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1. Introduction

High performance micro-machined sensors based on 
cantilevers are usually operating in closed loop to in-
crease dynamic range, linearity, bandwidth and other 
parameters. To prevent pull-in and to improve noise 
performances a low order force-feedback 1 bit Σ-Δ 
modulator can be used. Further improvements are 
possible if high order modulator and/or multi bit force 
feedback are used instead. In that case, the mechani-
cal element transfer function together with electronic 
transfer function form a loop filter and in this way the 
influence of quantization noise is reduced and higher 
resolution is possible. The price paid is increased insta-
bility of the control loop and difficult design procedure. 
This article presents possible architecture, modeling 
and simulation of high performance electromechani-
cal ΣΔ modulator operating in closed loop. 

In section 2, theoretical background is given using 
well-known model of mechanical mass-spring system. 
Section 3 gives design steps needed for the efficient 
design of mechanical ΣΔ modulator, while simulation 
results for designed modulators are presented in sec-
tion 4. Section 5 concludes the article.

2. Theory

Block diagram of generic electromechanical ΣΔ modu-
lator is presented on Figure 1 ([1], [2], and [3]).
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Figure 1: Generic electromechanical ΣΔ modulator

Mechanical part consists of a proof mass suspended by 
springs [6] (Figure 2) and can be described by (1).

Figure 2: MEMS sensor

Mass of the sensor is m, ω0 = √(k /m) is a resonance fre-
quency of the mechanical part dependent on m and 
spring constant k, while δ is a damping factor (defined by 
friction of the media where the proof mass is mooving).

                dz (s)           1/m
HM (s) = -------- = ------------------------    (1)
                Fin (s)       s2 + s ⋅ 2 δω0 + ω0

2

Input signal is acceleration ain that produce a force to 
the mass m. Feedback force Ffb tries to keep the sensor 
at equilibrium position, so the real input to the mechani-
cal system is Fin = m ⋅ a - Ffb.  The sensor is prestressed by 
force F0 so, that position of the mass at equilibrium is z0, 
which is away from the position D. The displacement dz 
describes the moovement around z0. NB models spectral 
density of the Brownian noise, which enters the loop 
unatennuated and is dependent on sensors characteris-
tics and presseure around it; we will neglect it in this arti-
cle because it is assumed that the sensor is operating in 
vacuum.  The displacement dz can be measured through 
the change of capacitance represented by block dz → dC  
and described by (2) (ε0 is permitivity of free space, A is 
the area of the electrode, D is the distance of the elec-
trodes with zero force, z0 is the displacement at force 
F0 and dz represent small displacement around z0). To 
sense the change of the capacitance, a HF sensing sig-
nal is applied to the sense capacitors of the sensor.

                           1                 1       
dC = ε0A  --------------- - --------  (2)
                  D + z0 + dz      D + z0 

Charge amplifier converts charges to voltage at HF and am-
plify it. Sinchronous demodulation converts signals back 
to the base-band, while LP filtering removes HF mixing 
components; in this way the influence of 1/f noise and off-
set voltage is reduced. All this elements are hidden in block 
dC → dV of Figure 1. Part of this block is positioned in elec-
tronic part, while another part is located in the mechanical 
part of the model. Signal dV enters the electronic part of 
ΣΔ modulator with loop filter transfer function described 
by HE (z). Electronic noise with spectral density NE is added 
at the input and consist of all electronic noise sources cal-
culated back to that input exept the quantization noise. 
The quantizer is in fact a nonlinear elemet which can be 
modelled by simple ''signum'' function in nonlinear model 
or by gain factor KQ and addition of quantization noise with 
density   for linear model. The quantizer can be one bit for 
linearity and simplicity but can be also be multi bit if more 
demanding characteristics are needed. Errors caused by 
nonlinearity of the DAC inside the modulator are modelled 
by EDAC E; they appear at the output unattenuated. The bit-
stream signal described by Y (s) for linear model is fed back 
and converted to voltage through block element DACM. 
The feedback force dFfb = F - F0 is dependent on V2 and dz 
according to (3)  where V0 is selected in such a way that 
force F0 is half of maximum force and causes prestressed 
position at D + z0. Around that position the sensor mooves 
by dz. For 1 bit quantizer the equation (3)

               ε0A                 V2                    V0
2      

dFfb = - -----  ----------------- - ------------  (3)
 2    (D + z0 + dz)2    (D + z0 )

2  

simplifies to (4), where BS stands for the bit-stream  
BS = { ± 1}. We can see that the force in this case is not any 
longer in quadratic relation with the applied  voltage.

               ε0A  V0
2         (1 + BS)                 1        

dFfb = - ----- ----  ----------------- - ------------  (4)
 2     2   (D + z0 + dz)2    (D + z0 )

2  

For average ain = 0 the average of (1 + BS) = 1 and small 
nonlinearity still remains due to dependency of (4) on   
dz. For low resolution devices this nonlinearity is of no 
problem but for high resolution devices the nonlinear-
ity reduces the SNDR as shown in section 4.  It can be 
compensated adding appropriate nonlinear electronic 
feedback; the solution is in developement.

To prepare the background for synthesys of the loop 
transfer function we need to linearise nonlinear com-
ponents of the sensor. Assuming that dz is small com-
pared to z0 , only linear term of  the Taylor expansion is 
preserved, thus, dFfb and dC are simplified to (6) and (7) 
respectively. The linear term in (5) is much smaller than 
ω0

2, so the right  summand could be neglected, which 
gives (6). Because linear model (6) does not contain any 
term in dz we can drop the line conecting that signal 
with block Ffb (Figure 1).
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               ε0A  V0
2          BS         2 ⋅ dz ⋅ (1 + BS)  

dFfb ≅ - ----- ----  ----------- - --------------------  (5)
 2     2   (D + z0)2           (D + z0 )

2       

               ε0A  V0
2          BS       

dFfb ≅ - ----- ----  -----------  (6)
 2     2   (D + z0)2  

             dz ⋅ ε0 ⋅ AdC ≅ - ------------- (7)
              (D + z0

2)

Keeping the linear term of taylor expansion for dC gives (7). 

3. Design procedure

The design procedure for an electronic ΣΔ modulator 
starts with synthesis of noise transfer function from 
required SnR and oversampling ratio, followed by se-
lection of appropriate electronic topology to assure all 
requirements [7]. Because of simplicity, speed of simu-
lation and available design tools the synthesis is usually 
done in z domain even for the CT-ΣΔ modulators. NTF 
(z) is synthesized followed by the synthesis of the loop 
filter H (z) for DT modulator or H (s) for CT implementa-
tion. In later case the response of  DT prototype modu-
lator and CT must be equal at t = nTs (equations (8), (9) 
and (10) ), where rDAC (t)  is the impulse response of  D/A 
converter; this is so called  impulse invariant transfor-
mation [5].  
 
x(nTs) = xa (t)t=nTs

 ;            
(8)

hM(nTs) = hM (t)|t=nTs
         

h(nTs) = Z-1 {H(z)} 
    (9)              
= L-1 {RDACM (s) · H (s)}|t=nTs

h(nTs) = [ rDAC (t) * h (t) ]t=nTs   (10)
=  ∫ rDAC (τ) · h(t - τ)dτ 
                                 t=nTs

In the case of mechanical ΣΔ modulator the mechani-
cal part of the transfer function is already present, thus 
part of the loop transfer function is already defined. 
Unfortunately, internal nodes are not available for op-
timization and stabilization and in addition, there is no 
freedom for changing parameters of that part because 
it is defined by required mechanical characteristics. The 
minimum order of the total loop transfer function is 
two if  electronic loop filter does not exist. Unfortunate-
ly, the amount of noise shaping provided by only HM (s) 
is not big enough for high-resolution mechanical ΣΔ 
modulator; therefore, the electronic filtering is needed 
[4]. Because of sampling inside the loop, the system is 

a mixture of CT and DT system. To be able to correctly 
design such a system the equivalence between contin-
uous time (CT) and discrete time (DT) system must be 
preserved  using so-called impulse invariant transfor-
mation. We can distinguish three cases regarding loop 
transfer function and sampling: HM (s) and sampling in 
front of a quantizer, HM (s) and  HE (z) with sampling in 
front of HE (z) and HM (s) followed by HE (s) while sam-
pling occurs in front of a quantizer. The simplest pos-
sibility is presented on Figure 3. In this case, the only fil-
tering element is mechanical transfer function HM (s). To 
be able to analytically analyze and model such modula-
tor we have to calculate the response of the mechani-
cal element at the sampling instances. The mechanical 
transfer function in z domain is than HM (z), which we 
obtain by impulse invariant transformation of HM (s), 
taking into consideration also transfer function of the 
D/A. Upper part of Figure 4 shows both arrangements: 
CT on the left and DT on the right. 

ˆ

ˆ

ˆ ˆ

ˆˆ

ˆˆ
+∞

-∞

Figure 3: Simplest mechanical Σ-Δ modulator

They will behave equally if impulse responses are the 
same at nTs. The CT system has three problems. The de-
lay between sampling instant and reaction of the DAC 
may compromise the stability of the loop; we can solve 
it by taking into considerations the shape of the DAC 
pulse. The second problem is that the rise and the fall 
times of the DAC pulses are usually not equal; they are 
signal dependent, which degrades the SnR and causes 
inter-symbol interference. We can minimize it by ap-
propriate shaping of the DAC pulse (for example RZ 
instead of NRZ). The third problem is that mechanical 
DAC generates nonlinear feedback force (3), which can 
be solved by appropriate electronic linearization.

For the DT implementation, the DAC is of no problem 
because by correct design we can assure a complete 
charge transfer in one sampling period.

Figure 4: CT-DT equivalence
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Figure 5: Shape of the DAC pulse

For CT systems, we have to implement and model the 
DAC correctly. Possible DAC pulse for one-bit quantizer 
is presented on Figure 5 and described by (11), where  
0 ≤ α < 1, 0 ≤ β < 1, α < β and u(t) is a unit step function.

rDACM (t) = u(t - αTs) - u(t - βTs)       (11)

The Laplace transformation of (11) gives (12): 

          e-sαTs
  - e-sβTs

L {rDACM (t)} = ----------------       (12)
  s

The shape of the DAC pulse changes the loop trans-
fer function. In this paper, we will treat only the case 
α = 0, β = 1, while general case is under development. 
Mechanical properties define poles,  zeroes and coeffi-
cients that can be calculated by fractional expansion of 
(1) using (13) and (14) for δ ≠ 1. Equivalent DT transfer 
function HM (z) can  be expressed as a sum of first order 
poles (15).

p1,2 = -δ · ω0 ± √ δ2 - 1  
(13)

  1
â1 = -â2 = -----------------------  
   m · 2 · ω0 · √ δ2 - 1

                2    âk                              
HM (s) = Σ -------  (14) 
               k=1 s - pk

                2    zak                              
HM (z) = Σ -------  (15) 
               k=1 z - zk

Parameters ak and poles zk are calculated by explicit 
evaluation of (10) equating corresponding coefficients. 
The results are given in (16) to (19):

                2   âk                              
h(nTs) = Σ ---- (epkTs(1-β) - epkTs(1-α))  (16) 
               k=1 pk

Z -1 {H(z)} = a1z1
nTs u (nTs) + a2z2

nTs u (nTs) (17)

          âkak = ---- (zk
(1-β) - zk 

(1-α)); k = 1,2  (18)
         pk

z1 = ep1Ts; z2 = ep2Ts  (19)

For δ = 1 the calculation of poles and zeroes is different 
according to (20)

ˆ

ˆ

ˆ

px → 0; zx → 1;
   (20)
         β - α
ax → -ax ----------------
 (1 - β)(1 - α)

Using transformations given in (18) and (19) the me-
chanical ΣΔ modulator transfer function can be trans-
lated to DT domain where simulations are faster com-
pared to CT domain; in addition, we can easily test and 
predict closed loop stability characteristics and per-
form also other necessary simulations.

4. Simulation results

To prove the efficiency of the methodology, different 
MEMS electromechanical modulators have been de-
signed using the sensor model defined in (1). Brownian 
noise has been neglected because it is assumed that 
the sensor is in a vacuum. Three different designs differ 
in the electronic loop filter order: zero one and two. The 
stability of the loop is of no concern for the first two 
designs, while for higher order electronic loop filter the 
poles and the zeroes must be optimized for stability. In 
our examples, the electronic loop filters are CT followed 
by one-bit quantizer, with sampling frequency  1MHz. 
Input acceleration is equal for all three cases. Simula-
tion results using Matlab for three topologies are pre-
sented on Figure 6. The SnR in 1kHz bandwidth and HD 
are calculated for each design. As expected, increasing 
electronic loop-filter order increases the SnR, while HD 
remains the same. In addition, 2nd order electronic loop 
filter provides much bigger bandwidth compared to 
the first order structure because of more aggressive 
noise shaping, which is beneficial characteristics. 

5.  Conclusions

A design methodology and Matlab modeling of preci-
sion MEMS electromechanical ΣΔ modulators is pre-
sented in the article. We show methodology, math-
ematical modeling and Matlab simulation results 
for three different electronic loop filters. Methodol-
ogy is adapted from the design procedure for the CT 
modulators and is applicable to general closed loop 
mechanical Σ-Δ modulator. In the future, the design 
procedure will be generalized to the synthesis of ar-
bitrary-order electronic loop filter implemented with 
CT or S-C circuits with mechanical part consisting of 
complex poles and higher order modes to be able to 
control and predict the stability of the closed loop 
system already during the design procedure. The lin-
earization of the feedback force is currently under de-
velopment.

ˆ
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Figure 6: Spectrums of three MEMS ΣΔ modulators with 
different orders of electronic noise shaping filters.
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