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The Distribution of the Ratio of Jointly Normal
Variables

Anton Cedilnik, Katarina Kosmefj and Andrej Blejet

Abstract

We derive the probability density of the ratio obngponents of the
bivariate normal distribution with arbitrary pararees. The density is a
product of two factors, the first is a Cauchy dénsthe second a very
complicated function. We show that the distributionder study does not
possess an expected value or other moments of higlder. Our particular
interest is focused on the shape of the density. Weoduce a shape
parameter and show that according to its sign taesiies are classified
into three main groups. As an example, we derive dfstribution of the

ratio Z =-B,_,/(mB,) for a polynomial regression of order. For m=1,

Z is the estimator for the zero of a linear regressifor m=2, an

estimator for the abscissa of the extreme of a atadregression, and for
m=3, an estimator for the abscissa of the inflectiominp of a cubic

regression.

1 Introduction

The ratio of two normally distributed random vari@bl occurs frequently in
statistical analysis. For example, in linear regi@ssE(Y | x) = 5, + 5, X, the value

X, for which the expected respon&£Y) has a given valug, is often of interest.
The estimator forx,, the random variable, = (yo - BO)/ B, , is under the standard

regression assumption expressed as the ratio of nawnally distributed and
dependent random variableB, and B,, which are the estimators fof, and

B, and whose distributions and dependence are knowm fregression theory.
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Similar to the example above is the situation ofg@adratic regression,
E(Y|X) =8, + B, x+ B, x>, where the value sought is the for which E(Y)
reaches its extreme value. At this point, the fastivative must be zero. Hence,
X, =-B,/2B, is expressed as the ratio of two normally distrésuand dependent
variables as well.

From the literature it is known that the distritartiof the ratioZ = X/Y, when
X andY are independent, is Cauchy. The probability densitcfion for a Cauchy

b
nl(x-a)? +b?
the median, while the quartiles are obtained from [bcation parametea and the
positive scale parametdr, g,; =a+b. This density functionp, (x has ‘fat tails’,

henceU does not possess an expected value or momentgloérhorder (Johnson
et al., 1994).
Some results about the ratio from the literatue= ar
(a) The ratioZ of two centrednormal variables is a Cauchy variable (Jamnik,
1971: 149):

variable U: C(a, b) is p,(X) = ) where the location parameter is

X
[Y] N(uy =1, =0,0y,0,, p2+l) =

Z :1: C(a:p&1b:& 1—p2J
Y gy oy

The simplest case is the ratio of twwwdependent standardisedormal
variables which is a ‘standard’ Cauchy variaklf0]).

(b) The ratioZ of two non-centred independenbrmal variables is a particular
Cauchy-like distribution. This result is shown imierud (1978).

(c) The ratio of two arbitrary normal variablesdiscussed in Marsaglia (1965)
and leads again to a Cauchy-like distribution.

The case considered in (b) is not general and ¢kelr in the cited article is
presented in a very implicit way. Marsaglia deaithwthe ratio of two independent
normal variables, having shown previously, howevkat any case could be
transformed into this setting.

The objective of our work is to derive the probélildensity for the ratio of
components of the bivariate normal distribution f@rgeneral setting. Let the
vector W =[X Y]": N(u, 4,0, >0,0, >0, p) be distributed normally, with the

density (for p # +£1):

1 1 [(x—ux)z_2p(x—ux)(y—uy)+(y—uy)2}
210, 0, \1- p* 20-p%)| o’ Oy 0y a,’
and with the expected value and the variance-éamae matrix

Pw (X% y) =
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E(W):['ZX} , var(\N){ Ix pUXUY} .

Y POy Oy 03
Our aim is to express the density function of thgar Z = X /Y explicitly, in

terms of the parameters of the bivariate normatridistion. We shall also discuss
the degenerate situatiom, =+

2 Probability density for theratio

The following theorem is the basis for our derieatiof the probability density for
the ratio (Jamnik, 1971: 148).

Theorem 1. Let W =[X Y]' be a continuously distributed random vector
with a probability density functionp,, (x,y). Then Z=X/Y is a continuously
distributed random variable with the probability ity function

p.(2= [Ylpw(zyy)dy=[ = [ypy(zyy)dy . (2.1)

For the derivation ofp,(z )for the ratio of the components of a bivariate

normal vector we calculated the integral (2.1) gsiarmulae in the Appendix. A
long but straightforward calculation gives the nth@orem.

Theorem 2. The probability density for Z=X/Y, where
[X YI": N(uy, 14, 04,0, p%+1) is expressed as a product of two terms:

p,(2) = ZfXUY 1-p° 5 Eﬁex;{—lﬁkupRz)Eﬁl RED(R)H
n(oyz° -2po,0,z+0y) 2 ¢(R)

= 00y 1_p2 _1 _1 B
_ﬂ(a\z(zz—Zpaanz+af() [FeXp( EBUIRQJ'F‘/ZTDRWQ@XP( 5[[35UIR2 Rzlﬂ

(2.2)
where:

o _ M Hx _H |9
(T2t = POY O k)2~ PO Oyl + Oy _\ T Pa |?” 'OJ g, ) o
R=R(2) = 2k v e S x Y (2.2a)

0,01~ 7 Q| 22 - 2p05,0,2+ - \/7%/22 2,oz+( j

2
) b b, (1)
2,2 2,2 P +
supR2 — OyHyx —2p0y Oy Py Py + O [y - Oy Oy Oy Oy
ooy (- p%) 1-p°

, (2.2b)



102 Anton Cedilnik, Katarina KoSmelj, and Andrej Blejec

2
(ﬂxax_ﬂyzj

- 2 o, o, O
SUpR2 _ R2 = . 2(/'1X /'IYZ) > - X Y Y > (22C)
o,z —2,00nyz+Ux ZZ—Z,OUX 7+ Oy
a-Y a-Y

The first factor in (2.2), thestandard part is the density for a non-centred

Cauchy variable,C(a:pg—X, b:%wll—pz) We have to stress that this factor
Y Y
is independent of the expected valyes and L, .
The second factor, theéeviant parf is a complicated function o including
also the error function®(.) (in Gauss form; see Appendix). We need four

parameters:p, &, A and a—x, to fully describe the distribution. It is strigtl

UX UY JY
positive and asymptotically constant — it has tlane positive value for both
OvHy = POy Hy
UXJY\/l_pZ
behaviour of p,(z )is the same as that of the Cauchy densityE$a) and other
moments do not exist.

We wrote the deviant part in (2.2) in two forms.eTtirst form is nicer and can
also be found in Marsaglia (1965), but the secoonfis better for numerical
purposes.

A more detailed analysis ofp,(z Jed us to the definition of thehape

parametera :

2 =100, due to the fact thaR(xw) ==+

. Therefore, the asymptotic

w:&(#_x_ p&j, (2.3)
UY UX UY

— 2 —
based onR(x») and dR_ 0xou1=p (14 ’uYZ? . The sign ofa separates

3/2
dz (aYzz2 -2p0,0,2+ 032()

three differentypesof shape ofp,(z )
l. «>0
I. «<0
I1l.  « =0 which occurs in three variants:
a. u %0,
b. , =0%puy,
C. sty =0=py.



The Distribution of the Ratio... 103

The derivative of the deviant part led us to th&rdBons of two quantities for

Hx phx
types | and Il u=Hx =9 fx and d=—9x 9 fx s the abscissa of
T Hx _ My oy
UY UX UY

the local maximum andl the abscissa of local minimum of the deviant pkdt

type I: d<a<u, and for type ll: u<a<d ; as previously,azpa—x , the centre
O-Y

of the standard part (see Figure 1).

XY)~N(2,1,1,1,0) Type |
4 2 0 2 4
Type I
: 8
-10 -5 0 5 10 -10 -5 0 5 10

Figure 1: A case with a positive shape parameter (Typern)l w&ith a negative shape
parameter (Type I1)On the left, the standard Cauchy part (thick linall the deviant
part (thin line) are presented; the functions aneddferent scales in order to depict the
shapes of both functions on one plot. The vertdadhed lines indicate the abscissas of
the local extremes of the deviant part, the horiabdashed line is its asymptote. The

right plot presents the graph of the densfiy(z).
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Figure 2: Three cases having zero value of the shape paeartiegpe 111).On the left,
the standard Cauchy part (thick line) and the daivigart (thin line) are presented; the
functions are on different scales in order to deflie shapes of both functions on one
plot. The vertical dashed line indicates the alszisf the local extreme of the deviant
part, the horizontal dashed line is its asymptdtee right plot presents the graph of the

density p,(2) .



The Distribution of the Ratio... 105

Type lll describes the marginal case, not likelyotur in practice. In variant
llla (resp. llIb), the deviant part has only a ntaxim (resp. a minimum) at=a.
In variant llic, the deviant part is equal to cardt1 (see Figure 2).

The median M(Z) and mode(s) can not be obtained analytically floe t

general case; further numerical calculations hawvdé done for each particular

case. But we have derived some partial results.tifoe | : M(2) >p0—x , for
O-Y

type Il M(Z)<pa—x , for type Ill: p,(z) is symmetric and M(Z):,oa—X .
.

Y Y
Variants llla and llic are unimodal; generallg,(z may be uni- or bimodal.

The distribution function and quantiles require rarival integration.

3 Degenerate situation

Now, let us consider the case==1, but still witho, >0, o, >0. Then, the
distribution of W =[X Y] is degenerate, and with probability 1, it holds
UX
Hy =P— Hy

YKy :pEx_’ux ; hence:Zzlz p& +—— 9 Since the marginal
o, Oy Y a, Y

distribution Y:N(g,,0, ) is the usual normal distribution, it is easy todf the
probability density foZ from the following theorem.

Theorem 3. If Y:N(«,0,) and Z :a+$ , 20, then Z has the density

given by
o -2 1 [ c T
z) = z—a) " [exp - - :
P2(2) UY\/ZITQ ) { 20,7 z-a H

The function p,(z )from this theorem is much simpler than (2) anditather
easy to find its characteristics, including quaagibind distribution function. Also,
there are two modes that can be found explicitlyd detween them there is a
removable singularityp,(a) = OThe expected value, as in non-degenerate cases,
does not exist.

It is worth noting that in the degenerate case gshape parameter (3) is zero
precisely whenp,(z )is symmetric, as in the non-degenerate case. Alttgrto
the sign of the shape parameter, the relations éstvthe mediarM (Z) and the

, Oy :
guantity a= p—= remain the same, as well.
o-Y
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4 Examples

Now, let us discuss the two problems presentedénlntroduction. First, we will
consider a linear regressidi(Y | x) = B, + B, X. We shall be interested in tixeaxis

intercept: X, =-B,/B, , whereBy and B; denote the estimators fdd, and ..

Under the assumption that | x: N(8,+5.X, 0,

g) » the variableX, is expressed

as the ratio of two normally distributed and depamdrandom variables B, and

Bi.. Given the dataf{(x,y),i=1...n} (x<x), we denote:X=%Z>§,

B, X
J— d . Th N 01 19 ] y T T 1
,/ >x* and g= n(w en {Bj (/o’ B, aw, g Wj

[ Blo} ( By, B, aw, q, ) Hence, X, has a distribution with density function

(2) on making the substitution:yt, - =48, , 4, - B, 0y - Q5 , 0, - Qq ,
o - X/wW .

Now we shall be concerned with a general polynomiagression
EY|X)=48,+B x+...+B.x", m=1. Let us defineZ=-B_,/(mB, ) For m=1,
Z =X, from the first example, the estimator for the zefoa linear regression.

For m=2, Z is an estimator for the abscissa of the extremeaofuadratic
regression, and fom=3, Z is an estimator for the abscissa of the inflectpamnt
of a cubic regression.

i=1...,n
Introduce the following two data matricesy:{x" (k—é mﬂ , the
T e nx(m+1)

matrix of powers ok-s , andY =[yi i=1... )]nxl The regularity condition, that

there are at leasin+1 distinctx-s, implies that the rank o¥ is preciselym+1.

Hence, v' [V is invertible and d=(v' B/)‘lzldjk (j,k:O,...,m)](mﬂ)x(mﬂ). Let
:[,Bk (k:O,...,m)](m+l)xl be the column of the regression coefficients, and

B:[Bk(k:O,...,m)](m+1)x1 the column of their estimators. The normal systeim

equations in matrix form is theww' ¥ B =v' [Y , and its solution is
B=dv' ¥ (4.1)

As usual, we shall suppose that tha are independent normally distributed

random variables WithE(y,) =8, + 8, % +...+ B x", var(y,) = a,eg Hence, the
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vector Y is normally distributed withE(Y)=vI[p, var(Y)=02_|. According to

reg
(4, B is also normally distributed, E(B)=(dV")E(Y)=8,
varB) =(dv") WarY)dv")" =0’ d.

reg

_ 0O ---0-10 -B,.;
Introduce two matricesu = andW=ulB = )
O --- 0 0 m () mB, -

W is also a normal variable withE(W):uEE(B):uE[B:[_m'f)Bm'l} and

-md. .,
m } Therefore, the

d,im
varON)zuﬂlar(B)DlJTzazumDuTzaz{ moLm 2

reg 9 —md

'm-1,m m,m

m-1,m-1~mm

d
distribution ofW is N[—,Bm_l,mﬁm,areg /dm—l,m—l’ma-reg /dm_,m’_ - m-1,m ]

Hence, Z has a distribution with density function (2) witihe exchange:

/Jx - 7 Pmas :uY - mﬁm ’ UX - Jreg Vdm—],m—l ’ UY - mareg \/dm,m '

d

_ m-1,m
2 Ao
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Appendix

a>0 = jt[(éxp(—at2+bt+c)dt:
0

b svon-wr o G Z) ol ) oo ]

00

ﬂt| @Xp(—at2+bt+c)dt:j + _jt [exp(at® +bt+c)dt = %C{l.,_r GGD(r)}
0

o 5 #(r)

=,

where: r =2 ¢(r):i 2

2 _ _Lod
T T ¢(r)_()j¢(x)dx_2erf[ﬁj.



