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In the paper, an alignment methodology of finite element and full-field measurement data of planar specimens is presented. The alignment 
procedure represents an essential part of modern material response characterisation using heterogeneous strain-field specimens. 
The methodology addresses both the specimen recognition from a measurement’s image and the alignment procedure and is designed 
to be applied on a single measurement system. This is essential for its practical application because both processes, shape recognition 
and alignment, must be performed only after the specimen is fully prepared for the digital image correlation (DIC) measurements (white 
background and black speckles) and placed into a testing machine. The specimen can be observed with a single camera or with a multi-
camera system. The robustness of the alignment method is presented on a treatment of a specimen with a metamaterial-like structure and 
compared with the well-known iterative closest point (ICP) algorithm. The performance of the methodology is also demonstrated on a real DIC 
application.  
Keywords: full-field measurements, digital image correlation (DIC), specimen shape recognition, surface registration, iterative closest 
point (ICP) 

Highlights
•	 A methodology is proposed for aligning FEA data and the full-field measurement data of planar specimens.
•	 The methodology offers both the shape recognition and alignment process to be performed on a single full-field measurement 

system.
•	 The main advantage of the proposed methodology is its robustness.
•	 The performance of the methodology is presented on synthetic as well as real DIC data.
•	 The measured specimen can be observed with a single camera or a multi-camera system.

0  INTRODUCTION

Advanced constitutive models allow precise 
adjustment of the material mechanical response to 
specific loading conditions. Their flexibility is a result 
of a large number of free parameters. However, as the 
number of parameters increases, information gathered 
from standard experiments becomes insufficient or a 
huge amount of different experiments is required [1] 
and [2]. An alternative to the approach is taking into 
account the full-field kinematic information. Such data 
are normally acquired through digital images from 
where the displacement fields can be calculated using 
the digital image correlation (DIC) techniques. The 
approach gives rise to the development of complex 
specimen shapes [3], making it possible to identify 
material parameters through a single experiment [4]. 
One of the challenges, still not sufficiently resolved 
and addressed in this work, is the alignment of planar 
specimens between the modelling (numerical) data 
and experimental DIC data. 

Full-field measurements offer a huge amount of 
information on the specimen surface (several 10’000), 
especially compared to classical extensometers. 

However, their dependency on the sought material 
parameters generally cannot be explicitly determined, 
and therefore direct material identification cannot 
be executed. Researchers resort to the use of inverse 
identification techniques, where the finite element 
model updating (FEMU) [5] represents one of the 
established methods with extensive research work 
performed on the full-field measurements [3] (e.g. 
DIC [6] response calculation or by employing 
different optimization methods (e.g. genetic algorithm 
[7] or simulated annealing [8]). The method is based 
on an iterative comparison between the measured 
and calculated specimen’s responses. The optimal 
values of material parameters are then determined by 
minimizing their discrepancy. 

However, before finite element model (FEM) 
results and DIC data can be compared, coordinate 
systems of both sets of data need to be aligned. The 
latest research shows that such alignment is essential 
for reliable identification of material parameters in 
the case of specimens with non-homogeneous strain 
field where sharp strain gradients occur. Fehervary et 
al. [9] examined material parameter fitting results of 
planar tests when the sample orientation was unknown 
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or deviated. The study showed that after a certain 
threshold of misalignment, reliable parameters can no 
longer be found. The authors also concluded that the 
level of threshold seemed to be material dependent. 
Lava et al. [10] studied two different methods used to 
compute full-field error maps between experimental 
DIC data and FEA data to, among others, investigate 
the effects of processing parameters, model form error 
(such as incorrect boundary conditions) and mesh 
alignment. The authors showed that even a small 
misalignment can have a surprisingly large effect on 
the strain error maps and exposed the necessity to 
develop robust and precise methods of alignment. 
Similarly, Ruybalid et al. [4] performed various virtual 
test cases to assess the performance of FEMU and 
integrated digital image correlation (IDIC) method 
when subjected to different error sources, among 
others, misalignment of the specimen. Both methods 
are shown to be sensitive to misalignment. Namely, 
the increase of the misalignment further increases the 
error on the identified material parameters. 

It seems interesting that despite the importance 
of properly addressing the alignment of DIC and 
FEM data and considering the numerous publications 
addressing material characterization using planar 
specimens, not much information can be found on 
how researchers align both data sets in their works. 
However, as pointed out in a recent article from 
Polyga (a developer of 3D scanners with more than 
10 years of experience), scanning flat objects can 
be particularly difficult even for experienced 3D 
scanning technician [11]. The process of aligning 
DIC in FEM data set generally consists of two steps, 
specimen’s edge detection and alignment (point set 
registration). It is important to note that the procedure 
needs to be performed on the same optical system as 
DIC measurements so that the DIC and FEM data can 
then be compared, which adds to the complexity of 
the problem. 

One of the best-known methods for point 
sets registration is the iterative closest point (ICP) 
algorithm introduced by Besl and McKey [12]. The 
algorithm consists of the closest point search and a 
minimization of the matching error, applied iteratively 
to the two surfaces to be matched [13]. Many variants 
of the algorithm have been introduced since, affecting 
the algorithm at different stages [14] and [15], e.g. the 
selection of points, matching, rate of convergence, 
etc. However, despite the widespread of the ICP 
method, its convergence in the general case of initial 
misalignment cannot be guaranteed [16]. Also, optical 
full-field displacement measuring methods most 

commonly cannot accurately measure the specimen 
shape. 

To address the problem of aligning full-field 
measurements with FEM data, Bruno et al. [17] 
utilized a linear transformation matrix to map the 
location of the calculation point into the measurement 
picture pixel position. The projection matrix was 
determined using user input coordinates of the 
calculation point and the pixel positions of three 
arbitrary points. The spatial position of all three 
points must be known a priori and all of them must 
be observed by the measurement. A similar approach 
was employed by Silva [18] who transformed the 
model coordinate system by recognizing that some 
reference points observed in the image have known 
numerical coordinates. Both calibration procedures 
are easy to implement but with the state of the art 
specimen designs, which exhibit smooth shapes and 
no dominant features [19] they become increasingly 
difficult to be used and prone to errors.

In the present work, a robust methodology is 
presented for aligning full-field measurements (e.g. 
DIC) and modelling (e.g. FEM) data of flat specimens. 
The procedure addresses both the contour recognition 
of a specimen as well as registration. Namely, for a 
successful DIC measurement, the specimen must be 
covered with a speckle pattern consisting of a white 
background and black speckles. In practice, this 
represents a problem because the distinction between 
the specimen and the background can quickly be lost. 
We determine the specimen’s geometry by taking two 
consecutive images with changing the background 
illumination. From their comparison, the background 
can be subtracted, leaving just the specimen’s 
geometry. The result is a black-white image of the 
measured specimen (white) and the background 
(black). To perform the alignment, the CAD model 
is also projected onto the image as black and white 
pixels. By minimizing the intersection between both 
images, i.e. the measured specimen and numerical 
model, both data sets are aligned.

In the following, the methodology is presented 
first in the case of 2D and then 3D measurements. 
The performance of the method is demonstrated 
on two examples. In the first example, a synthetic 
one, we demonstrated the method on a problem 
of aligning a specimen with a metamaterial-like 
structure. In the example, we also analyse the effect 
of misalignment and compare the performance of 
the method with the ICP. In the second example, the 
method is demonstrated on real DIC data where its 
ability to handle the presence of noise and mismatches 
in the geometry is also presented. Discussion of the 
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results and the performance of the method is given 
in the Discussion section, which is followed by the 
conclusion. 

1  METHODS

The method will be presented first in the case of 2D 
DIC measurements, where the specimen is observed 
with a single camera, located normal to its front 
surface (Fig. 1a). Afterwards, the method will be 
generalized for the case of 3D DIC measurement. 
Although in the latter case, additional coordinate 
transformations are needed to take into account the 
specimen’s perspective (Fig. 1b), the alignment 
procedure is in both cases the same.

Fig. 1.  Camera arrangement for a) 2D, and  
b) 3D DIC measurement

1.1  2D measuring System

Specimen recognition. Let us denote the numbering 
of pixels in the acquired (DIC) image in a form of a 
set:

 P u v u n v m� � �� � � �� �, ,  and  (1)

with the size of the image being n × m pixels. 
To determine the set of pixels which represent the 

specimen surface, two images of the same specimen 
are needed. The first image is a regular one used 
for the measurement itself. The background on the 
acquired image is usually dark and cannot be clearly 
distinguished from the specimen. For the second 
image, we brighten up the background using an 
illumination panel, as shown schematically in Fig. 
2 by the two left-most images (corresponding to 
specimen recognition).

The region of the specimen, which we wish to 
determine, is defined by a set Sm ⸦ P, which is a set of 
pixels, whose difference in grayscale values between 
both images is below a threshold value ε:

 S u v P g u v g u v
m
� � �� � � � � � �� �, , , ,

1 2
�  (2)

where g1(u, v) and g2(u, v) represent grayscale 
values of the (u, v)th pixel in the individual image, 
respectively.

Alignment. First, positions of pixels (u, v) of the 
specimen’s shape (set Sm ) need to be transformed 
into a physical location associated with specimen 
dimensions (X, Y), see Fig. 2. This is performed with a 
calibration procedure, which can be written in a form 
of an arbitrary function c

 c u v X Y: ; , , .N R2 2� � � � �
 (3)

By assuming that the position of the camera is 
normal to the specimen surface and neglecting the 
optical distortions [20], the calibration only scales 
(u, v) as
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with k being the scaling factor.
The relation between coordinates (X, Y) and the 

modelling space coordinates (x, y) can be written in a 
form of a mapping function f

 f X Y x y: ; , , , 2 2� � � � �  (5)

where the mapping, in general, carries out translational 
and rotational rigid body transformation only. For a 
planar case, we can write the mapping as
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with α, Δx and Δy being the angle of rotation, 
translation in x and y direction, respectively. All 
three parameters (α, Δx, Δy) are unknowns and must 
be determined in such a manner that the modelling 
specimen, being in (x, y) space, coincides with the 
measured one, being in (X, Y) space.

So far, from the calibration and mapping 
procedure, one can determine each pixel location in 
the modelling space as (x, y) = (f  ◦ c) (u, v). If we denote 
the specimen region in the (x, y) space as Ωs  (see Fig. 
2), the set of pixels that are located inside the region 
Ωs, denoted as a set Ss ⸦ P, follows as

 S u v P f c u v
s s
� � �� � �� ��� �, , . �  (7)

By comparing both images, the mismatch 
between the recognized measured and modelled 
specimen shape is determined as the symmetric 
difference between the two pixel sets Sm and Ss

 E S S=
m s
 .  (8)

Thus, E contains all the pixels of both sets Sm 
and Ss except for the ones in their intersection. The 
number of those pixels, i.e. the cardinality of the error 
set |E|, represents the measure of the mismatch level. 
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If the shapes are perfectly aligned, there will be no 
mismatched pixels, thus the cardinality of the error set 
would be zero. 

The unknown mapping parameters (α, Δx, Δy) 
are determined as a solution to the following 
unconstrained optimization problem. Let us define the 
cost function CF (α, Δx, Δy) as

 CF x y E� , , ,� �� � � 2  (9)

which needs to be minimized 

 min CF x y� , , .� �� �  (10)

The result of the iterative optimization procedure 
(e.g. steepest descent method, Levenberg-Marquard 
algorithm) is a set of optimal values of mapping 
parameters �� � �, ,� �x y� �  that minimize the cardinality 
of the error set

 � �
�

� � �, , arg min , , .
, ,

� � � �
� �

x y CF x y
x y� � � � �

� �
 (11)

Once the optimal values of parameters are 
obtained, the measured results can be mapped into the 
modelling space via Eq. (6) as
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Fig. 2.  The proposed alignment method
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1.2  3D Measuring System

The 3D measuring system consists of several digital 
cameras, each of them observes the specimen from its 
direction, as presented in Fig. 1b. The result of a 3D 
DIC measurement is a point cloud given in a 
measurement coordinate system ( , , )  X Y Z , Fig. 3, 
which in general is not aligned with the specimen. In 
the case of planar specimens, a best-fit plane is 
normally constructed over the point cloud. The 
coefficients of the best-fit plane are determined using 
linear regression. Consequently, the location of the 
measured points in 3D ( , , )  X Y Z  can be expressed 
with the 2D location on the best-fit plane (X, Y). The 
reduction to 2D is essential to enable the use of 
equations derived in the previous subsection.

Calibration procedure ci is performed for each 
camera with the purpose to map the pixels of the 
acquired images into the (X, Y) coordinate system. 
Each camera acquires its image with the corresponding 
pixel set Pi, i = {1, 2, ..., N} (analogously to Eq. (1)) 
with N being the number of cameras.

Fig. 3. Best-fit plane

The calibration procedure for each camera ci is 
approximated using a linear transformation
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where k* and n* represent the constants of a two-
dimensional linear function. Constants are obtained 
for each camera individually by employing two linear 
regressions. First regression calculates kuX,i, kvX,i and 
nX,i by considering the known pixels’ positions (u, v) 
and the corresponding position on the X axis of the 
best-fit plane. The second regression analogously 

calculates kuY,i, kvY,i and nY,i by considering the known 
pixels’ positions (u, v) and the corresponding position 
on the Y axis of the best-fit plane.

The mapping f of measured points on the best-fit 
plane (X, Y) to the modelling space (x, y) is performed 
as presented in the 2D case via Eq. (6). Sets Sm,i, 
Ss,i and Ei, which again represent sets of pixels of 
the measured specimen, modelling specimen and 
the mismatch between the two, respectively, are 
constructed for each camera individually as already 
presented. 

The level of the mismatch considering all cameras 
is expressed as the sum of all individual levels of 
mismatches squared

 CF x y E
i

N

i� , , ,� �� � �
�
�
1

2  (14)

with CF (α, Δx, Δy) being the cost function. As in the 
2D case, optimal values of mapping variables  
�� � �, ,� �x y� �  are determined by minimizing CF. 

Measured data are then mapped onto the modelling 
space via Eq. (12).

2  EXPERIMENTAL INVESTIGATION

The performance of the method is presented on two 
examples. For a practical purpose, both examples 
are presented in the following along with the 
corresponding results. Discussion of results is then 
provided in Section 3. Minimization of the cost 
function (Eq. (10)) was in both cases performed using 
the steepest descent method. Derivatives of the cost 
function were approximated using the finite difference 
method.

In the first example, the synthetic one, we 
demonstrated the method on a problem of aligning 
a specimen with a metamaterial-like structure. The 
purpose of the experiment is to present the advantage 
of the proposed alignment algorithm in comparison 
with the well-known ICP algorithm. The effect of 
misalignment on the performance of methods is also 
studied. 

In the second example, the entire methodology is 
presented on real DIC data (i.e. shape recognition and 
alignment), where the ability of the method to handle 
the presence of noise and mismatches in the geometry 
is also tested. The example presents a heterogeneous 
strain field specimen proposed for the calibration of 
plastic anisotropy. 
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2.1  Synthetic Experiment

The geometry of the specimen is shown in Fig. 4. 
The shape consists of cut-out slots exhibiting an even 
pattern, mimicking the shape of metamaterial [21].

The specimen in Fig. 4 also represents the 
reference (modelling) geometry. The measured 
geometry is obtained by introducing rigid translation 
and rotation to the reference one [10].

Fig. 4.  Investigated synthetic specimen (dimensions in mm)

The effect of initial rotation and translation 
was examined to test the robustness of the method, 
mimicking multiple measurement setups. The 
translation was assumed equal in the horizontal x 
and vertical y direction (for the sake of brevity, to 
reduce the number of cases). Analysed cases include 
all possible combinations of rotations for angle α, 
ranging from 0° to 90° by a step 15°, and translations 
Δx = Δy, ranging from 0 mm to 2 mm with a step of 
0.5 mm. An example of the initial misalignment 
(α = 2°, Δx = Δy = 0.5 mm), presents Fig. 5a. The 
corresponding error image, i.e. pixels from the error 
set E, Eq. (8), is presented in Fig. 5b in white.

Fig. 5. Example of the analysed case:  
a) initial misalignment between simulation and measurement,  

b) the corresponding error image E, Eq. (8)

Besides the proposed method, the ICP was also 
employed in this example for comparison. Although 
many different versions of the ICP exist, one of the 
most basic closed-form versions of the algorithm was 

assumed. Data used for the ICP are those presented in 
Fig. 5a. The closest point search was performed using 
the grid closest point and no false matches rejection 
was assumed. 

Results. The performance of both methods is 
demonstrated by presenting the number of iterations 
that were needed to align each initial misalignment. 

Results of both methods are presented in Fig. 
6. Initial rotational misalignment α is displayed on 
the vertical axis and the translational Δx, Δy on the 
horizontal axis. Colours represent the number of 
iterations used for a successful alignment. Cases 
where the alignment was not achieved (exceeding 100 
iterations or converged to an inappropriate position) 
are displayed in white.

Fig. 6.  Performance and convergence of ICP and the proposed 
alignment method

The proposed method managed to align the 
specimen in almost all the analysed cases of the initial 
misalignment. On the other hand, the ICP failed to 
converge or converged to a wrong minimum at initial 
misalignment rotations greater than 45°. With the 
increase of the initial rotation, the number of iterations 
considerably increased for the ICP, reaching over 80 
iterations. The proposed method needed approx. 15 
iterations on average for a successful alignment, 
irrespective of the initial rotation. 

2.2  Application to Real DIC Data

Practical application of the method is demonstrated 
on a specimen presented in [22] (Fig. 7), designed 
to induce a biaxial strain-stress state. Due to the 
specimen’s diverse geometry and no distinct features 
(such as sharp corners or round holes), the problem 
also represents a good alignment test problem.

Measurements were performed with a DIC 
measuring system Q-400 Dantec Dynamics 
GmbH, (Ulm, Germany). The measuring setup is 
presented in Fig. 8. We utilized 4 digital cameras, 
which in pairs acquire images of the front and 
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backside of the specimen, representing a case 
of a 3D DIC measurement. Such setup enables 
biplane measurement, where we simultaneously 
measure the front and back specimen surface in 
a common coordinate system. The calibration 
procedure was performed using a special two-sided 
calibration target. The purpose of such a set-up is 
enhanced characterization of material mechanical 
behaviour [22]. 

Fig. 7.  Investigated specimen (dimensions in mm) [22]

Fig. 8.  Measuring	setup	utilizing	the	digital	image	correlation

Table 1.  Details of the measuring system

Company
DANTEC Dynamics GmbH,  

(Ulm, Germany)
Model Q-400
Cameras Manta G-507 (4 pieces)
Image resolution 2464 × 2056 pixel
Objective focal distance 35 mm
Field of view approx. 65 mm × 40 mm

Patterning technique
matt white spray paint base coat  

with black speckles
Pattern feature size approx. 3 pixel
DIC software DANTEC Dynamics, Istra 4D (ver. 4.6)
Facet size 19 pixel
Grid spacing 12 pixel
Spatial smoothing none
Temporal smoothing none
Number of acquired data 
points

20400

The DIC method was carried out with Istra 4D 
software. Technical details of the measuring system 
and the adopted DIC settings are summarized in Table 
1.

The shape of the measured specimen was 
determined as presented in section Methods. Two 
images of the specimen were acquired by changing the 
background lightening as presented in Figs. 8 and 9. 
The first image was acquired using the typical lighting 
setup, presented on the left-hand side of Fig. 10a. For 
the second image, we illuminated the specimen from 
the backside, making the background on the acquired 
image brighter. The acquired image is presented on the 
right-hand side of Fig. 10a. The shape of the specimen 
is obtained from both images using Eq. (2).

Fig. 9.  Image acquisition using a backlight

Fig. 10.  Acquisition of specimen geometry: a) left-hand side: 
specimen image using typical lighting (Fig. 8) and right-hand side: 

using the backlight (Fig. 9), b) the obtained specimen geometry
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Results. The determined shape of the measured 
specimen is presented in Fig. 10b. From the image, 
one could easily further determine the specimen 
contour, which most alignment methods use for 
the alignment procedure. In the proposed method, 
however, the entire shape is assumed, presented in 
Fig. 10b in white.

The measured and modelling specimen are 
together presented in Fig. 11a, given in the measured 
specimen’s coordinate system. The measured shape 
is presented with the experimentally obtained image 
and the modelling shape with yellow dots. The 
corresponding error between both shapes is presented 
in the form of an error image, Fig. 11b. White pixels 
correspond to the error set E, obtained using Eq. (8), 
representing the regions of misalignment.

The initial value of the cost function CF, 
corresponding to the square number of white pixels in 
Fig. 11b, is approx. 1012 px2, Eq. (9). The value was 
then significantly reduced by the optimization 
procedure in only 5 iterations and the procedure 
successfully converged in 28 iterations. The final 
value of the cost function was reduced to approx. 

Fig. 12.  Alignment of the specimen: a) camera arrangement, b) the initial misalignment and c) the optimal alignment

Fig. 11.  The initial position of the measured and modelled 
specimen (the latter shown with yellow dots) in the measuring 

coord. system, a) presentation of both shapes, b) the 
corresponding error image of the method
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106 px2 with the optimal values of the mapping 
parameters determined to be: α = 2.108°, ∆x = 
4.907 mm, ∆y = 3.091 mm.

The final result of alignment is shown 
graphically in Fig. 12. The corresponding Fig. 12a 
schematically presents the experimental set-up. The 
initial misalignment of the measured and modelling 
specimen shape is presented in Fig. 12b, shown in 
the measuring coord. system. The final alignment 
of specimens is presented in Fig. 12c. Although it 
is difficult to quantify the level of the alignment, 
practically no difference between the aligned shapes 
can be observed.

Handling of the artifacts. To test the ability 
of the method in handling geometrical mismatches 
(due to machining or manufacturing tolerances) 
we purposely misplaced the holes in the measured 
specimen in the first case, see the upper row in Fig. 
13, Case A, where the artifacts are marked with red 
on the ideal shape shown in white. In the second 
case, Case B, the roundings on the outer contour were 
purposely modified to some extent on the measured 
specimen as if they were not properly machined. The 
initial position of the modelled specimen is shown 
with magenta dots. As can be seen in the lower row of 
the figure, the alignment was performed successfully 
in both cases.

Fig. 13.  Handling	of	the	artifacts;	upper	row:	the	assumed	
artifacts, marked with red on the ideal specimen shape (white), 

initial modelled specimen shape position, marked with magenta, 
and	lower	row:	the	alignment	results;	Cases	A	and	B	analysed	the	
mismatches in the measured geometry and Case C analysed the 

presence of noise (outliers)

The ability of the method to handle noise is 
analysed in Case C, where noise (outliers) are added 
along the entire contour of the measured specimen. As 
can be seen in the lower row of the figure, the method 
managed to successfully perform the alignment. 
We have also analysed the assumed cases with the 
ICP method. In Cases A and B, ICP performed the 
alignment as the proposed method whereas in Case C, 
the ICP method diverged.

3  DISCUSSION

The purpose of this study was to present a new 
methodology for aligning full-field measurements. 
More specifically, the method deals with the alignment 
of planar specimens, which is a field becoming 
increasingly popular due to its potential when 
combining full-field measurements with material 
characterization. As presented in [22], by using the 
full-field measurement techniques and monitoring 
the specimen loads, it is possible to characterize 
the anisotropic material behaviour from a single 
heterogeneous strain field specimen by employing 
inverse identification techniques (eq. finite element 
model updating, virtual fields method). However, as 
pointed out in the introduction, the outcome of the 
material characterization process crucially depends on 
the accuracy of the alignment between the measured 
and modelling data. 

In the first example, the method was applied to 
a synthetic experiment. The shape of the specimen 
resembled a structure of a metamaterial. The example 
was chosen due to its periodic structure which can 
cause difficulties in the aligning procedure. We analyse 
the initial misalignment effect and the performance of 
the method compared with the ICP algorithm. The 
results demonstrated the robustness of the proposed 
method, which managed to successfully perform the 
alignment even at 90° of the initial rotation. This was 
not the case for ICP, which managed to perform the 
alignment up to 45° of the initial rotation only. We 
need to point out, however, that only the most basic 
version of the closed-form ICP was employed in 
this work. There are numerous modifications of the 
method [23] that could perform better. On the other 
hand, the performance of the proposed method could 
also be enhanced, such as by using pixels weights or by 
modifying the optimization algorithm. By employing 
such modifications, it is possible to successfully 
perform the alignment for the entire region of initial 
misalignments in Fig. 6 (data omitted). However, as is 
the case with the ICP, the convergence of the proposed 
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alignment algorithm cannot be guaranteed in a general 
case. 

In the majority of cases on which we tested 
alignment methods, the performance of the ICP and 
the proposed method was comparable. In general, the 
advantage of the ICP is its computation efficiency. 
The method uses singular value decomposition (SVD) 
for the computation of alignment parameters whereas 
in the proposed approach an optimization approach 
is assumed. However, the benefit of the method is its 
robustness. As demonstrated with the first example, 
the initial mismatch did not considerably affect 
the number of iterations whereas they significantly 
increase in the case of the ICP. This property of the 
proposed approach comes from using the entire 
specimen region for the error estimation whereas in 
the ICP only the contour of a specimen is assumed. 

The accuracy of the proposed algorithm on the one 
hand depends on the quality of the measuring image 
and on the other on the accuracy of the calibration. 
The mapping between the observed and modelled 
geometry is a composite of two mappings. First 
mapping c1 of images, provided by the cameras, onto 
the unified plane takes place, subsequently followed 
by the mapping f of these points onto the space of the 
modelled specimen. It is important to note that the 
alignment algorithm addresses only the latter because 
the former is defined during a calibration procedure 
of cameras, needed for any full-field measurement 
system. 

In the second example, the specimen recognition 
and the alignment process were both demonstrated. 
It can be seen from the acquired specimen’s images 
(Fig. 11) that a simple threshold effect for the contour 
recognition could not be employed. Due to the speckle 
pattern, there are similar values of brightness in 
the background as well as on the specimen. For the 
presented approach of shape recognition, however, 
this was not an issue. The alignment of the specimen 
was in the example performed by using the proposed 
approach. However, ICP or any other method could 
be employed as well. From analysing the example 
(data omitted), similar performance was obtained 
for both the ICP and the proposed method, with ICP 
being computationally more efficient. Methods were 
also analysed for dealing with image artifacts, such as 
noise and geometrical mismatches due to machining 
or manufacturing tolerances. In the case of handling 
the noise, the proposed method turned out to be 
superior, otherwise, it is known that the ICP algorithm 
is susceptible to such artifacts [24].

In comparison to alignment procedures published 
in the field of material characterisation [17] and 

[18], the benefit of the proposed approach is that it 
needs no user input for the shape recognition or for 
the alignment procedure and it is fairly easy to be 
implemented. Although we cannot claim that the 
presented approach for solving the shape recognition 
and the alignment problem is novel since in both areas 
there are numerous publications, we found no studies 
in the field of material characterisation that would 
address both problems and join them in a form of a 
methodology. 

4  CONCLUSIONS

An integral part of advanced material characterisation 
by using full-field measurement techniques is the 
alignment between the FEA data and the experimental 
DIC data. Despite numerous publications in the field 
of treating planar specimens, studies that address the 
subject are scarce.  

In the paper, a methodology is presented that 
enables the alignment of data from a single measuring 
system. In practice, the alignment approach needs 
to be addressed once the specimen is placed in the 
measuring system, more precisely, it needs to be 
addressed by the measuring system used for the DIC 
itself. However, because DIC does not recognize the 
pattern near an object’s contour, the location of the 
contour is not exactly known. With the presented 
methodology we address both problems, specimen 
shape recognition, and the alignment procedure. The 
practical application of the method is presented on 
two examples, which demonstrate the robustness of 
the method, its comparison with the ICP algorithm, 
and its application on real DIC data.

Although the results show that the methodology 
manages to successfully perform the alignment, it is 
difficult to actually quantify its accuracy (from both 
the shape recognition and the alignment process). 
Such an analysis can be performed by means of 
computing full-field error maps [10]. For the present 
methodology, this remains to be performed.
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