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Abstract

We use a similar techique as in [2] to derive a formula for the number of multisubsets
of a finite abelian group G with any given size and any given multiplicity such that the sum
is equal to a given element g ∈ G. This also gives the number of partitions of g into a given
number of parts over a finite abelian group.
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1 Introduction
Let G be a finite abelian group of size n and D be a subset of G. The well known subset
sum problem in combinatorics is to decide whether there exists a subset S ofD which sums
to a given element in G. This problem is an important problem in complexity theory and
cryptography and it is NP-complete (see for example [3]). For any g ∈ G and i a positive
integer, we let the number of subsets S of D of size i which sum up to g be denoted by

N(D, i, g) = #{S ⊆ D : #S = i,
∑
s∈S

s = g}.
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When D has more structure, Li and Wan made some important progress in counting
these subset sums by a sieve technique [3, 4]. Recently Kosters [2] gives a shorter proof of
the formula obtained by Li and Wan earlier, using character theory.

N(G, i, g) =
1

n

∑
s|gcd(exp(G),i)

(−1)i+i/s
(
n/s

i/s

) ∑
d|gcd(e(g),s)

µ(s/d)#G[d],

where exp(G) is the exponent of G, e(g) = max{d : d | exp(G), g ∈ dG}, µ is the
Möbius function, and G[d] = {h ∈ G : dh = 0} is the d-torsion of G.

More generally, we consider a multisubset M of D. The number of times an element
belongs to M is the multiplicity of that member. We define the multiplicity of a multisubset
M is the largest multiplicity among all the members in M . We denote

M(D, i, j, g) = #{multisubset M of D : multiplicity(M) ≤ j,#M = i,
∑
s∈M

s = g}.

It is an interesting question by its own to count M(D, i, j, g), the number of multisubsets
of D of cardinality i which sum to g where every element is repeated at most j times.
If j = 1, then M(D, i, j, g) = N(D, i, g). If j ≥ i, this problem is also equivalent to
counting partitions of g with at most i parts over D, which is M(D, i, i, g). In this case we
use a simpler notation M(D, i, g) because the second i does not give any restriction.

Another motivation to study the enumeration of multisubset sums is due to a recent
study of polynomials of prescribed ranges over a finite field. Indeed, through the study of
enumeration of multisubset sums over finite fields [5], we were able to disprove a conjecture
of polynomials of prescribed ranges ove a finite field proposed in [1]. Let Fq be a finite
field of q elements and F∗q be the cyclic multiplicative group. When D is Fq (the additive
group) or F∗q , counting the multisubset sum problem is the same as counting partitions over
finite fields, which has been studied earlier in [6].

In this note, we use the similar method as in [2] to obtain M(D, i, j, g) when D = G.
However, we work in a power series ring instead of a polynomial ring.

Theorem 1. Let G be a finite abelian group of size n and let g ∈ G, i, j ∈ Z with i ≥ 0
and j ≥ 1. For any s | n, we define

C(n, i, j, s) =
∑

k≥0,0≤t≤n gcd(s,j+1)
s

,

sk+t·lcm(s,j+1)=i

(−1)t
(
n/s+ k − 1

k

)(n gcd(s,j+1)
s

t

)
.

Then we have

M(G, i, j, g) =
1

n

∑
s|gcd(exp(G),i)

C(n, i, j, s)
∑

d|gcd(s,e(g))

µ(s/d)#G[d].

where exp(G) is the exponent of G, e(g) = max{d : d | exp(G), g ∈ dG}, µ is the
Möbius function, and G[d] = {h ∈ G : dh = 0} is the d-torsion of G.

As a corollary, we obtain the main theorem in [2] when j = 1.
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Corollary 1. (Theorem 1.1 in [2]) Let G be a finite abelian group of size n and let g ∈ G
and i ∈ Z. Then we have

N(G, i, g) =
1

n

∑
s|gcd(exp(G),i)

(−1)i+i/s
(
n/s

i/s

) ∑
d|gcd(s,e(g))

µ(s/d)#G[d].

where exp(G) is the exponent of G, e(g) = max{d : d | exp(G), g ∈ dG}, µ is the
Möbius function, and G[d] = {h ∈ G : dh = 0} is the d-torsion of G.

Moreover, when j ≥ i, the formula gives the number of partitions of g with at most i
parts over a finite abelian group. To avoid confusion the multiset consisting of a1, . . . , an
is denoted by {{a1, . . . , an}}, with possibly repeated elements, and by {a1, . . . , an} the
usual sets. We define a partition of the element g ∈ Gwith exactly i parts inD as a multiset
{{a1, a2, . . . , ai}} such that all ak’s are nonzero elements in D and

a1 + a2 + . . .+ ai = g.

Then the number of these partitions is denoted by PD(i, g), i.e.,

PD(i, g) =
∣∣∣{{{a1, a2, . . . , ai}} ⊆ D : a1 + a2 + . . .+ ai = g, a1, . . . , ai 6= 0

}∣∣∣.
It turns out M(D, i, g) =

∑i
k=0 PD(k, g) is the number of partitions of g ∈ G with at

most i parts in D.

Corollary 2. Let G be a finite abelian group of size n and let g ∈ G. Then the number of
partitions of g over G with at most i parts is

1

n

∑
s|gcd(exp(G),i)

(
n/s+ i/s− 1

i/s

) ∑
d|gcd(s,e(g))

µ(s/d)#G[d].

where exp(G) is the exponent of G, e(g) = max{d : d | exp(G), g ∈ dG}, µ is the
Möbius function, and G[d] = {h ∈ G : dh = 0} is the d-torsion of G.

Proof. The number is M(G, i, j, g) when j ≥ i ≥ 0. If j ≥ i, then the linear Diophantine
equation sk + t · lcm(s, j + 1) = i reduces to sk = i and t = 0. The rest of proof follows
immediately.

In Section 2, we prove our main theorem and derive Corollary 1 as a consequence. In
Section 3, we extend our study to a subset of a finite abelian group and make a few remarks
on how to obtain the number of partitions over any subset of a finite abelian group.

2 Proof of Theorem 1
To make this paper self-contained, we recall the following lemmas (see Lemmas 2.1-2.4
in [2]). Let G be a finite abelian group of size n. Let C be the field of complex numbers
and Ĝ = Hom(G,C∗) be the group of characters of G. Let χ ∈ Ĝ and χ̄ be the conjugate
character which satisfies χ̄(g) = χ(g) = χ(−g) for all g ∈ G. We note that a character χ
can be naturally extended to a C-algebra morphism χ : C[G]→ C on the group ring C[G].

Lemma 1. Let α =
∑
g∈G αgg ∈ C[G]. Then we have αg = 1

n

∑
χ∈Ĝ χ̄(g)χ(α).
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Lemma 2. Let m be a positive integer and g ∈ G. Then∑
χ∈Ĝ,χm=1

χ(g) = δg∈mG#G[m],

where δg∈mG is 1 if g ∈ mG and it is zero otherwise.

Lemma 3. Let χ ∈ Ĝ be a character and m be its order. Then we have∏
σ∈G

(1− χ(σ)Y ) = (1− Y m)n/m.

Lemma 4. Let g ∈ G. The number e(g) is equal to lcm{d : d | exp(G), g ∈ dG}. For
d | exp(G) we have g ∈ dG if and only if d | e(g).

Let us present the proof of Theorem 1. We use the multiplicative notation for the group.

Proof. Fix j ≥ 1. Working in the power series ring C[G][[X]] over the group ring, the
generating function of

∑
g∈GM(G, i, j, g)g is

∞∑
i=0

∑
g∈G

M(G, i, j, g)gXi =
∏
σ∈G

(1+σX+· · ·+σjXj) =
∏
σ∈G

1− σj+1Xj+1

1− σX
∈ C[G][[X]].

Using Lemma 1, we write

∞∑
i=0

M(G, i, j, g)Xi =
1

n

∑
χ∈Ĝ

χ̄(g)
∏
σ∈G

1− χj+1(σ)Xj+1

1− χ(σ)X
.

Separating the first sum on the right hand side, we obtain

∞∑
i=0

M(G, i, j, g)Xi =
1

n

∑
s|exp(G)

∑
χ∈Ĝ,ord(χ)=s

χ̄(g)
∏
σ∈G

1− χj+1(σ)Xj+1

1− χ(σ)X
.

For each fixed χ of the order s, we know that χj+1 has the order s
gcd(s,j+1) . Therefore

by Lemma 3, we simplify the above as follows:

∞∑
i=0

M(G, i, j, g)Xi =
1

n

∑
s|exp(G)

∑
χ∈Ĝ,ord(χ)=s

χ̄(g)

(
1−X lcm(s,j+1)

)n gcd(s,j+1)
s

(1−Xs)n/s
. (2.1)

Note that ∑
χ∈Ĝ,χs=1

χ̄(g) =
∑
d|s

∑
χ∈Ĝ,ord(χ)=d

χ̄(g).

By Lemma 2 and the Möbius inversion formula, we obtain∑
χ∈Ĝ,ord(χ)=s

χ̄(g) =
∑
d|s

µ(s/d)
∑

χ∈Ĝ,χ̄d=1

χ̄(g) =
∑
d|s

µ(s/d)δg∈dG#G[d].



A. Muratović-Ribić, Q. Wang: The multisubset sum problem for . . . 421

Because d | s | exp(G), by Lemma 4, g ∈ dG if and only if d | e(g). Hence∑
χ∈Ĝ,ord(χ)=s

χ̄(g) =
∑
d|s

µ(s/d)δg∈dG#G[d] =
∑

d|gcd(s,e(g))

µ(s/d)#G[d].

Plugging this into Equation (2.1), we get

∞∑
i=0

M(G, i, j, g)Xi =
1

n

∑
s|exp(G)

∑
d|gcd(s,e(g))

µ(s/d)#G[d]

(
1−X lcm(s,j+1)

)n gcd(s,j+1)
s

(1−Xs)n/s
.

By applying the binomial theorem to the right hand side and comparing coefficients of
Xi in both sides, we single out M(G, i, j, g) and obtain

M(G, i, j, g) =
1

n

∑
s|exp(G)

∑
d|gcd(s,e(g))

µ(s/d)#G[d]C(n, i, j, s).

After bringing C(n, i, j, s) out of the inner sum we complete the proof.

Finally we remark that we can derive Corollary 1 using N(G, i, g) = M(G, i, 1, g).
When j = 1, let us consider sk + t · lcm(s, j + 1) = sk + t · lcm(s, 2) = i. If s is even,
we obtain sk + st = i and thus k + t = i/s. Note that we have the following power series
expansions

1

(1− x)n/s
=

∞∑
k=0

(
n/s+ k − 1

k

)
xk,

(1− x)2n/s =

2n/s∑
t=0

(−1)t
(

2n/s

t

)
xt,

and

(1− x)n/s =

n/s∑
j=0

(
n/s

j

)
(−1)jxj .

Now we compare the coefficients of the term xi/s in both sides of

1

(1− xs)n/s
(1− xs)2n/s = (1− xs)n/s,

after expanding these power series. Hence we obtain

C(n, i, 1, s) =
∑

k+t=i/s
k≥0,0≤t≤2n/s

(−1)t
(
n/s+ k − 1

k

)(
2n/s

t

)
= (−1)i/s

(
n/s

i/s

)
.

Moreover, C(n, i, 1, s) = (−1)i+i/s
(
n/s
i/s

)
because i is even.

Similarly, if s is odd, we obtain sk+ 2st = i and thus k+ 2t = i/s. Moreover, i+ i/s
is even. Using

(1− x2s)n/s
1

(1− xs)n/s
= (1 + xs)n/s,
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we obtain

C(n, i, 1, s) =
∑

k+2t=i/s
k≥0,0≤t≤n/s

(−1)t
(
n/s+ k − 1

k

)(
n/s

t

)
= (−1)i+i/s

(
n/s

i/s

)
.

3 A few remarks
In this section we study M(D, i, j, g) where j ≥ i and D is a subset of G. We recall that in
this case we use the notation M(D, i, g) because j does not really put any restriction. First
of all, we note that
∞∑
i=0

∑
g∈G

M(G \ {0}, i, g)gXi =
∏

σ∈G,σ 6=0

1

1− σX
= (1−X)

∞∑
i=0

∑
g∈G

M(G, i, g)gXi.

By Corollary 2, we obtain

M(G \ {0}, i, g)

=
1

n

 ∑
s|gcd(exp(G),i)

(
n/s+ i/s− 1

i/s

) ∑
d|gcd(s,e(g))

µ(s/d)#G[d]

−
∑

s|gcd(exp(G),i−1)

(
n/s+ (i− 1)/s− 1

(i− 1)/s

) ∑
d|gcd(s,e(g))

µ(s/d)#G[d]

 .

We note M(G \ {0}, i, g) = PG(i, g). Therefore we obtain an explicit formula for
the number of partitions of g into i parts over G. More generally, let D = G \ S, where
S = {u1, u2, . . . , u|S|} 6= ∅. Denote by MS(G, i, g) the number of multisubsets of G
of sizes i that contain at least one element from S. Then the number of multisubsets of
D = G \ S with i parts which sum up to g is equal to

M(G \ S, i, g) = M(G, i, g)−MS(G, i, g).

Note that M(G, 0, 0) = 1 and M(G, 0, s) = 0 for any s ∈ G \ {0}. The princi-
ple of inclusion-exclusion immediately implies that MS(G, i, g) is given in the following
formula. We note that the formula is quite useful when the size of S is small in order to
compute M(G \ S, i, g).

Proposition 1. For all i = 1, 2, . . . and g ∈ G we have

MS(G, i, g) =
∑
u∈S

M(G, i− 1, g − u)− . . .

+(−1)t−1
∑

{u1,u2,...,ut}⊆S

M(G, i− t, g − (u1 + u2 + . . .+ ut)) + . . .

+(−1)i−2
∑

{u1,u2,...,ui−1}⊆S

M(G, 1, g − (u1 + u2 + . . .+ ui−1))+

(−1)i−1
∑

{u1,u2,...,ui}⊆S

M(G, 1, g − (u1 + u2 + . . .+ ui)).
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Proof. Fix an element g ∈ G. Denote by Au the family of all the multisubsets of G with
i parts which sum up to g and each multisubset also contains the element u. The principle
of the inclusion-exclusion implies that

| ∪u∈S Au| =
∑
u∈S
|Au| −

∑
{u1,u2}⊆S

|Au1 ∩ Au2 |+ . . . (3.1)

It is obvious to see |Au1 ∩ Au2 | = M(G, i − 2, g − (u1 + u2)) etc. by definition and
the result follows directly.
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[6] A. Muratović-Ribić and Q. Wang, Partitions and compositions over finite fields, Electron. J.
Combin. 20 (2013), no. 1, P34, 1-14.


