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Stepwise multivariate regression analysis (MRA) is one of the oldest data reduction techniques. When optimal 
descriptors are selected at each step in a stepwise regression in MRA descriptors that have appeared in earlier 
steps may disappear and novel combinations of new descriptors may arise. This introduces difficulties in 
interpretation of the regression equations, because it is not possible to construct orthogonalized descriptors using 
stepwise regression. We outline a procedure to resolve the difficulties arising in selection of optimal descriptors in 
multivariate regression analysis which allows construction of orthogonal descriptors to accompany the regression 
obtained in the final step.
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Introduction

Modeling structure-property relationship has 
remained one of central topics in the study of variations 
of molecular properties with changes in the size and the 
shape of molecular structure. Most physico-chemical 
molecular properties are expressed by single number 
but molecular structure cannot be simply numericaly 
characterized. One way out of this dilemma of how to 
relate structrure to its properties is to describe structure 
by a set of structural invariants, which also mostly are 
represented by numbers. In this way we are in position 
to relate one set of numbers (e. g., selected physico-
chemical properties) with another set of numbers 
(invariants which represent mathematical properties 
of chemical structure). Hence, thus structure-property 
relationship is transformed into a property-property 
relationship in which set of physico-chemical properties 
is related to mathematical properties of the same 
structures. The simplest such relationship is simple 
regression analysis in which single molecular property is 
related to single mathematical property. If the resulting 
simple regression is of relatively high quality one may 
say that the particular mathematical property that was 
used as molecular descriptor parallels to a great extent 
physico-chemical property considered. For example, 
the normal boiling points of octanes give good simple 
regression when molecular carbon skeletons of octane 
isomers are characterized by the connectivity index χ,1 
which is bond additive quantity and gives to different 
CC bonds different relative weight, depending on the 
character of carbon actoms involved in CC bond. For 

instance, CC bonds between primary and secondary 
carbon atoms are given more weight than CC bonds 
between primary and tertiary carbon atoms or CC bonds 
between two secondary carbon atoms.

The difficulties arise from the fact that there 
are very few simple regressions that offer satisfactory 
correlations, and that therefore one has to resort to 
multivariate regression analysis. These difficulties are 
two-fold: (1) Regression analysis using more than single 
descriptors are burdened with well known unstabilities 
of the regression equations, the coefficient of which can 
change dramatically and unpredictably when additional 
molecular descriptors are used; and (2) Interpretation 
of the resulting regression model is at best ambiguous, 
often meaningless – which does not help in a refinement 
of molecular models. One of conceptually simple 
approach is known as the stepwise regression analysis 
in which one considers a pool of N descriptors and 
selects the best as the first molecular descriptor for the 
considered structure-property relationship. One then 
continues keeping this descriptor and considers which 
of the remaining N-1 descriptors will lead to smallest 
standard error for the regression considered. This 
process, known also as “greedy” algorithm, continues 
till one find the set of best k descriptors – but it is also 
known that the set of descriptors so arrived need not 
be optimal. When one allows possibility to consider 
different descriptors at different steps in the regression 
then there are two kinds of difficulties in MRA 
applications. With each step in a regression different set 
of descriptors may emerge as the best choice. However, 
even if one keeps all descriptors found in previous 
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steps, their contribution to the regression, reflected in 
the magnitudes of the corresponding coefficients, may 
change dramatically from one step to another. While 
the quality of regression and its predictive power is not 
affected necessarily by the above chaotic behavior of the 
regression equations, interpretation of the regressions 
equations become impossible. Modeling of the structure 
- property - activity relationship in such situation may 
become meaningless.

The problem of choosing molecular descriptors 
for MRA remains a critical step in most structure-
property-activity applications. A success or a failure 
of a regression analysis may depend critically on use 
of suitable molecular descriptors. With hundreds of 
descriptors being available often one resort to statistical 
methods for selecting best descriptors, hoping that in 
such an approach one would not miss potentially useful 
descriptors. There are pitfalls even in such approaches, 
because typically descriptors that show low correlations 
are discarded, yet when such descriptors are combined 
they may lead to a satisfactory result. This has been 
illustrated for molar refraction and molar volumes of 
octane isomers when simple connectivity indices 1χ 
and 2χ show no significant correlation when considered 
individually, but combined give a regression with the 
correlation coefficient over 0.97.2 Thus if one is to 
discard the connectivity indices 1χ and 2χ as unsuitable 
single-variable descriptors one would also discard 
any of their linear combinations, including also the 
orthogonalized descriptor 2χ∗, which Xu has shown to 
lead to very satisfactory single variable descriptor for 
molar refraction.3 

Another ambiguity of MRA is that sometimes 
different sets of descriptors offer correlations of a 
similar quality. It is very difficult to find any reasonable 
physico-chemical explanation why different sets of 
descriptors may emerge as the best choice in various 
applications of MRA. A mathematical explanation is 
clear: the best set having n+1 descriptor will outperform 
all sets having n descriptors, several of which may be 
comparable as judged by pertinent statistical parameters. 
In exhaustive searches for the best n descriptors often 
we find combinations of descriptors that have not been 
used in previous steps. Addition of new descriptors to 
the best set of n descriptors restricts combinatorial 
selection to N-n, where N is the cardinality of the pool 
of descriptors. Therefore not only that it is possible, but 
it is likely that combinatorial search of n+1 descriptors 
from a pool of N descriptors will result in descriptors 
that have not been adopted in previous steps. Recent 
work of Trinajstić and Lučić gives ample illustrations 
of such situation.4,5

Is there any kind of reasonable physico-chemical 
explanation for the mentioned fluctuation of optimally 
selected descriptors in stepwise MRA? The purpose of 

this article is to outline a procedure that will resolve 
the ambiguities arising in the selection of optimal 
descriptors in MRA during the stepwise selection of 
descriptors.

On ill-behavior or regression 
equations in stepwise MRA

The instability of coefficient of regression 
equations toward inclusion/exclusion of new descriptors 
is well known. In Table 1 we illustrate the case on the 
boiling points of 100 alcohols considered in a study by 
Kier and Hall.6 Using CODESSA, a software developed 
by Katritzky, Lobanov and Karelson,7 we obtained the 
regression equations shown in Table 1. The degree 
of freedom for the evaluation of standard error of 
estimates was calculated by substracting the number 
of parameters of the model from the total number of 
structures present in the data set. The regression models 
were obtained by step-wise selection procedure from 
56 calculated topological and structural descriptors. 
The molecular desciptors were calculated from the 
HyperChemTM file format. We can see that at each 
successive step the coefficients already established for 
various descriptors change drastically. It is not possible 
therefore to attribute relative weight to different 
descriptors when interpreting the result, because 
their magnitudes depend on the presence of other 
descriptors. In other words, all descriptors are mutually 
interrelated, which is the source of a pronounced 
instability of the regression equations. If we could use 
descriptors that are not inter-related this problem would 
disappear. This is precisely what can be accomplished 
by orthogonalization of molecular descriptors.

Consider a stepwise regression (equations 1–3):

PROPERTY = c11 d1 + const. 1   (1) 

PROPERTY = c12 d1 + c22 d2 + const. 2  (2) 

PROPERTY = c13 d1 + c23 d2 + c33 d3 + const. 3  (3) 

where cmn are the coefficients of m-th descriptor dm in 
the n-th step of the stepwise regression. The chaotic 
behavior of regression coefficients is reflected in the 
fact that c11 ≠ c12 ≠ c13 ≠ . . . ; c22 ≠ c23 ≠ . . . ; etc. If 
instead of descriptors d1, d2, d3... we use orthogonalized 
descriptors d1

*, d2
*, d3

*... the above set of stepwise 
regression equation become:

PROPERTY = c11 d1
* + const.   (4) 

PROPERTY = c11 d1
* + c22 d2

* + const.  (5) 

PROPERTY = c11 d1
* + c22 d2

* + c33 d3
* + const. . (6) 

in which none the coefficients associated with each 
descriptor change from one step to the another. 
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Table 1. The stepwise regression equations for the boiling points of alcohols (n = 100) obtained by CODESSA using the greedy algorithm 
(that is keeping at each step all the descriptors selected in the previous steps).

How to arrive at orthogonal set from an initial 
set of descriptors has been already outlined.8–13 It was 
interesting to observe that the coefficients appearing 
in the orthogonalized set of equations derived for 
descriptors d1, d2, d3,... are precisely the “diagonal” 
coefficients of the “unstable” stepwise regressions 
equations! Hence, one can construct the “stable” 
stepwise regression equations from the set of equations 
using non-orthogonalized descriptors without actually 
constructing descriptors dk

*. Below we show the same 
stepwise MRA for boiling points of alcohols as described 
by orthogonalized descriptors (which are marked by an 
asterisk).

� ����������� ������������� ��������������� �� �� ��
�� ��������� ����� ���� ������� ����� �����
�� ����������������������� ����� ���� � � �
�� ��������� ����� ���� ������� ����� �����
�� ����������������������� ����� ���� � � �
�� ����������������� ������ ����� � � �
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�� ����������������������� ������ ����� � � �
�� ����������������� ������ ����� � � �
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Thus, for example d2
* of Table 1 (MW*) is that part 

of MW (molecular weight, d2) that does not correlate 
with 1χ (the first order connectivity index, d1). The 
orthogonal descriptor MW* is the residual of a simple 
regression of MW against 1χ, since, by definition, 
a residual is that part of a descriptor that does not 
correlate with the quantity considered.

There are other benefits of the orthogonalization 
procedure: at each successive step the standard 
deviations of the coefficients themselves decrease, 
while the opposite is typically the case with the 
stepwise regressions using non-orthogonal descriptors. 
In addition, it can be shown that the construction of 
orthogonal descriptors as the residuals of successive 
correlations between descriptors is mathematically 
equivalent to Gram-Schmidt orthogonalization of 
vectors dk

*. In view of all mentioned it is somewhat 
surprising that these elegant results that resurrected 
MRA are yet not sufficiently appreciated, although 
the number of users of orthogonal descriptors in MRA 
increases steadily.14–19

Search for optimal descriptors
Hundreds of molecular descriptors available for 

use in the MRA have also found use in the Principal 
Component Analysis (PCA),20 the Pattern Recognition,21 
the Artificial Neural Networks (ANN),22,23 and other 
data reduction techniques. Recently Lahana and 
coworkers24 have shown use of topological indices in 
computer-assisted drug design based on screening 
of combinatorial library having some 280,000 virtual 
compounds. Most of molecular descriptors can readily 
be calculated using available software packages, like 
CODESSA,7 POLLY,25 MOLCONN,26 E-CALC,27 
GRAPH III,28 DRAGON,29 MOLGEN-QSPR,30,31 
PRECLAV,32,33 and others.34 In Table 2 we illustrate the 
stepwise regression equations using CODESSA for the 
boiling points of 100 alcohols having from two to ten 
carbon atoms. 

BP = 22.383 + 35.406 d1
*    (7)

BP = 22.383 + 35.406 d1
* – 1.2758 d2

*   (8)

BP = 22.383 + 35.406 d1
* – 1.2758 d2

* + 
28.374 d3

*     (9)

BP = 22.383 + 35.406 d1
* – 1.2758 d2

* + 
28.374 d3

* + 11.057 d4
*               (10)

BP = 22.383 + 35.406 d1
* – 1.2758 d2

* + 
28.374 d3

* + 11.057 d4
* + 34.438 d5

*              (11)

(°C)
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The boiling points of alcohols were studied in the 
past and can be used to test properties of molecular 
descriptors for use in QSPR and QSAR (quantitative 
structure-property relationship and quantitative 
structure-activity relationship, respectively). Kier and 
Hall5 studied the same 100 alcohols that we are re-
examining here, however they combined them with 125 
alkanes into a singe set of 245 structures. They obtained, 
by using five electrotopological descriptors in their 
model, the standard error s = 8.00 oC (the regression 
coefficient r = 0.97 and the Fisher ratio F = 755). As 
we see from the bottom part of Table 2 the CODESSA 
offers when five descriptors are used (but for alcohols 
only) an impressive standard error s = 3.29 oC. Other 
studies on alcohols are summarized in Table 3.35

Table 2. The stepwise regression equations for the boiling points of alcohols (n = 100) obtained by CODESSA using an exhaustive search 
of optimal descriptors (that is at each step selecting the best combination of n descriptors).
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�
Table 3. A selection of MRA results as reported in the literature 
for the boiling points of alcohols.
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������� ��������������������χ� ������ ����� �
������� �χ��������� ������ ����� �
� � � � �
������� ����������������������χ�� ������� ����� �
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On ordering of descriptors

Choice of descriptors may depend on the model 
considered. For example, Kier and Hall selected as 
descriptors atomic contributions of the five atomic 
kinds: CH3, CH2, CH, C, and OH.35 Similarly, in a 
study of enthalpic properties of alkanes Garbalena 
and Herndon36 considered (in addition to atomic 
contributions) also bond type contribution (CH, CH2), 
(C, CH2), (CH, CH), and so on. Molecular connectivity 
indices,1,37 which represent weighted path contributions, 
similarly allow an ordering of descriptors depending 
on their relative magnitudes. For these examples the 
“problem of descriptor ordering” may have been in 
part “solved,” because the selected models themselves 
dictate the choice of descriptors and their sequencing. 

The problem of ordering of descriptors can 
be viewed as a sub problem of the more serious 
problem: the selection of molecular descriptors. 
Orhtogonalization process implies an ordering of 
descriptors, whether one considers an orthogonalization 
of vectors in Linear Algebra, an orthogonalization of 
basis functions in quantum chemistry, or a stepwise 
regression in MRA. In the case of the connectivity 
indices one can naturally order these descriptors. The 
same is true also for half a dozen family of molecular 
descriptors which are based on paths,38–39 weighted 
paths,40–41 or paths and walks,43 where the length of 
path or walks allow “natural” order for descriptors. 

Descriptors confined to atomic groups lack the inherent 
hierarchical ordering and the flexibility of truncation 

(°C)

(°C)
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of number of descriptors in stepwise regression. The 
same is true for the traditional descriptors of Hansch 
approach to QSAR,44 because there is no natural way to 
decide and give preference to descriptors like log P or 
Hammet’s sigma, etc., that may have similar importance 
and have different physico-chemical origin. The same 
problem may also face topological indices. This is the 
case with Bonchev’s “overall connectivity”,45 which is 
based on all subgraphs of a molecular graph. There 
is no “natural” order that reflects structural aspects 
of molecular graphs for all subgraphs. Subgraphs can 
be ordered by size, but subgraph of the same size can 
only be ordered lexicographically, as already proposed 
for alkanes by Gordon and Kennedy.46 Lexicographic 
ordering does not necessarily reflect structural 
character of compounds considered. Be as it may, once 
descriptors are ordered by whatsoever criteria, they can 
be orthogonalized and as a consequence a set of stable 
regression equations are derived. A change of ordering 
will alter resulting equations and it is up to a researcher 
to justify the particular ordering adopted. 

The more serious problem arises when in 
a stepwise regression at different steps different 
descriptors arise. Here descriptors at one step may differ 
from descriptors in previous steps. This does not offer 
an ordering scheme of descriptors as has been the case 
with stepwise regression using greedy algorithm, which 
retains previously obtained descriptors and add the best 
new additional descriptor from the available pool. The 
difficulty here is not in ordering descriptors but in not 
having consistent set of descriptors at various stages of 
development of MRA model. 

On construction of a consistent set of 
descriptors

Models in which optimal descriptors are selected 
based on prescribed tolerance of some statistical 
parameters as the criteria for inclusion/exclusion in 
MRA, are characterized by series of difficulties. This 
appears to be the case with CODESSA and other 
statistical packages based on screening of large pool of 
descriptors. Their stepwise regressions are characterized 
by an apparent chaotic occurrence of descriptors at each 
step of the regression. This has been illustrated in Table 
2. As we see from Table 2 the best single descriptor, 
Randic index (order 1), which is the label for the first 
order connectivity index30 1χ in the CODESSA Manual,7 
is replaced in the second step by the Information content 
(order 1), and the Kier’s flexibility index. Few steps 
later, both, the Information content (order 1) and the 
Kier flexibility index, are no longer among the optimal 
descriptors. 

Despite that this chaotic behavior of MRA in 
stepwise regressions has been amply demonstrated, and 

has been well known for a long time, apparently the 
problem has not received due attention. Some attention 
was given to the problem associated with selection of 
descriptors in CODESSA by extending an exhaustive 
search for the best combinations of descriptors. Thus 
Lučić and Trinajstić47 have presented a new method 
for the selection of descriptors in the best possible 
MRA by taking advantage of an orthogonalization 
procedure for descriptors. Their procedure allows fast 
calculation of the statistical parameters, which in turn 
makes possible to exhaustively screen all combinations 
of five (sometimes even more) descriptor in a set of 
100 descriptors supplied by CODESSA. In another 
study Lučić and coworkers14,48–49 examined over 1010 
combinations of five descriptors from a pool of almost 
300 descriptors suggesting extension of such approach 
to incorporate additional descriptors when needed. 

An efficient screening of all combinations of five 
descriptors, by being exhaustive, will clearly lead to 
the best combination for considered descriptors. In 
CODESSA the screening is limited only to combinations 
of ten best single descriptors found in the first step. 
Thus CODESSA may be locked in a local minimum (for 
the standard error) and may miss some combinations 
of two and more descriptors that do not involve initial 
best descriptors. However, regardless whether optimal 
descriptors describe local minima or an absolute 
minimum, the chaotic character of stepwise regressions 
using statistical screening of descriptors, as illustrated 
in Table 2, persists. The selection of descriptors remains 
sensitive to inclusion or exclusion of one or more 
descriptors. The question therefore remains open: How 
one decides what are the best descriptors for a particular 
property? Should one include all, or should we discard 
the initial descriptors, despite that sometimes they can 
account for most of the variability of the property? 
These are the question that we want to address here.

Structure-property subspace

Most MRA are reporting goodness of the fit by 
listing calculated properties and the residuals without 
giving much attention to the regression equations. 
Occasionally individual descriptors are highlighted 
and their occurrence in the regression is tried to be 
rationalized based on the model considered. The 
instability of the regression equations and the chaotic 
occurrence of different descriptors at different level of 
MRA are not the only “culprit” for a lack of attempts 
to interpret results of QSPR and QSAR. Additional 
difficulty comes from the lack of simple structural 
interpretation of many molecular descriptors used in 
construction of MRA. For example, an interpretation 
of the well known and still widely used Wiener number, 
W, proposed by Wiener over 50 years ago50 is still open. 
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Mathematically W is well defined, and can be readily 
calculated either by an algorithm proposed originally 
by Wiener, or by summing the entries above the main 
diagonal in a graph distance matrix,51 or as the sum of 
weighted paths in a molecule, when the weights of the 
path increase with the length.52 But what W represents? 
The situation is further complicated by more recent 
finding that in the case of isomers, W is collinear with 
a “reversed W,” an index computed by giving the largest 
weight to atoms at the smallest separations.52 Balaban 
and Ivanciuc53 have considered a similar “reversed” 
order of path weights.

A promising direction in resolving some ambiguities 
concerning structural interpretation of topological 
indices has recently been outlined.54–58 It was suggested 
that all structural descriptors (particularly topological 
indices) should be expressed in terms of few elementary 
structural invariants, such as bonds, and paths and walks 
of increasing length. It remains to be seen how will this 
help interpretation of descriptors used in MRA, but 
before one can even attempt to interpret descriptors one 
has to resolve the ambiguities arising from the chaotic 
occurrence of descriptors in stepwise regressions.

The first important step is to recognize that 
it is not the individual descriptors that occur in a 
regression equation that are important as is the totality 
of descriptors occurring in the regression equation. 
In other words, what is important is the subspace 
spanned by the set of the descriptors occurring in the 
equation. This has been overlooked for too long. 
Too often a few dominant descriptors are viewed as 
important and a model is discussed having them in mind. 
However, molecular descriptors occurring in regression 
equations define a structure-subspace, which apparently 
captures satisfactorily the dominant structure-property 
relationships.

Orthogonalization procedure will introduce 
some “order” in that subspace, in that it offers a basis 
that spans the subspace. Othogonalization does not 
change the subspace -- it is still the same subspace! The 
problem with the stepwise regression is that often at 
different steps one “jump” from one structure-property 
subspace to another structure-property subspace. 
The two subspaces may have a major part of space 
in common, but that need not be apparent because 
different descriptors may have been used. The situation 
is illustrated on the case of alkane heat of atomization 
(∆Ha) and alkane heats of formation (∆Hf). Using 
several connectivity terms Kier and Hall59 reported the 
following regressions for ∆Ha and ∆Hf respectively:

Observe that two regressions employ several 
different descriptors. Therefore it is not suspected that 
the two quantities may belong to the same structure 
space and be closely related. Even a direct correlation 
between ∆Ha and ∆Hf does not indicate intimate 
relationship:

∆Ha = 53.260 ∆Hf – 413.353 (14) 

with r = 0.9818, s = 78.91 and F = 1070, where r, s, and 
F are the correlation coefficient, the standard error and 
the Fisher ratio, respectively.

If, however, one considers separately isomers of 
octanes, rather than collecting information on all alkanes 
into a single correlation, one finds that ∆Ha and ∆Hf are 
more then closely related: They are collinear! For 
heptanes and octanes one finds: ∆Ha = ∆Hf + 1751.14 
and ∆Ha = ∆Hf + 2308.12 respectively. The correlations 
for isomers of heptane and octane only differ in the 
constant term. Hence, clearly for alkanes the structure-
property subspace for both properties ∆Ha and ∆Hf is 
the same, but the fact was obscured by the appearance 
of different combination of molecular descriptors 
when ∆Ha and ∆Hf are considered for all alkanes.

Retro-regression

We propose in this section an answer to the 
troublesome situation in which at different steps in 
stepwise regression different descriptors appears, 
suggesting each time different structure subspaces. The 
answer is: Retro-regression,60 which was introduced 
for modeling of boiling points of nonanes by using 
connectivity indices of different orders. Here we will 
show the aplication of retro-regression on modeling 
properties of compounds containing heteroatoms. At 
the same time matematical structural representation of 
chemical structures was extended to other molecular 
descriptors. Let us reconsider the results given in Table 
2. Let us assume that the regression using five descriptors 
is the solution that one has selected as optimal. Then 
the following regression equation describes the boiling 
points (BP) of alcohols (n=100):

BP = 298.27 1χ + 34.438 2χ + 41.707 2χv – 
11.636 MW + 24.342 3χv + 156.90             (15)

Here MW stands for molecular weight as a 
descriptor, mχ are the connectivity indices and mχv are 
the valence connectivity indices. From equation (15) 
we see that the structure-property subspace is defined 
by the set: {1χ, 2χ, 2χv, 3χv, MW}, (the order of listing 
elements in a set, of course, is not important). 

Consider now the above subset of descriptors as 
the starting point. We will search for suitable basis of the 
subspace defined by the five descriptors. This implies to 
select a particular order in which to consider descriptors 

∆Ha = 286.15n – 12.08 1χ + 0.92 4χ + 1.50 5χ – 
2.44 5χC + 0.86 4χPC – 0.50 5χ PC – 
1.42 6χ PC + 114.65                                 (12)

∆Hf = 1.15 1χ –2.25 2χ + 7.63 3χ – 12.02 4χC – 
1.72 5χC + 0.89 4χ PC – 1.46 5χ PC – 0.28                  (13)
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in a stepwise regression. The collection of regression 
steps shown in Table 1, which have lead to the final 
regression equation involving five descriptors, should 
be viewed as a “history” of arriving at the final solution. 
Once we have arrived at the final regression equation 
(and associated subspace) we can consider alternative 
basis for that. Here we advocate a route based on the 
concept of retro-regression as very plausible and the 
most natural approach to ordering of descriptors.

The concept of retro-regression,60 or backward 
stepwise regression, starts from the final regression 
equation and its subspace as the solution and searches 
for an ordering of descriptors that will lead to 
orthogonal basis for that subspace. Thus, we consider 
the five descriptors that define the solution set and 
search for the descriptor that makes the least significant 
contribution. When identified such descriptor will be 
eliminated as the least important. The process continues 
with a search for the next least important descriptor, 
till all but the last of the descriptors is eliminated in a 
stepwise fashion. 

The least important descriptor is descriptor that 
is associated with the smallest decrease of the standard 
errors when removed from the set. In the case of the 
regression of Table 2 by testing the five possibilities, 
each time removing one of the final five descriptors, 
we arrive at regressions based on the following sets of 
four descriptors: {1χ, 2χ, 2χv, 3χv}, {1χ, 2χ, 2χv, MW}, {1χ, 
2χ, 3χv, MW}, {1χ, 2χv, 3χv, MW}, {2χ, 2χv, 3χv, MW}. We 
find that Randic index (order 2) makes the smallest 
contribution to the standard error in the last step of 
the regression, hence it is discarded. Now we have four 
descriptors and four possibilities to examine: {1χ, 2χv, 

3χv}, {1χ, 2χv, MW}, {1χ, 3χv, MW}, and {2χv, 3χv, MW}. 
As we see from Table 4, where the results of retro-
regression have been summarized, the next descriptor 
to be eliminated is Kier and Hall index (order 3). The 
process is continued and in the next step Kier & Hall 
index (order 2) is discarded, then the molecular weight 
as descriptors is discarded to leave Randic index (order 
1) as the dominant descriptor of the five considered. 
If we now compare Table 2 (the “history” of the best 
regression) and Table 4 (retro-regression) we see that 
stepwise regressions of both routes end with the same 
structure-property subspace {1χ, 2χ, 2χv, 3χv, MW}. In 
this particular illustrations also the both table start with 
the same best single descriptor, but that need not be the 
case, and in general it is not the case. Table 4 and Table 
1 in fact contain the same information, because we have 
selected descriptors for Table 1 to correspond to the 
final five descriptor structure subspace as determined 
by CODESSA.

Because by retro-regression of Table 4 we arrived 
at a particular ordering of descriptors we can order the 
descriptors as follows: 1χ, MW, 2χv, 3χv, 2χ. The stepwise 
regressions associated with this order are:

Table 4. The Retro-Regression equations for the boiling points of alcohols (n = 100). At each step the least important descriptor is 
eliminated in a stepwise fashion. 
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BP = 35.406 1χ + 22.383               (16)

BP = 71.629 1χ – 1.2758 MW + 37.703             (17)

BP = 146.25 1χ – 4.6113 MW + 28.374 2χv + 
75.647                (18)

BP = 180.13 1χ – 6.3231 MW + 40.533 2χv + 
11.057 3χv + 102.55               (19)

BP = 298.27 1χ – 11.636 MW + 41.707 2χv + 
24.342 3χv + 34.438 2χ + 156.90              (20)

(°C)
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Observe that the last equation is identical 
to that selected from Table 2, but now we can, by 
orthogonalization, constructed regression equation 
that have no chaotic behavior of descriptors. We 
have resolved the “problem of inconsistent sets of 
descriptors” associated with selection of descriptors. We 
are left with the “problem of instability of equations,” 
that is reflected in variations of the magnitudes of the 
coefficients for individual descriptors at different steps 
of the regression. However, as we mentioned in the 
introduction, this “problem” is no more a problem and 
can be removed by using orthogonalized descriptors. 
By using the outlined orthogonalization procedure 
we arrive at the stepwise orthogonalized regression 
equations (7) – (11) shown before. 

Observe an interesting relationship between the 
“chaotic” equations, (16) – (20) associated with mutually 
interrelated descriptors, and the “steady” equations, (7) 
– (11) associated with the orthogonalized descriptors. 
The coefficients that occur in the orthogonalized 
equations and show the “stability” have appeared 
also in the “chaotic” equations but only when the 
descriptors appear for the first time. Thus, for example, 
the coefficient –1.2758 (of MW) appeared the first time 
when MW was added as a descriptor, in equation (17). 
Again the addition of subsequent descriptors changes 
this coefficient, because they mutually correlate and 
thus in part duplicate the same information.

Conclusions
It is well known that stepwise multivariate 

regression analysis (MRA) has serious deficiencies, 
which make the interpretation of structure - property 
- activity relationships very difficult. There are two 
kinds of difficulties in MRA applications, which become 
apparent in comparison of stepwise regressions. With 
each step in a regression different set of descriptors may 
emerge as the best choice and even if one keeps all 
descriptors found in previous steps, their contribution 
to the regression, reflected in the magnitudes of the 
corresponding coefficients, may change dramatically 
from one step to another. 

The main reason for these ambiguities is inter-
relation between descriptors used in MRA models. 
Usually, several descriptors may define the same 
structural subspace and therefore when they are 
introduced into the existing MRA model they may 
change descriptors used, or may change the relative 
contribution of descriptors already present in the 
model. As outlined in this paper the first problem can 
be solved by retro-regression, and the second problem 
by the orthogonalization of the regression descriptors. 
All that one has to do is to interpret the descriptors in 
the final MRA equation as descriptors that define the 

structure-property space. Then applying the Retro-
Regression one can order these descriptors and initiate 
orthogonalization of the descriptors that will result in 
stable regression equations.

Clearly Retro-Regression, combined with 
construction of Orthogonalized Regression Equations 
as outlined above, eliminates the both ambiguities in 
MRA, those associated with oscillatory behavior of the 
coefficients of regression equations, and those associated 
with the occurrence of descriptors not previously 
encountered in a stepwise regression. Hence, Retro-
Regression offers firm foundation for interpretation of 
the regression equations and discussing MRA models. 
Finally, we should emphasize that Retro-Regression 
could be applied to any multivariate regression analysis, 
whether one considers stepwise regression or not. 

Acknowledgements 

This work was supported by the Ministry of 
Education, Science and Sport of the Republic of 
Slovenia (Grant P1-0017 and P1-0153).

References

1. M. Randić, J. Am. Chem. Soc. 1975, 97, 6609.
2. M. Randić, J. Chem. Inf. Comput. Sci. 1997, 37, 672.
3. L. Xu, W.-J. Zhang, Analyt. Chim. Acta 2001, 446, 477.
4. B. Lučić, N. Trinajstić, J. Chem. Inf. Comput. Sci. 1999, 

39, 121.
5. B. Lučić, D. Amić, N. Trinajstić, J. Chem. Inf. Comput. 

Sci. 2000, 40, 403.
6. L. B. Kier, L. H. Hall, J. Chem. Inf. Comput. Sci. 1995, 

35, 1039.
7. A. R. Katritzky, V. Lobanov, and M. Karelson, CODESSA 

(COmprehensive DEscriptors for Structural and 
Statistical Analysis), University of Florida, Gainesville, 
Fl.

8. M. Randić, New J. Chem. 1991, 15, 517.
9. M. Randić, J. Chem. Inf. Comput. Sci. 1991, 31, 311.

10. M. Randić, J. Comput. Chem. 1993, 14, 363.
11. M. Randić, Int. J. Quant. Chem: Quant. Biol. Symp. 1994, 

21, 215.
12. M. Randić, J. Chem. Inf. Comput. Sci. 1996, 36, 311.
13. M. Randić, D. J. Klein, N. Trinajstić, Int. J. Quant. Chem. 

1997, 63, 215.
14. D. Amić, D. Davidović-Amić, A. Jurić, B Lučić, N. 

Trinajstić, J. Chem. Inf. Comput. Sci. 1995, 35, 1034.
15. B. Lučić, S. Nikolić, N. Trinajstić, D. Juretić, J. Chem. Inf. 

Comput. Sci. 1995, 35, 532.
16. M. Soškić, D. Plavšić, N. Trinajstić, J. Chem. Inf. Comput. 

Sci. 1996, 36, 829.
17. L. Pogliani, Amino Acids 1994, 6, 141.
18. L. Pogliani, J. Pharm. Sci. 1992, 81, 334.
19. L. Pogliani, J. Pharm. Sci. 1992, 81, 967.



416 Acta Chim. Slov. 2005, 52, 408–416

Randić and Pompe     Retro-Regression

20. K. Balasubramanian, S. C. Basak, Chem. Inf. Comput. 
Sci. 1998, 38, 367.

21. T. Okuyama, Y. Miyashita, S. Kanaya, H. Katsumi, S. I. 
Sasaki, M. Randic, J. Comput. Chem. 1988, 9, 636.

22. S. Basak, G. D. Grunwald, B. D. Gute, K. Balasubramanian, 
D. Opitz, J. Chem. Inf. Comput. Sci. 2000, 40, 885.

23. T. A. Andrea, H. Kalayeh, J. Med. Chem. 1991, 34, 
2824–2836.

24. G. Grassy, B. Calas, A. Yasri, R. Lahana, J. Woo, S. Iyer, 
M. Kaczorek, R. Floc’h, R. Buelow. Nature Biotechn. 
1998, 16, 748.

25. S. C. Basak, POLLY (Natural Resources Research 
Institute, Duluth, University of Minnesota, Duluth, 
MN).

26. L. H. Hall, (1991) MOLCONN-Z, Hall Associates 
Consulting, Quincy, MA, see: http://www.eslc.vabiotech.
com/molconc/manuals/.

27. L. B. Kier, L. H. Hall, Molecular Structure Description, 
Academic Press, New York 1999.

28. A. Sabljić, D. Horvatić, J. Chem. Inf. Comput. Sci. 1993, 
33, 837.

29. R. Todeschini et al.: http://www.talete.mi.it/dragon.
htm

30. C. Rucker, M. Meringer, A. Kerber, J. Chem. Inf. & Mod. 
2005, 45, 74–80.

31. C. Rucker, M. Meringer, A. Kerber, J. Chem. Inf. Comput. 
Sci. 2004, 44, 2070–2076.

32. L. Tarko, O. Ivanciuc, MATCH (Comm. Math. Comp. 
Chem.) 2001, 44, 201–214.

33. L. Tarko, ARKIVOC 2004, part XIV, 74–82.
34. M. Vedruna, S. Marković, M. Medić-Šarić, N. Trinajstić, 

Computers Chem. 1997, 21, 355.
35. M. Randić, S. C. Basak, J. Chem. Inf. Comput. Sci. 1999, 

39, 261.
36. M. Garbalena, W. C. Herndon, J. Chem. Inf. Comput. Sci. 

1992, 32, 37.
37. L. B. Kier, W. J. Murrey, M. Randić, L. H. Hall, J. Pharm. 

Sci. 1976, 65, 1226.

38. J. R. Platt, J. Chem. Phys. 1947, 15, 419.
39. J. R. Platt, J. Phys. Chem. 1952, 56, 328.
40. L. B. Kier, Quant. Struct. – Act. Relat. 1985, 4, 109.
41. L. B. Kier, Quant. Struct. – Act. Relat. 1986, 5, 1.
42. L. B. Kier, Quant. Struct. – Act. Relat. 1986, 5, 7.
43. M. Randić, J. Chem. Inf. Comput. Sci. 2001, 41, 607. 
44. C. Hansch, Acc. Chem. Res. 2000, 40, 934.
45. D. Bonchev, J. Chem. Inf. Comput. Sci. 2000, 40, 934.
46. M. Gordon, J. W. Kennedy, J. Chem. Soc., Faraday Trans. 

1973, 69, 484.
47. B. Lučić, N. Trinajstić, SAR & QSAR Environ. Res. 1997, 

7, 45. 
48. B. Lučić, S. Nikolić, N. Trinajstić, A. Jurić, Z. Mihalić, 

Croat. Chem. Acta 1995, 69, 417.
49. B. Lučić, N. Trinajstić, S. Sild, M. Karelson, A. R. 

Katritzky, J. Chem. Inf. Comput. Sci. 1999, 39, 610.
50. H. Wiener, J. Am. Chem. Soc. 1947, 69, 17.
51. Hosoya, Bull. Chem. Soc. Jpn. 1971, 44, 2332.
52. M. Randić, New J. Chem. 1997, 21, 945.
53. O. Ivanciuc, T. Ivanciuc, A. T. Balaban, Models in 

Chemistry 2000, 137, 57.
54. M. Randić, J. Zupan, J. Chem. Inf. Comput. Sci. 2001, 41, 

550.
55. M. Randić, J. Zupan, On the structural interpetation of 

topological indices. In: Topology in Chemistry-Discrete 
mathematics of Molecules; Rouvray, D. H.; King, R. B., 
Eds.; Horwood Publ.: Chichester, England, 2002, pp. 
249–291.

56. M. Randić, M. Pompe, J. Chem. Inf. Comput. Sci. 2001, 
41, 575.

57. E. Estrada, J. Phys. Chem. A. 2003, 107, 7482–7489.
58. E. Estrada, J. Phys. Chem. A. 2004, 108, 5468–5473.
59. L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry 

and Drug Research, Academic Press: New York 1976. 
60. M. Randić, J. Chem. Inf. Comput. Sci. 2001, 41, 602.

Povzetek 
Stopenjska multivariatna regresijska analiza (MRA) je ena najstarejših tehnik krčenja merskega prostora. Ko 
izberemo optimalne deskriptorje v neki fazi stopenjske MRA opazimo, da lahko izginejo nekateri deskriptorji, 
ki so se pojavili v prejšnjih fazah, prav tako se lahko pojavijo linearne kombinacije novih deskriptorjev. Opisane 
spremembe močno otežijo interpretacijo regresijskih enačb, prav tako je onemogočena konstrukcija ortogonalnih 
deskriptorjev. V članku smo predlagali postopek, ki rešuje težave pri selekciji optimalnih deskriptorjev pri 
multivariatni regresijski analizi in omogoča v zaključni fazi konstrukcijo stabilnih multivariatnih regresijskih enačb 
z uporabo ortogonalnih deskriptorjev.
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