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A B S T R A C T	   A R T I C L E   I N F O	

In	 this	 paper,	 we	 proposed	 a	 Gravitational	 Search	 Algorithm	 (GSA)	 and	 an
NSGA‐II	approach	for	multi‐objective	optimization	of	the	CNC	turning	process.	
The	 GSA	 is	 a	 swarm	 intelligence	method	 exploiting	 the	 Newtonian	 laws	 on	
elementary	mass	 objects	 interaction	 in	 the	 search	 space.	 The	NSGA‐II	 is	 an
evolutionary	algorithm	based	on	non‐dominated	sorting.	On	the	basis	of	vary‐
ing	values	of	the	three	independent	input	machining	parameters	(i.e.,	cutting	
speed,	depth	of	cut,	and	feed	rate),	the	values	of	the	three	dependent	output	
variables	were	measured	(i.e.,	surface	roughness,	cutting	forces,	and	tool	life).	
The	obtained	data	set	was	divided	 further	 into	 two	subsets,	 for	 the	 training	
data	and	the	testing	data.	In	the	first	step	of	the	proposed	approach,	the	GSA	
and	the	training	data	set	were	applied	to	modelling	a	suitable	model	for	each	
output	variable.	Then	the	accuracies	of	the	models	were	checked	by	the	test‐
ing	data	set.	In	the	second	step,	the	obtained	models	were	used	as	the	objec‐
tive	functions	for	a	multi‐objective	optimization	of	the	turning	process	by	the	
NSGA‐II.	The	optimization	constraints	relating	to	 intervals	of	dependent	and	
independent	variables	were	set	on	the	theoretical	calculations	and	confirmed	
with	 experimental	measurements.	 The	 goal	 of	 the	multi‐objective	 optimiza‐
tion	was	to	achieve	optimal	surface	roughness,	cutting	forces,	and	increasing	
of	the	tool	life,	which	reduces	production	costs.	The	research	has	shown	that	
the	 proposed	 integrated	 GSA	 and	 NSGA‐II	 approach	 can	 be	 implemented	
successfully,	not	only	for	modelling	and	optimization	of	the	CNC	turning	pro‐
cess,	but	also	for	many	other	manufacturing	processes.		
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1. Introduction  

Advances	in	existing	production	are	measured	in	terms	of	the	flexibility,	autonomous	function‐
ing	and	extent	of	automation.	Modernisation	of	production	covers	the	modernisation	and	inte‐
gration	of	the	latest	technologies	into	production	systems	so	that	the	companies	remain	compet‐
itive.	Integration	of	advanced	technologies	results	in	shorter	manufacturing	times,	higher	capac‐
ities	and	reduction	of	production	costs.	Because	of	the	dynamics	and	increase	in	the	amount	of	
input	parameters	or	data,	the	optimization	of	systems	has	become	more	difficult	than	previous‐
ly.	Because	of	high	quantities	of	data,	the	optimal	functioning	of	production	can	often	be	reached	
no	more	 by	 conventional	methods;	 therefore,	more	 advanced	methods	 are	 applied	 to	 acquire	
new	and	better	solutions	in	the	optimization	of	production	systems.	
	 The	research	is	aimed	at	conceiving	an	advanced	system	for	modelling	of	CNC	machining	op‐
erations	and	subsequent	optimization	of	machining	parameters	by	the	use	of	the	developed	ma‐
chining	models.	 In	the	past,	a	 lot	of	researches	have	been	executed	 in	the	field	of	optimization	
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and	modelling	of	 the	CNC	machining	operations	 [1‐3].	 Important	 researches	 in	 this	 field	have	
been	carried	out	 for	optimization	of	milling	[4],	 turning	[5],	 laser	cutting	and	water	 jet	cutting	
[6].	Successful	optimization	relies	on	the	use	of	the	training	and	testing	databases	[7]	comprised	
of	the	values	measured	in	experiments	[8,	9].	The	training	and	testing	databases	allow	the	train‐
ing	of	algorithms	and	testing	of	correctness	of	the	models	developed.	The	development	of	mod‐
ern	methods	 of	 optimizing	 and	modelling	 of	 complex	production	 systems	 requires	 know‐how	
from	 the	area	of	 intelligent	 systems,	which	presupposes	 incorporation	of	 artificial	 intelligence	
into	solving	 complex	engineering	problems.	One	of	 the	most	widespread	nondeterministic	ap‐
proaches	for	solving	complex	engineering	problems	is	evolutionary	computation,	especially	ge‐
netic	 algorithms	 and	 genetic	 programming	 [10].	 There	 are	 many	 works	 where	 genetic	 algo‐
rithms,	as	well	as	other	nondeterministic	methods	(e.g.,	Artificial	Neural	Networks	–	ANN)	were	
implemented	for	solving	various	problems	in	cutting	systems,	 including	surface	roughness	op‐
timization	and	optimal	tool	selection	(see	for	example	[1,	14‐21]).	Another	artificial	intelligence	
method	used	frequently	is	swarm	intelligence.	Swarm	intelligence	is	only	a	covering	term	and	is	
divided	into	many	sub‐types	[22].	Often,	the	authors	refer	to	intelligence	adopted	from	biological	
aspects,	e.g.	bee	swarms,	bird	flights	or	ant	colonies	[23].	A	relative	novelty	in	the	swarm	intelli‐
gence	methods	 is	 the	Gravitational	Search	Algorithm	(GSA)	working	on	the	principle	of	 the	 in‐
teraction	of	masses	[24].	A	review	of	the	literature	reveals	that,	so	far,	the	GSA	has	not	been	re‐
ported	frequently	for	optimization	of	manufacturing	technologies.	
	 This	paper	proposed	an	effective	approach	for	modelling	and	multi‐objective	optimization	of	
CNC	machining	 processes	 by	 the	 GSA	 and	 NSGA‐II.	 Data	 gained	 on	 the	 basis	 of	 experimental	
measurements	 were	 used	 for	 training	 and	 testing	 of	 the	 model	 developed	 by	 the	 GSA.	 After	
modelling,	the	multi‐objective	optimization	of	the	cutting	parameters	was	done	on	the	basis	of	
CNC	cutting	models	developed	by	the	GSA.	The	NSGA‐II	algorithm	was	implemented	for	the	mul‐
ti‐objective	 optimization.	 The	 system	 is	 generally	 convenient	 for	 different	 CNC	machine	 tools	
and	can	be	adapted	to	several	different	materials`	removing	processes,	e.g.	milling	and	laser	cut‐
ting.	However,	our	research	was	restricted	to	turning	as	far	as	training	of	the	system	and	testing	
of	its	effectiveness	are	concerned.	
	 The	 article	 is	 composed	 as	 follows:	 Section	 2	 presents	 detailed	 descriptions	 of	 the	 experi‐
mental	 setup,	Gravitational	Search	Algorithm,	and	elitist	Non‐dominated	Sorting	Genetic	Algo‐
rithm`s	(NSGA‐II)	background.	The	results	and	discussion	are	presented	in	Section	3.	The	article	
ends	with	a	short	Conclusion.	

2. Materials and methods 

2.1 Experimental setup and results 

Models	of	the	turning	process	were	created	by	means	of	experimental	measurements	of	the	out‐
put	parameters	of	machining	operations	depending	on	the	input	parameters,	in	accordance	with	
the	work	of	Jurkovic	[25].	The	experiment	was	carried	out	during	a	fine	turning	operation	on	the	
CNC	lathe	Georg	Fischer	NDM–16.	Samples	from	the	material	C45E	were	used	for	execution	of	
the	experiment.	This	is	a	hot	rolled	structural	steel.	The	workpiece	diameter	for	machining	was	
Ø10	mm	×	380	mm.	The	tool	used	for	the	test	samples	was	the	cutting	insert	Sandvik	Coromant	
DNMG	150608‐PM4025.	The	following	equipment	was	used	for	proper	measuring	of	tool	wear,	
machining	forces,	and	surface	roughness:	

 Measuring	of	cutting	forces:		
Force	meter	Kistler	9257A.	Measuring	range	Fx.y.z	=	5	kN	allowing	capturing,	displaying	and	
processing	of	resulting	cutting	forces	with	the	aid	of	the	programme	package	Labview	TM.	

 Surface	roughness:		
Roughness	meter	Ra	produced	by	Mitutoyo	SJ‐201P.	

 Tool	wear:		
Microscope	Carl	Zeiss	with	magnification	30	and	0.0001	mm	resolution.	
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The	input	data	for	execution	of	the	experiment	were	as	follows:	

 Cutting	speed	Vc	(m/min)	
 Feed	rate	f	(mm/rew)	and	
 Cut	depth	ap	(mm).	

	

The	output	data	were	gained	from	the	input	data,	as	the	latter	have	direct	impact	on	their	values.	
The	output	data	and/or	the	experiment	results	were:	

 Main	cutting	force	Fc	(N)	
 Surface	roughness	Ra	(µm)	and	
 Tool	resistance	time	T	(min).	

	

The	experimental	results	obtained	during	the	fine	turning	are	presented	in	Table	1.	
	

Table	1	The	results	of	the	experiment	

	 Input	data	 Output	data	 	

Trial	No.	 Vc	(m/min)	 f	(mm/rev)	 ap	(mm)	 Fc	(N)	 Ra	(μm)	 T	(min)	 	

1	 400	 0.100	 0.40	 128.893	 0.77	 32.66	

T
raining	data	

2	 500	 0.100	 0.40	 130.755	 0.80	 11.15	

3	 400	 0.200	 0.40	 201.899	 1.70	 25.89	

4	 500	 0.200	 0.40	 202.200	 1.67	 7.450	

5	 400	 0.100	 1.20	 337.859	 1.11	 28.43	

6	 500	 0.100	 1.20	 330.745	 1.19	 9.230	

7	 400	 0.200	 1.20	 492.945	 2.14	 20.74	

8	 500	 0.200	 1.20	 550.848	 1.77	 5.610	

9	 450	 0.150	 0.80	 299.005	 1.26	 14.44	

10	 450	 0.150	 0.80	 301.647	 1.30	 14.38	

11	 450	 0.150	 0.80	 304.772	 1.29	 14.39	

12	 450	 0.150	 0.80	 299.519	 1.28	 14.48	

13	 450	 0.150	 0.80	 299.875	 1.27	 14.43	

14	 450	 0.150	 0.80	 303.832	 1.28	 14.46	

15	 366	 0.150	 0.80	 313.225	 1.37	 34.46	

16	 534	 0.150	 0.80	 307.622	 1.31	 6.120	 T
esting	data	

17	 450	 0.066	 0.80	 174.024	 1.21	 20.25	

18	 450	 0.234	 0.80	 406.719	 2.32	 10.93	

19	 450	 0.150	 0.13	 61.2230	 1.17	 12.18	

20	 450	 0.150	 1.47	 497.895	 1.13	 10.05	

2.2 Gravitational Search Algorithm background 

In	the	Gravitational	Search	Algorithm,	a	set	of	objects	with	relevant	atomic	masses	is	concerned,	
the	objects	representing	the	search	mechanism	[24].	Those	objects	find	the	proper	solution	dur‐
ing	the	searching	process.	The	search	mechanism	works	on	the	principle	of	Newtonian	gravita‐
tion	laws	and	laws	of	motion	and,	on	the	basis	of	gravitational	attraction,	it	searches	for	the	op‐
timum	solution	in	the	multitude	of	potential	solutions,	where	each	of	the	solutions	has	a	specific	
mass.	All	particles	within	the	population	are	attracted	by	mutual	gravitational	forces	according	
to	Eq.	1	and	2,	which	causes	global	motion	of	objects	 in	 the	system,	heavier	objects	attracting	
lighter	 objects	 to	 a	 larger	 extent.	 The	objects	 communicate	mutually	by	means	of	 the	 gravita‐
tional	 force.	 Larger	masses	 result	 faster	 in	 a	 better	 solution,	 but	 they	move	more	 slowly	 than	
lower	masses	with	worse	solutions.	In	the	GSA,	each	particle	has	four	basic	properties:	Location,	
inertial	mass,	active	gravitational	mass	and	passive	gravitational	mass.	The	location	of	mass	co‐
incides	with	the	location	of	the	result	of	the	problem.	With	the	aid	of	the	active,	passive	and	iner‐
tia	masses,	 it	 is	also	possible	 to	write	 the	mathematical	 function.	 In	 that	way,	 the	algorithm	 is	
guided	 through	 the	 space	 of	 solutions	 by	means	 of	mutual	 effects	 of	 gravitational	 and	 inertia	
masses.	After	 expiration	 of	 the	 search	 time,	 the	 solutions	 are	 expected	 to	 start	 tending	 to	 the	
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largest	mass	in	the	system,	that	mass	increasing	during	the	search	process	and	representing	the	
optimum	solution	in	the	search	space.	The	search	space	represented	by	the	algorithm	is	not	in‐
fluenced	by	the	external	masses	so	that	only	two	physical	 laws,	 i.e.	the	gravitation	law	and	the	
law	of	motion	act	on	it.	In	a	system	of	two	or	more	bodies,	it	is	the	active	gravitational	mass	MA	
that	 affects	 most	 the	 remaining	 bodies	 inside	 the	 system	 with	 its	 gravitational	 field,	 which	
means	 that	 it	has	 the	greatest	mass.	The	passive	gravitational	mass	MP	 represents	 the	gravita‐
tional	field	of	the	body	with	less	mass	and	affects	the	gravitational	field	of	the	more	massive	ob‐
ject	 passively	 only	 and	has	 a	 lesser	mass.	 The	 system	of	 several	 bodies	must	 be	 calculated	 in	
pairs,	 two	 by	 two	 bodies	 simultaneously.	 The	 inertia	 gravitational	 mass	MI	 is	 the	 mass	 with	
which	the	object	in	the	system	resists	the	position	change,	if	acted	upon	by	a	specific	mass.	The	
body	 having	 larger	 inertia	 mass	 changes	 the	 direction	 of	 motion	 slower	 than	 the	 body	 with	
smaller	mass,	as	 the	 force	must	act	on	 the	body	 longer	 in	order	 to	direct	 the	body	 into	a	new	
direction.	If	the	Newtonian	equations	are	written	by	using	newly	named	masses	in	combination	
with	two	bodies,	the	result	is	as	follows:	
	

ଵଶܨ ൌ ܩ
஺ଶܯ ∙ ௉ଵܯ

ܴଶ
	 (1)

where:	
	ଵଶܨ –			Attraction	with	which	the	second	body	acts	on	the	first	body	
	ܩ 	 –			Gravitational	constant	
	object	second	of	mass	Active			–	஺ଶܯ
	object	first	of	mass	Passive			–	௉ଵܯ
ܴ	 	 –			Distance	between	the	two	objects	

	

Consequently,	the	gravitational	force	F12	acting	on	the	first	object	with	the	mass	of	the	second	
object	is	proportional	to	the	product	of	the	active	part	of	gravitational	mass	in	the	system	with	
the	passive	part	of	gravitational	mass,	and	 inversely	proportional	 to	 the	distance	between	 the	
two	objects.	The	acceleration	with	which	the	body	moves	and/or	the	effect	of	the	second	on	the	
first	body	can	be	written	with	the	equation:	
	

ܽଵ ൌ
ଵଶܨ
݉ூଵ

	 (2)
	

ܽଵ		 –			Acceleration	with	which	the	body	moves;	effect	of	the	second	on	the	first	body	
	ଵଶܨ –			Attraction	with	which	the	second	body	acts	on	the	first	body	
݉ூଵ	–			Inertia	mass	of	the	first	body	

	

Transformation	 of	 the	 system	 by	 means	 of	 a	 random	 component	 ensures	 random	motion	 of	
mass	bodies.		

ሻݐ௔௡ሺܨ ൌ ෍ ௕݀݊ܽݎ ∙ ௔௕ܨ
௡

ே

௕ୀଵ.௕ஷ௜

ሺݐሻ	 (3)

	

where:	

	ሻݐ௔௡ሺܨ –			Force	with	stochastic	characteristic	in	given	time	t	
	௕݀݊ܽݎ –		Random	number	at	interval	[0,1]	ensures	randomization	
௔௕ܨ
௡ ሺݐሻ	 –		Force	which	is	caused	by	the	b‐th	mass	particle	and	acts	on	the	a‐th	mass	particle	in	

time	t	
	

As	the	stochastic	mode	of	operation	of	gravitational	force	has	been	given,	the	same	must	be	
effected	 also	 on	 the	 gravitational	 acceleration	 and,	 thus,	 Eq.	 2	 is	 transformed	 to	 an	 n‐
dimensional	equation	in	specific	time	t:	
	

ܽ௔௡ሺݐሻ ൌ
ሻݐ௔௡ሺܨ
ሻݐ௜௔ሺܯ

	 (4)
	

where:	
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ܽ௔௡ሺݐሻ	 –			Gravitational	acceleration	of	body	a	in	the	n‐dimension	space	
	ሻݐ௔௡ሺܨ –			Force	with	stochastic	characteristic	in	specific	time	t	
	ሻݐ௜௔ሺܯ –			Inertia	mass	of	body	a	in	specific	time	t	

	

On	 the	basis	of	 the	updated	equation	 for	 the	 force	with	 stochastic	 characteristic	 in	 specific	
time	t,	and	on	the	basis	of	the	gravitational	acceleration	of	body	a	in	the	d‐dimension	space,	the	
new	velocity	of	particle	or	body	 in	the	space	with	n‐dimensions	–	Eq.	5,	can	be	expressed;	 the	
same	also	applies	to	the	newly	calculated	position	of	the	body	in	the	solution	space	–	Eq.	6:	
	

ݐ௔௡ሺݒ ൅ 1ሻ ൌ ௔݀݊ܽݎ ∙ ሻݐ௔௡ሺݒ ൅ ܽ௔௡ሺݐሻ	 (5)

ݐ௔௡ሺݔ ൅ 1ሻ ൌ ሻݐ௔௡ሺݔ ൅ ݐ௔௡ሺݒ ൅ 1ሻ	 (6)
	

Terms	in	Eq.	5	and	6:	

ݐ௔௡ሺݒ ൅ 1ሻ	 –			New	velocity	of	body	a	in	newly	calculated	time	t	+	1	
ݐ௔௡ሺݔ ൅ 1ሻ	 –			New	position	of	body	a	in	newly	calculated	time	t	+	1	
	௔݀݊ܽݎ 	 –			Random	number	at	interval	[0,1]	ensures	randomization	
	ሻݐ௔௡ሺݒ 	 –			Velocity	of	motion	of	body	a	in	specific	time	t	
ܽ௔௡ሺݐሻ	 	 –			Acceleration	of	body	a	in	specific	time	t	
	ሻݐ௔௡ሺݔ 	 –			Position	of	body	a	in	specific	time	t	
n	 	 –			Index	n	stands	for	the	n‐dimension	space	with	solutions	

	

Gravitational	and	inertia	masses	of	bodies	in	the	system	can	also	be	written	as	a	fitness	func‐
tion	to	define	the	success	of	the	algorithm	in	searching	for	the	solution.	It	must	be	borne	in	mind	
that	 larger	masses	are	better	 indicators	of	solutions	and	are	more	effective;	however,	as	those	
bodies	 have	 larger	mass,	 they	move	 slower	 in	 the	 space	with	 solutions.	 That	 phenomenon	 is	
compensated	 for	 by	 a	 random	 number	 of	 lighter	 bodies	 representing	worse	 solutions	 but,	 in	
combination	with	heavier	bodies,	they	take	part	in	converging	to	proper	solutions	much	faster.	If	
it	is	assumed	that	gravitational	and	inertia	masses	are	identical,	they	can	be	written	in	the	form	
of	an	equation.	Updated	equations	of	the	mass	system	are:	

௔௡ܯ ൌ ௣௡ܯ ൌ ௜௡ܯ ൌ ௡ܯ . ݊ ൌ 1,2, . . . , ܰ	 (7)

݉௔ሺݐሻ ൌ
ሻݐ௔ሺݐ݂݅ െ ሻݐሺݐݏݎ݋ݓ
ሻݐሺݐݏܾ݁ െ ሻݐሺݐݏݎ݋ݓ

	 (8)

ሻݐ௔ሺܯ ൌ
݉௔ሺݐሻ

∑ ݉௕ሺݐሻே
௕ୀଵ

	 (9)
	

where	݂݅ݐ௔ሺݐሻ	stands	for	the	fitness	value	of	body	a	in	specific	time	t,	while	ܾ݁ݐݏሺݐሻ	and	ݐݏݎ݋ݓሺݐሻ	
are	values	representing	the	best	and	worst	current	values	of	results	and	can	be	written	even	in	
more	detail,	particularly,	when	searching	for	minimums	and	maximums.	
 

For	minimum:	
ሻݐሺݐݏܾ݁ ൌ ݉݅ ௝݊∈ሺଵ,ଶ,…,ேሻ݂݅ݐ௕ሺݐሻ
ሻݐሺݐݏݎ݋ݓ ൌ 	ሻݐ௕ሺݐ௝∈ሺଵ,ଶ,…,ேሻ݂݅ݔܽ݉

(10)
	

For	maximum:	
ሻݐሺݐݏܾ݁ ൌ ሻݐ௕ሺݐ௝∈ሺଵ,…,ேሻ݂݅ݔܽ݉
ሻݐሺݐݏݎ݋ݓ ൌ ݉݅ ௝݊∈ሺଵ,…,ேሻ݂݅ݐ௕ሺݐሻ	

(11)

To	 avoid	 efficiently	 the	 local	minimums	 at	 the	 beginning	 of	 the	 algorithm	 start‐up	 the	 re‐
search	principle	must	be	introduced,	whereas,	after	n‐iterations,	the	research	limit	is	dimmed	by	
means	of	elimination	and	the	system	of	algorithm	functioning	passes	into	the	search	mode.	That	
is	reached	by	gradual	elimination	and	each	subsequent	algorithm	iteration	assures	better	con‐
vergence	 of	 solutions.	 Each	 subsequent	 potential	 optimal	 solution	 can	 be	 designated	N‐best,	
where	each	iteration	changes	the	action	of	the	virtual	gravitational	force	with	which	it	affects	all	
the	remaining	bodies	in	the	space	of	solutions.	Consequently,	N‐best	is	the	time	function	having	
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the	value	No	at	 the	beginning	of	 time	 t.	 In	 that	way,	at	 the	beginning	of	 the	algorithm,	all	 ele‐
ments	 act	with	 gravitational	 force	 on	 all	 remaining	 bodies,	while	 the	 force	 decreases	 linearly	
with	 the	reduction	of	 the	number	of	objects	 in	 the	system	and/or	convergence	of	 solutions	 to	
one	point,	which	 can	 also	be	described	by	means	of	 gravitational	 collision	of	 two	bodies.	The	
algorithm	finalises	the	optimization,	when	only	one	body	is	still	available	with	the	greatest	pos‐
sible	mass	with	which	 it	 acted	on	 the	 remaining	bodies	 and	 attracted	 them	gravitationally.	 In	
that	way,	the	Eq.	3	can	be	transformed	and	the	result	is:	

ሻݐ௔௡ሺܨ ൌ ෍ ௔௕ܨ௕݀݊ܽݎ
௡ ሺݐሻ

௕∈ேି௕௘௦௧.௕ஷ௔

	 (12)

	

	ሻݐ௔௡ሺܨ –			Force	with	stochastic	characteristic	in	specific	time	t	
	௕݀݊ܽݎ –			Random	number	at	interval	[0,1],	it	assures	randomization	
௔௕ܨ
௡ ሺݐሻ	 –			Force	which	is	caused	by	the	b‐th	mass	particle	and	acts	on	the	a‐th	mass	particle	

in	time	t	
N‐best	 –			Set	of	first	bodies	with	largest	mass	and	highest	fitness	value	

	

The	pseudocode	of	the	GSA	algorithm	is	presented	in	Fig.	1.	

1:		 Start	GSA	
2:		 Set‐up	search	space	
3:		 For	each	particle	
4:										Initialize	mass	particle	
5:										Start	regression	analysis	module/with	measured	experimental	data		
6:		 END	
7:		 Do	
8:	 For	each	particle/import	measured	experimental	data		
9:	 				Calculate	capacity/fitness	function	of	particle	
10:	 				Capacity	of	particle	>	best	capacity	of	particle	(best	(t))		new	best	
11:	 				Evaluate	worst	values	as	worst	(t)	
12:	 END	
13:	 For	each	particle	
14:	 				Calculate	velocity,	masses	and	accelerations	of	mass	particle		
15:	 				Update	particle	position	and	velocity		
16:	 END	
17:		 While		number	N	of	iterations	is	reached	
18:				END	GSA	

	

Fig.	1	Pseudocode	of	the	GSA	algorithm	

2.3 NSGA‐II algorithm background 

The	NSGA‐II	(elitist	Non‐dominated	Sorting	Genetic	Algorithm)	is	a	genetic	algorithm	designed	
for	multi‐objective	optimization	[26].	The	algorithm	uses	the	crowding	distance	metric	and	non‐
dominated	sorting	as	its	main	features.	Fig.	2	presents	the	algorithm`s	pseudocode.	

Roughly	speaking,	an	algorithm	consists	of	initialization,	selection	and	re‐combination.	Selec‐
tion	and	re‐combination	are	the	main	algorithm	steps	(see	Fig.	2).	In	the	first	step,	the	old	popu‐
lation	of	parents	and	descendants	is	combined	into	a	joint	population	of	size	2n.	In	the	next	step,	
the	subjects	from	that	combined	population	Rt‐1	are	sorted	front	by	front	using	non‐dominated	
sorting.	Subjects	not	dominated	by	any	other	subject	go	into	the	first	front.	The	first	i	fronts	still	
going	whole	 into	 the	new	parent	population	Pt	are	written	 into	 that	population.	The	 first	next	
front	(front	i+1)	not	going	whole	into	the	newly	created	population	is	sorted	by	using	the	crowd‐
ing	metric.	The	 least	crowded	subjects	 from	front	 i+1	are	added	to	the	new	population	Pt.	The	
solutions	have	the	largest	range	if	the	extreme	subjects	in	the	front	are	evaluated	as	best	when	
sorting	with	the	crowding	metric.	Evaluation	of	the	remaining	subjects	in	the	front	is	performed	
by	calculating	the	distance	to	its	nearest	neighbours.	
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1:		 Randomly	generate	and	evaluate	initial	population	of	parents	P0.
2:		 Prepare	empty	initial	population	of	descendants	Q0.	
3:		 Setup	t	=	0.	
4:		 Until	stopping	criterion	has	been	fulfilled,	repeat:	
5:	 Setup	t	=	t	+	1.	
6:	 Unite	two	old	populations	of	parents	and	descendants:	Rt‐1	=	Pt‐1		Qt‐1.	
7:	 Perform	non‐dominated	sorting	on	Rt‐1	and	determine	fronts	Fi,	i	=	1,2,…	
8:	 Prepare	new	empty	population	of	parents	Pt.	
9:	 Put	into	population	Pt	the	first	i	front	fronts	still	fitting	whole	into	it.	
10:	 With	the	use	of	crowding	distance	metric	sort	front	Fi+1	no	more	fitting	whole	into	population	Pt		
11:	 Add	the	least	crowded	subjects	from		Fi+1	to	population	Pt	
12:	 Generate	population	of	descendants	Qt	from	parent	population	Pt	by	using	tournament	selection,	crosso‐

ver	and	mutations.	
13:	 Evaluate	subjects	from	population	of	descendants	Qt.

Fig.	2	Pseudocode	of	the	NSGA‐II	algorithm	
	
When	optimising	k	criteria,	k	subjects	are	first	sorted	according	to	growing	evaluating	values	fj	
for	each	criterion	 j	=	1,	2,…,	k.	 In	the	next	step	for	each	subject	I,	 the	distance	between	its	two	
neighbours	u	and	v	is	calculated	according	to	the	following	equation:	
	

௝݀ሺ݅ሻ ൌ
௝݂ሺݑሻ െ ௝݂ሺݒሻ

௝݂
௠௔௫ െ ௝݂

௠௜௡ 	 (13)

where	 ௝݂
௠௔௫	and	 ௝݂

௠௜௡	are	 the	maximum	and	the	minimum	values	of	 the	 j‐th	criterion,	respec‐
tively.	

The	following	must	apply:	

௝݂ሺݑሻ ൑ ௝݂ሺ݅ሻ ൑ ௝݂ሺݒሻ	 (14)

As	already	mentioned,	the	highest	possible	distance	is	assigned	to	the	two	extreme	subjects	
(with	respect	to	the	 j	criterion).	For	all	remaining	subjects,	the	crowding	metric	for	subject	 i	 is	
equal	to	the	sum	of	those	distances	according	to	all	criteria:	
	

ܿሺ݅ሻ ൌ෍ ௝݀ሺ݅ሻ

௞

௝ୀଵ

	 	(15)

	

The	parent	population	Pt	is	obtained	in	the	manner	described	above.	In	the	next	steps,	the	de‐
scendant	population	is	generated	from	that	population	by	using	tournament	selection,	crossover	
and	mutation.	Out	of	two	random	subjects,	the	subject	classified	into	the	front	with	lower	con‐
secutive	value,	wins	in	the	selection.	If	two	subjects	taking	part	in	selection	come	from	an	equal	
front,	then	the	subject	better	evaluated	by	the	crowding	metric	is	chosen.	The	descendant	popu‐
lation	is	designated	Qt.	Each	subject	from	the	descendant	population	is	evaluated	in	the	last	step	
of	the	NSGA‐II	algorithm.	That	estimate	is	used	in	the	next	generation	for	non‐dominated	sorting	
of	 subjects.	 The	 algorithm	 is	 repeated	 until	 the	 maximum	 number	 of	 generations	 has	 been	
reached	or	until	another	stopping	criterion	has	been	reached.	

3. Results and discussion 

3.1 Modelling of turning process by the Gravitational Search Algorithm 

For	processing	experimental	data	the	GSA	method	was	used	for	the	purposes	of	turning	system	
modelling.	For	the	modelling	process	the	following	control	parameters	of	the	GSA	optimization	
algorithm	were	used:	

 Number	of	mass	bodies:	210	
 Number	of	iterations:	1000	
 Size	of	mass	body	(dimension):	10	
 Power	of	Euclidean	distance	between	mass	bodies:	1	



Multi‐objective optimization of the turning process using a Gravitational Search Algorithm (GSA) and NSGA‐II approach
 

Advances in Production Engineering & Management 11(4) 2016  373
 

 Power	factor	:ߙ	20	
 Gravitational	constant	G0:	100	

	

In	particular,	the	two	random	factors	ߙ	and	G0	must	be	pointed	out.	Both	of	them	are	inter‐
related	 and	 form	 the	 refreshment	 of	 iteration	 within	 the	 scope	 of	 the	 gravitational	 constant,	
where	the	G0	value	is	the	initial	value	of	the	gravitational	constant	and	is	changed	exponentially	
on	the	basis	of	 factor	α	which,	 in	combination	with	 the	ratio	of	consecutive	 iteration	and	total	
number	of	iterations,	affects	the	contingency	of	gravitational	constant	values	additionally	during	
each	iteration.	The	mass	particle	size	and/or	the	properties	of	solutions	written	in	the	mass	par‐
ticle	are	represented	with	a	dimension	which	also	defines	the	number	of	coefficients	in	the	poly‐
nomial	 representing	 the	model	 of	 the	 individual	machining	 operation.	 A	 prerequisite	 for	 suc‐
cessful	 execution	of	modelling	was	 correct	 selection	of	 the	polynomial	optimized	by	means	of	
GSA.	Eq.	16	shows	the	form	of	a	ten‐coefficient	polynomial	which	proved	to	be	a	good	choice	for	
prediction	of	output	variables.	
	

݂ሺݔଵ, ,ଶݔ ଷሻݔ ൌ 	݇ଵ ൅ ݇ଶ ∙ ଵݔ ൅ ݇ଷ ∙ ଶݔ ൅ ݇ସ ∙ ଷݔ ൅ ݇ହ ∙ ଵݔ ∙ ଶݔ ൅ ݇଺ ∙ ଵݔ ∙ 	ଷݔ
															 ൅	݇଻ ∙ ଶݔ ∙ ଷݔ ൅ ଼݇ ∙ ଵݔ ∙ ଵݔ ൅ ݇ଽ ∙ ଶݔ ∙ ଶݔ ൅ ݇ଵ଴ ∙ ଷݔ ∙ 	ଷݔ

(16)

where	ݔଵ	is	cutting	speed	vc	,	ݔଶ	is	feed	rate	f,	and	ݔଷ	is	depth	of	cut	ap.	
The	polynomial	 represents	 the	core	of	 the	system	round	which	 the	optimization	process	 is	

designed.	Input	and	output	experimental	values	are	inserted	into	the	polynomial,	while	the	op‐
timization	process	optimises	the	coefficients	in	such	a	manner	that	the	predictions	given	by	the	
polynomial	model	are	as	near	 the	experimental	values	as	possible.	Out	of	all	 the	experimental	
measurements	performed,	fifteen	measurements	were	chosen	at	random	for	the	process	of	op‐
timising	of	the	polynomial	coefficients,	while	the	remaining	5	measurements	were	used	for	re‐
sult	verification.	The	results	of	optimization	are	polynomial	models	for	the	calculation	of	cutting	
force,	surface	roughness	and	tool	wear	(Eq.	17‐19).	

	
௖ܨ ൌ 523.66 െ 1.89 ∙ ଵݔ െ 	813.18 ∙ ଶݔ ൅ 48.88 ∙ ଷݔ ൅ 3.05 ∙ ଵݔ ∙ ଶݔ
									൅	0.29 ∙ ଵݔ ∙ ଷݔ ൅ 1439.13 ∙ ଶݔ ∙ ଷݔ ൅ 0.0014 ∙ ଵݔ ∙ ଵݔ െ 1257.73 ∙ ଶݔ ∙ 	ଶݔ
									െ	43.70 ∙ ଷݔ ∙ 	ଷݔ

(17)

	

ܴ௔ ൌ 3.74 െ 0.01 ∙ ଵݔ െ 4.25 ∙ ଶݔ ൅ 1.53 ∙ ଷݔ െ 0.01 ∙ ଵݔ ∙ ଶݔ െ 0.001 ∙ ଵݔ ∙ ଷݔ
	 					െ	1.03	 ∙ ଶݔ ∙ ଷݔ ൅ 0.00002 ∙ ଵݔ ∙ ଵݔ ൅ 68.81 ∙ ଶݔ ∙ ଶݔ െ 0.31 ∙ ଷݔ ∙ 	ଷݔ

(18)
	

ܶ ൌ 294.77	 െ 0.95 ∙ ଵݔ െ 	242.17 ∙ ଶݔ െ 4.60 ∙ ଷݔ ൅ 0.24 ∙ ଵݔ ∙ ଶݔ ൅ 0.02 ∙ ଵݔ ∙ 	ଷݔ
								െ	9.20 ∙ ଶݔ ∙ ଷݔ ൅ 0.0007 ∙ ଵݔ ∙ ଵݔ ൅ 287.75 ∙ ଶݔ ∙ ଶݔ െ 5.37 ∙ ଷݔ ∙ 	ଷݔ

(19)

	
Testing	of	the	developed	models	was	recorded	as	a	comparison	of	experimental	values,	predic‐
tions	and	percent	deviation;	experimental	value	→	prediction	→	percent	deviation:	
	

 Principal	cutting	force	(Eq.	17)	
Lowest	deviation	with	measured	value:	550.848	N	→557.877	N	→1.28	%	
Highest	deviation	with	measured	value:	174.024	N	→189.579	N	→8.94	%	
Average	deviation	of	all	twenty	measurements	with	ten	predictions:	3.57	%	

	

 Surface	roughness	(Eq.	18)	
Lowest	deviation	with	measured	value:	2.32	µm	→2.31	µm	→0.43	%	
Highest	deviation	with	measured	value:	1.31	µm	→1.48	µm	→13.30	%	
Average	deviation	of	all	twenty	measurements	with	ten	predictions:	4.02	%	

	

 Tool	life	(Eq.	19)	
Lowest	deviation	with	measured	value:	10.93	min	→	10.77	µm	→1.49	%	
Highest	deviation	with	measured	value:	28.43	min	→	26.45	min	→	6.97	%	
Average	deviation	of	all	twenty	measurements	with	ten	predictions:	4.50	%	

	
In	this	case,	the	deviation	was	within	the	acceptable	ten	percent.	In	any	case,	the	lowest	pos‐

sible	 deviations	 are	 desirable,	 but	 the	 size	 of	 deviations	 depends	 primarily	 on	 the	 number	 of	
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measurements.	 The	 experiment	 assured	 only	 20	 results	 of	 finishing	machining,	 therefore,	 the	
final	average	of	results	can	be	assumed	to	be	acceptable.	

3.2 Multi‐objective optimization by the NSGA‐II algorithm 

On	the	basis	of	models	created	by	means	of	the	GSA	algorithm	and	outlined	in	the	previous	sub‐
section,	in	this	paragraph,	a	set	of	optimal	solutions	for	the	chosen	machining	operation	will	be	
searched	for.	In	our	case,	the	resulting	models	for	force,	roughness	and	tool	resistance	represent	
three	 objective	 (criteria)	 functions	 having	 to	 satisfy	 also	 the	 limitations	 stated	 below.	 In	 this	
research,	the	aim	of	multi‐objective	optimization	by	the	NSGA‐II	method	was	to	determine	such	
a	combination	of	independent	input	variables	(i.e.	cutting	force,	feed	rate	and	cut	depth)	at	cho‐
sen	 intervals,	 that	optimal	values	of	 criteria	 functions	will	be	 reached	and	 the	 limitations	pre‐
scribed	satisfied.	On	the	basis	of	theoretical	calculations	of	limitations,	and	on	the	basis	of	exper‐
imental	data,	the	optimization	limitations	of	cutting	force	Fc,	roughness	Ra	and	tool	resistance	T	
were	determined:	

 ܨ௖ ൑ 450.0	N	
 1.0 ൑ ܴ௔ ൑ 1.6	μm	
 15.0 ൑ ܶ	 ൑ 20.0	min	

	

According	to	the	theoretical	calculations	and	experimental	data,	the	intervals	of	independent	
variables	of	cutting	speed	vc,	feed	rate	f	and	cut	depth	ap	were	also	prepared:	

 366.0 ൏ ௖ݒ ൏ 540.0
୫

୫୧୬
	

 0.10 ൏ ݂ ൏ 0.18
୫୫

୰ୣ୴
	

 0.2 ൏ ܽ௣ ൏ 1.2	mm	
	

The	results	of	 the	 fine	 turning	operation	are	presented	by	means	of	a	Pareto	optimal	 front.	
Minimal	surface	roughness	has	priority	as	fine	machining	is	aimed	at	securing	final	shapes	and	
dimensions.	Fig.	3	shows	the	results	of	optimization	developed	by	using	the	GSA	algorithm.		
	

 
Fig.	3	Pareto	optimal	front		

The	Pareto	optimal	front	contains	53	equivalent	solutions.	The	most	successful	optimal	combi‐
nation	is	proposed,	where:	
	

Independent	parameters:	
x1	=	vc	=	439.9	m/min	
x2	=	f	=	0.11	mm/rev	
x3	=	ap	=	0.62	mm	

Dependent	parameters:	
Fc	=	201.36	N	
Ra	=	1	μm	
T	=	19.53	min	
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4. Conclusion 
In the first step of the research an intelligent system was devised, ensuring effective modelling of 
the CNC machining process by the use of a GSA. The relevant GSA was developed, with an added 
regression analysis module allowing wider algorithm functioning for modelling machining oper-
ations with a training base. The developed system is useful in all standard machining processes, 
e.g. turning, milling, drilling, but, for the purpose of this research, the models of the CNC turning 
process have been developed with the use of experimental measurements relating to the turning 
process, and their accuracy tested. Results have confirmed that the CNC machining process can 
be modelled effectively by using a GSA.  

In the second step, the models of CNC turning were used for multi-objective optimization of 
machining parameters by the NSGA-II algorithm. The result of multi-objective optimization of 
machining parameters was the Pareto front of optimal solutions, out of which the solution most 
suitable in practice can be selected for the chosen machining operation. For example, if fine ma-
chining parameters are looked for, the solution, giving priority to minimum surface roughness, 
will be selected, as the aim of fine machining is securing final shapes and dimensions. 
 Prospective further researches could focus on the enhancement of the training and testing 
base with new measurements, and on repetition of the whole experiment with other materials 
and tools. The use of appropriate machine tools and sensors could also ensure current measur-
ing of cutting force which would be transmitted via computer communication into the base on 
an intermediate server or computer. 
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