
ELEKTROTEHNIŠKI VESTNIK 82(5): 233–242, 2015
ORIGINAL SCIENTIFIC PAPER

Deduplication in unstructured-data storage systems

Andrej Tolič1,†, Andrej Brodnik1,2

1University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana,
Slovenia
2University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia

† E-mail: andrej.tolic@fri.uni-lj.si

Abstract. The paper addresses the issue of deduplication, a process of identifying and eliminating redundancy
in large data sets of unstructured data. Storage systems for the unstructured data handle an ever increasing
amount of information, a large portion of which may be redundant. While the well-known methods, such as
entropy encoding, solve the issue to a certain extent, they fail to detect and eliminate the redundant data more
than a few gigabytes apart. The basics of deduplication are explained and a detailed description is given of the
steps involved. The state-of-the-art deduplication techniques are described.

Keywords: deduplication, redundancy elimination, storage systems, distributed systems, Bloom filter

Deduplikacija v shranjevalnih sistemih za
nestrukturirane podatke

Deduplikacija, proces razpoznavanja in odstranjevanja redun-
dance v velikih množicah nestrukturiranih podatkov, je pred-
stavljena v tem članku. Shranjevalni sistemi za nestrukturirane
podatke obravnavajo vedno večje količine informacij, velik
del katerih je lahko podvojen. Čeprav dobro znane metode,
kot je entropijsko kodiranje, rešujejo problem do neke mere,
ne zmorejo zaznati in odstraniti odvečnih podatkov več kot
nekaj gigabajtov narazen. To težavo naslavlja deduplikacija. V
članku razložimo osnove deduplikacije in podamo podroben
opis korakov izvedbe. Na poti opišemo najsodobnejše tehnike
deduplikacije.

1 INTRODUCTION

Modern storage systems for unstructured data such as
distributed file systems [1], key-value stores [2] and
archival/backup systems in many cases exhibit data
redundancy. The issue is addressed by deduplication, a
process of identifying and eliminating duplicated data
[3]. Often, whole files are duplicated in enterprise and
cloud environments, while the subfile-level redundancy
is also common.

While redundancy elimination with entropy encod-
ing algorithms (e.g. ZIP compression) is efficient in
eliminating the redundant data within logical groups
of files up to a few gigabytes in the size, there still
remains duplicated data across the storage system. The
amount of data in these systems is typically measured
in terabytes or petabytes. Detecting and eliminating the
remaining redundancy across the whole system can thus
lead to significant space savings – depending on the

Received 1 June 2015
Accepted 16 September 2015

data, a deduplicated size of less than ten percent of
the original size is not uncommon. Furthermore, in the
light of the cloud-based services and inter-connectivity,
large amounts of data are moved across networks all
over the world. If redundancy could be eliminated,
the network bandwidth would also be preserved [4].
However, any additional operation the storage system
must perform when the data is accessed can lead to
a significant performance degradation. Therefore, the
challenge is to design a deduplication technique to
detect as much redundancy as possible while having the
minimal performance footprint.

The paper is organized as follows. In Section 2 we
present the basics of the unstructured storage systems.
Section 3 is an introduction to deduplication where
different characteristics of deduplication are presented.
A general architecture of the deduplication systems is
introduced in Section 4, with individual steps described
further in Sections 5, 6 and 7 along with examples of the
well-known deduplication techniques. Section 6 details
two of the steps for which we believe they should be ex-
plained together. Section 8 describes how deduplication
techniques affect and are affected by reading operations.
Section 9 gives a short overview of deduplication in a
distributed setting. We conclude in Section 10 where
we mention some open problems tackled by the current
research.

2 UNSTRUCTURED STORAGE

When talking about the storage systems for unstructured
data, we refer to the systems that are not aware of the
structure of the data they store beyond what is implied
by the storage API. This is in contrast with the structured

234 TOLIČ, BRODNIK

storage, like relational databases, where the system is (at
least to some extent) aware of the structure of the data
it holds in order to provide the users with higher-level
operations.

A typical example of the unstructured-data storage are
the POSIX file systems. To the users they are mainly
known by the operations their API [5] exposes, such as
create, delete, open, close, write, read, etc. Another type
of the unstructured-data storage with a simpler interface
than POSIX FS is the object-based storage [6], also
known as the key-value storage [2]. It could be described
as an advanced block-level storage, where the objects
(blocks) have a variable length, a more flexible naming
scheme and possibly support advanced functions, such
as object attributes, replication, snapshots, etc. Com-
pared to POSIX FS, the main difference is the lack of a
tree-like naming structure based on directories. Instead,
the objects are referenced only by their names (keys).

Certain object-based systems are classified as the
NoSQL databases which usually expose structured in-
terfaces. Most NoSQL systems offer higher-level data
models on top of a key-value model, although the
difference can be blurred with some systems. We also
note that the object-based storage should not be confused
with the object database systems which replace the
relational model with the one based on the objects as
they are known in object-oriented programming.

A distinction is also made between the systems in-
tended for the primary workloads and those for the
secondary workloads. The latter are characterized by an
infrequent access consisting mostly of write operations,
which is the case with the archival and backup storage
systems. The primary-workload storage systems, on the
other hand, are known for their frequent data access
where read operations usually prevail. Even today, most
of the deduplication techniques are intended for the
secondary workloads, but research into the techniques
appropriate for the primary workloads is increasing.

As with many other computer systems, the unstruc-
tured storage systems can be either centralized or
distributed.

3 DEDUPLICATION BASICS

The discussion applies to both the centralized as well as
the distributed storage systems unless stated otherwise.
An example of the former are the local file systems
(NTFS, Ext4, BTRFS), and of the latter the distributed
file systems such as NFS, Google file system [1], Ceph
[7]. It should be evident from the context where the
distinction is important, specifically when we present a
distributed deduplication.

3.1 File- and subfile-level deduplication
A division could be made between the file-level

deduplication and the subfile-level (sometimes called

block-level) deduplication. Note that we use the word
file to mean a finite-length array of bytes. It is thus any
unit of storage with respect to the storage API, such
as an object in an object-based storage. The literature
typically refers to these units as files since POSIX FS
is probably the most widely recognized storage-system
interface for the unstructured data.

The file-level approach checks for identical files. It is
also known as a content-addressable storage (CAS). It
is a simple technique but effective in certain scenarios
[8], especially cloud stores, where many files are stored
multiple times. Consider a cloud-based storage service.
Users all over the world store the same music files
and computer-science students store the same textbooks
and so on. If the storage system detects these files as
duplicates, only the first copy must be stored and later
referenced when users (attempt to) write the same files
to the system. In fact, the network bandwidth can also
be preserved since the users do not even have to write
the file to the system if the client software first sends a
hash of the file to the system, upon which it receives a
reply that such a file is already stored. This applies if the
client has an access to the whole file when it attempts
to write it to the system. The system then only stores a
reference to this file.

The deduplication techniques usually do not employ
a byte-by-byte comparison in order to identify identical
files (or parts of files as we will see later), but rather
rely on the hash functions with sufficiently large hash
values and collision resistance.

The subfile-level deduplication tries to detect redun-
dancy within files. Consider office documents within an
organization, all having the same logo embedded within
them or virtual-machine disk-image files containing the
same or similar virtual files. This kind of the files are not
identical and so redundancy would not be detected by
the file-level methods. The subfile-level methods attempt
to partition the files into continuous subarrays, usually
called chunks or segments, and detect identical ones
(see Figure 1). We consider two files similar if they can
be partitioned so that they share many of the resulting
chunks. Every deduplication technique takes a slightly
different approach on how to identify the identical data,
but they all rely on features, the values calculated
from the partitioned data and used to query (during
redundancy detection) and later possibly update (after
redundancy detection) the chunk index. The most com-
mon approach present in practically all the techniques
is to use the hash values of the chunks as features (as
in the example in Figure 1), but additional features can
be calculated as well, which we will see in Section 6.
The features therefore depend on partitioning and affect
the chunk index, a data structure (or several of them)
holding information about the already stored data. This
information typically contains a list of the hash values of

DATA DEDUPLICATION IN UNSTRUCTURED STORAGE SYSTEMS 235

File A recipe

Chunk store

File B recipe

hash(): feature

 : chunk

Figure 1. Typical subfile-level deduplication technique iden-
tifies the redundant parts of files by partitioning them into
chunks and calculating the features from chunks. In the
simplest and most common case, the features are the hash
values of the chunks and are used to identify the identical
already stored data. Unique chunks are stored in a chunk store
while the file recipes contain pointers to the chunks used to
reassemble the files when reading them.

the stored chunks (which are almost always the features
as well), reference counts for every chunk, and possible
additional features. The storage system keeps the chunks
in the chunk store and maintains the file recipes, the
metadata containing references (pointers) to the chunks
that comprise the file in question. These references also
take space, so the chunks of the sizes smaller than a
kilobyte are usually not reasonable.

3.2 Inline and offline deduplication
The inline deduplication (also called online) is done

as the data is written to the storage system. The word
inline is used since in the storage context there is a
data path or a data line by which the data is written
to the system. In the offline deduplication (also called
out-of-line), the data is first written to the system and
then deduplication is done on the data “at rest” in the
batch. The downside of the offline deduplication is the
need for a temporary storage where the redundant data is
stored before being deduplicated. The upside is a better
performance, since deduplication can be performed in
the background when the user access to the data is
minimal (e.g. during the night).

4 GENERAL ARCHITECTURE OF THE
DEDUPLICATION SYSTEMS

The deduplication techniques are often designed as part
of a storage system and tailored to specific workloads.
This results in a heterogeneous architecture and intrinsic
properties. Despite this, the general architecture, which
is roughly followed by most systems, can be described.

Since deduplication mainly interferes with the write
operations (it is then when redundancy detection and
elimination happens), we define the general architecture
as a sequence of steps performed on the data written
to the storage system. These steps are performed either

as the data is being written (inline deduplication) or
at some later time (offline deduplication). In Section 8
we will describe how deduplication interferes with the
read operations as well as how the read performance
considerations affect the deduplication design.

Deduplication is thus performed in the following steps
(cf. Figure 1):

1) Partition the incoming file into either the fixed-
length chunks or variable-length content-defined
chunks.

2) Calculate the features for a file from the parti-
tioned chunks. In almost all cases this means cal-
culating the hash values of the chunks. However,
different techniques improve on this with several
approaches as we will see in Section 6.

3) Look up features of a file in an appropriate data
structure (also called the chunk index) to identify
the matching data.

4) Commit write by storing the non-duplicated data
chunks to a permanent storage and updating the
chunk data structure. Lastly, a file recipe, the meta-
data describing contents of the file, is generated
and stored.

The described steps represent a chain where the output
of one operation is used as an input to the next. It is
essential for consistency that the data chunks are stored
and their data structures updated before the file recipes
are generated and stored, otherwise the recipes would
reference the non-existing data. Furthermore, the file-
recipe generation and storage must be done atomically,
since this is the only information on what is contained
in the file. If this information is incorrect, it is possible
to detect an error (some systems store the whole-file
hashes or file length), but it cannot be recovered from,
although the contents themselves (in the form of chunks)
are stored in the system.

5 PARTITIONING

Partitioning is affected by the feature computation and
granularity of the redundancy detection (the file-level vs.
the subfile-level). The file-level deduplication skips this
step since the second step (feature computation) is done
on a file as a whole by simply calculating the hash value
of a file.

On the subfile-level, one possibility is to partition the
data into the fixed-length chunks, which is appropriate
for certain scenarios [9]. The problem with the fixed-
length chunks is that a simple insertion or deletion at
the beginning causes the chunks that follow to shift,
thus producing different hash-based features for almost
identical data. This is depicted in Figure 2. The fixed-
size chunking can, however, be used efficiently in the
similarity-based techniques as we will describe in Sec-
tion 6.2. The issue is addressed by the content-defined

236 TOLIČ, BRODNIK

Before insertion

After insertion

Figure 2. Data-shift problem with the fixed-length chunking
after insertion at the beginning.

partitioning using the sliding window technique [10],
[4]. The idea of this technique is to identify the variable-
length chunks whose boundaries are selected whenever a
certain pattern is observed. The hash value is computed
over a k-byte window, which is slided byte-by-byte
through the file. Whenever the lower d bits of the hash
value equal a predefined constant r (f ≡ r (mod D)),
a chunk boundary is marked at the start or the end of the
window (see Figure 3). The value D = 2d is the divisor
and r is the remainder, usually set to 0. Assuming the
uniformly random data, this will happen every D = 2d

bytes, which is thus the expected average size of a
chunk. Pathological cases do exist. For example, a long
sequence of the zero bytes would probably (depends on
the hash function and values r and d) never match the
boundary condition. Conversely, the k-byte chunks all
matching the boundary condition can be near each other,
thus producing the small-size chunks. This is usually
addressed by setting the minimum and maximum chunk
sizes as proposed in [4]. If the boundary is found sooner
than the minimum size, it is skipped. If the boundary
is not found when scanning the maximum size, it is
selected even if not matching the boundary condition.
We usually want the average chunk size from one to
several tens of kilobytes, making the typical choice for
d somewhere between 10 and 15.

To further reduce the chunk size variations and im-
prove detection of the identical chunks, a TTTD (two
thresholds two divisor) partitioning approach is proposed
[11]. As the name suggests, the algorithm uses two
thresholds (minimum and maximum sizes of the chunks)
as already proposed in [4] and just described. Addition-
ally, the approach introduces a second divisor D′ which
is roughly half the size (one bit shorter) of the main
divisor D. The purpose of the second divisor is to find
the backup boundaries in case the main divisor fails to
do so. In that case, if the second divisor succeeds, the
resulting chunk is closer to the expected size, as well
as being a better candidate for deduplication since its
boundary is defined by observing a pattern as opposed

to being cut off at the maximum threshold.
For a file of length n bytes, a hash is computed

at n − k + 1 different but overlapping positions of a
window. Typical window sizes k are several tens of
bytes. For example, the authors in [4] use a 48-byte
window. We should emphasize that these hash values
only serve the purpose of identifying the variable-length
content-defined chunks and are in no way connected
with the hash values computed later on these chunks (or
groups of chunks as in some examples) for the purpose
of feature computations.

Since the typical choice of the value for d is slightly
over 10 and n−k+1 hash computations are required to
partition a single file, we are interested in the fast hash
functions with a uniformly random output and possibly
short (but of the size at least D) output values. Any
hash function can be used for this, but since we slide a
window byte-by-byte, we are calculating the hash values
of many overlapping subarrays.

Rolling hashes allow for a faster computation of the
new hash value given only the old hash value, the bits
that are removed from and added to the window. Since
we slide the window one byte at a time, eight bits are
removed and added in each step. The Rabin fingerprint
[12] is a type of the rolling hash function operating on bit
strings. An n-bit message m0, . . . ,mn−1 is represented
as a polynomial

p(x) = m0 +m1x+ . . .+mn−1x
n−1

of degree n−1 over a finite field GF(2). We then calcu-
late the k-bit hash value as a remainder of the division
of p(x) by irreducible polynomial i(x) of degree k over
a finite field GF(2). The remainder polynomial is of
degree k−1 and interpreted as a k-bit value. Even though

Preceding chunk

Chunk boundary Chunk boundary

f mod D≠ r f mod D=r

k-width sliding window

Figure 3. Sliding-window technique for the chunk-boundary
detection.

the Rabin fingerprints operate on bit strings, it is possible
and even desirable (due to the better performance) to
process more than one bit at a time. When operating on
larger window sizes, fast implementations consider the
register size of the underlying architecture, which today
is usually 32 or 64 bits. For our purposes, eight bits are
processed at a time. If l bits are processed at a time,
two precomputed tables with 2l entries (representing
all possible l-bit strings) are used to avoid a repeated
computation of the l rightmost and l leftmost terms of
the polynomial. These terms represent the bits that enter

DATA DEDUPLICATION IN UNSTRUCTURED STORAGE SYSTEMS 237

and leave the sliding window over which the fingerprints
are calculated.

The first well-known system using deduplication with
the content-defined chunking is LBFS [4], a low-
bandwidth file system. The system does not use dedupli-
cation to preserve only the storage space but the network
bandwidth as well. It provides the same semantics as the
well-known network file systems, such as NFS or AFS,
but uses less network bandwidth to transmit changes
between the clients and servers. This is achieved by a
heavy client-side caching and deduplication based on
the content-defined chunking. Before side A (client or
server) sends data to side B (server or client), side A
partitions the file into chunks, calculates the hash values
of these chunks and sends these hash values to side
B which checks if it already has them stored. Side B
reports back the hash values of the missing chunks (can
be all of them for a completely new data), and only
these are actually sent over the network by side A,
thus preserving the bandwidth. LBFS is therefore an
early example of the use of deduplication as one of the
core WAN optimization techniques. In the LBFS case,
deduplication is specific to the application layer protocol
(network file system), but the WAN optimization devices
use the same approach when deduplicating the packet
payloads at the network layer independent of the upper
layer protocols (HTTP, NFS, SMTP, etc.).

6 FEATURE COMPUTATION AND LOOKUP

Although we listed the feature computation and lookup
as two separate steps, we describe them together for
better understanding.

The basic operation of the feature computation is
hashing. The features are computed for each file sepa-
rately. In the file-level deduplication, a feature is simply
the hash value of the whole file, since there is no parti-
tioning. There are nuances between different techniques,
but the fundamental part where the redundancy detection
happens is in checking if a specific hash value (which
serves as a feature) is already present in the system.
Once a duplicate chunk is detected, most techniques do
not proceed with a byte-by-byte comparison, although
two different chunks or files can be hashed to the same
value. This is known as hash collision. Due to the
birthday paradox, hash collisions become likely when
2

n
2 different values are hashed by an n-bit hash function

[13]. If we were to use a 128-bit hash function for the
file-based deduplication and the average file size were
1 kilobyte, such a system could reliably identify the
duplicates by hashing, as long as less than 264 files were
stored. For example, the 250 one kilobyte files amount
to 1000 petabytes of data.

Feature lookup is supported by an index data struc-
ture holding the chunk metadata (hash value, reference
count, etc.). Since this data structure in its naive form

takes the space linear in the total size of the stored data,
it is quickly too large to fit into RAM, so it needs to be
stored on the disk. This is a problem, since deduplication
should cause as little additional disk accesses as possi-
ble, otherwise it degrades the performance. The random
access times to RAM, SSD (solid-state drive) and HDD
(hard-disk drive) are measured in tens of nanoseconds,
tens of microseconds and milliseconds, respectively. The
SSD drives are thus a “middle ground” between RAM
and HDD and are actually employed as large caches in
some deduplication techniques. However, limiting most
accesses to RAM is still desirable.

The following two subsections present two ap-
proaches that tackle the problem by reducing the number
of disk lookups. The first relies on a probabilistic
data structure called the Bloom filter described at the
beginning of the subsection. The second approach re-
lies on multiple (usually two) granularities of feature
computation, where at a higher level, the similar (not
identical) data is identified and then deduplicated at a
finer granularity. Example techniques are described for
both approaches.

6.1 Avoiding disk I/O with Bloom filters
The Bloom filter [14] is a probabilistic data structure

used to support set membership queries. Insertion and
lookup take a constant time, while removal is not
possible with an ordinary Bloom filter. The structure
takes the O(m) space as a bit array of length m, where
m is a parameter set by the user. An empty filter has
all the bits set to 0. When an element is added to the
filter, it is hashed by k different hash functions returning
values hi, where 0 ≤ hi < m, i ∈ [1, k]. Each of
the k values is used as an index into an array of bits
(we assume zero-based indexing), so that the bits at the
corresponding index positions are set to 1. The lookup
operation is performed in a similar manner. An element
whose membership we wish to check is hashed by the
same k hash functions returning the index values into a
bit array. If the bits at all the positions are 1, the filter
returns true, otherwise false. This means there are
no false negatives, since if an element was added to the
filter, the corresponding bits would be definitely set to
1. However, false positives are possible, since the bit
values at the k positions could be set to 1 by a different
combination of other elements. In fact, the probability
of a false positive after inserting the n elements is
approximated by (1− e

−kn
m)k [15].

Probably, the most cited approach to the unstructured
data deduplication is described in [15]. When the files
are written to the system they are partitioned using a
variable-length content-defined chunking. The feature
computation results in chunk descriptors comprised of
the chunk SHA-1 hash value, its size and some optional
information. The feature lookup is accelerated by the
summary vector, an in-RAM Bloom-filter structure that

238 TOLIČ, BRODNIK

1 0 0 0 01 1 1 11 000 0 0 0 1 1 0 0

c

{a ,b}

Figure 4. Example of the Bloom filter with a and b as members
of the set, and c not a member.

reduces the number of accesses to the chunk index stored
on the disk when a chunk is not duplicated.

The proposed technique was designed for the backup
workloads, where the spatial locality of chunks is very
common, since the same files (consisting of a sequence
of chunks) are repeatedly written to the system. A
stream-informed chunk layout is thus used to preserve
the spatial locality of chunks and their metadata. This
means that the neighbouring chunks as well as their
descriptors are stored sequentially, which enables a
locality-preserving cache. Whenever a retrieval from the
on-disk chunk index for a single chunk descriptor is
needed, a neighbouring group of the chunk descriptors
is transferred to a cache, expecting that other chunk
descriptors from the group will be queried soon.

6.2 Similarity-based techniques

Another solution to the problem of the large chunk-
index data structures are similarity-based techniques.
We first present the general idea and some theoretical
background followed by a description of two such
techniques.

Instead of only doing exact matching (looking for
identical chunks) at a single granularity, the similarity-
based techniques take a hierarchical approach, where
the features are computed in at least two levels, with
the higher level(s) using similarity matching to identify
groups of similar data (often called superchunks) to fo-
cus on at a lower-level (finer) granularity. How are these
groups (superchunks) formed and how are the higher-
level features computed on them will be discussed with
each of the two presented techniques. The features at
the lowest level (chunk-hash values) are then exactly
matched. Since the higher-level features are computed
at a coarser granularity on groups of data, they are
fewer. This enables us to store parts of the index in
RAM (higher level) and parts on the disk (lower level).
Usually, two levels are used. The choice of a similarity-
based technique also affects the partitioning step, which
can be carried out with either the content-defined or
fixed-size chunking. See Figure 5 for an example of the
two-level hierarchy.

The Jaccard index (also called the Jaccard similarity

coefficient) is a measure of similarity between two sets,
A and B, and is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

To avoid calculating the intersection and union for
every pair of sets, Broder [16] defines the notion of
resemblance (similarity) between the two data sets based
on an estimate of the Jaccard index. Let h denote a hash
function that maps the elements of some set S to integers
(a binary string could be interpreted as an integer). Let
hmin(S) denote element x of S with the minimum value
of h(x). Broder shows that the Jaccard index of sets A
and B could reliably be estimated as

Pr[hmin(A) = hmin(B)].

Stated otherwise, the estimate of the Jaccard index is
defined as a probability that two sets have the same
minimum hash element, the element that maps to the
lowest hash value. This is also known as MinHashing
[16]. The idea behind this is that if two sets share many
of the same elements, when permutation is applied that
maps the elements to the set 1 . . . 2n, it is likely the
same element from both sets will be mapped to 1. In
practice, the n-bit random hash functions are used in
place of permutations.

In order to evaluate the set resemblance, one hash
function and only the minimum hash value have a too
high variance, since random variable r in the above
probability can only take two values, i.e. the minimum
hash value is either the same for both sets (r = 1) or
not (r = 0). This is addressed by two approaches. The
first one is to use k different hash functions instead of
just one. The resemblance is then estimated to be m

k ,
where m is the number of hash functions for which
the minimum hash value is equal for both sets. This is
actually proposed by Broder in [17]. The second one is
to use one hash function, but calculate the k different
values for each set instead of just one. For example,
the k least-hash values instead of just the minimum.
This is proposed in the Broder’s first paper [16]. Again,
the resemblance is estimated to be m

k , where m is the
number of the hash values which are equal for both
sets. However, in this case the resulting k values are
not random, which might be a problem, but can be
mitigated. This is done in the technique presented in
[18] described in the next paragraph. In both approaches,
the k values – obtained by either storing the minimum
element for the k hash functions or storing the k smallest
elements for one hash function – can be computed and
stored for each set independently, and later compared
as necessary. These k values are also called a sketch
of the set. A more thorough and mathematically precise
treatment of MinHashing can be found in [16] and [17].
The similarity-based deduplication techniques use the

DATA DEDUPLICATION IN UNSTRUCTURED STORAGE SYSTEMS 239

variants of MinHashing to detect the similar data before
exact matching is done.

The authors in [18] present a similarity-based dedu-
plication technique. For the purpose of a higher-level
similarity detection, the input files are partitioned into
fixed-length superchunks of size 224 bytes (16 MB).
A 512-byte wide window is slided byte-by-byte over
a superchunk to efficiently compute the Rabin hashes
of the 224 − 511 different (but overlapping) chunks.
We denote ki to be the Rabin hash value calculated
over the chunk starting at byte position i within the
superchunk, with 0 ≤ i ≤ 224 − 512. Let i1, i2,
i3 and i4 denote the index positions of the chunks
for which hash values ki1 , ki2 , ki3 and ki4 are the
largest. One could use ki1 , . . . , ki4 as the superchunk
features in order to identify similar superchunks, that
is, the superchunks that have at least one of the four
features in common. However, the authors notice that
since values ki1 , . . . , ki4 are the largest among all the
224 − 511 computed values within a superchunk, they
are not uniformly distributed over the output range of
the hash function, but tend to belong to a small set at
the higher end of the output range. This would lead
to collisions, with different chunks having the same
hash values. The identical features would not correspond
to the identical data, which would lead to a similarity
detection where there would not be any. Therefore, the
authors propose to shift index positions i1, . . . , i4 by
a small amount m (they suggest m = 8) and use
ki1+m, . . . , ki4+m as features of the superchunk. Even
though, these four hash values are computed over similar
chunks – in each of the four pairs, the shifted and
original chunk differ in (at most) the first and last m
bytes, thus having (at least) 512−2m bytes in common –
they generally differ significantly due to the nature of the
hash functions. The authors propose to use a Rabin hash
with a 56-bit output. Along with every 7 byte feature,
a pointer to the on-disk location of one or more of the
corresponding superchunk(s) is listed (also 7 bytes for
a total of 256224 = 280 bytes), which amounts to at
most (since a single feature may be shared by several
superchunks) 14×4 bytes per a 16 MB superchunk. Due
to this ratio of 56 bytes

16 MB , the higher-level features (and
the accompanying metadata) can be stored in RAM and
upon arrival of new data used to identify the similar
already stored superchunks. The latter are then loaded
from the disk and exactly matched for the identical 512-
byte lower-level chunks.

Sparse indexing [19] is another well-known
similarity-based technique. The input files are parti-
tioned into the variable-length content-defined super-
chunks as opposed to the previous example [18]. The
sliding window technique with a TTTD improvement
[20] is used first for finding the lower-level chunk
boundaries and then to find the higher-level superchunk

File partitioned into superchunks

Superchunk partitioned into chunks

Figure 5. Example of a two-level hierarchical partitioning into
the superchunks at the higher level and the chunks at the lower
level. In this example, both the superchunks and chunks are
of a variable length.

boundaries. In the latter case, the window is slided
chunk-by-chunk instead of byte-by-byte. The divisors
are chosen so that the average size of the superchunks
is a few megabytes and the average size of the chunks is
a few kilobytes. Every superchunk has a corresponding
manifest stored on the disk. A manifest lists the sequence
of the chunks that comprise the superchunk, storing
for each chunk its SHA1 hash value, pointer to its
location in the chunk store on the disk, and the chunk
length. After an input file is partitioned into chunks
and superchunks, every superchunk is treated separately.
First, a few representative chunks, called hooks, are
sampled from the incoming superchunk. The hash values
of these hooks are the features of a superchunk. The
authors propose to sample the chunks whose hash values
have the first n bits zero. Thus, given a random hash
function and random data, the average sampling rate
is 2−n. Then, a few already stored superchunks most
similar to the incoming superchunk are identified. These
superchunks are called champions. They are identified
by querying the in-RAM dictionary data structure called
sparse index using the features of the incoming super-
chunk. The keys for searching the sparse index are the
features (hash values of hooks), and for every feature
a list of the pointers to the superchunk manifests (one
hook could be present in more than one superchunk)
is returned. However, in practice, if RAM is limited,
only one pointer is stored per hook – that of the
last stored superchunk. For an incoming superchunk
we thus make a constant (with regard to the average
number of the chunks in a superchunk and n) number
of the sparse-index queries – one for each hook in the
incoming superchunk. Each query takes a constant time
on average, since the sparse index is implemented as
a hash table with a chained hashing. The counters for
each reported manifest pointer for every queried feature
are maintained, so we can keep track which of the

240 TOLIČ, BRODNIK

already stored superchunks contain the most hooks of an
incoming superchunk and are thus the most similar. Note
that a query into the sparse index could return nothing
in case of features (hooks) that are new. The number
of the champions is limited (the authors suggest a limit
of 10) and not always achieved. When the champions
are identified, their manifests are loaded into RAM
from the disk. At this point, the SHA1 hash values
of all the chunks (not just hooks) are compared to
the chunk hash values of all the chunks from all the
previously identified champions in order to identify the
duplicates. The chunks from an incoming superchunk
found not to be duplicated are stored to the chunk store
on the disk. A manifest is then created for the incoming
superchunk with the pointers to the chunks. Lastly, the
sparse index is updated. An entry is created for each new
hook, and the entries for the existing hooks are updated.
If the sparse index stores only one manifest pointer
per hook (as is suggested to preserve RAM), then the
existing manifest pointer is overwritten with the pointer
to the manifest of the incoming superchunk. However, if
several manifest pointers are allowed, the pointer to the
new manifest is added and, if the maximum is exceeded,
the pointer to the oldest manifest is removed.

7 WRITE COMMIT

The final step of deduplication is storing the non-
duplicated chunks in a structure often called the chunk
store, updating the chunk metadata data structures and
storing the file recipes.

The details on this step are often vague or even omit-
ted in papers. This is especially true when a technique
is designed with a specific storage system (including
hardware specifications) in mind, which results in intrin-
sic optimizations. These techniques are usually designed
by R&D departments of storage product companies. For
example, when a storage system only uses the RAID-6
arrays with specific stripe sizes, consideration is taken
of how often and in what layout new chunks should be
written to a persistent storage. We should note, however,
that most system software takes the underlying system
architecture into account at least to some extent.

Deduplication techniques have been designed that
take additional actions in the final step to further reduce
the required space. The possible additional actions are
entropy encoding (sometimes called classical compres-
sion) and delta encoding. The basic idea of the delta
encoding is to encode one data object as a set of differ-
ences (deltas) with regard to the other data objects. The
main issue with using this for redundancy elimination in
large storage systems is how to efficiently find groups
of similar objects, so that one of them can be used as a
reference object, while the others are encoded as a (as
small as possible) set of differences to this reference
object. These techniques are sometimes described as

hybrid. A good example is the technique presented in
[21]. The method first applies a variable-length chunk
deduplication similar to LBFS [4] (see Section 5). The m
chunks not identified as duplicated are further analyzed.
Similar to the approaches described in Section 6.2,
several features are computed for each chunk using
the Rabin hashing. These additional features are then
coalesced into a single superfeature as suggested in
[17] by grouping the existing features (hashes of the
chosen chunks) and calculating the hashes over their
concatenation – the process is similar to building the
Merkle tree [22]. This makes it possible to identify the
groups of similar chunks in the O(m logm) time instead
of brute forcing every pair of chunks in the O(m2) time
(see [17] for a detailed treatment). When such groups of
similar chunks are identified, a single chunk is chosen
randomly in every group to act as a reference, while the
other chunks in the group are delta-encoded against the
reference chunk. Furthermore, the chunks that are not
handled by any of the above procedures are entropy-
encoded.

8 READING THE DATA

Deduplication changes how the storage system writes
the data. However, reading is also affected, at least by
the fact that the file recipes must be checked before
a file can be reconstructed and returned. For the file-

Figure 6. Random access pattern when reading a deduplicated
file.

level deduplication we can imagine a recipe containing
a single-chunk hash value. Storing the file recipes ef-
ficiently is not trivial, but is beyond the scope of this
paper. Let us rather explain an additional issue that also
affects how writing is done.

Consider writing a file that is almost completely
deduplicated, i.e. most of the file is comprised of chunks
already stored in the system. Since these chunks could
be stored by different write operations, they can be
scattered all over the disk. When this file is later read
from the system, what should have been a sequential
access turns into a random access due to the scattered
chunks as is depicted in Figure 6. The same effect of a
non-sequential access is seen in local file systems, only

DATA DEDUPLICATION IN UNSTRUCTURED STORAGE SYSTEMS 241

there it is caused by fragmentation. This non-sequential
access is not a problem by itself, but is a consequence
of the fact that the system is using the storage devices
optimized for a sequential access. The problem is less
obvious in storage systems with multiple disks or even
multiple machines, where the chunks stored on different
disks or nodes can be accessed in parallel. A trivial
technological solution is to use the devices with a better
random access performance, such as the SSD disks,
but this could be costly. The deduplication technique
designers try to mitigate this issue by introducing read
caches as well as content-aware layouts. We will not
discuss this in detail. An example solution can be
found in [23] where a deduplication technique for a
primary-workload storage system is presented. These are
especially sensitive to the read-performance degradation,
since the reads prevail over the writes in the primary
workloads.

9 DEDUPLICATION IN DISTRIBUTED
STORAGE SYSTEMS

Due to the cheaper and more powerful commodity
hardware as well as affordable high-performance net-
works, many modern computer systems are distributed
with storage systems as no exception. Several solutions
for deduplication in the distributed storage systems
have been proposed. According to [24], there are two
approaches to deduplication in the distributed storage
systems. One is local deduplication with routing. Ba-
sically, deduplication is done locally at the nodes of a
distributed system, but to achieve better space savings,
routing based on some sort of similarity is used so
that the similar data is stored at the same node and
thus the chance for deduplication increases. The other
approach is global deduplication which supports cross-
node references. This could lead to better space savings,
since the redundancy in the data stored on different
nodes could be eliminated, but is quite difficult to
implement efficiently. The system described in [24] uses
both approaches.

Local deduplication with routing can be further di-
vided:

1) Stateless data routing assigns the chunks to the
nodes based only on the contents of the chunks.
This approach is followed by [25] and enables
uniformly distributed data without the need to
query into additional data structures.

2) Statefull routing assigns the chunks to the nodes
based also on a previous assignment of the sim-
ilar data. This achieves a better deduplication,
but causes performance and load-balancing issues.
This approach is taken in [26].

In both cases, since routing is based on similarity, the
data is first partitioned on a coarser granularity into the

superchunks (see Section 6.2). Partitioning is mostly
done at the clients or specific nodes in a centralized
fashion. The superchunks are then routed to specific
nodes that hopefully contain similar superchunks, that
is, superchunks containing many identical chunks.

Let us look at the stateless-routing technique extreme
binning [25] in more detail. The idea is to store the
similarity index of every file in the main memory. This
is called the primary (higher level) index. The content-
defined chunking [4] is used to partition the incoming
files. The feature contains a SHA-1 hash value of the
whole file, ID of the representative chunk (the chunk
with the minimum hash value as per the MinHashing
approach [16]) and a pointer to the bin stored on the
disk to which this chunk belongs. Similar files (the ones
having the same representative chunk) are grouped into
bins stored on the disks. The bins represent the second
tier (lower level) index. In this way, the duplicated
files are detected already in RAM, while the duplicated
chunks are detected inside each bin once it is loaded
from the disk. The technique should be classified as a
similarity-based deduplication approach that can be used
in either a centralized or a distributed setting. In the
latter, the K nodes of a distributed system are numbered
from 0 to K − 1. The representative-chunk hash value
(which has the role of the chunk ID) is used for stateless
routing, with the files being routed to the node chunkID
mod K.

10 CONCLUSION

Deduplication is a useful addition to approaches for
tackling an ever increasing amount of data produced and
stored by the today’s computer systems. It is especially
appropriate for the archival and backup, cloud stores,
virtual machine storage, enterprise file servers and any
other case where data exhibits redundancy that cannot
be eliminated by other means, such as entropy encoding
which tackles much smaller data sets. If done efficiently
using advanced techniques, such as those presented
in this paper, space saving far outweighs a potential
performance degradation.

Although much has already been done in the area of
the unstructured-data deduplication, there is still room
for improvement. Some of the challenges are:

• Write the data in such a way that the reads will
result in more sequential and less random accesses.

• Other improvements for the use in the primary-
workload storage systems where the reads prevail
over the writes.

• Better approaches for the distributed-data dedupli-
cation.

242 TOLIČ, BRODNIK

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, p. 29, Dec. 2003.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: amazon’s highly available key-value store,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, p. 205, Oct.
2007.

[3] D. Geer, “Reducing the Storage Burden via Data Deduplication,”
Computer, vol. 41, no. 12, pp. 15–17, Dec. 2008.

[4] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-
bandwidth network file system,” ACM SIGOPS Operating Sys-
tems Review, vol. 35, no. 5, p. 174, Dec. 2001.

[5] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System
Concepts, Seventh Edition. John Wiley & Sons, 2007.

[6] M. Mesnier, G. Ganger, and E. Riedel, “Storage area network-
ing - Object-based storage,” IEEE Communications Magazine,
vol. 41, no. 8, pp. 84–90, Aug. 2003.

[7] S. A. B. Sage A. Weil, “Ceph: A scalable, high-performance
distributed file system,” Proceedings of the 7th symposium on
Operating systems design and implementation - OSDI ’06, p. 14,
2006.

[8] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, “Single
instance storage in Windows® 2000,” in WSS’00 Proceedings
of the 4th conference on USENIX Windows Systems Symposium.
USENIX Association, Aug. 2000, p. 2.

[9] D. T. Meyer and W. J. Bolosky, “A study of practical dedupli-
cation,” ACM Transactions on Storage, vol. 7, no. 4, pp. 1–20,
Jan. 2012.

[10] U. Manber, “Finding similar files in a large file system,” in
Proceedings of the USENIX Winter 1994 Technical Conference
on USENIX Winter 1994 Technical Conference (WTEC’94).
USENIX Association, Jan. 1994, p. 2.

[11] K. Eshghi and T. Khuern, “A Framework for Analyzing and Im-
proving Content-Based Chunking Algorithms,” Hewlett-Packard
Laboratories, Tech. Rep., 2005.

[12] M. O. Rabin, “Fingerprinting by Random Polynomials,” Center
for Research in Computing Technology , Harvard University,
Tech. Rep., 1981.

[13] D. R. Stinson, Cryptography (Discrete Mathematics and Its
Applications). Chapman & Hall/CRC, 2005.

[14] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, no. 7, pp.
422–426, Jul. 1970.

[15] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proceedings
of the 6th USENIX Conference on File and Storage (FAST’08).
USENIX Association, Feb. 2008, p. 18.

[16] A. Broder, “On the resemblance and containment of documents,”
in Proceedings. Compression and Complexity of SEQUENCES
1997 (Cat. No.97TB100171). IEEE Comput. Soc, 1997, pp.
21–29.

[17] A. Z. Broder, “Identifying and filtering near-duplicate doc-
uments,” in Proceedings of the 11th Annual Symposium on
Combinatorial Pattern Matching, ser. COM ’00. London, UK,
UK: Springer-Verlag, 2000, pp. 1–10.

[18] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and
S. T. Klein, “The design of a similarity based deduplication sys-
tem,” in Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference on - SYSTOR ’09. New York, New York,
USA: ACM Press, May 2009, p. 1.

[19] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse indexing: large scale, inline dedu-
plication using sampling and locality,” in Proccedings of the
7th conference on File and storage technologies (FAST’09).
USENIX Association, Feb. 2009, pp. 111–123.

[20] T.-S. Moh and B. Chang, “A running time improvement for the
two thresholds two divisors algorithm,” in Proceedings of the
48th Annual Southeast Regional Conference on - ACM SE ’10.
New York, New York, USA: ACM Press, Apr. 2010, p. 1.

[21] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey, “Redun-
dancy elimination within large collections of files,” in Proceed-
ings of the annual conference on USENIX Annual Technical
Conference (ATEC’04). USENIX Association, Jun. 2004, p. 5.

[22] R. C. Merkle, “A Digital Signature Based on a Conventional
Encryption Function,” pp. 369–378, Aug. 1987.

[23] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iD-
edup: latency-aware, inline data deduplication for primary stor-
age,” in Proceedings of the 10th USENIX conference on File and
Storage Technologies, Feb. 2012, p. 14.

[24] P. Efstathopoulos, “File routing middleware for cloud dedupli-
cation,” in Proceedings of the 2nd International Workshop on
Cloud Computing Platforms - CloudCP ’12. New York, New
York, USA: ACM Press, Apr. 2012, pp. 1–6.

[25] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme
Binning: Scalable, parallel deduplication for chunk-based file
backup,” in 2009 IEEE International Symposium on Modeling,
Analysis & Simulation of Computer and Telecommunication
Systems. IEEE, Sep. 2009, pp. 1–9.

[26] D. Frey, A.-M. Kermarrec, and K. Kloudas, “Probabilistic dedu-
plication for cluster-based storage systems,” in Proceedings of
the Third ACM Symposium on Cloud Computing - SoCC ’12.
New York, New York, USA: ACM Press, Oct. 2012, pp. 1–14.

Andrej Tolič received his B.Sc. degree in Computer Science and
Mathematics from the University of Ljubljana, Slovenia. He is cur-
rently a Ph.D. student at the same university working on deduplication
in distributed storage systems. His research interests include systems
software, distributed and networking systems, cybersecurity, and cryp-
tography.

Andrej Brodnik received his Ph.D. degree from the University of
Waterloo, Ontario, Canada, in 1995. After graduation he worked as a
head of research and CTO in industry (IskraSistemi and ActiveTools).
In 2002 he joined the University of Primorska and also worked as
a researcher and adjoined professor at the University of Technology
in Luleå, Sweden. He has authored several tens of various scientific
papers and is an author and co-author of patents in Sweden and the
USA. The CiteSeer and ACM Digital Library list over 200 citations
of his works. He is also a recipient of a number of awards (National
award for exceptional achievements in higher-education teaching;
Boris Kidrič award; Fulbright scholarship; IBM Faculty Award, 2004;
Golden Plaque of the University of Primorska; etc.). Currently he holds
a teaching position at the University of Primorska and the University
of Ljubljana.

