, 4]s does not satisfy the inter-
section condition when s ≤ 1 and thus is not a C-Group. We show the breakdown of the
intersection condition for s = 1 by way of example for k = 1 where cases for k = 2, 3
follow similar arguments.

When s = 1, the identity ρ0ρ1ρ2ρ3ρ2ρ1 = id tells us that ρ0 ∈ 〈ρ1, ρ2, ρ3〉 so G does
not satisfy the intersection property.

4 Toroidal hypertopes whose automorphism group is B̃3 (= Sn)

Let {ρ0, ρ1, ρ2, ρ3} be the set of generators of [4, 3, 4] as in the previous section and ε the
corresponding fundamental simplex. We can double this fundamental simplex by replacing
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the generator ρ0 with ρ̃0 = ρ0ρ1ρ0. Then ρ̃0 is a reflection through the hyperplane through
the point (1, 0, 0) with normal vector (1, 1, 0). The transformation of a general vector by
ρ̃0 is

(x, y, z)ρ̃0 = (1− y, 1− x, z). (4.1)

Then {ρ̃0, ρ1, ρ2, ρ3} generates B̃3, a subgroup of [4, 3, 4] of index 2. The Coxeter
diagram for this group is the non-linear diagram in Figure 2. In this section we let G(=

B̃3) := 〈ρ̃0, ρ1, ρ2, ρ3〉 and let C(B̃3) be the Coxeter complex of G = B̃3.

Figure 2: Coxeter diagram for B̃3.

The fundamental simplex of B̃3 is the simplex in Figure 3 bounded by the planes
H1, H2, H3 (fixed by ρ1, ρ2, ρ3 respectively) and H0 (now fixed by ρ̃0). Let, as above,
Fi be the vertices of the fundamental simplex opposite to Hi. The orbit of each vertex,
Fj of the fundamental simplex of B̃3 represents the set of hyperfaces of type j. Since
this fundamental simplex shares vertices F0, F2 and F3 with the fundamental simplex of
〈ρ0, ρ1, ρ2, ρ3〉 we will use the same names for hyperfaces as the names in Section 3,
namely, vertices, faces and facets. Though the orbit or F1 (which is isomorphic to the
orbit of F0 since the maximal parabolic subgroups generated by excluding ρ1 or ρ̃0 are
isomorphic) will be called hyperedges.

Now the translation subgroup of G is different from the one translation subgroup in the
previous section since the set of vertices of {4, 3, 4} now represent vertices and hyperedges
(hyperfaces of type 0 and 1 respectively). The translation subgroup associated with this
fundamental simplex is T = 〈(1, 1, 0), (−1, 1, 0), (0,−1, 1)〉.

We then note that the translation by vector (1, 1, 0) is the transformation (by right multi-
plication) w1 = ρ̃0ρ2ρ3ρ2ρ1ρ2ρ3ρ2, (−1, 1, 0) is w2 = ρ1ρ2ρ3ρ2ρ̃0ρ2ρ3ρ2 and (0,−1, 1)
is w3 = ρ2ρ3ρ2ρ1ρ2ρ1ρ̃0ρ2ρ3ρ1.

Now, to form a root lattice Λ we have the freedom to choose the crystollographic sub-
group G0 by fixing either a vertex or a hyperedge (see [3, pages 108–109]). We choose to
leave out ρ̃0 since this reflection does not fix F0. Doing so leaves [3, 4] as the subgroup we
are conjugating with, which is the same as was for [4, 3, 4]. We also note that if we chose
ρ1 rather than ρ̃0 then the result is functionally the same since we are still conjugating by
[3, 4] = 〈ρ̃0, ρ2, ρ3〉 and this corresponds to forming a torus with its corners at hyper-edges.

We now note that although the same conditions are satisfied as in Lemma 3.1, T is now
a different set. So instead we have the following lemma.
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Figure 3: Fundamental simplex of B̃3.

Lemma 4.1. If T = 〈(1, 1, 0), (−1, 1, 0), (0,−1, 1)〉, Λ ≤ T a subgroup and if for ev-
ery a ∈ Λ, the image of a under changes of sign and permutations of coordinates is
also in Λ, then Λ = 〈(2x, 0, 0), (0, 2x, 0), (0, 0, 2x)〉, 〈(x, x, 0), (−x, x, 0), (0,−x, x)〉 or
〈(2x, 2x, 2x), (4x, 0, 0), (0, 4x, 0)〉.

Proof. We will only modify the proof of Lemma 3.1. In that proof we arrive at a generating
set (sk, 03−k) for each k ∈ {1, 2, 3}, given that T is different than the translation subgroup
of Section 3.

Similar arguments to the ones used in the proof to Lemma 3.1 can now be used to show
that for k = 1 or k = 3, s is even. For k = 2, Λ is generated by permutations and changes
of sign of (s, s, 0). This needs no further examination since it is clearly in T .

As in the previous section, we describe the groups that will be used to construct each
of the toroids. We denote by Gs the quotient B̃3/Λs. Earlier we noted w1 as the transla-
tion (1, 1, 0) while (ρ̃0ρ2ρ3ρ2ρ1)2 is the translation (2, 0, 0) and (ρ̃0ρ2ρ3ρ1ρ2ρ3)3 is the
translation (2, 2, 2). And now that the the mirror for ρ̃0 is y = 1− x.

Theorem 4.2. Let s = (2s, 0, 0), (s, s, 0) with s ≥ 2 or (2s, 2s, 2s) with s ≥ 1. Then the
group Gs = B̃3/Λs is the Coxeter group B̃3 = 〈ρ̃0, ρ1, ρ2, ρ3〉 with Coxeter diagram in
Figure 2, factored out by the single extra relation which is

(ρ̃0ρ2ρ3ρ2ρ1)2s = id if s = (2s, 0, 0),

(ρ̃0ρ2ρ3ρ2ρ1ρ2ρ3ρ2)s = id if s = (s, s, 0),

(ρ̃0ρ2ρ3ρ1ρ2ρ3)3s = id if s = (2s, 2s, 2s).

Here, as in Section 3, we have thatGs fails the intersection property for small enough s.
However, because the fundamental simplex is doubled, this time when s = (2s, 2s, 2s), Gs
satisfies the intersection condition for s ≥ 1 while s ≥ 2 is still necessary for the other two
vectors. Verifying that Gs fails the intersection condition for s = 1 when s = (2s, 0, 0) and
(s, s, 0) follows similar calculations as those done in Section 3. Namely, when s = 1 for the
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first vector, we arrive at the identity ρ̃0ρ2ρ3ρ2ρ̃0 = ρ1ρ2ρ3ρ2ρ1 and for the second vector
we have the identity ρ̃0ρ2ρ3ρ2 = ρ2ρ3ρ2ρ1. Which violates the intersection condition.

MAGMA [1] can be used to verify that Gs satisfies the intersection condition when
s = (4, 0, 0) = (2s, 0, 0), (2, 2, 0) = (s, s, 0) or (2, 2, 2). To see that the it also satisfies the
intersection condition for greater values of s can be seen with a geometric argument.

The orbit of a base chamber of each parabolic subgroup ofGs can be seen as a collection
of chambers which are duplicated at each of the 8 corners of the boundaries of Λs. For
instance, the subgroup 〈ρ1, ρ2, ρ3〉 consists of chambers forming octahedra centred around
corner vertex.

Given the collection of chambers in two such subgroups, there will always be some
intersection between the collections occurring at the same corner (someones it’s just the
base chamber itself). However, If Gs fails the intersection condition, then there will be an
intersection with the chambers of one subgroup centred around one corner that intersect
with the chambers of the other subgroup on another corner.

So, given a particular s where Gs satisfies the intersection condition, by increasing s,
the corners of Λs get further and further apart. So if there are no such intersections for some
s, then for larger s there will not be either.

Adopting a similar notation as in the previous section and using Λs as defined in Sec-
tion 2, we now have the following theorem.

Theorem 4.3. The regular toroidal hypertopes of rank 4 constructed from G(= B̃3) =

〈ρ̃0, ρ1, ρ2, ρ3〉, where the generators are specified in (3.1) and (4.1), are C(B̃3)/Λs where
C(B̃3) is the Coxeter complex of B̃3 and s = (2s, 0, 0), (s, s, 0) with s ≥ 2 or (2s, 2s, 2s)
with s ≥ 1.

Proof. To begin we need to find an s and corresponding Λs that is invariant under conju-
gation by a subgroup of G which is the symmetry group of "vertex"-figure (by vertex we
mean, the element that the translations begin from). In this case our subgroup ends up
being [3, 4] as was described before Lemma 4.1.

Now, since we are conjugating by [3, 4] = 〈ρ1, ρ2, ρ3〉, Λs must contain all permuta-
tions and changes of sign of any vector in Λs (which we discovered in the proof of Theorem
3.2 which is also on page 165 of [11]). Thus, by Lemma 4.1, s = (2s, 0, 0), (s, s, 0) or
(2s, 2s, 2s). However, we still do not know if this construction yields a regular hypertope.
To do this, we start by noting that the Coxeter complex C(B̃3) formed from G is precisely
the hypertope Γ(G; (Gi)i∈I) (the construction of which follows from [7]).

So we need to show that C(B̃3) is flag transitive (or, equivalently, chamber transitive).
To do so we will note the rank 3 residue Γ0̃ := Γ(G0̃; (G{0̃,i})i∈{1,2,3}). This is isomorphic
to the cube, a regular polyhedron, which is flag transitive.

So we pick to chambers in Γ(G; (Gi)i∈I) = C(B̃3) which can be written as C1 =
{G0̃g0, G1g1, G2g2, G3g3} and C2 = {G0̃h0, G1h1, G2h2, G3h3} for some gi, hi ∈ G.
Then, since G = G0̃oT and T acts transitively on elements of type 0̃ there is a translation
t ∈ G such that C1t = {G0̃h0, X, Y, Z} which is some chamber that shares the same
element of type 0̃ as C2. Then the chambers C1t and C2 are both in some rank 3 residue
which is isomorphic to Γ0̃. Since this residue is flag transitive, there is some element,
g ∈ G such that C1tg = C2. Thus C(B̃3) is chamber transitive and thus flag transitive. So,
by Proposition 4.6 from [7] this is a regular hypertope.

So now we want to know if Γ(G′; (G′i)i∈I) is a regular hypertope where G′ is the
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group G/Λs where s ≥ 2 (since otherwise G′ fails the intersection condition and the re-
sulting construction fails to be thin). Just as before, we take two chambers Φ and Ψ from
Γ(G′; (G′i)i∈I). Then to each of these chambers we can associate a family of chambers
Φ′ and Ψ′ in C(B̃3). Since C(B̃3) is chamber transitive for each Φj ∈ Φ′ and Ψk ∈ Ψ′

there exists ϕjk ∈ G where Φjϕjk = Ψk. In particular there exist chambers Φ1 ∈ Φ′ and
Ψ1 ∈ Ψ′ in C(B̃3) where, since Λs is invariant under G, Φ1ψ = Ψ1 and ψ ∈ G′. We can
see this by noting that Φ1 and Ψ1 are the members of their respective families which lie
inside the fundamental region of Λs.

Thus Γ(G′; (G′i)i∈I) is chamber transitive and thus face transitive, so is also a regular
hypertope by Proposition 2.6.

For the other two possibilities of Λ, we need only change the added relations, but be-
cause the relations were chosen specifically, they will also generate regular hypertopes.

5 Toroidal hypertopes whose automorphism group is Ã3 (= Pn)

We can show that this group is, yet again a subgroup of [4, 3, 4] by doubling the fundamental
simplex a second time (this can be seen geometrically in Figure 5) and now defining ρ̃3 =
ρ3ρ2ρ3 which is a reflection in the plane through (1, 1,−1) with normal vector (0, 1, 1).
Transformation of a general vector by ρ̃3 is

(x, y, z)ρ̃3 = (x,−z,−y). (5.1)

Now we let G(= Ã3) := 〈ρ̃0, ρ1, ρ2, ρ̃3〉 and C(Ã3) be the Coxeter complex of G. The
defining relations for G are implicit in the Coxeter diagram in Figure 4.

Figure 4: Coxeter diagram for Ã3.

Here the fundamental simplex of Ã3 is a tetrahedron bounded by the planes Hi (fixed
by ρi). This fundamental simplex shares the planes fixed by ρ̃0, ρ1, ρ2 with the fundamental
simplex of B̃3 as well as the corresponding vertices. The stabilizers of each vertex of the
fundamental simplex are also isomorphic since all maximal parabolic subgroups of Ã3 are
pairwise isomorphic. This implies that the set of hyperfaces of types i and j are isomorphic
for each i, j ∈ {0, 1, 2, 3}.

This fundamental simplex gives us the same translation subgroup as we had in the
previous Section. Though now we must use the new generators to find the translations.
We define w1 = ρ̃0ρ2ρ1ρ̃3ρ1ρ2 = (1, 1, 0), w2 = ρ1ρ2ρ̃3ρ̃0ρ̃3ρ2 = (−1, 1, 0) and w3 =
ρ2ρ1ρ̃0ρ̃3ρ̃0ρ1 = (0,−1, 1).
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Figure 5: Fundamental simplex of Ã3.

Using these translations, for a translation (a, b, c) ∈ Λ, we have that ρ1(a, b, c)ρ1 =
(b, a, c). In a similar way, conjugating by ρ2 yields (a, c, b) and conjugating by ρ̃3 yields
(a,−c,−b). So if we conjugate by ρ1ρ2ρ1 then we get (c, b, a) and so Λ must have all
permutations. Now, from the previous we know Λ must also contain (a,−b,−c) and adding
this to (a, b, c) gives (2a, 0, 0), which then subtracted from (a, b, c) is (−a, b, c) and so with
all permutations means that Λ must have all permutations and changes of sign.

With this group, we leave out ρ̃0 to form the crystollographic subgroup G0. Though
a curiosity of this group is that we use any generator of B̃3 to form a crystollographic
subgroup and still finish with the same objects. With each choice simply changing where
we draw the boundary of the torus. This leaves ρ1, ρ2 and ρ̃3 with which to conjugate Λ.
As in the regular case, ρ1 and ρ2 show us that Λ must consist of all permutations of the
coordinates of vectors.

If (a, b, c) is a general vector in Λ then ρ̃3 tells us that (−c, b,−a) must also be in
Λ and then so also must (−a, b,−c). Adding that to our original general vector tells us
that (0, 2b, 0) is also included. So, subtracting that from the general vector finally gives us
(a,−b, c). Note that this can just as easily be done with either a or c with some simple
permutations.

As in the previous section, we describe the groups of each of the toroids. Earlier
we noted w1 as the translation (1, 1, 0) while (ρ̃0ρ2ρ̃3ρ1)2 is the translation (2, 0, 0) and
(ρ̃0ρ2ρ1ρ̃3)3s is the translation (2, 2, 2). And now that the the mirror for ρ̃0 is y = 1 − x
while the mirror for ρ̃3 is y = −z.

Theorem 5.1. Let s = (2s, 0, 0), (s, s, 0) with s ≥ 2 or (2s, 2s, 2s) with s ≥ 1. Then
the group Gs = Ã3/Λs is the Coxeter group Ã3 = 〈ρ̃0, ρ1, ρ2, ρ̃3〉 (with Coxeter group
specifed in Figure 4), factored out by the single extra relation which is

(ρ̃0ρ2ρ̃3ρ1)2s = id if s = (2s, 0, 0),

(ρ̃0ρ2ρ1ρ̃3ρ1ρ2)s = id if s = (s, s, 0),

(ρ̃0ρ2ρ1ρ̃3)3s = id if s = (2s, 2s, 2s).
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For the same reasons as in Section 4, the intersection condition is satisfied for s =
(2s, 2s, 2s) when s ≥ 1.

Theorem 5.2. The regular toroidal hypertopes of rank 4 induced by G(= Ã3) = 〈ρ̃0,
ρ1,ρ2, ρ̃3〉 (where the generators are specified in (3.1), (4.1) and (5.1)) are C(Ã3)/Λs where
C(Ã3) is the Coxeter complex of Ã3 and s = (2s, 0, 0), (s, s, 0) for s ≥ 2 or (2s, 2s, 2s)
with s ≥ 1.

Proof. We first show that C(Ã3) is a regular hypertope, which requires showing that it is
flag transitive. In the same manner as the proof of Theorem 4.3 we need only show each
rank 3 residue is flag transitive, since all rank 3 residues are regular tetrahedra C(Ã3) is flag
transitive. The translation subgroup is the same as in the previous Section and conjugating
Λ by ρ1, ρ2, ρ̃3 gives all permutations and changes in sign of a general vector in Λ, the
same arguments for Lemma 4.1 and Theorem 4.3 will prove this theorem.

6 Non-existence of rank 4 chiral hypertopes
Here we recall that for an abstract polytope to be chiral its automorphism group must
have two orbits when acting on flags and that adjacent flags are in different orbits. Chiral
polytopes of any rank are examined in depth in [13]. The existence of these objects in
any rank was proved in [12]. There is also a notion of chirality in hypermaps as well, see
for example, [2]. Similarly we say for a hypertope to be chiral if its automorphism group
action has two chamber orbits and adjacent chambers are in different orbits [7].

As in Section 2, given an affine Coxeter group G and associated Coxeter complex C,
we define a subgroup G0 ≤ G as the maximal parabolic subgroup fixing the origin. Then,
given a set I of linearly independent translations in G and TI , the translation subgroup
generated by I then we call the lattice ΛI the lattice induced by the orbit of the origin under
TI . When ΛI is invariant under the rotation subgroup G0

+ but there is no automorphism
group of G that interchanges adjacent chambers, then in rank 4 we say that the quotient
C/ΛI is a chiral toroidal hypertope of rank 4.

The proof that there are no chiral toroids of rank 4 for the group [4, 3, 4] comes from
page 178 from [11] and the same proof can adapted for the other two rank 4 affine Coxeter
groups. The basic idea for the proof is that since C/Λ is chiral, Λ is invariant under the
rotation group [3, 4]+, so Λ contains vectors that are compositions of an even number of
permutations with an even number of sign changes or all compositions of an odd number of
permutations with an odd number of sign changes. It then goes to show that if (a, b, c) ∈ Λ
then (b, a, c) ∈ Λ, which is the image of (a, b, c) under an odd permutation, which is a
contradiction. Therefore no such Λ can exist.

We will use the same method to show the same is true for the other two groups.

Theorem 6.1. There are no rank 4 chiral toroidal hypertopes.

Proof. In [11] it was shown that there are no rank 4 hypertopes constructed from [4, 3, 4],
so we show for constructions from B̃3 and Ã3. In previous sections we found that if Λ is
a subgroup of the translations that is invariant under conjugation by the stabilizer of the
origin in B̃3 and Ã3 with (a, b, c) ∈ Λ, then Λ contains all permutations and changes of
sign of (a, b, c), just as it did with the stabilizer in [4, 3, 4].

Thus conjugation of Λ by the stabilizer of the rotation subgroup of each of these groups
is all compositions of even permutations with an even number of sign changes or all com-
positions of odd permutations with an odd number of sign changes, just as for [4, 3, 4].
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So the same arguments and calculations from page 178 in [11] still hold and show that
(b, a, c) ∈ Λ and we develop the same contradiction.
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