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IZVLEČEK

Interpolacija prostorsko zvezne spremenljivke iz 
točkovnih primerov je v geoznanosti pomembno področje 
prostorske analize in modelov površja. V opisani študiji 
je bila izvedena primerjava interpolacijskih metod v 
trirazsežnem prostoru,  in sicer so to metoda z inverzno 
uteženo razdaljo (IDW), navadni kriging (OK), 
modificirana Shepardova metoda (MS), multikvadrična 
radialna funkcija (MRBF)  in triangulacija z linearno 
interpolacijo (TWL) ter večslojni perceptron (MLP), 
ki je predstavnik umetnih nevronskih mrež (ANN). 
Cilj je bil napovedati višino za različne geometrijske 
razporeditve točk, kot so ukrivljenost, mreža, naključna 
in enotna porazdelitev na digitalnem modelu višin, ki 
je podatkovni niz digitalnega modela višin  ameriške 
geološke službe USGS. Namen študije je količinsko 
opredeliti učinek topografske variabilnosti in gostote 
vzorčenja. Napake različnih interpolacij in napovedi 
z umetnimi nevronskimi mrežami so bile ovrednotene 
glede na različne geometrijske porazdelitve točk, izbrani 
in analizirani so bili tri različni prerezi značilnih delov 
površja. Na splošno se je izkazalo, da metode navadni 
kriging (OK), modificirana Shepardova metoda 
(MS), multikvadrična radialna funkcija (MRBF) in 
triangulacija z linearno interpolacijo (TWL) dajejo 
boljše rezultate ter so bolj učinkovite glede značilnosti 
površja kot večslojni perceptron (MLP) in metoda z 
uteženo inverzno razdaljo (IDW). Čeprav je večslojni 
perceptron (MLP) poenostavil obrise, pridobljene iz 
napovedanih višin, se je izkazal kot zadovoljiv pri 
napovedovanju ukrivljenosti ter določitvi celične mreže 
za naključne in znane  geometrijske porazdelitve točk.

ABSTRACT

Interpolation of a spatially continuous variable 
from point samples is an important field in spatial 
analysis and surface models for geosciences. In this 
study, spatial interpolation methods which are Inverse 
Distance Weighted (IDW), Ordinary Kriging (OK), 
Modified Shepard's (MS), Multiquadric Radial Basis 
Function (MRBF) and Triangulation with Linear 
(TWL), and Multi-Layer Perceptron (MLP) which 
is an Artificial Neural Networks (ANN) method were 
compared in order to predict height for different 
point distributions such as curvature, grid, random 
and uniform on a Digital Elevation Model which is 
an USGS National Elevation Dataset (NED). This 
study also aims to quantify the effects of topographic 
variability and sampling density. Errors of different 
interpolations and ANN prediction were evaluated for 
different point distributions and three different cross-
sections on the characteristic parts of the surface were 
selected and analyzed. Generally, OK, MS, MRBF and 
TWL gave promising results and were more effective 
in terms of characteristics of surface than MLP and 
IDW. Although MLP simplified the contours obtained 
from predicted heights, it was a satisfactory predictor 
for curvature, grid, random and uniform distributions.
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1 INTRODUCTION

Spatial interpolation enables the representation of a surface and predicts values of other unknown 
areas in an attempt to create a continuous surface (Lam, 1983). Determination of the accuracy of 
interpolation methods is necessary in geosciences. With developments in computer science and 
technology, many different spatial interpolation algorithms have been adopted in the software 
of surface modeling and GIS. 

The accuracy of interpolation methods has been discussed in several studies. There have 
been several comparisons of different spatial interpolators and Artificial Neural Networks 
(ANN) estimation performed for different fields such as rainfall, air temperature, air pollution, 
electromagnetic power and so on. Myers (1994) reviewed a variety of methods for spatial 
interpolation. These techniques range from inverse distance weighted to spline, kriging and 
radial basis functions. In the study by Snell et. al (2000), the ANN method for the spatial 
interpolation of daily maximum surface air temperature was presented to generate temperature 
estimations at different locations. Erxleben et al. (2002) used different interpolation methods 
to estimate snow depth in datasets with different physiographic and vegetative characteristics. 
Chaplot et al. (2006) evaluated the effects of landform types, the density of original data and 
interpolation techniques for the accuracy of Digital Elevation Model (DEM) generation. Attorre 
et al. (2007) analyzed climatic variables and bioclimatic indexes by interpolation methods. Sen et 
al. (2008) performed interpolation of indoor electromagnetic field measurements and proposed 
three dimensional prediction by multi-layer perceptron compared with ordinary kriging which 
yielded more accurate results. De et. al. (2009) and Shrivastava (2012) studied the possibility of 
predicting rainfall through ANN models. Azpurua and Ramos (2010) reviewed the methods of 
interpolation with the objective of average electromagnetic field magnitude prediction. Guo et 
al. (2010) quantified the effects of topographic variability and density on DEM accuracy derived 
from several interpolation methods at different spatial resolutions. Zhang (2010) described 
the spatial interpolation of meteorological observations using a feed-forward back-propagation 
neural network based on factors affecting the environment, and the goodness of the model was 
very high and efficient. Deligiorgi and Philippopoulos (2011) presented the statistical spatial 
interpolation methods which were commonly employed in the field of air pollution modeling. 
The comparison of methods for interpolation in these papers is given in Table 1. The stars 
indicate which method is superior, if the prediction error (i.e. Mean Error, Root Mean Square 
Error (RMSE) and Mean Absolute Error) is the consideration. 

DEM is a numerical representation of topography, usually made up of equal-sized grid cells, each 
with a value of elevation (Chaplot et al., 2006). DEM can be produced by using photogrammetry 
(aerial and satellite images), SAR interferometry, radargrammetry, airborne laser scanning 
(LIDAR), cartographic digitization and surveying techniques. LIDAR represents a very accurate 
(e.g. The RMSE of 14 cm for USGS lidar elevation data) and rapid technique for data acquisition, 
but it is very expensive. Therefore, it is necessary to improve the data quality of DEMs derived 
by means of cheaper methods. There are several methods for the assessment of the quality 
of DEMs in terms of Digital Terrain Models and GIS applications. The accuracy of derived 
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DEMs depends on various factors such as topographic variability (i.e. slope, curvature, aspect, 
gradient, skeleton, drainage network, catchment boundaries, etc.), sampling density, interpolation 
methods and spatial resolution (Hu et al., 2009; Guo et al., 2010). Besides, an initial source of 
errors can be attributed to the data collection. The quality of the estimation of height for each 
data point depends on the technology applied. Although there have been many studies on the 
accuracy of interpolation techniques for the generation of DEMs in relation to landform types 
and data quantity or density, there is still a need to evaluate the performance of these techniques 
on natural landscapes (Chaplot et al., 2006). What is the accuracy of interpolation methods 
and ANN in predicting the height of different point distributions on a DEM? It is an important 
question in the field of modeling surface.

Papers IDW NN S RBF K TIN C ANN

Zimmerman et al. (1999) used - - - used* - - -

Snell et. al (2000) used used - - - - - used*

Erxleben et. al (2002) used - - - used - used* -

Chaplot et al. (2006) used - used used used - - -

Attore et al. (2007) used - - - used* - - used

Sen et al. (2008) - - - - used* - - used

Azpurua and Ramos (2010) used* - used - used - - -

Guo et. al (2010) used used used - used* used - -

Deligiorgi and Philippopoulos (2011) used used used used used used - used*

(IDW: Inverse Distance Weighted; NN: Nearest Neighbor; S: Spline; RBF: Radial Basis Function; K:Kriging; TIN: Triangulated Irregular Network; 
C: Combined method using binary regression trees)

Table 1. Superiority of methods in the papers is shown by stars.

The purpose of this study is evaluating the performance of spatial interpolation methods 
which are Inverse Distance Weighted (IDW), Ordinary Kriging (OK), Modified Shepard's 
(MS), Multiquadric Radial Basis Function (MRBF) and Triangulation with Linear (TWL), 
and prediction of the Multi-Layer Perceptron (MLP) which is an ANN method consisting of 
neurons which are mathematical analogs of human cognition in terms of height accuracy on a 
DEM. This study also aims to quantify the effects of topographic variability and sampling density 
by comparing different point distributions such as curvature, grid, random and uniform on the 
DEM. RMSE values of the different interpolations and ANN prediction were evaluated from the 
original DEM for different point distributions. In addition to this, three different cross-sections 
on the characteristic parts of the surface were selected and analyzed. 

MLP or feed-forward back-propagation neural networks learn with supervision (with known 
expected outputs). Feed forward neural networks propagate information from the input to the 
output without recurrence and the error flow is propagated backwards from the output to the 
input modifying the ANN parameters according to captured dependencies from data (Ratle et 
al., 2008). 

In this study, prediction errors of the methods were statistically compared by several tables and 
graphics. Generally, OK, MS, MRBF and TWL gave promising results based on RMSE and were Ku
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more effective in terms of reflecting the characteristics of surface than MLP and IDW. In MLP, 
the contours were simplified compared to the other methods. However, it was a satisfactory 
predictor for curvature, grid, random and uniform distributions. Besides, analysis of different 
cross-sections on the characteristic parts of the surface was performed in order to determine 
the effect of the methods.

2 METHODS

2.1 MULTI-LAYER PERCEPTRON (MLP)

An artificial neuron is capable of propagating the data and modifying itself accordingly whilst 
training. 

  
i

ii bxwn    (1)                                                                                  

where w
i
 are the weights of the connections coming to the neuron, x

i
 is the input and b is the 

bias. These hyper parameters are determined through the training procedure by minimizing 
the error between the target variable data (y) and the perceptron prediction output (y’) using 
conventional optimization algorithms (e.g. gradient descent, etc.). The perceptron weights w

i
 

are updated through the learning procedure when the input data (x) are presented to the input 
and the corresponding output (y’) is compared with the expected output (y):

 w
i
 = w + α(y – y’)                                                                                                                                              (2)

where α corresponds to the learning rate. MLP is an extension of the single layer perceptron 
based on the addition of a hidden layer of neurons between the input and the output neurons. 
MLP with a nonlinear element (sigmoid or of another type) in each hidden neuron is a universal 
predictor capable of estimating every continuous function with just one hidden layer. MLP 
estimation with a single hidden layer with m neurons is calculated as a weighted sum:

     o

m

i
iim wXvswvwxf ,,   (3) 

where w
i
 are the weights corresponding to each neuron connection and w

0
 is an additive bias 

corresponding to the entire hidden layer (Figure 1); s is a sigmoid activation function which 
represents a nonlinear element in MLP: v

i
 is a activation function steepness parameter (Ratle 

et al., 2008). The activation functions are log-sigmoid and tan-sigmoid are respectively given in 
equation 4. In this study, tan-sigmoid activation function was used.

 s = 1/(1 + exp((–n))       s = (1 – exp((–2n))/(1 + exp((–2n)) (4)                                            

Error minimization between the expected output and the MLP output can be performed using 
a wide selection of known optimization algorithms. Gradient optimization algorithms are based 
on calculating the gradient of the minimized function and are very good in finding local minima. 
Gradient optimization algorithms vary in performance efficiency and speed. Multiple results of 
the gradient optimization can be considered in order to reach the global minimum (or the lower Ku
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local minimum) (Ratle et al., 2008). In this study, six different training functions, namely trainlm 
(Levenberg-Marquardt) (More, 1978), traincgf (Fletcher-Powell Conjugate Gradient) (Scales, 
1985), traingd (Gradient Descent), traingdx (Gradient descent with momentum and adaptive 
learning rule backpropagation) (Beale, 1972), trainrp (Resilient Backpropagation) (Riedmiller 
and Braun, 1993) and trainscg (Scaled Conjugate Gradient) (Moller, 1993) were used. 

Figure 1. MLP structure (3-6-1) (Ratle et al., 2008). 

An advantage of this method is that the guiding variables are not necessarily assumed to be 
linearly related with the data being interpolated, and combinative effects are taken into account 
(Rigol et al., 2001). The disadvantage is that this method is non-deterministic. It is difficult to 
adapt and set the learning parameters for different models.

2.2 ORDINARY KRIGING (OK)

Kriging is a geostatistical method that takes into account both the distance and the degree of 
variation between known data points (Chaplot et al., 2006). To fulfill the unbiasedness, an 
additional constraint is imposed over the weights:

 
 





oxN

i
oi xw

1
1)(   (5)                                                                                                                                              

Minimization of the estimation error provides the system of equations called an ordinary kriging 
system. In a more general way it can be written in terms of the variogram:

 
 





oxN

j
ioijoj xw

1
)(          

 





oxN

j
oj xw

1
1)(     )(,.......,1 oxNi           1,..., ( )oi N x∀ =  (6)

where µ is a Lagrangian multiplier, introduced because of the variance minimization with a 
constraint and γ  is a semi-variogram. Note that γ

ij
 can be calculated for each data pair Z(x

i
) and 

Z(x
j
) (i,j=1,…, N(x

0
) the number of data in the neighborhood of (x

0
)) whereas γ

i0
 is approximated 

by the fitted theoretical variogram model λ(h) with the separating vector h=x
i
-x

0
 as an argument. 

An ordinary kriging variance (Ratle et al., 2008):

 



)(

1
0)()(

oxN

i
ioiook xwx    (7) Ku
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The advantage of this method is the statistical formulation of the best linear unbiased estimate. The 
disadvantage is that the weights must be computed for each node of the grid, that is why this method 
is used for small samples, and the method produces undesirable “pits” and “circular” contours 
(Dressler, 2009).                                                                                                                                                                                                                   

2.3 INVERSE DISTANCE WEIGHTED (IDW)

The simplest form of IDW interpolation is called the Shepard’s method (Shepard, 1968). 

 



n

i
ii fwyxF

1
),(   (8)

where n is the number of distributed points in the data set, f
i
 are the function values at the 

distributed points and w
i
 are the weight functions assigned to each point. The influence of a 

known data point is inversely related to the distance from the unknown location that is being 
estimated. Shepard (1968) used weight function:

 



n

j

p
j

p
ii ddw

0
/   (9)

where p is an arbitrary positive real number called the power parameter (typically p = 2), d
j
 are 

the distances from the dispersion points to the interpolation point:

 22 )()( iii yyxxd    (10)

where (x, y) are coordinates of the interpolation point and (x
i
, y

i
) are the coordinates of each 

dispersion point. The weight functions are normalized as a sum of the weights of the unit 
(Azpurua and Ramos, 2010). 

Although IDW is simply implemented, high computer time is needed if the number of points is 
large due to the computation of distances, and has the tendency to generate "bull's-eye" patterns 
of concentric contours (Dressler, 2009).

2.4 MODIFIED SHEPARD’S METHOD (MS)

The Modified Shepard's Method uses an inverse distance weighted least squares method. The 
Modified Shepard's Method can be either an exact or a smoothing interpolator. Franke and 
Nielson (1980) developed a modification that eliminates the insufficiency of the Shepard’s 
method, and does not tend to generate "bull's eye" patterns. 

As detailed in Basso et al. (1999), the first step in this method is the definition of the radii of 
influence, R

q
 and R

w
. While R

q
 denotes the radius of influence of the data points in the nodal 

functions, R
w
 denotes the radius of influence of the nodal functions in the interpolant. 

 ( / 2) /q qR D N N=
 

NNDR gq /)2/(        NNDR ww /)2/(   (11)

where D = max
i,j
 d

i
 (x

j
,y

j
), N is the total number of data points. The values of N

q
 and N

w
 can 

be interpreted as representing the number of data points estimated to lie within the circles Ku
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of radii R
q
 and R

w
 respectively. After calculating the radii R

q
 and R

w
, the nodal functions are 

computed using the least squares method. These functions are calculated based only on data 
points sampled inside radius R

q
. This slight modification gives a local behavior to the method. 

The distance function ρ
i
:

 1/ ρ
i 
(x

i
y) = (R

q 
–

 
d

i
)/R

q 
d

i
 (12)

(R
q 
–

 
d

i
) denotes the positive part of the quantity. The next step is to solve (for each nodal point 

(x
k
,y

k
), k=1, … , N) the least squares problem. The Modified Shepard formula:

   )),(/1/()),(/),((),(
1

2

1

2 



N

k
k

N

k
kk yxVyxVyxQyxfD   (13) 

where Q
k(x,y)

 is the nodal functions.

Each grid point is calculated based on the nodal functions computed for the sampled points 
inside a circle of radius R

w
. This is defined by the Equation (13).

 1/V
k
(x, y) = (R

w 
–

 
d

k
)/R

w 
d

k  
(14)

2.5 TRIANGULATION WITH LINEAR INTERPOLATION METHOD (TWL)

In the Triangulated Irregular Network (TIN) model, a finite set of points is stored together with 
their elevation. The points need not lie in any particular pattern, and the density may vary. On 
these points a planar triangulation is given based on a Delaunay’s triangulation. Any point in 
the domain will lie on a vertex, an edge or in a triangle of the triangulation. If the point does not 
lie on a vertex, then its elevation is obtained by linear interpolation (Kreveld, 2000). Suppose 
T is a DEM point in triangle abc. Under the assumption that the triangle vertices are error-free, 
TIN interpolation can be written as (Hu et al., 2009)

 H
T
 = w

a
H

a
 + w

b
H

b
 + w

c
H

c
 ,

 
w

a
 + w

b
 + w

c
 = 1, w

a
 , w

b
 , w

c
 > 0 (15)

where H is the height, w
a
 , w

b
 , w

c
 are the areal proportions of the sub-triangles constructed using 

T. If s is the total area of triangle abc, s
a
 , s

b
 , s

c
 are the areas of the sub-triangles, then 

 w
a
 = s

a
 /s, w

b
 = s

b
 /s, w

c
 = s

c
 /s  (16)

The TWL is very fast, but it is limited to the convex envelope of the points, resulting surface 
is not smooth and the division into triangles may be ambiguous, and requires a medium-large 
number of data point to generate acceptable results (Dressler, 2009).

2.6 MULTIQUADRIC RADIAL BASIS FUNCTION (MRBF)

Hardy (1968) introduced the multiquadric method for the construction of approximate two-
dimensional surfaces of field data. The method of radial basis functions uses the interpolation 
function in the given form: 

  



n

i
iii YXyxwyxpyxf

1
),(),(.),(),(    (17) 
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where p(x, y) is a polynomial, w
i
∈R are real weights,  is the Euclidean distance between points 

(x, y) and (X
i
, Y

i
),  is a radial basis function. A commonly used multiquadric radial basis function 

is given in Table 2. (r, is the anisotropically rescaled, relative distance from the point to the 
node; c, is the smoothing parameter):

Radial Basis Function ( )(r ) Equation 

Multiquadric 22 cr   

Inverse Multiquadric 22/1 cr   

Multilog )log( 22 cr   

Natural Cubic Spline 2/322 )( cr   

Thin Plate Spline )log()( 2222 crcr   

 
Table 2. Types of radial basis function.

The interpolation process starts with polynomial regression using the polynomial p(x, y). 
Then the following system of n linear equations is solved for unknown weights w

i
, (i=1,…,n) 

determined by imposing the interpolation conditions, which lead to a symmetric system of 
linear equations. The Lagrangian form is an easy evaluation of linear equations.

      njYXYXwYXpZ
n

i
iijjijjj ....,,1,,,.),(

1
 



   (18)

As soon as the weights (w
i
) are determined, the z-value of the surface can be directly computed 

from Equation (17) at any point.

The advantages of this method are that the system of linear equations has to be solved only once 
in contrast to the Kriging method, where to be solved for each grid node, and uses a range of 
kernel functions. The disadvantages are that if the number of points n is large, the number of 
linear equations is also large, moreover, the matrix of the system is not sparse, which leads to a 
long computational time and possibly to the propagation of rounding errors (Dressler, 2009).

3 STUDY AREA

USGS National Elevation Dataset (NED) 1/3 arc-second (approximately 10 meters grid spacing) 
DEM was used in this study. The dataset has been tested by comparing it with a reference data 
which are the geodetic control points that the National Geodetic Survey uses for gravity and geoid 
modeling. The NED value at each of the control point locations was derived through bilinear 
interpolation, and error statistics were calculated. Bilinear interpolation is the calculation of 
the new pixel value performed by the weight of the four surrounding pixels (Hu et al., 2009). 
The production method is an improved contour-to-grid interpolation known as “LineTrace+” 
(LT4X) (Osborn et al., 2001). The overall absolute vertical accuracy expressed as RMSE for 
LT4X production is 2.17 m (Gesch, 2007). 

The study area is Lower Beaver in Colorado, USA. The difference between maximum and 
minimum elevations (the relief) is 82 m in the study area. The horizontal datum is the North Ku
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American Datum of 1983 and UTM zone is 12N. The lower left corner coordinates of DEM 
are (ϕ: 38° 44' 16.8''; λ: -112° 38' 45.6'') and the upper right corner coordinates are (ϕ: 38° 45' 
25.2''; λ: -112° 37' 22.8''). The study area is 2-by-2 square kilometers. The 3D model of the study 
area is shown in Figure 2. 

Figure 2. 3D model of the study area.

4 DATA PREPROCESSING

Depressions of a DEM may be natural reflections of the terrain, or the artificial depressions 
as a result of interpolation methods, input data errors, or restrictions in DEM resolution. 
Sinks are often errors due to the resolution of the data or rounding of elevations to the nearest 
integer value. In this study, hydrology tool of ArcGIS 10 software was utilized. The depressions 
were removed by rising to the lowest elevation value on the rim of the depression (Jenson and 
Domingue, 1988) for improving DEM. Filling sinks modifies the elevation value to eliminate the 
problems about cells surrounded with higher elevation and resumes the water flow. Sinks were 
filled based on appropriate the z-limit (in this study, 16 cm). The z-limit specifies the maximum 
depth of a sink that will be filled. A procedure using geoprocessing tools to find z-limit for the 
“Fill” as follows (ArcGIS 10 Help).

• Use “Sink” to create a raster of sinks coded with depth.

• Use “Watershed” to create a raster of the contributing area for each sink.

• Use “Zonal Statistics” with the minimum statistic to create a raster of the minimum elevation 
in the watershed of each sink.

• Use “Zonal Fill” to create a raster of the maximum elevation in the watershed of each sink.

• Use “Minus” to subtract the minimum value from the maximum value to find the depth. 

For the neural network implementation, all of the input data were normalized based on minimum-
maximum normalization to avoid the numerical conflicting. Minimum-maximum normalization 
(Han et al., 2012): Ku
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minmax

min'

xx
xxX i

i 


   (19)

where x
min

 and x
max

 are the minimum and maximum values of X coordinate in the dataset, 
respectively. X

i
 is normalized based on the range of the data (likewise, Y coordinate).

5 POINT DISTRIBUTION

In predicting height, different point distributions were compared such as curvature, grid, random 
and uniform on the DEM. Grid distribution decreases the number of points in an irregular point 
space, not considering curvature and original density of pattern. However, curvature distribution 
decreases the number of points on surfaces of which height is closely similar but maintains 
details in high curved areas. Uniform distribution decreases the number of points uniformly on 
surfaces of which height is closely similar, but reduces the number of points on curved surfaces 
to a specified density. Random distribution removes a percentage of points randomly from an 
irregular point space. 

Figure 3. Study area with contours and four different point distributions in the red rectangular.

In this study, totally 47,089 points obtained from DEM were used. As a result of using grid, 
random, uniform and curvature distributions, the number of points was reduced by 50%, e.g. Ku
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more points were selected on the characteristic parts of surface, while fewer points were used 
on the flat parts in the curvature distribution. Different point distributions in the interpolation 
methods and ANN prediction were used for comparing the effect of different sampling densities 
(in this case, 100% and 50%) and the topographic variability. Besides, the characteristic lines 
(ridges and valleys) could contribute to the point distribution. In Figure 3, four different point 
distributions (only shown in the red rectangular as an example) are represented with contours 
of the study area obtained from the DEM. It is realized that the curvature distribution maintains 
more points among dense contours (highly curved) than flat areas.

6 EXPERIMENTATION 

In this study, MLP was applied by Matlab R2009b neural network toolbox and interpolation 
methods were performed by Surfer 9.0. When training multilayer networks, the general practice 
is to first divide the data into three subsets. The first subset is the training set, which is used 
for computing the gradient and updating the network weights and biases. The second subset is 
the validation set. The error in the validation set is monitored during the training process. The 
validation error normally decreases during the initial phase of training, as does the training 
set error. However, when the network begins to overfit the data, the error in the validation set 
typically begins to rise. The test set error is not used during training but it is used to compare 
different models. Test error is not minimized and thus not propagated backwards from the MLP 
outputs to the input. The size of the test can range between 1-25% of the total amount of data 
available (Ratle et al., 2008). In this study, ratios for training, testing and validation were 0.7, 
0.15 and 0.15, respectively.

Before training MLP, the weights and biases are initialized. The process of training a neural 
network involves tuning the values of the weights and biases of the network to optimize network 
performance, as defined by the network performance function which is the Root Mean Square 
Error (RMSE) as defined in Equation (18).

 



N

i
ii ZZ

N
RMSE

1

2)'(1
  (20)

where Z
i
’ is the network output height, Z

i
 is the target output height. 

In neural network toolbox, the magnitude of the gradient and the number of validation checks 
are used to terminate the training. The gradient will become very small as the training reaches 
a minimum of the performance. The number of validation checks represents the number of 
successive iterations that the validation performance fails to decrease.

In this study, the X-Y coordinates were the input, while the Z coordinates were the output. The 
parameters of the multi-layer neural network were experimentally determined by approximately 
70 variations. Six different training functions, namely trainlm, traincgf, traingd, traingdx, trainrp, 
and trainscg, and different hidden layer and neuron numbers and epochs were examined. The 
best variations are given in Table 3. The best performance was performed by the Levenberg-
Marquardt (trainlm) function based on RMSE within the range of 12 cm and 16 cm that changed Ku
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in the distribution of points. The fastest training was performed by the trainrp function (Intel 
Core 2 Duo CPU 2.40 GHz). The best performance of MLP is the trainlm that used 3 hidden 
layers with 30 neurons (2-30-30-30-1). There are also some experiments failed because of the 
local minima. The trained network can be used for predicting height (output) while position is 
input. The parameters used in the interpolation methods are given in Table 4. 

Distribution % Train Layer Neuron Epoch Time Grad. RMSE (m) 

All 100 trainlm 3 30 480 51m55s 0.00006 0.156 

All 100 trainlm 1 10 787 06m14s 0.00076 1.732 

All 100 trainscg 5 70 1731 3h7m5 0.00018 0.335 

All 100 trainrp 3 30 539 13m34s 0.00041 0.561 

All 100 traincgf 3 30 774 21m15s 0.00032 0.649 

Curvature 50% trainlm 3 30 429 40m55s 0.00001 0.136 

Curvature 50% trainlm 1 10 989 03m41s 0.00267 1.795 

Curvature 50% trainscg 5 80 948 43m56s 0.00115 0.424 

Curvature 50% trainrp 3 30 1243 09m50s 0.00009 0.511 

Grid  50% trainlm 3 30 663 2h21m 0.00006 0.127 

Grid  50% trainlm 1 10 134 43s 0.00001 2.509 

Grid  50% trainscg 5 80 522 27m26s 0.00067 0.516 

Grid  50% trainrp 3 30 2000 20m51s 0.00006 0.497 

Random 50% trainlm 3 30 795 01h30 0.00002 0.123 

Random 50% trainlm 1 10 275 01m01s 0.00010 2.676 

Random 50% trainrp 5 80 411 12m04s 0.00013 0.339 

Random 50% trainscg 5 80 678 31m34s 0.00038 0.394 

Uniform 50% trainlm 3 30 747 2h31m 0.00000 0.132 

Uniform 50% trainlm 1 10 376 2m10s 0.00016 1.769 

Uniform 50% trainrp 3 30 1493 15m54s 0.00007 0.476 

Uniform 50% trainscg 5 80 539 28m15s 0.00041 0.541 

 
Table 3. Variations for the architecture of MLP (errors in meters).

Methods Used Parameters 

OK Variogram Model = Linear, Slope = 1,  Aniso = 1, Kriging Type = Point, 
Searchs Elips (Radius 1 = 70, Radius 2 = 70,  Angle = 0) 

 IDW Power (p)= 2, Smoothing = 0, Anistropy* (Ratio =1, Angle = 0) 
Searchs Elips (Radius 1 = 70, Radius 2 = 70,  Angle = 0) 

 MS Smoothing factor: 0, Quadratic Neighbors: 13, Weighting Neighbors: 19, 
Search (Rq: 70, Rw: 70, Angle: 0) 

 MRBF Basic Function: Multiquadric, R2 Parameter: 6.8, Anistropy* (Ratio =1, Angle = 0), 
Searchs Elips (Radius 1 = 70, Radius 2 = 70,  Angle = 0) 

 TWL Anistropy* (Ratio =1, Angle = 0) 

 
*It is used for finding ranges in three principal, orthogonal directions and transforming a three dimensional lag vector.

Table 4. The parameters used in different interpolation methods.Ku
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The graphic of mean square error per each epoch of the training, validation and test set for grid 
distributed points trained by trainlm function with 3 hidden layers and 30 neurons are compared 
in Figure 4. The error graphic shows the distribution of the network errors.

Figure 4. The comparison of training, validation and test error.

7 RESULTS

Height interpolation was performed by five different interpolation methods and an ANN method 
on the basis of point distributions. The methods were statistically compared by several tables 
and graphics. The accuracy of the methods was calculated by RMSE comparing to the original 
DEM. The statistics (minimum, maximum, mean, median, standard error, variance and average 
deviation) of errors are given in Table 5 and the comparison of methods via point distributions 
based on RMSE is indicated in Figure 5. According to the RMSE values in Table 5 and Figure 5, 
OK, MS, MRBF and TWL gave the best results. MRBF showed weaker performance considering 
uniform distribution. The performance of IDW for curvature distribution was prominently worse 
than OK, MS, MRBF and TWL. However, its performance increased when it was performed 
for uniform distribution, such that it was the best. Since using all data (100%) for the training 
of MLP decreased the effect of specific data (representative) representing the characteristics 
of the dataset, its prediction was weaker than the other methods. MLP performed better for the 
distributions which decrease the number of points. However, OK, MS, MRBF and TWL gave 
the best performance in the case of using all data. The best interpolation performances are MS 
in the case of using all points, grid and random distributions; MRBF for curvature distribution, 
and IDW for uniform distribution. 
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50% Ordinary Kriging Modified Shepard's Inverse Distance Weighted 

Dist. Cur. Grid Rand. Uni. Cur. Grid Rand. Uni. Cur. Grid Rand. Uni. 

Min. -1.268 -1.417 -1.615 -1.671 -1.458 -1.660 -1.172 -1.937 -2.104 -2.059 -1.472 -1.617 

Max. 2.139 1.828 1.931 2.225 2.758 1.574 2.263 1.934 2.522 1.894 3.802 1.581 

Mean 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Standard 
error 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

Variance 0.005 0.008 0.006 0.007 0.007 0.005 0.005 0.008 0.020 0.007 0.009 0.005 

Average 
deviation 0.034 0.037 0.031 0.038 0.036 0.030 0.032 0.038 0.062 0.035 0.038 0.028 

RMSE 0.074 0.087 0.075 0.086 0.084 0.073 0.072 0.092 0.142 0.082 0.097 0.069 

 50% Multiq. Radial Basis Function Triangulation with Linear Multi-Layer Perceptron 

Dist. Cur. Grid Rand. Uni. Cur. Grid Rand. Uni. Cur. Grid Rand. Uni. 

Min. -1.171 -1.458 -1.933 -1.504 -1.671 -2.012 -1.309 -1.952 -1.970 -1.851 -2.736 -2.384 

Max. 2.261 2.758 1.973 2.428 2.225 2.015 1.872 1.887 2.260 1.275 1.490 1.692 

Mean 0.000 0.000 0.000 0.002 0.001 0.000 0.001 0.001 0.000 -0.002 0.000 -0.000 

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.001 0.000 0.000 

Standard 
error 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 

Variance 0.005 0.007 0.006 0.010 0.007 0.007 0.007 0.008 0.018 0.016 0.015 0.017 

Average 
deviation 0.032 0.036 0.033 0.041 0.038 0.036 0.034 0.036 0.090 0.085 0.082 0.086 

RMSE 0.071 0.084 0.078 0.102 0.086 0.085 0.082 0.087 0.136 0.127 0.123 0.132 

100% Ordinary Kriging Modified Shepard's Inverse Distance Weighted 

Min. -0.737 -1.838 -1.495 

Max. 1.253 1.554 2.797 

Mean 0.000 0.000 0.001 

Median 0.000 0.000 0.000 

Standard 
error 0.000 0.000 0.000 

Variance 0.001 0.001 0.006 

Average 
deviation 0.011 0.008 0.022 

RMSE 0.038 0.034 0.080 

100% Multiq. Radial Basis Function Triangulation with Linear Multi-Layer Perceptron 

Min. -0.756 -0.917 -2.915 

Max. 1.226 1.649 4.147 

Mean 0.000 0.001 -0.003 

Median 0.000 0.000 0.000 

Standard 
error 0.000 0.000 0.000 

Variance 0.001 0.002 0.024 

Average 
deviation 0.009 0.013 0.001 

RMSE 0.035 0.046 0.156 

 
Table 5. The statistical results of error (in meters) via point distributions for height interpolation. Ku
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Figure 5. Graphic of performances (RMSE) for each method using different point distributions.

The contours were obtained for visualizing the interpolated surface by different methods. Using 
all data (100%) for MLP training yielded weak prediction results. Therefore, MLP simplified the 
contours. For example, the eliminated details of the contour lines, as an MLP result compared 
with other interpolation results in the case of using all data, are shown by red circle in Figure 6. 

Figure 6. The contours obtained by interpolation methods and MLP for each point distribution and eliminated 
details of contours in red circles.

In addition to these results, three different cross-sections on the characteristic parts of the surface 
were selected and analyzed in order to determine the effect of methods using all data (100%). 
A-B, C-D and E-F cross- sections are shown on the 3D model and the contours in Figure 7. The 
A-B cross-section is beveled and E-F is more rugged than the C-D cross-section. The methods 
were examined based on RMSE for 588, 1500 and 522 points on the A-B, C-D and E-F cross-
sections, respectively. The RMSE results of the interpolations are given in Table 6. A graphic 
of performances of each method via point distributions based on RMSE for each cross-section 
is given in Figure 8. Ku
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Figure 7. A-B, C-D and E-F cross- sections on 3D model and contours.

Cross  
Method 

All 
100% 

Cur. Grid Rand. Uni. 
Section 50% 50% 50% 50% 

A-B 

OK 0.032 0.06 0.118 0.128 0.058
MS 0.051 0.08 0.089 0.067 0.06 
IDW 0.227 0.202 0.398 0.406 0.216
MRBF 0.042 0.073 0.098 0.108 0.057
TWL 0.034 0.044 0.126 0.104 0.094
MLP 0.421 0.157 0.216 0.149 0.141

C-D 

OK 0.018 0.029 0.026 0.032 0.025
MS 0.02 0.034 0.028 0.029 0.02 
IDW 0.032 0.059 0.04 0.048 0.048
MRBF 0.019 0.029 0.025 0.031 0.024
TWL 0.019 0.027 0.025 0.029 0.022
MLP 0.143 0.064 0.064 0.074 0.072

E-F 

OK 0.043 0.121 0.153 0.18 0.094
MS 0.054 0.138 0.151 0.226 0.1 
IDW 0.208 0.284 0.362 0.335 0.28 
MRBF 0.048 0.134 0.144 0.179 0.111
TWL 0.049 0.122 0.171 0.157 0.116
MLP 0.61 0.332 0.234 0.211 0.206

 Table 6.  The best method shown with gray highlight for each point distribution on cross- sections based on 
RMSE (in meters).

In the case of using all data, OK performed better on all cross sections. TWL performed better on 
the A-B and C-D cross-sections, while OK performed better on the E-F cross-section for curvature 
distribution. MS performed better on the A-B cross-section, while MRBF performed better on 
the C-D and E-F cross-sections, and TWL accompanied MRBF on the C-D cross-section for grid 
distribution. MS performed better on the A-B and C-D cross-sections, while TWL performed 
better on the C-D and E-F cross-sections for random distribution. Finally, MRBF was better on 
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the A-B cross-section; MS was better on the C-D cross-sections and OK was better on the E-F 
cross-sections for uniform distribution. As a result of this, OK and TWL were superior for three 
different cross-sections. IDW results were poor especially on the A-B cross-sections and MLP 
results decreased performance again in the case of using all data.

Figure 8. Graphics of performances for A-B, C-D and E-F cross-sections respectively.

The cross-sections are presented for all data (100%) processing in Figures 9, 10 and 11. Some 
specific parts are viewed by close-ups. The results of OK, TWL, MS and MRBF were almost 
the same on the cross-sections. However, IDW sometimes moved away from the other curves on 
slightly changed slopes. Since using all data (100%) for the training of MLP decreased the effect 
of specific data (representative) that represents the characteristics of the dataset; its prediction 
was weaker than the other methods and it deleted surface details and provided a smooth curve. 
The TWL resulting surface was not smooth and the curve consisted of line segments. 
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Figure 9. The views of the specific parts of A-B cross- section obtained different interpolation methods (TWL, 
IDW, OK, MS, MRBF, respectively) and ANN (MLP).

Figure 10. The views of the specific parts of C-D cross- section obtained different interpolation methods 
(TWL, IDW, OK, MS, MRBF, respectively) and ANN (MLP).

Figure 11. The views of the specific parts of E-F cross- section obtained different interpolation methods 
(TWL, IDW, OK, MS, MRBF, respectively) and ANN (MLP).Ku
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8 CONCLUSIONS

In this study, the authors determined the accuracy of interpolation methods and an artificial 
neural network in predicting the height of different point distributions on a Digital Elevation 
Model (DEM). This study also aims to quantify the effects of topographic variability and 
sampling density. Errors of different interpolations and ANN prediction were evaluated for 
different point distributions and three different cross-sections on the characteristic parts of 
the surface were selected and analyzed. Generally, OK, MS, MRBF and TWL gave promising 
results based on RMSE and were more effective in terms of reflecting the characteristics of the 
surface. Although MLP simplified the contours, it was a satisfactory predictor for curvature, 
grid, random and uniform distributions. An advantage of ANN is that the guiding variables are 
not necessarily assumed to be linearly related with the data being interpolated, and combinative 
effects are taken into account. However, ANN is a non-deterministic method and it requires 
so many experiments. The best interpolation performances are MS in the case of using all 
points, grid and random distributions; MRBF for curvature distribution, and IDW for uniform 
distribution. Since the RMSE is a statistical value, it could not give enough information about 
the characteristic parts of topography (e.g. ridges, valleys, peaks, pits etc.). Therefore, the cross-
sections on the characteristic parts were visualized and evaluated. However, it would be useful 
to prove the tested interpolation methods by means of geovisual methods. In the analysis of 
different cross-sections on the characteristic parts of the surface, OK and TWL were superior 
for three different cross-sections. In the future, DEMs for topographically different terrains (e.g. 
flat, hilly and mountainous) will be evaluated with several training functions of MLP.
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