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0  INTRODUCTIONS

Umbrellas, fans and tents, which have similar features 
in common allowing them to be folded and deployed, 
are widely used in daily life [1] and [2]. When they 
are folded, their volumes are small and they can be 
stored and carried easily. When they are deployed, 
large surface areas or volumes are obtained. These 
kinds of structures are called deployable structures 
[3]. These characteristics of deployable structures 
have been used to solve difficult problems in space 
exploration equipment, such as satellite antennas and 
solar arrays [4] and [5]. Under  working conditions, 
space exploration equipment is required to have 
large surface areas. However when they are put into 
launchers, their volumes have to be small. Therefore, 
deployable structures have been researched and 
applied in the area of spaceflight, and due to this 
important application, deployable structures have 
undergone rapid development [6].

In this paper, one kind of flowerlike deployable 
structure was studied. The deployable structure is a 
mechanism that is deployed to form a circle plane. 
Its shape is similar to a kind of flower whose petals 
surround the flower core. The movement of the 
mechanism is such that its petals rotate away from the 
fixed flower core to a state of complete deployment. 
Moreover, movements of the petals all are same and 
synchronous. According to the above requirements, 
we designed a flowerlike deployable structure as 
described below. 

1  DETERMINING THE NUMBER OF PETALS

Because the flowerlike deployable structure is 
required to form a circle plane after its complete 

deployment, the shapes of its petals and rigid planes 
(in Fig. 1, surfaces 1, 2 and 3 refer to rigid planes, and 
the rigid planes compose a petal) on every petal can 
be obtained by separating the circle plane. The shapes 
of the petals and rigid planes refer to the reference 
[7]. When the deployable structure is folded, its petals 
are needed to surround the central member. So the its 
central member is a regular polygon and the shapes of 
all petals of the mechanism should be the same. The 
circle plane is separated as shown in Fig. 1. 

Fig. 1.  Separating the circle plane

When the deployable structure is folded, its 
section shape is shown as in Fig. 2a. The thickness of 
the rigid planes can be neglected, because the length of 
the diameter of the circle plane formed after deploying 
the mechanism completely is three magnitudes larger 
than the thickness of the rigid planes. L1 and L2 
(shown in Fig. 1) must be equal to the side length of 
the central regular polygon b, which simplifies the 
folded deployable structure as shown in Fig. 2b. The 
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relation of the structural dimensions of the mechanism 
is analysed in order to obtain the folded shape of the 
deployable structure shown in Fig. 2. The relationship 
is shown by the following
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where p is number of rigid planes on a petal of the 
deployable structure, b side length of the regular 
polygon, r radius of the circle plane formed after 
deployment of the mechanism and s number of its 
petals.

a) 

b) 
Fig. 2.  Simplified section of the deployable structure in the  folded 

state

The section shape of the deployable structure in 
folded state is simplified as shown in Fig. 2b. In the 
Fig 2b, OJ is the distance from a tip of the central 
polygon to its center and OI is the distance from the 
point remotest to the center to the central point. The 
angle of OI and OJ is (180°/s), and the structural 
dimensions of the deployable structure are:
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The length AF shown in Fig. 1 is the maximum 
axial height of the mechanism in the folded state. With 
an analysis of the geometrical dimensions, AF can be 
solved as:

	 AF = °
× −4 1802 2 2sin .

s
r b 	 (3)

Eq. (1) is transformed to get:
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So, the maximum of b can be calculated from Eq. 
(4). The folded deployable structure can be put into a 
cylindrical case. The inner radius of the case is equal 
to the length of IO, and its height is equal to the length 
of AF. We let the volume of the deployable structure 
in the folded state equal that of the case. Therefore, 
the volume V of the deployable structure in the folded 
state is approximately solved as:
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Fig. 3.  V vs. b

As shown in Eq. (5), b and s influence V. If we 
let p equal 3 then s respectively equals to 3~8. Fig. 
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3 shows the resulting V vs. b for the simulation. As 
shown in Fig. 3, V is inversely proportional to b. After 
further analysis, when p is equal to other constant, V is 
still inversely proportional to b..

V is the main characteristic of the deployable 
structure and is required to be minimized. With the 
aim of minimizing V, using the above result, s can be 
determined as shown below. Let r equal 1 m. When 
p equals 3, after calculating with Eq. (4), s, b and V 
are summarized in Table 1. When p is equal to other 
values, values of s, b and V are similar to those in 
Tab.1. Therefore, the conditions when p is equal to 
another value are omitted here.

From Table 1, it is known that when s is equal to 
6, b is at its maximum value, and V is at its least. So s 
is determined finally to equal 6..

Table 1.  s, maximum b and V

s Maximum of b [m] V [m3]

3 0.25 0.581
4 0.34 0.552
5 0.395 0.495
6 0.397 0.463
7 0.391 0.514
8 0.385 0.56

2  CALCULATING DEGREES OF FREEDOM

The flowerlike deployable structure is a multibody 
system and has complicated movement. In order 
to reduce the output energy and mass of the driving 
members and control the mechanism more easily, 
it is necessary to minimize the degrees of freedom 
(DOF) of the mechanism. Because DOF of a closed 
mechanism chain is less than an open one, links 
are needed to connect neighbour petals to make the 
mechanism into several close mechanism chains. 
To make movement of the deployable structure less 
complicated, let number of the links only equal 1 or 2, 

and the kinematic pairs connecting the links and petals 
only be a revolute pair or spherical pair. 

DOF of the space mechanism can be solved with 
the equation:

	 F n ui
i

j
= −( ) −

=
∑6 1
1
, 	 (6)

where n is a number of members of the mechanism, 
j a number of its kinematic pairs, ui a number of 
constraints of the i kinematic pair [8] to [10]. 

Let F be equal to s, and Eq. 6 is used to calculate 
the DOF of the flowerlike deployable structure with 
different connecting forms between the petals. The 
number of members and kinematic pairs and resulting 
DOF are summarized in Table 2.

Based on Table 2, the numbers of connecting 
links, kinematic pairs and the type of the kinematic 
pairs have a direct influence on p. In the 2nd structural 
form, the number of members is too little so that ratio 
of volumes of the deployable structure in folding 
and deploying states is too large, which doesn’t fit 
requirement of the deployable structure. There are 
too many kinematic pairs in the 5th structure, and its 
movement is complicated, which makes it difficult to 
control. The 6th and 7th structure forms are obviously 
impossible. So only the 1st, 3rd and 4th structure are 
feasible. In the three feasible structures, the 1st 
structure has the least members, so it is adopted here.  

3  TOPOLOGY ANALYSIS OF THE MECHANISM

Using the results of the above analysis, we designed a 
flowerlike deployable structure. A virtual prototype of 
the mechanism is shown in Fig. 4. It is composed of a 
hexagonal central plane and six petals. Each petal has 
three rigid planes, including a root rigid plane, middle 
rigid plane, and top rigid plane as shown in Fig. 4. The 
root rigid plane is a right-angled triangle. The surface 
of the middle rigid plane is trapezium. The top rigid 

Table 2.  The number of members and DOF

Serial 
number of 
structural 

forms

Number of links 
conncecting the 

neighbouring 
petals

Type and number of kinematic pairs 
connecting between links and petals

Number of 
members 

of the 
mechanism

Number 
of revolute 

pairs

Number of 
spherical 

pairs

Degrees of 
freedom of 
the whole 

mechanism

Number of 
rigid planes 
on a petal

1
1

A spherical pair and a revolute pair sp+s sp+s s sp–2s p = 3
2 Two spherical pairs sp+s sp 2s sp p = 1
3 Two revolute pairs sp+s sp+2s 0 sp–4s p = 5
4

2

Three revolute pairs sp+2s sp+3s 0 sp–3s p = 4
5 Two revolute pairs and a spherical pairs sp+2s sp+2s s sp–s p = 2
6 A revolute pair and two spherical pairs sp+2s sp+s 2s sp+s p = 0
7 Three spherical pairs sp+2s sp 3s sp+3s p = –2
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plane has an amorphous formation. The rigid planes 
and the central hexagon plane are connected to each 
other via revolute pairs. A bar connects the two top 
rigid planes on the neighbouring petals together. There 
are a revolute pair on an end of the bar and a spherical 
pair on its other end.

Using mechanical topology analysis, we can 
simplify the mechanism and the result is shown in Fig. 
5. The meanings of the below symbols, figures and 
terms can be found in reference [11].

As shown in Fig. 5, the mechanism is composed 
of several close mechanism chains. In order to analyse 
the mechanism further, one must decompose the 
mechanism into several minimum close mechanism 
chains (the minimum close mechanism chains are 
called simply SLC). Because the mechanism is 
symmetrical, it can be decomposed into six identical 
SLC as shown in Fig. 6. The composition of the SLC 
can be expressed as:

	 SLC{–R1 ⊥ R2 // R3 ⊥ R4 – S1 – R8 // R9 ⊥ R10–},	

where Ri denotes the ith revolute pair and sj denotes 
the jth spherical pair. In Fig. 6, the bar between R1 and 
R10 is cut and the spherical pair S1 can be substituted 
with three revolute pairs.

Fig. 4.  The flowerlike deployable mechanism

Fig. 5.  The flowerlike deployable structure after simplified

Fig. 6.  A close mechanism chain (SLC)

The SLC is changed into an open mechanism 
chain (SOC) as shown in Fig. 7. The composition of 
the SOC can be expressed as:

	 SOC 1 2 3 4 5 6 7 8 9 1− ⊥ ⊥ ⊥ − − ⊥ −{ }R R R R R R R R R R/ / / / / / 0 .

Fig. 7.  The open mechanism chain (SOC)

The below analysis will be carried out using 
Descartes coordinates. Using screw theory, we 
make a list of the independent outputs of the output 
eigenmatrix of every kinematic pair in turn, and these 
are then added together to get the vector form of the 
output matrix of the SOC as:
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In the SOC, R1 and R2 lie on a rigid plane and 
their axis lines are vertical each other, so the two axis 
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lines always intersect at one point and the outputs of 
the two revolute pairs are independent of each other. 
The axis line of R3 is parallel to R2, so rotation of R3  
is independent relatively of R1 and R2. Therefore the 
revolute pair R3 produces a dependent translation. 
Rotation of R4 is not relative to R1 ~ R3, so its rotating 
output is independent. Rotating outputs of R5 and R6  
have a relationship with the above revolute pairs and 
they will produce two independent translation outputs. 
Because there are six independent outputs, all outputs 
of R7 ~ R10 are dependent. 

Independent rotations of the output matrix MS 
of the SOC are r1 (// R1), r1 (// R2) and r1 (// R4), so 
the number ξSR of its independent rotation outputs is 
3. Independent translation outputs of the matrix are  
t1(⊥ R3), t1(⊥ R5) and t1(⊥ R6), and the number ξSR of 
its independent translation outputs is 3 too. Therefore 
order ξ of the output matrix Ms can be calculated as:

	 ξ = ξS = ξSR + ξSP = 3 + 3 = 6.	 (7)

4  DETERMINING THE POSITION  
WHERE INPUTS ARE LOCATED

DOF of the mechanism can be calculated using the 
equation:

	 F fi
i

m

= −
=
∑
1

ξ , 	 (8)

where F = DOF, fi = DOF of the ith kinematic pair and 
m is a number of kinematic pairs in the mechanism.

We use Eq. (8) to solve for DOF of the SLC as 
shown in Fig. 6. Because F > 0, namely ∑  fi ＞ ξ，the 
SOC (shown in Fig. 7) that the SLC is transformed to 
form is a redundance mechanism and its independent 
outputs can be completed only with R1 ~ R7. The SOC 
is simplified to get another SOC only composed of  
R1 ~ R7. The DOF of the SOC is solved as:

	 F fi
i

= − = − =
=
∑
1

7

7 6 1ξ . 	 (9)

The DOF result indicates that the SLC as shown 
in Fig. 6 only needs an input. Because R8 ~ R10 and 
R1 ~ R7 lie on different petals, in order to reduce 
movement coupling among the petals, the input will 
be placed at any of R1 ~ R7. Because the flowerlike 
deployable structure is composed of six identical SLC, 
only 6 inputs are required to control the mechanism 
completely.

The position of the input will be determined 
below. Before the analysis is carried out, it is estimated 
whether there are passive kinematic pairs in the 
mechanism shown in Fig. 7. After rigidizing R8 ~ R10, 
the composition of the SOC can be expressed as:

	 SOC* 1 2 3 4 5 6 7− ⊥ ⊥ ⊥ − − −{ }R R R R R R R/ / .

Fig. 8.  The open mechanism chain after rigidizing R1

Then R1 is rigidized and the SOC is changed as 
shown in Fig. 8. We then list the independent outputs 
of output eigenmatrix of every kinematic pair in turn, 
and further obtain the vector form of the output matrix 
of the SOC shown in Fig. 8 as:
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The order of the Ms is calculated as:

	 ξ1* = ξS = ξSR + ξSP = 3 + 3 = 6.	

The order of the SOC is same as in Fig. 7. The 
analysis method in reference [2] confirms that R1 is 
not a passive kinematic pair and that input can be 
located there. 

The above analysis method is used further to 
determine whether R2 ~ R7 are passive kinematic pairs, 
and the result is summarized in Table 3. 

As shown in Table 3, there are no passive 
kinematic pairs in the SOC composed of R1 ~ R7. 
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Because R5, R6 and R7 are used to substitute for the 
spherical pair, inputs are not able to be located there. 
So inputs only are at R1 ~ R4. In the whole structure 
shown in Fig. 5, R1 ~ R3 in a SLC are expressed as 
R8 ~ R10 in the one next to it. If an input is placed at 
either R1, R2 or R3, it will influence movements of 
the two SLC, which makes movement analysis and 
control of the mechanism complicated. Because R4 
only belongs to the SLC of the whole mechanism, and 
can not influence movements of other SLC, the input 
should be located at R4.

5  SIMULATION CHECK

By analysing the results of the input position, we can 
set the virtual prototype of the flowerlike deployable 
structure and further simulate it. The movement of 
the inputs is designed to coincide with the sine law. 
From the boundary conditions of the movement of the 
mechanism, the movement equation of the inputs can 
be solved as:

	 θ π= × × +( )18 5 8 0 23. sin / . .t 	

The virtual prototype of the flowerlike 
deployable structure moves from the folding state to 
deploying state as shown in Fig. 9, which proves that 
the flowerlike deployable structure can be folded and 
deployed automatically and that the design scheme is 
reasonable. Let θ1 equal the angle of rigid plane 3 and 
the central polygon in Fig. 1, θ2 be equal to the angle 
of rigid plane 2 and rigid plane 3, and θ3 equal the 
angle of rigid plane 1 and rigid plane 2. Figs. 10 and 
11 show the resulting θi and ωi (i = 1, 2, 3) vs. time for 
the simulation. As shown in Fig. 10, the rigid planes 
can rotate continuously to the desired positions. In Fig. 
11, the angular velocities  change continuously. The 

beginning and end points of the curves are all 0, and 
there are no sudden changes in acceleration. So, there 
are no impulsions and vibrations in the movement of 
the mechanism.

a)  b) 

c) 
Fig. 9.  Movement of the flowerlike deployable structure

6  CONCLUSION 

A deployable structure is a kind of mechanism that 
is deployed completely to form the desired surface 
or spatial structure. In this paper, a design method 
of for such a deployable structure is depicted. After 
analysis of the shapes of the mechanism in folding 
and deploying states, its volume in the folded state is 
solved and its number of petals is further determined. 
In calculating DOF, we select the structure connecting 
the petals and the number of the rigid planes. Using 
mechanical topology analysis and the screw theory, 

Table 3.  Determination of passive kinematic pairs

Rigidized 
kinematic pair

Open mechanism chain gotten after 
rigidization

Order(ξi*)
Whether the rigidized kinematic 
pair is a passive kinematic pair? 

Whether an input can be 
positioned on it?

R1 SOC - - - -\ \ *
2 3 4 5 6 7R R R R R R⊥ ⊥{ } 6 No Yes

R2 SOC - - - -*
1 3 4 5 6 7R R R R R R⊥ ⊥ ⊥{ } 6 No Yes

R3 SOC - - - -*
1 4 5 6 7R R R R R R⊥ ⊥ ⊥{ }2 6 No Yes

R4 SOC - - - -*
1 5 6 7R R \\ R R R R⊥ ⊥{ }2 3 6 No Yes

R5 SOC - - -*
1 6 7R R \\ R R R R⊥ ⊥ ⊥{ }2 3 4 6 No Yes

R6 SOC - - -*
1 7R R \\ R R R R⊥ ⊥ ⊥{ }2 3 4 5 6 No Yes

R7 SOC - - -*
1 6R R \\ R R R R⊥ ⊥ ⊥{ }2 3 4 5 6 No Yes
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the position of the inputs is determined. From the 
analysis in this paper, the below conclusions are 
obtained:
(1)	 Because the volume of the deployable space 

structure in the folded state must be reduced, 
requiring that the structural dimensions of 
the mechanism be optimized with the aim of 
obtaining the minimum volume is reasonable. 
This has been verified in the paper;

(2) 	 In order to make control of the mechanism easier, 
it is necessary to reduce the number of inputs 
into the mechanism, namely DOF. Therefore, the 
number of elements and type of kinematic pair in 
the mechanism can be determined via analysis of 
its DOF;

(3) 	 Screw theory and mechanical topology analysis 
are combined, and thus the positions of the 
inputs can be determined correctly. This was also 
verified.
These methods have been used in this paper, and 

a feasible deployable structure has been obtained. 
Therefore, the methods can be applied in the design of 
this kind of deployable structure.

Fig. 10.  Angle curves

Fig. 11.  Angular velocity curves
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