
Image Anal Stereol 2008;27:183-192 
Original Research Paper 

183 

SEGMENTATION OF 2D AND 3D TEXTURES FROM ESTIMATES OF 
THE LOCAL ORIENTATION  

DOMINIQUE JEULIN AND MAXIME MOREAUD 
Centre de Morphologie Mathématique, Ecoles des Mines de Paris, 35, rue Saint Honoré, F-77305 Fontainebleau, 
France 
e-mail: dominique.jeulin@ensmp.fr, maxime.moreaud@mines-paris.org 
(Accepted June 30, 2008) 

ABSTRACT 

We use a method to estimate local orientations in the n-dimensional space from the covariance matrix of the 
gradient, which can be implemented either in the image space or in the Fourier space. In a second step, two 
methods allow us to detect sudden changes of orientation in images. The first one uses an index of 
confidence of the estimated orientation, and the second one the detection of minima of scalar products in a 
neighbourhood. This is illustrated on 2D Transmission Electrons Microscope images of cellulose cryofracture 
(to display the organisation of cellulose whiskers and the points of germination), and to 3D images of a 
TA6V alloy (lamellar microstructure) obtained by microtomography.  

Keyword: 3D image analysis, covariance matrix, Fast Fourier Transform, gradient, oriented texture, watershed 
segmentation. 

INTRODUCTION 

Some microstructures in materials or in biological 
specimens show a pronounced local orientation. For 
instance, cellulose whiskers are made of a patchwork 
of small cells with a given orientation (cf. Fig. 1). It is 
interesting to extract on such textures germination 
points, crystalline fluxes, and other characteristic 
criteria. To achieve this task, the knowledge of the 
local orientation of cells is a prerequisite. Then, 
germination points are given by zones where almost 
all orientations are observed. Crystalline fluxes are 
obtained as zones with fast changes of orientation.  

Other materials like TA6V alloys show a 3D 
lamellar texture (titanium alloy with 6% of aluminium 
and 4% of vanadium in Fig. 2). This kind of texture 
shows a local orientation in 3D and this information 
can be useful to perform a 3D segmentation before a 
3D characterization. This requires the detection and 
quantification of local orientations. Other textures of 
this kind, like lamellar eutectics and martensite textures 
were studied in 2D (Kurdy and Jeulin, 1989; Jeulin and 
Kurdy, 1992). In Germain et al. (2003) an instructive 
multiscale method to study the local orientation is 
proposed, but it is limited to 2D textures. 

In this paper, we introduce algorithms to estimate 
a local orientation, which can be implemented in the 
Fourier space or in the image space. Then, methods 

are proposed to locate fast changes of orientation, and 
to make a segmentation of textures showing multiple 
orientations. This approach differs from the common 
use of local information on anisotropy used to extract 
contours or oriented objects. 

Our approach is tested and illustrated in 2D on 
cellulose whiskers observed in TEM and on a 3D 
image of TA6V obtained by microtomography. 

 
Fig. 1. Cellulose whisker observed in transmission 
electron microscopy (resolution: 10 nm/pixel; 280 
pixels2). J.L. Putaux (CERMAV CNRS UPR5301, 
Grenoble). 
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Fig. 2. Left: TA6V alloy: X-ray microtomography (ESRF Synchrotron Grenoble). Right: slice along axis z. N. 
Vanderesse and M. Darrieulat, (ENSMSE, Saint-Etienne). 

PRINCIPLE OF ESTIMATION OF THE 
LOCAL ORIENTATION IN IMAGES 
Orientations in images can be perceived when 

some contours are present and show alignments. A 
local orientation is described by a vector. Starting 
from a scalar image I, it is common to generate a 
vector field v(x) by computing the gradient of the 
image. The modulus of the gradient is sensitive to the 
local contrast, and allows us to detect boundaries in the 
image. The gradient is oriented in a direction orthogonal 
to the boundary. Local orientation can also be estimated 
by means of directional mathematical operations (Soille 
and Talbot, 1998; 2001), or in the Fourier domain by 
examination of the energy of the power spectrum 
affected by appropriate orientation-selective linear 
filter (Kass and Witkin, 1987). The estimation of the 
second order derivatives (Danielsson et al., 2001), 
can be used to enhance and filter oriented structure 
(Perona and Malik, 1990; Frangi et al., 1998; Sato et 
al., 1998). However in what follows we will make only 
use of first order derivatives, less sensitive to noise. 

Information on the gradient is commonly used in 
image analysis to account for orientation. In Jeulin 
and Kurdy (1992), this type of information was used 
to perform oriented morphological transformations and 
filters, or to use orientation information in a watershed 
transformation. However, the orientation on the level 
of pixels is usually unreliable, as a result of noise in 
images, enhanced by the estimation of partial 
derivatives. Therefore a kind of filtering of the 
gradient must be performed, involving some non local 
information. In the following sub-sections, we explain 
how to extract information on the local orientation 
contained in images, and how to detect local changes 
of orientation. 

Local orientation in a vector field 
We consider a vector field (e.g. obtained by the 

gradient of an image), defined by a vector v(x) (with 
components vi , i = 1, n) for each point x in the n-
dimensional space Rn. A domain W(x) (e.g. a square 
in R2 or a cube in R3) is located around every point x. 
When working on a grid of points, a cloud of points 
Mj connected to the origin by the vectors v(xj) for xj 
∈W(x) is generated. A convenient way to study the 
average orientation inside W(x) is to use the matrix of 
inertia of the cloud of points, and to extract its main 
axis of inertia by eigenvectors decomposition. This 
tensorial approach of the orientation is commonly 
followed in fluid mechanics for velocity fields (Hand, 
1962). It is also used by Vliet and Verbeek (1995) for 
estimation of orientation in 2D images. In what follows, 
the matrix of inertia J is normalised (every moment 
being divided by the number m of points of the grid 
inside W(x)). Therefore the term Jij is an estimation of 
the statistical second order moments E(vi (x) vj (x)). 
The eigenvector corresponding to the larger eigenvalue 
λ1 gives the main orientation of the cloud of points, 
namely the direction of its first axis of inertia. 

To illustrate this way to estimate a local orientation, 
we consider two extreme cases in R3 (similar results 
being obtained in Rn).  

• For a constant vector v (with components v1, v2, 
v3) inside W(x), the matrix J is given by:  
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This matrix has a single eigenvalue λ 1 ≠ 0 (λ 1 = 
║v ║2 = v1 2+ v2 2+ v3 2) for an eigenvector collinear 
to v, the two other eigenvalues being equal to zero. 
Therefore the main (and single) orientation of the 
vectors v(xj) for xj ∈W(x) is recovered. 

• For unit vectors v(xj) with a uniform distribution 
of orientations, we obtain on average: 
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The matrix is diagonal with three equal eigenvalues 
(1/3), and no preferential orientation (the texture is 
therefore invariant by rotation, as a result of the 
isotropy). 

Calculation of the local orientation from 
the gradient 
Starting from the gradient of an image (with 

components
 x
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the local mathematical expectation, estimated by 
averaging in W(x). It turns out that each component is 
given by partial second derivatives of the covariance 
C(x, x+h) of the image. We have: 
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A convenient way to estimate the local matrix of 
inertia in an image is to use a Fast Fourier Transform 
(FFT). The power spectrum f(k1,…, kn) (in the 
frequency space) of the local covariance inside the 
domain W(x) is obtained by the square of the modulus 
of the Fourier transform of the image I. Using 
standard rules of derivation in the Fourier space and 
Eq. 1, we get: 
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From Eq. 2, the expectation of the matrix of 
inertia of the gradient of the image is estimated in the 
Fourier space by the matrix of inertia of the power 
spectrum of its covariance. This is the way followed by 
(Bigün et al., 1991; Bergonnier, 2005) to characterize 
the local orientation in 2D images. A comparison of 
the results obtained by the two approaches (image 
space and Fourier space) will be given and illustrated 
below for the cellulose image (Fig. 1).  

Detection of changes of orientation in a 
vector field 
To compare the orientations of two unit vectors, it 

is convenient to compute their scalar product: when 
the two vectors u and v are almost colinear (resp. 
orthogonal), the absolute value of their scalar product 
u.v is close to one (resp. 0).  

To detect changes of local orientation in a vector 
field, we consider a neibourhood V(x) of every point 
x. We compute the minimum m of the absolute value 
of the scalar products between u(x) and v(xj) for xj 
∈V(x). If m is close to 1, the points in V(x) have 
similar orientations. If m is close to 0, we can say that 
x belongs to the boundary between zones with 
different orientations. The minimum can be replaced 
by the maximum or the average value in V(x), but it 
turns out that in the present applications the minimum 
produced the best results for the segmentation. 

IMPLEMENTATION AND EXAMPLE OF 
APPLICATION TO 2D IMAGES 

2D local orientation studied by local 
Fourier transform 
To characterize cellulose whiskers as shown in 

Fig. 1, we consider local orientations of small 
whiskers of the structure. From these orientations it is 
possible to detect, for instance, germination points or 
crystalline fluxes. The modulus of the Fourier 
transform of a small area containing a weak number 
of whiskers shows a cloud of points with its main 
orientation related to the orientation of whiskers, as 
previously discussed (cf. Fig. 3). 

 
Fig. 3. Local orientations shown in the Fourier space 
(FFT: Fast Fourier Transform). 
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The main axis of inertia of the cloud of points is 
then obtained from its eigenvectors.  

Practically, we work on the image I defined in the 
domain D. For every point x∈D, we consider a 
square neighborhood Iv centered in x, with size equal 
to a power of 2, to which is applied a Fast Fourier 
Transform (FFT). The modulus of this image gives 
image IvM.  
 IvM = | F[ Iv ] |2. 

From image IvM in the Fourier space (k1,k2) is 
computed the matrix of inertia Σ corresponding to Eq. 
2, (k1c, k2c) being the coordinates of the center of IvM: 

a neigbourhood V. For each point is calculated a local 
matrix of orientation MV according to Eq. 1 (with 1 ≤ 
i ≤ 2 and 1 ≤ j ≤ 2), using the average over V.  

The local orientation is given by the angle 
between the eigenvector corresponding to the largest 
eigenvalue λ1 and a reference vector. 

This method requires the computation of the two 
components of the gradient on the full image, and of 
local averages on each neighbourhood, while the 
previous method requires to implement a FFT in each 
neigbourhood. Therefore, the approach based on 
gradient calculation is much faster. For instance is 
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The two eigenvalues of the matrix Σ, λ1 and λ2  
(λ1 < λ2) are obtained from det (Σ - λ I ) = 0. 

The local orientation is given by the angle between 
the eigenvector with eigenvalue λ1 and a reference 
vector. In practice, it can be useful to display the 
obtained orientations by means of a color code. This 
one has to be cyclic, to represent without any 
discontinuity angles in the range [-π/2, π/2]. For 
instance we use the RGB color palette given below 
(cf. Fig. 4) for the illustrations given later. 

 
Fig. 4. Example of RGB cyclic palette to give a 
representation of local orientations. 

The local orientations detected by this method 
depend on the size of the analysed neighbourhood IV. 
This is illustrated in Fig. 5a by results obtained when 
changing this parameter. It appears that a 32 × 32 size 
for Iv gives a smooth result. This size directly 
depends on the average size of particles in the image. 

Local 2D orientation from the gradient 
As explained before a similar analysis of orientation can 
be made directly in the image space. In each point 
(x,y) of the image I in the domain D is centered 

given on Fig. 7 a comparison of results obtained by 
the two approaches for neighbourhood with the same 
size. We obtain very similar results with quite different 
computation times: 2 sec for the gradient and 50 sec 
fo the FFT based method. The test image has 
256 × 256 pixels and the size of the neigbourhood is 
32 × 32. We used a PC computer with a Pentium IV 
processor (2.6 Ghz).  

To compute the gradient images, it is possible to 
use a directional gradient (Prewitt, Sobel or 
morphological type). We are using in point (x,y) of 
image I the horizontal gradient defined by 

y)1,I(x-y)1,-I(x
x

y)I(x,
+=

∂
∂

 and the vertical 

gradient defined by 

1)yI(x,-1)-yI(x,
y

y)I(x,
+=

∂
∂

.  

Index of confidence of the 2D local 
orientation  
An index of confidence on the estimated orientation 

is given from the ratio
21

1

λλ
λ
+

. This ratio increases to 

1 for a more significant measured local orientation. It 
enables us to detect germination points, which show 
the lowest index of confidence (cf. Fig. 6). 

Local scalar product 
As explained before, the minima of the scalar 

products in a neigbourhood are used to detect sudden 
changes of local orientations, characterizing for the 
cellulose case the boundaries of crystalline fluxes (cf. 
Fig. 6).  
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a) 

 
b) 

Fig. 5. a) From left to right, and top to down: initial cellulose image, result of the local Fourier analysis in a 
zone Iv with size 8, 16, and 32. b) The local orientations obtained by gradient with neigbourhood: 32 × 32.  
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IMPLEMENTATION AND EXAMPLE OF 
APPLICATION FOR 3D IMAGES 
Local 3D orientation from the gradient 
The method followed in 2D to estimate the local 

orientation from the calculation of the gradient is 
similar in 3D. The calculation of the eigenvalues  
λ1 λ2 and λ3, of the 3 x 3 local orientation matrix is 
given in the part 8 appendix. This calculation is made 
for every voxel and must be fast enough to be able to 
efficiently implement the method in 3D. 

The components of the gradient image in point 
(x,y,z) of image I are estimated by (other types of 
directional gradients can be used): 

z)y,1,I(x-z)y,1,-I(x
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This is illustrated in Fig. 7 by the local 3D 
orientation on X-ray images obtained by microtomo-
graphy on a TA6V alloy (cf. Fig. 2).  

Index of confidence of the 3D local 
orientation 
An index of confidence on the 3D orientation is 

obtained from the ratio 
321

1

λλλ
λ
++

. It reaches the 

value 1 for a single orientation over the points in the 
neighbourhood. This can be useful to detect boundaries 

   

Fig. 6. Middle: calculation of the index of confidence. For dark pixels (with an index of confidence close to 0), 
the detected orientation is uncertain. The red point (minimal value of the confidence index) shows the presence 
of a germination point. Right: calculation of the minimum of the absolute value of the scalar product in a 
10 × 10 neigbourhood. The black pixels (minimum of the local scalar product close to 0) show sudden changes 
of the local orientation. 

 

Fig. 7. Local orientation vectors estimated by computation of the gradient in a 30 × 30 × 30 neigbourhood. 
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between zones with a homogeneous orientation. 
Indeed these boundaries show fuzzy orientations 
(some particles in the neighbourhood being oriented 
in a given direction, while other particules showing 
a different orientation). They are obtained for a low 
index of confidence (typically a ratio lower than 
0.5). In Fig. 8, the local 3D orientation of the 
TA6V alloy (cf. Fig. 2) and the index of confidence 
were calculated by means of different sizes of 
neighbourhood (103, 203 and 303). We can notice 
that a correct (but fuzzy) detection of boundaries is 
obtained for a large enough neighbourhood. On the 
TA6V images, useful information on boundaries 
are shown by light thin zones. However, the correct 

segmentation of zones with a homogeneous orientation 
seems difficult with this index of confidence. Therefore, 
another method will be used in the next section. 

Local 3D scalar product  
As in 2D, we propose to use scalar products in 

neighbourhoods, to detect sudden changes of local 
orientations and therefore boundaries between domains 
with a homogeneous orientation. Applied to the TA6V 
image (cf. Fig. 2), this method allows us to detect 
boundaries. The best results are obtained by 303 

neighbourhoods to estimate the local orientation, and 53 
for the minimum of scalar products (cf. Fig. 9), giving 
the image Ips.  

  

  
 

Fig. 8. Index of confidence of the local 3D orientation, as a function of the size of the neighbourhood, for a 
slice along the z axis of the X-ray microtomography image of the TA6V alloy. From left to right, and top to 
bottom: original image, index of confidence for a neighbourhood size 103, 203, and 303.  
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In order to segment homogeneous zones, we 
propose to operate on image Ips. First, a rough 
detection of boundaries between zones with a 
homogeneous orientation is obtained by a binary 
threshold of image Ips, keeping voxels with value 
less than 0.01 (cf. Fig. 10). Then this image is 
inverted, and eroded by a cube with size 53. This 
new image is used as marker to generate a constrained 
segmentation by 3D watershed on the inverse of 
image Ips (Beucher and Meyer, 1993). Figs. 11 
illustrate the obtained result. In the case of over-
segmentation, it is then possible to merge adjacent 
zones by comparing their vectors of average 
orientation. Further examples of the use of the full 
algorithmic sequence to extract and study colonies in 
Widmanstatten microstructures of a titanium alloy are 
published in Vanderesse et al. (2008). 

CONCLUSION 

We proposed a fast method to estimate local 
orientations from the covariance matrix of the 
gradient. This method was applied to 2D and 3D 
images. Two methods were also worked out to 

detect sudden changes of orientation. The first one uses 
an index of confidence of the estimated orientation 
(ratio between the larger eigenvalue of the matrix of 
orientation and its trace). The second one uses the 
detection of minima of scalar products in a 
neighbourhood. We applied these methods to 2D 
Transmission Electrons Microscope images of cellulose 
cryofracture (to display the organisation of cellulose 
whiskers and the points de germination), and to 3D 
images of a TA6V alloy (lamellar microstructure) 
obtained by microtomography. The estimation of the 
local orientation requires to define a size of 
neighbourhood around every studied pixel or voxel: this 
one must contain several oriented objects for the 
method to be efficient. 
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Fig. 9. From left to right, and top to bottom: original image, minimum of the local scalar product 
(neighbourhood 53), threshold of the local scalar product to 0.01, and superimposition over the original image.  
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Fig. 10. From left to right: markers, 3D watershed, superimposition on the original image. 

 

Fig. 11. Result of the 3D segmentation by watershed. Top left: section along axis x; top right: section along 
axis y; down: section along axis z. 
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APPENDIX 
LOCAL 3D ORIENTATION FROM THE 
GRADIENT 

The calculation of the eigenvalues λ1, λ2 and λ3 of 
the 3 × 3 local orientation matrix is made for every 

voxel and must be fast enough to be able to 
efficiently implement the method in 3D. In each point 
(x,y,z)∈D, the size of a centered neigbour-hood V is 
given. We calculate as in part 3.2 a matrix of local 
orientation MV, derived by averaging as defined by 
Eq. 1 (with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3).  

The three eigenvalues λ1, λ2 and λ3 (λ1 > λ2 > λ3) of 
this matrix are the roots of the characteristic equation: 

det ( MV - λ I ) = 0 

By noting 
365
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mmm
mmm
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The matrix MV being real, this expression is 
similar to the cubic equation with real coefficients 
solved in (Abramowitz and Stegun, 1970): λ3 + a2 λ2 
+ a1 λ + a0. By identification: 
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a2 = - (m1 + m2 + m3). 

We define:  
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The eigenvalues values λ1, λ2 et λ3 are given by: 
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For each λi, a normalized eigenvector u(ux, uy, uz)  
is obtained by: 

ux = 
u
1

, uz = ( )23526
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ABSTRACT


We use a method to estimate local orientations in the n-dimensional space from the covariance matrix of the gradient, which can be implemented either in the image space or in the Fourier space. In a second step, two methods allow us to detect sudden changes of orientation in images. The first one uses an index of confidence of the estimated orientation, and the second one the detection of minima of scalar products in a neighbourhood. This is illustrated on 2D Transmission Electrons Microscope images of cellulose cryofracture (to display the organisation of cellulose whiskers and the points of germination), and to 3D images of a TA6V alloy (lamellar microstructure) obtained by microtomography. 


Keyword: 3D image analysis, covariance matrix, Fast Fourier Transform, gradient, oriented texture, watershed segmentation.

Introduction


Some microstructures in materials or in biological specimens show a pronounced local orientation. For instance, cellulose whiskers are made of a patchwork of small cells with a given orientation (cf. Fig. 1). It is interesting to extract on such textures germination points, crystalline fluxes, and other characteristic criteria. To achieve this task, the knowledge of the local orientation of cells is a prerequisite. Then, germination points are given by zones where almost all orientations are observed. Crystalline fluxes are obtained as zones with fast changes of orientation. 


Other materials like TA6V alloys show a 3D lamellar texture (titanium alloy with 6% of aluminium and 4% of vanadium in Fig. 2). This kind of texture shows a local orientation in 3D and this information can be useful to perform a 3D segmentation before a 3D characterization. This requires the detection and quantification of local orientations. Other textures of this kind, like lamellar eutectics and martensite textures were studied in 2D (Kurdy and Jeulin, 1989; Jeulin and Kurdy, 1992). In Germain et al. (2003) an instructive multiscale method to study the local orientation is proposed, but it is limited to 2D textures.

In this paper, we introduce algorithms to estimate a local orientation, which can be implemented in the Fourier space or in the image space. Then, methods are proposed to locate fast changes of orientation, and to make a segmentation of textures showing multiple orientations. This approach differs from the common use of local information on anisotropy used to extract contours or oriented objects.

Our approach is tested and illustrated in 2D on cellulose whiskers observed in TEM and on a 3D image of TA6V obtained by microtomography.

[image: image1.jpg]





Fig. 1. Cellulose whisker observed in transmission electron microscopy (resolution: 10 nm/pixel; 280 pixels2). J.L. Putaux (CERMAV CNRS UPR5301, Grenoble).
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Fig. 2. Left: TA6V alloy: X-ray microtomography (ESRF Synchrotron Grenoble). Right: slice along axis z. N. Vanderesse and M. Darrieulat, (ENSMSE, Saint-Etienne).

Principle of estimation of the local orientation in images

Orientations in images can be perceived when some contours are present and show alignments. A local orientation is described by a vector. Starting from a scalar image I, it is common to generate a vector field v(x) by computing the gradient of the image. The modulus of the gradient is sensitive to the local contrast, and allows us to detect boundaries in the image. The gradient is oriented in a direction orthogonal to the boundary. Local orientation can also be estimated by means of directional mathematical operations (Soille and Talbot, 1998; 2001), or in the Fourier domain by examination of the energy of the power spectrum affected by appropriate orientation-selective linear filter (Kass and Witkin, 1987). The estimation of the second order derivatives (Danielsson et al., 2001), can be used to enhance and filter oriented structure (Perona and Malik, 1990; Frangi et al., 1998; Sato et al., 1998). However in what follows we will make only use of first order derivatives, less sensitive to noise.

Information on the gradient is commonly used in image analysis to account for orientation. In Jeulin and Kurdy (1992), this type of information was used to perform oriented morphological transformations and filters, or to use orientation information in a watershed transformation. However, the orientation on the level of pixels is usually unreliable, as a result of noise in images, enhanced by the estimation of partial derivatives. Therefore a kind of filtering of the gradient must be performed, involving some non local information. In the following sub-sections, we explain how to extract information on the local orientation contained in images, and how to detect local changes of orientation.


Local orientation in a vector field


We consider a vector field (e.g. obtained by the gradient of an image), defined by a vector v(x) (with components vi , i = 1, n) for each point x in the n-dimensional space Rn. A domain W(x) (e.g. a square in R2 or a cube in R3) is located around every point x. When working on a grid of points, a cloud of points Mj connected to the origin by the vectors v(xj) for xj 

[image: image4.wmf]Î


W(x) is generated. A convenient way to study the average orientation inside W(x) is to use the matrix of inertia of the cloud of points, and to extract its main axis of inertia by eigenvectors decomposition. This tensorial approach of the orientation is commonly followed in fluid mechanics for velocity fields (Hand, 1962). It is also used by Vliet and Verbeek (1995) for estimation of orientation in 2D images. In what follows, the matrix of inertia J is normalised (every moment being divided by the number m of points of the grid inside W(x)). Therefore the term Jij is an estimation of the statistical second order moments E(vi (x) vj (x)). The eigenvector corresponding to the larger eigenvalue (1 gives the main orientation of the cloud of points, namely the direction of its first axis of inertia.

To illustrate this way to estimate a local orientation, we consider two extreme cases in R3 (similar results being obtained in Rn). 

· For a constant vector v (with components v1, v2, v3) inside W(x), the matrix J is given by: 
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This matrix has a single eigenvalue 
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1 ≠ 0 (
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1 = ║v ║2 = v1 2+ v2 2+ v3 2) for an eigenvector collinear to v, the two other eigenvalues being equal to zero. Therefore the main (and single) orientation of the vectors v(xj) for xj 
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W(x) is recovered.

· For unit vectors v(xj) with a uniform distribution of orientations, we obtain on average:
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The matrix is diagonal with three equal eigenvalues (1/3), and no preferential orientation (the texture is therefore invariant by rotation, as a result of the isotropy).

Calculation of the local orientation from the gradient


Starting from the gradient of an image (with components
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), we can estimate the matrix of inertia, with the components
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, E being the local mathematical expectation, estimated by averaging in W(x). It turns out that each component is given by partial second derivatives of the covariance C(x, x+h) of the image. We have:
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(1)

A convenient way to estimate the local matrix of inertia in an image is to use a Fast Fourier Transform (FFT). The power spectrum f(k1,…, kn) (in the frequency space) of the local covariance inside the domain W(x) is obtained by the square of the modulus of the Fourier transform of the image I. Using standard rules of derivation in the Fourier space and Eq. 1, we get:
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(2)


From Eq. 2, the expectation of the matrix of inertia of the gradient of the image is estimated in the Fourier space by the matrix of inertia of the power spectrum of its covariance. This is the way followed by (Bigün et al., 1991; Bergonnier, 2005) to characterize the local orientation in 2D images. A comparison of the results obtained by the two approaches (image space and Fourier space) will be given and illustrated below for the cellulose image (Fig. 1). 

Detection of changes of orientation in a vector field


To compare the orientations of two unit vectors, it is convenient to compute their scalar product: when the two vectors u and v are almost colinear (resp. orthogonal), the absolute value of their scalar product u.v is close to one (resp. 0). 

To detect changes of local orientation in a vector field, we consider a neibourhood V(x) of every point x. We compute the minimum m of the absolute value of the scalar products between u(x) and v(xj) for xj 

[image: image15.wmf]Î


V(x). If m is close to 1, the points in V(x) have similar orientations. If m is close to 0, we can say that x belongs to the boundary between zones with different orientations. The minimum can be replaced by the maximum or the average value in V(x), but it turns out that in the present applications the minimum produced the best results for the segmentation.

Implementation and example of application to 2D images

2D local orientation studied by local Fourier transform

To characterize cellulose whiskers as shown in Fig. 1, we consider local orientations of small whiskers of the structure. From these orientations it is possible to detect, for instance, germination points or crystalline fluxes. The modulus of the Fourier transform of a small area containing a weak number of whiskers shows a cloud of points with its main orientation related to the orientation of whiskers, as previously discussed (cf. Fig. 3).

[image: image16.jpg]





Fig. 3. Local orientations shown in the Fourier space (FFT: Fast Fourier Transform).

The main axis of inertia of the cloud of points is then obtained from its eigenvectors. 

Practically, we work on the image I defined in the domain D. For every point x

[image: image17.wmf]Î


D, we consider a square neighborhood Iv centered in x, with size equal to a power of 2, to which is applied a Fast Fourier Transform (FFT). The modulus of this image gives image IvM. 


IvM = | F[ Iv ] |2.

From image IvM in the Fourier space (k1,k2) is computed the matrix of inertia Σ corresponding to Eq. 2, (k1c, k2c) being the coordinates of the center of IvM:


a neigbourhood V. For each point is calculated a local matrix of orientation MV according to Eq. 1 (with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2), using the average over V. 

The local orientation is given by the angle between the eigenvector corresponding to the largest eigenvalue λ1 and a reference vector.

This method requires the computation of the two components of the gradient on the full image, and of local averages on each neighbourhood, while the previous method requires to implement a FFT in each neigbourhood. Therefore, the approach based on gradient calculation is much faster. For instance is
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The two eigenvalues of the matrix Σ, λ1 and λ2 
(λ1 < λ2) are obtained from det (Σ - λ I ) = 0.

The local orientation is given by the angle between the eigenvector with eigenvalue λ1 and a reference vector. In practice, it can be useful to display the obtained orientations by means of a color code. This one has to be cyclic, to represent without any discontinuity angles in the range [-π/2, π/2]. For instance we use the RGB color palette given below (cf. Fig. 4) for the illustrations given later.
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Fig. 4. Example of RGB cyclic palette to give a representation of local orientations.

The local orientations detected by this method depend on the size of the analysed neighbourhood IV. This is illustrated in Fig. 5a by results obtained when changing this parameter. It appears that a 32 × 32 size for Iv gives a smooth result. This size directly depends on the average size of particles in the image.

Local 2D orientation from the gradient


As explained before a similar analysis of orientation can be made directly in the image space. In each point (x,y) of the image I in the domain D is centered

given on Fig. 7 a comparison of results obtained by the two approaches for neighbourhood with the same size. We obtain very similar results with quite different computation times: 2 sec for the gradient and 50 sec fo the FFT based method. The test image has 256 × 256 pixels and the size of the neigbourhood is 32 × 32. We used a PC computer with a Pentium IV processor (2.6 Ghz). 

To compute the gradient images, it is possible to use a directional gradient (Prewitt, Sobel or morphological type). We are using in point (x,y) of image I the horizontal gradient defined by 
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Index of confidence of the 2D local orientation 


An index of confidence on the estimated orientation

is given from the ratio
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. This ratio increases to 1 for a more significant measured local orientation. It enables us to detect germination points, which show the lowest index of confidence (cf. Fig. 6).

Local scalar product

As explained before, the minima of the scalar products in a neigbourhood are used to detect sudden changes of local orientations, characterizing for the cellulose case the boundaries of crystalline fluxes (cf. Fig. 6). 
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b)


Fig. 5. a) From left to right, and top to down: initial cellulose image, result of the local Fourier analysis in a zone Iv with size 8, 16, and 32. b) The local orientations obtained by gradient with neigbourhood: 32 × 32. 


Implementation and example of application for 3D images

Local 3D orientation from the gradient


The method followed in 2D to estimate the local orientation from the calculation of the gradient is similar in 3D. The calculation of the eigenvalues 
λ1 λ2 and λ3, of the 3 x 3 local orientation matrix is given in the part 8 appendix. This calculation is made for every voxel and must be fast enough to be able to efficiently implement the method in 3D.


The components of the gradient image in point (x,y,z) of image I are estimated by (other types of directional gradients can be used):
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This is illustrated in Fig. 7 by the local 3D orientation on X-ray images obtained by microtomo-graphy on a TA6V alloy (cf. Fig. 2). 


Index of confidence of the 3D local orientation


An index of confidence on the 3D orientation is obtained from the ratio 
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. It reaches the value 1 for a single orientation over the points in the neighbourhood. This can be useful to detect boundaries
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Fig. 6. Middle: calculation of the index of confidence. For dark pixels (with an index of confidence close to 0), the detected orientation is uncertain. The red point (minimal value of the confidence index) shows the presence of a germination point. Right: calculation of the minimum of the absolute value of the scalar product in a 10 × 10 neigbourhood. The black pixels (minimum of the local scalar product close to 0) show sudden changes of the local orientation.
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Fig. 7. Local orientation vectors estimated by computation of the gradient in a 30 × 30 × 30 neigbourhood.

between zones with a homogeneous orientation. Indeed these boundaries show fuzzy orientations (some particles in the neighbourhood being oriented in a given direction, while other particules showing a different orientation). They are obtained for a low index of confidence (typically a ratio lower than 0.5). In Fig. 8, the local 3D orientation of the TA6V alloy (cf. Fig. 2) and the index of confidence were calculated by means of different sizes of neighbourhood (103, 203 and 303). We can notice that a correct (but fuzzy) detection of boundaries is obtained for a large enough neighbourhood. On the TA6V images, useful information on boundaries are shown by light thin zones. However, the correct segmentation of zones with a homogeneous orientation seems difficult with this index of confidence. Therefore, another method will be used in the next section.

Local 3D scalar product 


As in 2D, we propose to use scalar products in neighbourhoods, to detect sudden changes of local orientations and therefore boundaries between domains with a homogeneous orientation. Applied to the TA6V image (cf. Fig. 2), this method allows us to detect boundaries. The best results are obtained by 303 neighbourhoods to estimate the local orientation, and 53 for the minimum of scalar products (cf. Fig. 9), giving the image Ips. 
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Fig. 8. Index of confidence of the local 3D orientation, as a function of the size of the neighbourhood, for a slice along the z axis of the X-ray microtomography image of the TA6V alloy. From left to right, and top to bottom: original image, index of confidence for a neighbourhood size 103, 203, and 303. 

In order to segment homogeneous zones, we propose to operate on image Ips. First, a rough detection of boundaries between zones with a homogeneous orientation is obtained by a binary threshold of image Ips, keeping voxels with value less than 0.01 (cf. Fig. 10). Then this image is inverted, and eroded by a cube with size 53. This new image is used as marker to generate a constrained segmentation by 3D watershed on the inverse of image Ips (Beucher and Meyer, 1993). Figs. 11 illustrate the obtained result. In the case of over-segmentation, it is then possible to merge adjacent zones by comparing their vectors of average orientation. Further examples of the use of the full algorithmic sequence to extract and study colonies in Widmanstatten microstructures of a titanium alloy are published in Vanderesse et al. (2008).


Conclusion


We proposed a fast method to estimate local orientations from the covariance matrix of the gradient. This method was applied to 2D and 3D images. Two methods were also worked out to detect sudden changes of orientation. The first one uses an index of confidence of the estimated orientation (ratio between the larger eigenvalue of the matrix of orientation and its trace). The second one uses the detection of minima of scalar products in a neighbourhood. We applied these methods to 2D Transmission Electrons Microscope images of cellulose cryofracture (to display the organisation of cellulose whiskers and the points de germination), and to 3D images of a TA6V alloy (lamellar microstructure) obtained by microtomography. The estimation of the local orientation requires to define a size of neighbourhood around every studied pixel or voxel: this one must contain several oriented objects for the method to be efficient.
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Fig. 9. From left to right, and top to bottom: original image, minimum of the local scalar product (neighbourhood 53), threshold of the local scalar product to 0.01, and superimposition over the original image. 
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Fig. 10. From left to right: markers, 3D watershed, superimposition on the original image.
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Fig. 11. Result of the 3D segmentation by watershed. Top left: section along axis x; top right: section along axis y; down: section along axis z.
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APPENDIX


Local 3D orientation from the gradient


The calculation of the eigenvalues λ1, λ2 and λ3 of the 3 × 3 local orientation matrix is made for every voxel and must be fast enough to be able to efficiently implement the method in 3D. In each point (x,y,z)
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D, the size of a centered neigbour-hood V is given. We calculate as in part 3.2 a matrix of local orientation MV, derived by averaging as defined by Eq. 1 (with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3). 


The three eigenvalues λ1, λ2 and λ3 (λ1 > λ2 > λ3) of this matrix are the roots of the characteristic equation:

det ( MV - λ I ) = 0


By noting 
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det ( MV - λ I ) = 
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3 - (m1 + m2 + m3) λ2 + ( m1m2 + m1m3 + m2m3 - m42 - m52 - m62 ) λ + m3m42 + m2m52 + m1m62 - m1m2m3 - 2m4m6m5.

The matrix MV being real, this expression is similar to the cubic equation with real coefficients solved in (Abramowitz and Stegun, 1970): λ3 + a2 λ2 + a1 λ + a0. By identification:


a0 = m3m42 + m2m52 + m1m62 - m1m2m3 - 2m4m6m5


a1 = m1m2 + m1m3 + m2m3 - m42 - m52 - m62


a2 = - (m1 + m2 + m3).

We define: 
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The eigenvalues values λ1, λ2 et λ3 are given by:
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For each λi, a normalized eigenvector 
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