
Volume 39 Number 2 June 2015

Special Issue:
Bioinspired Optimization

Guest Editors:
Jurij Šilc
Aleš Zamuda

1977

Editorial Boards
Informatica is a journal primarily covering intelligent systems in
the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author’s country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Contact Associate Editors
Europe, Africa: Matjaz Gams
N. and S. America: Shahram Rahimi
Asia, Australia: Ling Feng
Overview papers: Maria Ganzha

Editorial Board
Juan Carlos Augusto (Argentina)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Zhihua Cui (China)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Ling Feng (China)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Sumit Goyal (India)
Marjan Gušev (Macedonia)
N. Jaisankar (India)
Dariusz Jacek Jakóbczak (Poland)
Dimitris Kanellopoulos (Greece)
Samee Ullah Khan (USA)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Shiguo Lian (China)
Suzana Loskovska (Macedonia)
Ramon L. de Mantaras (Spain)
Natividad Martínez Madrid (Germany)
Sando Martinčić-Ipišić (Croatia)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadia Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Wiesław Pawłowski (Poland)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Shahram Rahimi (USA)
Dejan Raković (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)
Yudong Zhang (China)
Rushan Ziatdinov (Russia & Turkey)

 Informatica 39 (2015) 103–104 103

Editors' Introduction to the Special Issue on ‟Bioinspired

Optimization”

The possibly changing and uncertain environment

attracts and retains the fittest members of biological

populations, which accumulate experience and improve,

from adapting and competing among themselves. Their

material of experience is exchanged and propagated from

iteration to iteration according to the laws of nature.

Relying on elementary activities of individuals, societies

of these biological populations exhibit complex emergent

behaviors.

Assemblies of genes, insects, bird flocks, and many

other fascinating natural phenomena have been a rich

source of inspiration in computer algorithms design for

decades. Specifically, optimization is an area where these

techniques are studied and exercised with particular

practical success.

As a result bioinspired optimization algorithms

(evolutionary algorithms, genetic algorithms, evolution

strategies, evolutionary programming, genetic

programming, ant colony optimization, particle swarm

optimization, artificial immune systems, etc.) were

designed to overcome the drawbacks of traditional

algorithms in demanding application scenarios including

those where little, if any, information is available to

assist problem solving. The emerging challenges inspire

new methods to be delivered and existing ones being

introduced for specific tasks.

This special issue of Informatica – an International

Journal of Computing and Informatics includes selected

extended versions of student papers presented during:

– the Fifth International Conference on Bioinspired

Optimization Methods and their Applications

(BIOMA 2012) held in Bohinj, Slovenia, on 24–25

May 2012 and

– the Student Workshop on Bioinspired Optimization

Methods and their Applications (BIOMA 2014), held

in Ljubljana, Slovenia, on 13 September 2014.

After the selection and approval of the reviewing

committee, this special issue presents seven valuable

contributions. They were contributed by 21 co-authors

coming from five countries (Germany, Romania,

Slovenia, Turkey, and United Kingdom)

The first paper is entitled Differential Evolution

Control Parameters Study for Self-Adaptive Triangular

Brushstrokes and contributed by Aleš Zamuda and Uroš

Mlakar. This work describes a lossy image representation

where a reference image is approximated by an evolved

image, constituted of variable number of triangular

brushstrokes. Experimental results show the viability of

the proposed encoding and optimization results with

statistical tests that confirm the improved performance

with the self-adaptation of the control parameters over

the fixed control parameters.

The second paper, Parallel Implementation of

Desirability Function-Based Scalarization Approach for

Multiobjective Optimization Problems, contributed by

Okkes Tolga Altinoz, Eren Akca, Asim Egemen Yilmaz,

Anton Duca, and Gabriela Ciupriana, presents the results

obtained for the parallel CUDA implementation of the

previously proposed desirability-based scalarization

approach for the solution of the multi-objective

optimization problems. The CUDA implemented

approach allows for roughly 20 times speedup compared

to sequential implementation, provided a suitable number

of solutions to be evaluated is given.

The third paper is Using a Genetic Algorithm to

Produce Slogans, by Polona Tomašič, Gregor Papa, and

Martin Žnidaršič. This paper describes a new solution

based on the use of linguistic resources and evolutionary

computing for invention of slogans. The approach

utilizes a tool to check grammatical mistakes in trial

solutions. A real case data is also studied, where slogans

for Sentinel company are evolved.

The fourth paper, entitled Comparing Evolutionary

Operators and Search Spaces in the Construction of

Facial Composites, by Joseph James Mist, Stuart James

Gibson, and Christopher John Solomon, addresses three

experiments concerning the use of interactive

evolutionary algorithms in the creation of facial

composites. The approach was validated by roughly 20

participants using and assessing and it, thereby

generating face-spaces, using different search algorithms,

and assessing the comparison of different algorithms.

The fifth paper in this special issue is Heuristics for

Optimization of LED Spatial Light Distribution Model,

by David Kaljun, Darja Rupnik Poklukar, and Janez

Žerovnik. This work presents a genetic algorithm and

several versions of local search heuristics for

optimization of a model of LED and secondary lens

combination with symmetric spatial light distribution.

They give a parameter and mechanisms combination

study on the lighting task challenged. The yielding

hybrid approach outperformed the standard genetic

algorithm, and also outperformed a local search when

inspected closely.

The sixth paper is entitled Implicit and Explicit

Averaging Strategies for Simulation-Based Optimization

of a Real-World Production Planning Problem and

contributed by Juan Esteban Diaz and Julia Handl. This

paper explores the impact of noise handling strategies on

optimization performance in the context of a real-world

production planning problem. Since the stochastic nature

of the fitness values may impact on optimization

performance, authors proposed explicit and implicit

averaging strategies to address this issue. They show that

under increased levels of fitness variability, a hybrid

strategy starts to outperform pure implicit and explicit

averaging strategies for evaluation of a real-world

production planning problem.

Finally, the seventh paper Data Mining-Assisted

Parameter Tuning of a Search Algoritm contributed, by

Jurij Šilc, Katerina Taškova, and Peter Korošec, deals

104 Informatica 39 (2015) 103–104 J. Šilc et al.

with the problem of tuning the performance of a meta-

heuristic search algorithm with respect to its parameters.

The principle challenge here is how to provide

meaningful settings for an algorithm, obtained as result

of better insight in its behavior. They apply their

approach in learning a model for the DASA algorithm

and give some conclusions on the suggested parameters

tuning based on the knowledge obtained, such as number

of ants and the evaporation factor.

We would like to thank the authors of the papers for

their individual contributions and all anonymous

dedicated reviewers for their criticism and time to help us

making final decisions. Without their valuable and strong

support, we could not have made this special issue

successful.

As Guest Editors, we hope the readers will find the

Special Issue interesting and informative, as well as that

the papers will stimulate further progress in the field of

‟Bioinspired Optimization”.

Jurij Šilc

Aleš Zamuda

Guest Editors

Informatica 39 (2015) 105–113 105

Differential Evolution Control Parameters Study for Self-Adaptive Triangular
Brushstrokes

Aleš Zamuda and Uroš Mlakar
Faculty of Electrical Engineering and Computer Science, University of Maribor
Smetanova ulica 17, SI-2000 Maribor, Slovenia
E-mail: ales.zamuda@um.si, uros.mlakar@um.si

Keywords: differential evolution, evolutionary computer vision, evolutionary art, image-based modeling, self-adaptation,
triangular brushstrokes

Received: December 1, 2014

This paper proposes a lossy image representation where a reference image is approximated by an evolved
image, constituted of variable number of triangular brushstrokes. The parameters of each triangle brush
are evolved using differential evolution, which self-adapts the triangles to the reference image, and also
self-adapts some of the control parameters of the optimization algorithm, including the number of trian-
gles. Experimental results show the viability of the proposed encoding and optimization results on a few
sample reference images. The results of the self-adapting control parameters for crossover and mutation in
differential evolution are also compared to results with keeping these parameters constant, like in a basic
differential evolution algorithm. Statistical tests are furthermore included to confirm the improved perfor-
mance with the self-adaptation of the control parameters over the fixed control parameters.

Povzetek: V članku je predlagana izgubna predstavitev slike, kjer je referenčna slika aproksimirana z
evoluirano sliko, ki je sestavljena iz spremenljivega števila potez trikotniškega čopiča. Parametre vsake
poteze čopiča optimiramo s pomočjo diferencialne evolucije, ki samoprilagaja trikotniške poteze na ref-
erenčno sliko in prav tako samoprilagaja nekatere krmilne parametre samega optimizacijskega algoritma,
vključno s številom trikotnikov. Rezultati poizkusov kažejo primernost predlagane metode in rezultati op-
timizacije so prikazani za več izbranih referenčnih slik. Rezultati samoprilagodljivih krmilnih parametrov
za diferecialno evolucijo so primerjani tudi z rezultati, kjer so ti parametri nespremenljivi, kot je to primer
pri osnovnem algoritmu diferencialne evolucije. Dodatno so podani še statistični testi, ki nadalje potrju-
jejo izboljšanje kakovosti pristopa ob samoprilagajanju krmilnih parametrov v primerjavi s pristopom z
nespremenljivimi krmilnimi parametri.

1 Introduction

In this paper, evolvable lossy image representation utiliz-
ing an image compared to its evolved generated counterpart
image, is proposed. The image is represented using a vari-
able number of triangular brushstrokes [7], each consist-
ing of triangle vertices coordinates and color parameters.
These parameters for each triangle brush are evolved using
differential evolution [13, 4], which self-adapts the control
parameters, including the proposed self-adaptation for the
number of triangles to be used. Experimental results show
the viability of the proposed encoding and evolution con-
vergence for lossy compression of sample images. Since
this paper is an extended version of [8], new additional re-
sults are included, where the experiments results with fixed
control parameters for differential evolution are included
to check and demonstrate the self-adaptation mechanism
influence on results. The results show clear superiority of
the proposed approach with the self-adaptive control pa-
rameters over the approach where its control parameters
are fixed.

The approach presented is built upon and compared

with [7], by addressing and also extending the original
challenge. Namely, the challenge introduced in [7] uses
triangles in trying to build an approximate model of an im-
age [7]. The triangle is an efficient brush shape for this
challenge, since it covers more pixels than a single point,
and also allows overlaying and blending of colors over sev-
eral regional surface pixels, which lines can not. Also, an
arbitrary triangle shape is less constrained than any further
point-approximated shape, and also other shapes can be
built by combining several triangles. Instead of genetic pro-
gramming in [7], in this paper differential evolution is used
with a fixed size tree-like chromosome vector, which is cut-
off self-adaptively to form codon and anti-codon parts of
the chromosome. Also, our approach uses a modified chal-
lenge, where we can reconstruct the model for the reference
image solely using the evolved model without using the ref-
erence image, whereas the [7] needs the reference image
when drawing pixels to the canvas in deciding which pix-
els match the reference image for accepting them into the
evolved canvas. Also, in this paper the triangle brushstroke
encoding differs and is proposed especially designed for an
efficient DE encoding.

106 Informatica 39 (2015) 105–113 A. Zamuda et al.

In the following section, related work is presented, then
the proposed approach is defined. In Section 4, the experi-
mental results are reported. Section 5 concludes the paper
with propositions for future work.

2 Related Work
In this section, related work on evolutionary computer vi-
sion, evolutionary art, image representation, and evolution-
ary optimization using differential evolution, are presented.
These topics are used in the proposed method, defined in
the next section.

2.1 Image-Based Modeling, Evolutionary
Computer Vision, and Evolutionary Art

Image-based approaches to modeling include processing of
images, e.g., two-dimensional, from which after segmenta-
tion certain features are extracted and used to represent a
geometrical model [10]. For art drawings modeling, au-
tomatic evolutionary rendering has been applied [2, 12].
Heijer and Eiben evolved pop art two-dimensional scal-
able vector graphics (SVG) images [6] and defined genetic
operators on SVG to evolve representational images using
SVG, and also to evolve new images, different from source
images, leading to new and surprising images for pop-art.
Bergen and Ross [3] interactively evolved vector graph-
ics images using genetic algorithm, where solid-coloured
opaque or translucent geometric objects or mosaic tile ef-
fects with bitmap textures were utilized; they considered
the art aspect of the evolved image and multiple possible
outcomes due to evolution stochastics and concluded to in-
vestigate vector animation of the vectorized image.

In [14] animated artwork is evolved using an evolu-
tionary algorithm. Then, Izadi et al. [7] evolved trian-
gular brushstrokes challenge using genetic programming
for two-dimensional images, using unguided and guided
searches on a three or four branch genetic program, where
roughly 5% similarity with reference images was obtained
on average per pixel. In this paper, we build upon and com-
pare our new approach with [7], by addressing and also ex-
tending this challenge. After extending the challenge, we
optimize it using DE, which is described in the next sec-
tion.

2.2 Evolutionary Optimization Using
Differential Evolution

Differential evolution (DE) [13] is a floating-point encod-
ing evolutionary algorithm for continuous global optimiza-
tion. It has been modified and extended several times with
various versions being proposed [5]. DE has also been ap-
plied to remote sensing image subpixel mapping [18], im-
age thresholding [11], and for image-based modeling using
evolutionary computer vision to reconstruct a spatial pro-
cedural tree model from a limited set of two dimensional

images [16, 15]. DE mechanisms were also compared to
other algorithms in several studies [17]. Neri and Tirronen
in their survey on DE [9] concluded that, compared to the
other algorithms, a DE extension called jDE [4], is supe-
rior to the compared algorithms in terms of robustness and
versatility over a diverse benchmark set used in the survey.
Therefore, we choose to apply jDE in this approach.

The original DE has a main evolutionary loop where
a population of vectors is computed within each genera-
tion. For one generation, counted as g, each vector xi,
∀i ∈ {1, . . . ,NP} in the current population of size NP ,
undergoes DE evolutionary operators, namely the muta-
tion, crossover, and selection. Using these operators, a trial
vector (offspring) is produced and the vector with the best
fitness value is selected for the next generation. For each
corresponding population vector, mutation creates a mutant
vector vi,g+1 (‘rand/1’ [13]):

vi,g+1 = xr1,g + F (xr2,g − xr3,g), (1)

where the indexes r1, r2, and r3 are random and mutu-
ally different integers generated in from set {1, . . . ,NP},
which are also different from i. F is an amplification fac-
tor of the difference vector, mostly within the interval [0, 1].
The term xr2,g−xr3,g denotes a difference vector, which is
named the amplified difference vector after multiplication
with F . The mutant vector vi,g+1 is then used for recom-
bination, where with the target vector xi,g a trial vector
ui,j,g+1 is created, e.g., using binary crossover:

ui,j,g+1 =


vi,j,g+1, if rand(0, 1) ≤ CR

or j = jrand,

xi,j,g otherwise,
(2)

where CR denotes the crossover rate, ∀j ∈ {1, . . . , D}
is a j-th search parameter of D-dimensional search space,
rand(0, 1) ∈ [0, 1] is a uniformly distributed random num-
ber, and jrand is a uniform randomly chosen index of the
search parameter, which is always exchanged to prevent
cloning of target vectors. The original DE [13] keeps the
control parameters fixed, such as F = 0.5 and CR = 0.9
throughout optimization.

However, the jDE algorithm, which is a modification of
the original DE, self-adapts the F and CR control parame-
ters to generate the vectors vi,g+1 and ui,g+1, correspond-
ing values Fi and CRi, ∀i ∈ {1, . . . ,NP} are updated
prior to their use in the mutation and crossover mecha-
nisms:

Fi,g+1 =

{
Fl + rand1 × Fu if rand2 < τ1,

Fi,g otherwise,
(3)

CRi,g+1 =

{
rand3 if rand4 < τ2,

CRi,g otherwise,
(4)

where {rand1, . . . , rand4} ∈ [0, 1] are uniform random
floating-point numbers and τ1 = τ2 = 0.1. Finally, the se-
lection operator evaluates and compares the trial to current

Differential Evolution Control Parameters Study for. . . Informatica 39 (2015) 105–113 107

vector and propagates the fittest:

xi,g+1 =

{
ui,g+1 if f(ui,g+1) < f(xi,g),

xi,g otherwise.
(5)

3 Differential Evolution for
Self-Adaptive Triangular
Brushstrokes

In this section, the encoding aspect, genotype-phenotpye
rendering, and evaluation mechanisms of the proposed ap-
proach are defined.

3.1 Encoding Aspect
We encode an individual compressed image
into a DE vector as follows. A DE vector
x = (x1, x2, . . . , x8Tmax , Fi,CRi, T

L
i , T

U
i) is com-

posed of floating-point scalar values packed sequentially
as {xj : ∀j ∈ {1, . . . , D + 4}}, starting with a triangles-
coding part of length D = 8Tmax, and the rest are the
self-adaptive control parameters of the vector to be used
during the DE. The self-adaptive control parameters part
of the x vector encodes and uses the scaling factor F and
crossover rate CR as in the jDE [4]; then the TL

i , TU
i

∈ {1, . . . , Tmax} control parameters follow.
The self-adaptive TL

i and TU
i control parameters deter-

mine index-wise triangles encoded in the vector x to be
used for rendering the evolved image, i.e., the portion of x
to render an image is {xj : ∀j ∈ {TL

i , . . . , T
U
i }}.

In this paper, we propose to have the whole vector rep-
resent a triangle set, organized similar to serializing a tree
as a linear vector in visiting nodes by depth-first search.
However, the leaf nodes are mostly exposed to being cut-
off, whereas the root node is encoded in the middle of the
vector and the near-root nodes are therefore more protected
in being retained, since they are more anchored due to cut-
offs mostly around the codon edges. After being included
into a new trial vector, all nodes have an equal probability
of having their triangle data changed.

In this way, the TL
i and TU

i allow us to render only a
sub-portion of the triangles set, similarly to taking an in-
separable portion of a GP tree traversal as in [7]. This gives
us an arbitrary length render set, and keeps the crossover of
anti-codon to help us find the number of triangles Ti ∈
{1, . . . , Tmax}, which is more suitable for image approxi-
mation:

Ti =

{
TU
i − TL

i + 1 if TL
i < TU

i

(Tmax − TL
i) + TU

i otherwise.
(6)

The TL
i and TU

i are updated similarly to the Fi control pa-
rameter:

TL
i,g+1 =

{
brandL

1 × Tmaxc if randL
2 < τL,

TL
i,g otherwise,

(7)

Figure 1: The triangle brush definition and the circum-
scribed circle.

TU
i,g+1 =

{
brandU

1 × Tmaxc if randU
2 < τU,

TU
i,g otherwise,

(8)

where τL = τU = τ1 = 0.1 of the jDE.

3.2 Genotype-Phenotype Rendering

A DE vector xi,∀i ∈ {1, . . . ,NP} encoded using floating-
point numbers xi,j ,∀j ∈ {1, . . . , D + 4} constituting a
genotype is rendered into a phenotype image zi = {zi,x,y}
of Rx width and Ry height in pixels, to be compared
against a reference image z∗ as follows.

The triangle brushstrokes (Figure 1) are represented as
(cx, cy, r, α1, α2, b

Y, bCb, bCr), where cx ∈ [0, . . . , Rx),
cy ∈ [0, . . . , Ry), and r ∈ [0, Rx/

√
Tmax] define the cir-

cumscribed circle center and radius for the triangle to be
rendered; α1 ∈ [1◦, 360◦) and α2 ∈ [1◦, 180◦) define the
vertices of this triangle on its circumscribed circle; and
bY ∈ [16, 236), bCb ∈ [16, 241), and bCr ∈ [16, 241) are the
color components of the brush for the triangle contained
pixels.

The triangles’ vertices coordinates encoded by i-th
DE vector construct Ti triangles, each triangle Tk =
(cx,k, cy,k, rk, α1,k, α2,k),∀k ∈ {1, . . . , Ti} (Tk being
packed as xi = {xi,j}, j = 8k + m, m ∈ {1, . . . , 8}),
defining the vertices of a triangle P1,k, P2,k, and P3,k:

P1,k = b (cx,k + rk cosα1,k,

cy,k + rk sinα1,k) c ,
(9)

P2,k = b (cx,k + rk cos(α1,k + π),

cy,k + rk sin(α1,k + π)) c ,
(10)

P3,k = b (cx,k + rk cosα2,k,

cy,k + rk sinα2,k) c .
(11)

The brush color bYCbCr
k = (bY

k , b
Cb
k , b

Cr
k) is first trans-

formed into RGB color model as bRGB
k = (bR

k , b
G
k , b

B
k)

(bR
k , b

G
k , b

B
k ∈ [0, 255]), where:

bR
k =

⌊
1.164(bY

k − 16) + 1.596(bCr
k − 128)

⌋
(12)

108 Informatica 39 (2015) 105–113 A. Zamuda et al.

bG
k = b1.164(bY

k − 16)− 0.813(bCr
k − 128)

− 0.391(bCb
k − 128) c

(13)

bB
k =

⌊
1.164(bY

k − 16) + 2.018(bCb
k − 128)

⌋
(14)

For each triangle Tk, a solid color is rendered without
antialiasing over the triangle brush area rasterizing [1] with
a transparency factor of 1/Ti:

bk =

⌊
255

Ti
bRGB
k

⌋
. (15)

This is analogous to blending the triangle as a part-
transparent layer within the evolved image Zi =

∑
k zk,x,y

and computes R, G, and B color layers for the pixels of the
i-th individual:

zk,x,y =
∑

Tk over (x,y)

bk,x,y

=
∑

Tk over (x,y)

⌊
255

Ti
bRGB
k,x,y

⌋
,

(16)

where Tk over (x, y) denotes each triangle being rendered
over the pixel (x, y) such that bk,x,y contains the rendered
pixels of a brushstroke. Triangles defined possibly over the
edges of image canvas are drawn by clipping away pixels
outside of the canvas area.

The initialization of a genotype is such that the
cx, cy, α1, α2, b

Y, bCb, bCr, TL
i , and TU

i are initialized uni-
form randomly to integer values within their respective def-
inition intervals, while r is kept as a floating-point. All pa-
rameters are however evolved as floating-point scalar val-
ues in DE.

3.3 Evaluation
Evaluation of the phenotype image Zi to be compared
against a reference image Z∗ is as follows. A reference
image Z∗ is represented as RGB-encoded colored pixels
integer values in layers Z∗ = {(zRx,y, zGx,y, zBx,y)}.

To obtain a difference assessment value, the following
comparison metric is used for comparing an evolved image
Z = Zi to Z∗:

f(Z) = 100×


Ry−1∑
y=0

Rx−1∑
x=0

| z∗Rx,y − zRx,y |

255×RxRy
+

Ry−1∑
y=0

Rx−1∑
x=0

| z∗Gx,y − zGx,y |

255×RxRy
+

Ry−1∑
y=0

Rx−1∑
x=0

| z∗Bx,y − zBx,y |

255×RxRy

 .

(17)

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

F
it
n
e
s
s

Generation

Liberty
Palace

Vegetables
Baboon

Figure 2: Fitness convergence, for best runs of each test
image.

4 Experiments
The following experiments assess the viability of the ap-
proach on different control parameters, each with several
independent runs. The parameter sets are as follows: the
DE population size NP = {25, 50, 100} and Tmax =
{10, 20, . . . , 150}, thereby for each run RNi={0, 1, . . . ,
51} this counts for total of 45 parameter sets, i.e., 2340
independent runs. The NP and Tmax are fixed during
one run. The maximum number of function evaluations
(MAXFES) used is same as with [7], MAXFES is 105. For
image rendering, basic GDI+ is used.

4.1 Obtained Results
The obtained fitness values at the MAXFES termination of
105, over different parameters of Tmax and NP , are seen
in Tables 1 and 2. The best values obtained overall for an
image are marked in bold underlined text font. The fitness
convergence graphs for these best runs are seen in Figure 2,
where after the initialization, the fitness is roughly below
40 (i.e., 40% similarity with reference), then drops below
15 for all test images and even further to slightly above 6
for two of them.

The convergent obtained results depend on the
MAXFES used being same as with [7], but also NP and
Tmax, as reported below. From Tables 1 and 2, we choose to
report further evolved images up to MAXFES of 106 with
all images. The best approximated images after MAXFES
of 106 are shown in the Figure 3 which shows the evo-
lution of the four images. In each line of Figure 3, the
best fitting vectors upto MAXFES of 106 in generations
g = {0, 100, 200, 400, 700, 1200, 2000}, and the final gen-
eration, are shown, then the rightmost the corresponding
reference image. Figure 4 shows for each test image, dy-
namics of the number of triangle brushes in current best
vector during generations, displaying varying convergent
best Ti values across images.

Our approach searches for a representative image model
and the values obtained such as 6.77, can roughly be com-
pared to the 4.83 of [7]. Such representation of the problem

Differential Evolution Control Parameters Study for. . . Informatica 39 (2015) 105–113 109

Figure 3: The evolved and the reference images (self-adaptive F and CR).

also makes our NP parameter have higher value, since we
have no guided search and the problem is therefore more
general. Also, our approach does not use a dynamically re-
allocatable morphable variable-size tree structure as in ge-
netic programming encoding, inspite it rather uses a fixed
size vector and limits its brushstrokes set by two simple
bounds, making the approach faster for execution.

For comparison purposes and since this paper is an ex-
tended version of [8], following additional comparison is
included. The algorithm is run again with fixed control pa-
rameters F = 0.5 and CR = 0.9 in DE, all other settings
are kept same as with the proposed above approach.

Further, the results in Tables 1 and 2 are statistically
tested using t-test with alpha = 0.001, against the null
hypothesis, that the results obtained with fixed control pa-
rameters F = 0.5 and CR = 0.9 in DE, do not statis-
tically differ. The symbol † with the values in bold text
font signifies that the self-adaptive F and CR parameters
approach results are significantly better and the symbol ‡

with values in italicized text font signifies that the fixed
parameters approach results are significantly better. Com-
paring the statistics on the varied NP and Tmax settings,
DE with changing F and CR is 164 times better, 13 times
worse, and 3 times with no significant performance differ-
ence, compared to the DE with F = 0.5, CR = 0.9.

The Figure 5, the best DE run with F = 0.5, CR = 0.9,
nonetheless still shows self-adaptation of the Ti parame-
ter – this is an additional indicator that the performance
difference lines in the changing of the F and CR control
parameters, which, compared to fixed values, improve the
approach performance if they are self-adaptive.

Visually, the performance difference is observed from
the rendered images in Figure 6, showing superiority of
the proposed approach with self-adaptive control parame-
ters over the approach using fixed control parameters. The
Figure 7 shows fitness convergence of the best evaluated
vector of the best DE run with F = 0.5, CR = 0.9, this

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

T
i

Generation

Liberty
Palace

Vegetables
Baboon

Figure 4: Number of brushstrokes in best vector, for best
runs of each test image, self-adaptive F and CR parame-
ters.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

T
i

Generation

Liberty
Palace

Vegetables
Baboon

Figure 5: Number of brushstrokes in best vector, for best
runs of each test image, F = 0.5, CR = 0.9.

110 Informatica 39 (2015) 105–113 A. Zamuda et al.

Table 1: Obtained fitness over Tmax and NP : test instances Liberty and Palace

Liberty Palace
NP Tmax Best Worst Average STD Best Worst Average STD
25 10 8.29 11.99 9.93096† 0.8233 8.69 13.69 10.1362† 0.9655
25 20 8.03 13.14 10.0935† 1.0845 7.83 11.5 9.12173† 0.8092
25 30 8.41 13.74 10.0525† 1.1712 7.52 11.1 8.97942† 0.7992
25 40 8.13 12.81 10.4408† 1.1416 7.34 11.36 8.91788† 0.8922
25 50 8.49 13.37 10.6767† 1.1768 7.65 12.53 8.87442† 0.9788
25 60 7.95 14.65 10.9858† 1.4284 7.9 11.88 8.99673† 0.8761
25 70 8.28 14.21 11.4075† 1.3630 7.79 13.17 9.50327† 1.0482
25 80 8.72 15.89 11.7554† 1.6330 7.97 12.34 9.43558† 0.9765
25 90 8.84 16.24 12.1342† 1.6608 8.41 13.54 9.82† 1.2756
25 100 9.01 16.74 12.4798† 1.7521 8.62 12.96 9.83635† 0.8869
25 110 8.07 16.78 12.7412† 1.7849 9.01 14.42 10.4119† 1.2468
25 120 9.67 16.14 12.8467† 1.7359 8.93 15.13 10.3858† 1.3149
25 130 10.16 17.96 13.2692† 1.7193 9.02 14.2 10.2858† 1.0292
25 140 9.29 17.99 13.7029† 1.7886 8.29 13.51 10.7779† 1.0299
25 150 10.82 18.56 14.0373† 1.6573 9.89 14.91 11.1206† 1.0586
50 10 7.51 9.69 8.45077† 0.4198 7.43 11.84 8.68058† 0.8825
50 20 6.78 8.99 7.80173† 0.4987 7.1 11.39 8.79173† 0.9592
50 30 6.89 9.17 7.81788† 0.5119 7.53 12.58 9.75654† 1.1186
50 40 6.77 9.87 8.0375† 0.6578 8.27 12.24 10.0575† 0.9537
50 50 7.08 10.61 8.39923† 0.7056 7.97 13.14 10.3338† 1.1009
50 60 7.15 10.4 8.67115† 0.7472 8.59 12.49 10.7817† 1.0754
50 70 7.46 10.9 9.1025† 0.8666 7.58 12.8 10.7744† 1.1086
50 80 7.6 11.4 9.47981† 0.8689 9.15 13.11 11.3802† 1.0178
50 90 8.05 12.65 9.67346† 0.9115 9.97 13.41 11.5227† 0.9315
50 100 8.75 11.75 10.0152† 0.7824 8.55 13.62 11.4356† 0.9923
50 110 8.93 13.63 10.6356† 0.9682 9.32 13.77 12.0712† 0.9579
50 120 9.22 13.01 10.7502† 0.9840 9.77 14.21 12.429† 0.8972
50 130 9.42 12.59 11.0527† 0.7707 11.37 14.07 12.7387† 0.6134
50 140 9.99 13.39 11.5719† 0.7815 9.69 15.5 12.9317† 0.9708
50 150 10.2 14.56 12.2633† 1.0702 9.58 15.36 12.8092† 1.1717

100 10 7.1 9.12 7.98596† 0.4241 7.91 13.88 10.9573† 1.8019
100 20 6.85 9.77 7.83962† 0.5360 8.86 14.59 12.1117† 1.2862
100 30 7.15 11.8 8.49077† 1.1563 9.59 16.15 12.9098† 1.0589
100 40 7.22 13 8.86327† 1.1092 9.65 14.97 13.2477† 1.1543
100 50 7.41 12.75 9.34846† 1.3939 11.01 15.52 13.8606† 0.9750
100 60 8.06 12.97 9.77731† 1.1539 11.5 16.14 14.1856† 1.1234
100 70 8.67 13.28 10.1954† 1.3722 10.77 16.32 14.3629† 1.1713
100 80 8.73 14.48 11.0929† 1.4093 10.98 17.06 14.9348† 1.1679
100 90 9.04 14.92 11.3594† 1.3483 11.1 16.8 15.104† 1.2586
100 100 9.4 16.13 11.6604† 1.4952 10.8 17.62 15.36 1.2330
100 110 10.17 15.68 12.3365† 1.5685 13.01 17.86 16.0202‡ 0.9744
100 120 10.26 15.45 12.3358† 1.5076 11.07 17.99 15.6113‡ 1.6455
100 130 10.22 16.19 13.2212† 1.6108 12.33 18.37 16.4085‡ 1.3168
100 140 11.42 16.65 13.7808† 1.5502 11.64 18.35 16.1229‡ 1.4990
100 150 11.35 18.68 14.6113† 1.9726 10.11 18.34 16.2929‡ 2.0056

Differential Evolution Control Parameters Study for. . . Informatica 39 (2015) 105–113 111

Table 2: Obtained fitness over Tmax and NP : test instances Vegetables and Baboon

Vegetables Baboon
NP Tmax Best Worst Average STD Best Worst Average STD
25 10 14.13 17.21 15.7269† 0.7148 15.02 18.59 16.38‡ 0.7128
25 20 12.56 18.03 14.5658† 0.9850 13.44 17.12 15.3815† 0.8129
25 30 12.33 15.98 13.9215† 0.8475 12.99 19.03 15.0204† 1.1150
25 40 11.62 16.21 13.674† 1.0436 11.99 16.85 14.4342† 1.0135
25 50 12.16 17.08 13.88† 1.0726 11.39 17.62 14.4573† 1.2299
25 60 11.64 17.88 13.6438† 1.2155 11.74 17.51 14.8038† 1.2229
25 70 11.29 17.15 13.9056† 1.3790 11.88 17.9 14.6267† 1.3495
25 80 11.61 16.6 14.0871† 1.3881 12.11 17.13 14.3606† 1.2815
25 90 11.63 17.96 14.1062† 1.4428 11.93 19.41 14.6644† 1.5269
25 100 11.34 17 14.4533† 1.4694 11.7 18.77 14.7642† 1.7438
25 110 11.74 19.66 14.6085† 1.7664 12.02 19.11 15.0046† 1.7605
25 120 12.26 17.91 14.7737† 1.5726 12.2 18.5 15.6467† 1.6086
25 130 12.1 19.75 14.6338† 1.9283 13.01 19.5 15.4254† 1.5505
25 140 11.94 19.01 14.7635† 1.6282 12.64 19.37 15.8235† 1.8458
25 150 12.82 18.7 14.6487† 1.3015 13.13 20.17 15.7952† 1.6923
50 10 13.03 15 14.0723† 0.4674 13.86 16.52 14.9192‡ 0.5494
50 20 11.66 13.26 12.4644† 0.3184 11.8 14.54 13.271† 0.5569
50 30 11.12 13.59 12.2425† 0.6528 11.59 13.62 12.5506† 0.5732
50 40 10.94 14.1 12.1848† 0.6656 11.1 13.84 12.3137† 0.6090
50 50 11.04 13.92 12.2946† 0.7609 11.34 14.36 12.4075† 0.6304
50 60 11.29 15.86 12.5506† 0.9222 11.25 14.1 12.3662† 0.6161
50 70 11.18 15.21 12.6104† 0.8682 11.54 14.57 12.5437† 0.6510
50 80 11.32 15.26 12.8619† 0.7658 11.07 15.56 12.9473† 0.8087
50 90 11.84 15.28 13.0077† 0.8038 11.32 16.2 12.857† 1.0291
50 100 11.72 15.8 13.5058† 0.9565 11.85 15.72 13.2658† 0.7972
50 110 12.02 15.92 13.5204† 0.8750 11.98 15.56 13.4275† 0.7805
50 120 11.9 16.87 13.829† 1.1151 12.43 15.66 13.5106† 0.7265
50 130 12.51 15.97 14.094† 0.8855 12.64 16.32 14.085† 0.8259
50 140 12.16 17.07 14.8198† 1.2154 12.54 16.31 14.15† 0.8865
50 150 13.11 17.98 14.9838† 1.2072 13.08 18 14.8765† 1.0178

100 10 12.56 16.19 13.9815† 0.8083 13.49 16.19 14.5367‡ 0.5672
100 20 11.84 16.45 13.4704† 1.0483 12.02 15.87 13.8244‡ 0.8747
100 30 11.83 17.64 13.9133† 1.3335 12 15.76 13.7206‡ 0.9727
100 40 12.01 17.95 14.6354† 1.3660 11.63 17.01 13.6467‡ 1.3582
100 50 11.87 17.35 14.9156† 1.4272 11.99 17.48 14.1658‡ 1.5554
100 60 12.32 18 15.21† 1.5119 12.12 17.46 14.5021‡ 1.4517
100 70 12.13 18.05 15.6513† 1.2457 12.12 17.16 14.3881† 1.3782
100 80 12.9 18.86 16.2008† 1.4121 12.13 17.56 14.8656† 1.4214
100 90 12.32 20.04 16.3233† 1.7789 12.25 18.66 15.2558† 1.5144
100 100 12.98 20.55 16.7275† 1.7119 13.09 18.42 15.5398† 1.5064
100 110 13.76 20.18 17.2896† 1.5242 13 19.62 15.84† 1.6164
100 120 13.12 20.62 17.626† 1.5807 13.34 19.58 16.4725† 1.5223
100 130 13.52 20.12 17.9052 1.3516 13.84 19.6 16.9367† 1.7362
100 140 14.08 20.52 18.216† 1.6975 14.3 21 17.4387† 1.7372
100 150 14.97 21.19 19.1221 1.2128 14.75 21.13 17.9488† 1.6872

112 Informatica 39 (2015) 105–113 A. Zamuda et al.

Figure 6: The evolved and the reference images, F = 0.5, CR = 0.9.

time with NP = 100 and therefore maximum generation
number of 1000. The attained values tend to converge to-
wards Tmax, but results are worse since the different Tmax,
seen from Figures 4 and 5.

5 Conclusion

This paper presents an evolvable lossy image representa-
tion, approximating an image by comparing it to its evolved
generated counterpart image. The image is represented us-
ing a variable number of triangular brushstrokes, each con-
sisting of a triangle position and color parameters. These
parameters for each triangle brush are evolved using dif-
ferential evolution, which self-adapts the control parame-
ters for mutation and crossover. Also, the proposed DE
extension splits the DE vector in the codon and anticodon
parts, where the triangles material is used only from the
codon part, adjusting the genetic tree center and its bor-
ders, together with the number of triangle brushstrokes to
be rendered. Experimental results show the viability of the
proposed encoding and evolution convergence for the lossy
representation of reference images, where fitness is dis-
played dependent on the population size, maximal number
of function evaluations allowed, maximal number of trian-
gles used in image representation, and different input ref-
erence images. While analyzing the NP and Tmax, more-
over in this paper, we have shown that the self-adaptive jDE
control parameters handling mechanism is preferable to the
fixed control parameters mechanism from the original DE.

Future work can include increasing MAXFES, address-
ing different encoding aspects, evolutionary operators,
control-parameters update, Euclidean distance for colors
comparison, and more case studies on input images with
different properties.

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

F
it
n
e
s
s

Generation

Liberty
Palace

Vegetables
Baboon

Figure 7: Fitness convergence, for best runs of each test
image, F = 0.5, CR = 0.9.

Acknowledgement
This work is supported in part by Slovenian Research
Agency, project P2-0041.

References
[1] B. D. Ackland, N. H. Weste (1981) The edge flag al-

gorithm – a fill method for raster scan displays, IEEE
Transactions on Computers, vol. 100, no. 1, pp. 41–
48.

[2] P. Barile, V. Ciesielski, M. Berry, K. Trist, (2009) An-
imated drawings rendered by genetic programming,
Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 939–946.

[3] S. Bergen, B. J. Ross (2012) Automatic and interac-
tive evolution of vector graphics images with genetic
algorithms, The Visual Computer, vol. 28, no. 1, pp.
35–45.

Differential Evolution Control Parameters Study for. . . Informatica 39 (2015) 105–113 113

[4] J. Brest, S. Greiner, B. Bošković, M. Mernik, V.
Žumer (2006) Self-Adapting Control Parameters in
Differential Evolution: A Comparative Study on Nu-
merical Benchmark Problems, IEEE Transactions on
Evolutionary Computation, vol. 10, no. 6, pp. 646–
657.

[5] S. Das, P. N. Suganthan (2011) Differential Evolu-
tion: A Survey of the State-of-the-art, IEEE Transac-
tions on Evolutionary Computation, vol. 15, no. 1, pp.
4–31.

[6] E. den Heijer, A. E. Eiben (2012) Evolving pop art
using scalable vector graphics, Evolutionary and Bi-
ologically Inspired Music, Sound, Art and Design,
Springer, pp. 48–59.

[7] A. Izadi, V. Ciesielski, M. Berry (2011) Evolutionary
non photo-realistic animations with triangular brush-
strokes, AI 2010: Advances in Artificial Intelligence,
Springer, pp. 283–292.

[8] U. Mlakar, J. Brest, A. Zamuda (2014) Differen-
tial Evolution for Self-adaptive Triangular Brush-
strokes, Proceedings of the Student Workshop on
Bioinspired Optimization Methods and their Applica-
tions (BIOMA), pp. 105–116.

[9] F. Neri, V. Tirronen (2010) Recent Advances in
Differential Evolution: A Survey and Experimental
Analysis, Artificial Intelligence Review, vol. 33, no.
1-2, pp. 61–106.

[10] L. Quan (2010) Image-Based Modeling, 1st edition,
Springer.

[11] S. Rahnamayan, H. R. Tizhoosh (2008) Image thresh-
olding using micro opposition-based Differential
Evolution (Micro-ODE), Proceedings of the World
Congress on Computational Intelligence (WCCI), pp.
1409–1416.

[12] J. Riley, V. Ciesielski (2010) Fitness landscape anal-
ysis for evolutionary non-photorealistic rendering,
Proceedings of the Congress on Evolutionary Com-
putation (CEC), pp. 1–9.

[13] R. Storn, K. Price (1997) Differential Evolution – A
Simple and Efficient Heuristic for Global Optimiza-
tion over Continuous Spaces, Journal of Global Opti-
mization, vol. 11, pp. 341–359.

[14] K. Trist, V. Ciesielski, P. Barile (2010) Can’t see the
forest: Using an evolutionary algorithm to produce an
animated artwork. Arts and Technology, Springer, pp.
255–262.

[15] A. Zamuda, J. Brest (2014) Vectorized procedural
models for animated trees reconstruction using differ-
ential evolution, Information Sciences, vol. 278, pp.
1–21.

[16] A. Zamuda, J. Brest, B. Bošković, V. Žumer (2011)
Differential Evolution for Parameterized Procedural
Woody Plant Models Reconstruction, Applied Soft
Computing, vol. 11, no. 8, pp. 4904–4912.

[17] K. Zielinski, R. Laur (2007) Stopping criteria for a
constrained single-objective particle swarm optimiza-
tion algorithm, Informatica, vol. 31, no. 1, pp. 51–59.

[18] Y. Zhong, L. Zhang (2012) Remote sensing image
subpixel mapping based on adaptive differential evo-
lution, IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics, vol. 42, no. 5, pp.
1306–1329.

114 Informatica 39 (2015) 105–113 A. Zamuda et al.

Informatica 39 (2015) 115–123 115

Parallel Implementation of Desirability Function-Based Scalarization
Approach for Multiobjective Optimization Problems

O. Tolga Altinoz
Ankara University, Electrical and Electronics Engineering, Turkey
E-mail: taltinoz@ankara.edu.tr

Eren Akca
HAVELSAN A.S., Ankara, Turkey
E-mail: eren.akca@havelsan.com.tr

A. Egemen Yilmaz
Ankara University, Electrical and Electronics Engineering, Turkey
E-mail: aeyilmaz@eng.ankara.edu.tr

Anton Duca and Gabriela Ciuprina
Politehnica University of Bucharest, Romania
E-mail: anton.duca@upb.ro, gabriela@lmn.pub.ro

Keywords: parallel implementation, CUDA, particle swarm optimization

Received: December 1, 2014

Scalarization approaches are the simplest methods for solving the multiobjective problems. The idea of
scalarization is based on decomposition of multiobjective problems into single objective sub-problems.
Every one of these sub-problems can be solved in a parallel manner since they are independent with each
other. Hence, as a scalarization approach, systematically modification on the desirability levels of the
objective values of multiobjective problems can be employed for solving these problems. In this study, de-
sirability function-based scalarization approach is converted into parallel algorithm and applied into seven
benchmark problems. The performance of parallel algorithm with respect to sequential one is evaluated
based on execution time on different graphical processing units and central processing units. The results
show that even the accuracy of parallel and sequential codes are same, the execution time of parallel algo-
rithm is up to 24.5-times faster than the sequential algorithm (8.25-times faster on average) with respect to
the complexity of the problem.

Povzetek: Pristopi s skalarizacijo sodijo med najenostavnejše načine reševanja večkriterijskih problemov.
Zamisel skalarizacije temelji na dekompoziciji večkriterijskih problemov v enokriterijske podprobleme, ki
jih lahko rešujemo sočasno, saj niso medsebojno odvisni. Torej lahko uporabimo za reševanje večkriteri-
jskih problemov sistematično spreminjanje nivoja zaželenosti ciljnih vrednosti teh problemov. V tej študiji
smo implementirali vzporedni način skalarizacije na osnovi funkcije zaželenosti in ga aplicirali na sedmih
tesnih problemih. Učinek vzporednega algoritma glede na zaporednega smo ovrednotili z ozirom na čas
izvajanja na različnih grafično-procesnih in centralno-procesnih enotah. Vzporedna različica daje enako
natančne rezultate in je tudi do 24,5-krat hitrejša od zaporedne (8,25-krat v povprečju), glede na zahtevnost
problema.

1 Introduction

The problem for determining the best possible solution set
with respect to multiple objectives is referred to as a multi-
objective (MO) optimization problem. There are many ap-
proaches for the solution of these kinds of problems. The
most straightforward approach, the so-called “scalariza-
tion” or “aggregation” is nothing but to combine the ob-
jectives in order to obtain a single-objective [1].

Scalarization approaches are the simplest methods for
solving the multiobjective problems. The idea of scalariza-
tion is based on decomposition of multiobjective problems
into single objective sub-problems. The solutions of these
single objective sub-problems form the Pareto approxima-
tion set. However, since the number of sub-problems is
much higher than the number of objectives in multiobjec-
tive problem, and each problem is desired to be solved
by single objective optimization algorithm, the computa-

116 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

tion time of scalarization approaches is much higher such
that it becomes unfeasible to be solved by scalarization ap-
proaches. For each sub-problem, a specific number of func-
tion evaluations must be performed by a single objective
optimization algorithm. Hence, a bunch of function evalu-
ations are evaluated for solving multiobjective optimization
problem. Before development of powerful multi-objective
optimization algorithms such as the Non-Dominated Sort-
ing Genetic Algorithm (NSGA) [2], NSGA-II [3] or Vec-
tor Evaluated Genetic Algorithm (VEGA) [4], scalarization
techniques were preferred to solve engineering optimiza-
tion problems. After the development of successful multi-
objective optimization algorithms, scalarization techniques
were considered to be old-fashioned, and they were aban-
doned due to the necessary of much higher number of func-
tion evaluations to obtain approximately same performance
as multiobjective optimization algorithms. However, with
the aid of parallel architectures and devices, it is possible
to reconsider and revisit the scalarization techniques since
these techniques are usually suitable for parallelization.

One of the scalarization approaches for a-priori process
is defined with the aid of a desirability function in this
study. Desirability function is integrated to the particle
swarm optimization algorithm in order to normalize the
joint objective function values [5]. Then, geometric mean
of the desirability levels of each objective is computed in
order to obtain a single value. For each sub-problem, the
shape of the desirability function is shrunk. Therefore
the desirability level is changed and the optimization re-
sults are also varied. At the end of this method, a set of
possible solutions are composed. This set contains both
the dominated and the non-dominated solutions. If nec-
essary, the programmer might run a posterior method like
non-dominated sorting for selecting the non-dominated so-
lutions, as well. However, in this study, the main focus
is to obtain the possible solution set. In this study, with
a similar motivation, we demonstrate how one of these
techniques can be parallelized and present performance of
the approach by implementing on the Graphic Processing
Units (GPUs) via the Compute Unified Device Architec-
ture (CUDA) framework.

This paper is organized as follows: Section 2 explains
the desirability function-based scalarization approach in
detail and Section 3 presents a parallel implementation of
the proposed method. Section 4 gives the implementation
environment, benchmark problems and performance evalu-
ation of the proposed method. The last section presents the
conclusion and future work off the proposed method.

2 Desirability Function-Based
Scalarization Approach

In a general manner, the desirability functions can be ap-
plied in order to incorporate the decision maker’s prefer-
ences without any modification of the single-objective op-
timization algorithm. The decision maker chooses a desir-

ability function and corresponding level. At each steps/it-
erations of the algorithm, instead of objective values; de-
sirability index is calculated. At the end of the algorithm
only a single solution is ready for collected by the decision
maker. Even this method uses the advantages of desirabil-
ity functions (Desirability functions are explained in Sec-
tion 2.1) decision maker has small control on final result
since a solution is obtained on a region defined by the de-
sirability function (Figures 3 and 4) instead of on a line like
weighted sum approach. However, in this study, by defin-
ing a systematical reduction approach, our aim is not to
include or incorporate the preference of the decision maker
but to present a generalized multi-objective optimization
method for obtaining many possible solution candidates,
that proposed method is applied as a scalarization approach
like weighted sum method. Therefore a systematic ap-
proach was previously proposed by changing the shape of
desirability functions by three of the authors of this paper
[6]. For N objective problem, N numbers of desirability
functions are selected with respect to the boundaries of the
problem. Next, desirability functions are divided into lev-
els and each level corresponding to one of the single objec-
tive implementation. For example of two objective problem
case which was investigated in this paper, two desirability
functions are defined and they are divided into same level
(let’s say 10) per function. Since there are two desirabil-
ity functions defined, there are 100 single objective imple-
mentations in total. The previous study [6] show that the
performance of the desirability function is greatly depends
on the number of the levels, in other words the number of
the single objective evaluations. Also the results obtained
in the previous study are showed that, it is acceptable for
bi-objective problems. However, still the performance of
the proposed approach is greatly depends on the number
of levels, which increases the total number of computation
time. Hence, in this study, the parallel cores of CPU and
GPU are using as computation units for single objective
optimization algorithms, and the total evaluation times are
recorded for comparison. The aim of this paper is to show
the applicability of the proposed method with the aid of
parallel architectures of CPU and GPU.

2.1 Desirability Function

The desirability function idea was first introduced by Har-
rington in 1965 for the multi-objective industry quality
control. After the proposition of the desirability function
concept, Deringer and Suich [7] introduced two different
desirability function formulations, which become the fun-
damental equations of desirability functions. These two de-
sirability function definitions are given by (1), (2) and (3),
which are called one-sided and two-sided, respectively.

The parameters given in equations are as follows: y is
the input, for our case it is the objective function value,
hmin, hmax and hmed are the minimum, maximum and the
median acceptable values for the domain of the two-sided
desirability function.

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 117

Figure 2: The linear desirability functions constructed for the bi-objective optimization problem.

d1(y) =


1, y < hmin

(y−hmax

hmin−hmax
)r, hmin < y < hmax

0, y > hmax

(1)

d2(y) =


0, y < hmin

(y−hmin

hmax−hmin
)r, hmin < y < hmax

1, y > hmax

(2)

d3(y) =


0, y < hmin

(y−hmin

hmed−hmin
)t, hmin < y < hmed

(y−hmax

hmed−hmax
)s, hmed < y < hmax

0, y > hmax

(3)

The desirability level d(y) = 1 is the state for fully desir-
able, and d(y) = 0 is for a not-desired case. In this respect,
d1 one-sided desirability function is useful for minimiza-
tion problem. The curve parameters are r, t and s. They
are used in order to plot an arc instead of solid line, when
desired. Curves plot in Figure 1 demonstrate the effects
of the curve parameters and the graphs of the desirability
functions.

2.2 Method of Desirability Function-Based
Scalarization

The main idea beneath the desirability functions is as fol-
lows:

– The desirability function is a mapping from the do-
main of real numbers to the range set [0, 1].

– The domain of each desirability function is one of the
objective functions; and it maps the values of the rel-
evant objective function to the interval [0, 1].

– Depending on the desire about minimization of each
objective function (i.e., the minimum / maximum tol-
erable values), the relevant desirability function is
constructed.

– The overall desirability value is defined as the geomet-
ric mean of all desirability functions; this value is to
be maximized.

Particularly, for a bi-objective optimization problem in
which the functions f1 and f2 are to be minimized, the
relevant desirability functions d1(f1) and d2(f2) can be
defined as in Figure 2. The desirability functions are not
necessarily defined to be linear; certainly, non-linear defi-
nitions shall also be made as described in [7].

Throughout this study, we prefer the linear desirability
functions.

In [6], a method for extraction of the Pareto front was
proposed by altering the shapes of the desirability functions
in a systematical manner. Particularly by:

– Fixing the parameters f1max_tol and f2max_tol seen in
Figure 2 at infinity, and

– Varying the parameters f1min_tol and f2min_tol system-
atically,

It is possible to find the Pareto front regardless of its con-
vexity or concavity. This claim can be illustrated for the bi-
objective case as follows: as seen in Figure 3, the param-
eters f1min_tol and f2min_tol determine the sector which is
traced throughout the solution. The obtained solution cor-
responds to a point for which the geometric mean of the two
desirability values. As seen in Figure 4, even in the case
of concave Pareto front, the solution can be found without
loss of generality. In other words, unlike the weighted-sum
approach, the method proposed in [6] does not suffer from
the concave Pareto fronts.

In [6], the applicability and the efficiency of the
proposed scalarization approach was demonstrated via
some multi-objective benchmark functions. Each single-
objective problem (i.e., the scalarization scheme) was

118 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

Figure 1: The graphical demonstration of the desirability
functions.

Figure 3: The solution via the desirability-function based
approach for convex Pareto front.

Figure 4: The solution via the desirability-function based
approach for concave Pareto front.

solved with Particle Swarm Optimization. Despite no ex-
plicit demonstration or proof, it was claimed that:

– There were no limitations about the usage of Parti-
cle Swarm Optimization; i.e., any other heuristic al-
gorithm could be incorporated and implemented.

– The proposed method can be easily parallelizable.

In this study, we demonstrate the validity of these claims
by performing a parallel implementation on GPUs via the
CUDA framework. The next section is devoted to the im-
plementation details.

3 Parallel Multiobjective
Optimization with GPU

This section is dedicated to explaining the steps and idea of
parallelizing the Desirability function-based scalarization
approach with the aid of CUDA library.

3.1 Fundamentals of CUDA Parallel
Implementation

The researchers familiar with the programming languages
used to desire a programming language or framework let-
ting them write parallel codes easily. For this purpose in
2007, NVidia [8] introduced a software framework called
CUDA. By means of this, a sequential function code can

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 119

be converted to a parallel kernel by using the libraries and
some prefix expressions. By this way, the programmers do
not need to learn a new programming language. They are
able to use their previous know-how related to C/C++, and
enhance this knowledge with some basic expressions intro-
duced by CUDA. However, without the knowledge about
the CUDA software and the parallel architecture hardware,
it is not possible to write efficient codes.

CUDA programming begins with the division of the ar-
chitectures. It defines the CPU as host and GPU as de-
vice. The parallel programming actually is the assignment
of duties to parallel structure and collection of the results
by CPU. In summary, the codes are written for CPU on
C/C++ environment, and these codes include some paral-
lel structures. These codes are executed by the host. Host
commands device for code executed. When the code is exe-
cuted by the device, the host waits until the job is finished,
then a new parallel duty can be assigned, or results from
the finished job can be collected by the host. Thus, the de-
vice becomes a parallel computation unit. Hence, parallel
computing relies on the data movement between host and
device. Eventhough both host and device are very fast com-
putation units, the data bus is slower. Therefore, in order
to write an efficient program, the programmer must keep
his/her code for minimum data transfer between the host
and the device.

The GPU has stream multiprocessors (SMs). Each SM
has 8 stream processors (SPs), also known as cores, and
each core has a number of threads. In tesla architecture
there are 240 SPs, and on each SP has 128 threads, which is
the kernel execution unit. The bodies of threads are called
groups. The groups are performed collaterally with respect
to the core size. If the GPU architecture has two cores, then
two blocks of threads are executed simultaneously. If it has
four cores, then four blocks are executed collaterally.

Host and device communicate via data movement. The
host moves data to the memory of the GPU board. This
memory is called global memory which is accessed from
all threads and the host. The host has also access to con-
stant and texture memories. However, it cannot access the
shared memory, which is a divided structure assigned for
every block. The threads within the block can access their
own shared memory. The communication of the shared
memory is faster than the global memory. Hence, a par-
allel code must contain data transfers to shared memory
more often, instead of global memory.

In this study, random numbers are needed to execute the
algorithm. Hence, instead of the rand() function of the
C/C++ environment, CURAND library of the CUDA pack
has been employed. In addition, the CUDA Event is pre-
ferred for accurate measurement of the execution time. In
the next section, the parallel implementation of desirability
function-based scalarization was explained in detailed.

3.2 Parallel Implementation of Desirability
Function-Based Scalarization

The main idea of our parallel implementation throughout
this study is illustrated in Figure 5.

Each scalarization scheme is handled in a separate
thread; after the relevant solutions are obtained, they are
gathered in a centralized manner to constitute the Pareto
front from which the human decision maker picks a solu-
tion according to his/her needs. This approach ensures that
the number of solutions found that can be found in parallel
is limited by the capability of the GPU card used.

As stated before, we implemented the Particle Swarm
Optimization Algorithm for verification of the aforemen-
tioned claims. The parallel CUDA implementation was
compared to the sequential implementation on various
GPUs and CPUs.

Figure 5: The parallel CUDA implementation of the
desirability-function based approach.

It was seen that both implementations (sequential and
parallel CUDA) were able to find the same solutions but in
different elapsed times. As seen in Figure 6, if the num-
ber of Pareto front solutions increase, the advantage of the
parallel CUDA increases dramatically.

Figure 6 presents parallel implementation of scalariza-
tion approach for the weighted sum method. The simple
convex problem is selected and defined in (4) and (5) as a
test bed for present the performance of the parallelization
method for scalarization.

120 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

f1(x) = x2 (4)

f2(x) = (x− 2)2 (5)

According to Figure 6, the performance of high and mid-
level GPU cards are approximately 10-times faster than se-
quential implementation. The results obtained in Figure 6
yields the following conclusions:

– For a small number of Pareto solutions, CPU performs
better against GPU

– After 64 solutions, parallel implementation presents
better results than sequential code

– An old-fashion mobile GPU performs almost same as
a relatively high level CPU.

– As the number of solution increases, the professional
high level GPU devices perform more stable than gen-
eral purpose GPUs.

4 Implementation, Results, and
Discussion

The parallel desirability function-based scalarization ap-
proach was applied to solve seven benchmark problems.
These problems are selected based on the complexity
against execution time on computation unit. Since the av-
erage number of execution time is considered in the study,
problems from simple calculation to problems with more
branch and complex functions. In this section the bench-
mark problems and the results with respect to execution
time is presented.

4.1 Benchmark Problems
In this study, ten benchmark problems [9] with different
complexity and Pareto shape are selected to present the per-
formance of the method. Table 1 gives the mathematical
formulations of the problems. The performance compar-
ison is performed not only on the accuracy of the results,
but more importantly on the execution time. As given in Ta-
ble 1 the complexity of the benchmark problems are given
from simple to more complex problems. The reason be-
hind is that as the complexity of the function is increased,
the single processors have to accomplish much more cal-
culations, and since the single processors on a GPU has
lower capacity than CPU, it will be a good comparison for
not only the number of solutions in solution space but also
the problem complexity.

Table 1 presents as three columns. The first column gives
the known-names of benchmark problems. The reader can
be access amount of information about the function by
searching by selecting keyword as function name. The sec-
ond column is the mathematical formulation of the func-
tion. As the order of row increases the complexity of the

function also increases. The last column is for the defines
of the range of the decision variables.

4.2 Implementation Results
Table 2 presents the execution time comparison of CPU
(Xeon E2620) and GPU (Tesla K20) for various numbers
of levels from 8×8 to 100×100, number of single objective
evaluations are 64 and 104 respectively. For low complex
problems, until 225 numbers of levels (400 levels need for
hard problems), the CPU outperforms GPU implementa-
tion with respect to execution time. It is reasonable since
only small portion of cores on GPU can be used. But lower
number of relatively very fast cores are finished the exe-
cutions earlier than GPU. From 400 to 6, 400 levels, GPU
computation time of parallel codes exceeds CPU time. At
6, 400 levels, the difference between CPU and GPU is at
the peak grade. After that level, the advantage of GPU re-
duces. In other words, the GPU implementation acts more
sequentially, since there are not any empty resources to ex-
ecute parallel implementation. Among all of the problems,
UF1 is the hardest for GPU implementation since the com-
putation time is the longest for this problem. The main
reasons are that: a) checking mechanism for even and odd
parts that adds branch to the code, b) square of the trigono-
metric function. for GPU implementation branch are the
time consuming programming codes such that in an if-else,
both parts are evaluated by the architecture, that reduces
the resources.

The average execution time of CPU is 8.25-times slower
than average GPU execution time. The following results
are obtained for comparison the execution time:

– For a small number of solutions, CPU outperforms
GPU

– The increase on CPU execution time is proportional
to the number of solutions. Hence, the execution time
on CPU increases.

– The GPU implementations are much beneficial for
overall comparison.

– For a very high number of solutions, the improve-
ments obtained in GPU slowly decreases since GPU
contains limited number of stream (multi)processors.
At some point the improvements are not lower than ≈
10-times on average.

5 Conclusion
In this study, desirability function-based scalarization ap-
proach is evaluated in a parallel fashion. Since the perfor-
mance of sequential and parallel implementations are sim-
ilar to each other, the execution time of these codes are
compared based on different number of solutions. The re-
sults show that, for small number of solutions, parallel im-
plementation is slower when compared to sequential im-
plementation. But as the number of solution increases, the

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 121

Table 1: Multiobjective benchmark problems

Function Mathematical description Decision
name variable range

f1(x) = x1

ZDT1 f2(x) = g(1−
√

f1
g) 0 ≤ xi ≤ 1

g = 1 + 9
n−1

∑n
i=2 xi

f1(x) = x1
ZDT2 f2(x) = g(1− (f1g)2) 0 ≤ xi ≤ 1

g = 1 + 9
n−1

∑n
i=2 xi

f1(x) = x1

ZDT3 f2(x) = g(1−
√

f1
g −

x1

g sin(10πx1)) 0 ≤ xi ≤ 1

g = 1 + 9
n−1

∑n
i=2 xi

f1(x) = x1 + 2
|J1|

∑
i∈J1(xi − sin(6πx1 + iπ

n))2 0 ≤ xi ≤ 1

UF1 f2(x) = 1−√x1 + 2
|J2|

∑
i∈J2(xi − sin(6πx1 + iπ

n))2 −1 ≤ xi−1 ≤ 1

J1 = {i| i is odd and 2 ≤ i ≤ n}, J2 = {i| i is even and 2 ≤ i ≤ n}

f1(x) = x1 + 2
|J1|

∑
i∈J1 y

2
i 0 ≤ xi ≤ 1

UF2 f2(x) = 1−√x1 + 2
|J2|

∑
i∈J1 y

2
i −1 ≤ xi−1 ≤ 1

yi =

{
xi − (0.3x21 cos(24πx1 + 4iπ

n) + 0.6x1) cos(6πx1 + iπ
n), i ∈ J1

xi − (0.3x21 cos(24πx1 + 4iπ
n) + 0.6x1) sin(6πx1 + iπ

n), i ∈ J2

f1(x) = x1 + 2
|J−1| ((4

∑
i∈J1 y

2
i)− (2

∏
i∈J1 cos(20yiπ√

i
)) + 2)

UF3 f2(x) = 1−√x1 + 2
|J−2| ((4

∑
i∈J2 y

2
i)− (2

∏
i∈J2 cos(20yiπ√

i
)) + 2) 0 ≤ xi ≤ 1

yi = xi − x
0.5(1+

3(i−2)
n−2)

1

f1(x) = x1 + 2
|J1|

∑
i∈J1 h(yi) 0 ≤ xi ≤ 1

UF4 f2(x) = 1− x21 + 2
|J2|

∑
i∈J2 h(yi) −2 ≤ xi−1 ≤ 2

yi = xi − sin(6πx1 + iπ
n), h(t) = t

1+e2t

122 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

Table 2: Execution time comparison [seconds] of benchmark functions, where improvement, impr, is the scale factor
shows how many times the GPU is faster than CPU, so that if impr < 1 means CPU is faster than GPU

of levels for Devices
2 desirability & ZDT1 ZDT2 ZDT3 UF1 UF2 UF3 UF4 Average
functions impr

CPU 0.133 0.109 0.19 0.11 0.109 0.109 0.094 0.1220
8× 8 GPU 0.433 0.4504 0.483 0.4917 0.4861 0.4906 0.408 0.4633

impr 0.3072 0.2420 0.3934 0.2237 0.2242 0.2222 0.2304 0.2633
CPU 0.221 0.153 0.291 0.222 0.199 0.197 0.168 0.2073

10× 10 GPU 0.439 0.451 0.4848 0.4934 0.49 0.4914 0.405 0.4649
impr 0.5034 0.3392 0.6002 0.4499 0.4061 0.4009 0.4148 0.4450
CPU 0.446 0.333 0.576 0.42 0.418 0.413 0.372 0.4254

15× 15 GPU 0.4424 0.4576 0.4904 0.499 0.4944 0.4967 0.409 0.4699
impr 1.0081 0.7277 1.1746 0.8417 0.8455 0.8315 0.9095 0.9055
CPU 0.8 0.564 0.997 0.717 0.706 0.728 0.811 0.7604

20× 20 GPU 0.4281 0.442 0.4781 0.5 0.4977 0.5 0.4146 0.4658
impr 1.8687 1.2760 2.0853 1.4340 1.4185 1.4560 1.9561 1.6421
CPU 1.21 0.893 1.521 1.12 1.444 1.114 0.987 1.1841

25× 25 GPU 0.4393 0.4573 0.491 0.5 0.4954 0.499 0.408 0.4700
impr 2.7544 1.9528 3.0978 2.2400 2.9148 2.2325 2.4191 2.5159
CPU 1.753 1.266 2.279 1.582 1.589 1.59 1.428 1.6410

30× 30 GPU 0.4424 0.4566 0.4871 0.501 0.4973 0.4979 0.4132 0.4708
impr 3.9625 2.7727 4.6787 3.1577 3.1953 3.1934 3.4560 3.4880
CPU 3.162 2.186 4.094 2.794 2.854 2.757 2.508 2.9079

40× 40 GPU 0.4451 0.453 0.4893 0.4999 0.4983 0.4991 0.4151 0.4714
impr 7.1040 4.8256 8.3671 5.5891 5.7275 5.5239 6.0419 6.1684
CPU 4.879 3.431 6.138 4.412 4.382 4.298 3.889 4.4899

50× 50 GPU 0.4488 0.4639 0.4967 0.5119 0.5 0.501 0.4321 0.4792
impr 10.8712 7.3960 12.3576 8.6189 8.7640 8.5788 9.0002 9.3695
CPU 6.946 4.798 9.492 6.236 6.411 6.391 6.233 6.6439

60× 60 GPU 0.4709 0.4864 0.518 0.5287 0.518 0.519 0.4587 0.5000
impr 14.7505 9.8643 18.3243 11.7950 12.3764 12.3141 13.5884 13.2876
CPU 9.52 6.764 11.959 8.566 8.548 8.562 7.592 8.7873

70× 70 GPU 0.4995 0.5144 0.5417 0.5489 0.539 0.5435 0.4923 0.5256
impr 19.0591 13.1493 22.0768 15.6058 15.8590 15.7534 15.4215 16.7036
CPU 12.488 8.87 15.892 11.11 11.366 11.538 13.307 12.0816

80× 80 GPU 0.6179 0.6321 0.6488 0.6388 0.635 0.6362 0.607 0.6308
impr 20.2104 14.0326 24.4945 17.3920 17.8992 18.1358 21.9226 19.1553
CPU 15.776 11.246 20.027 14.039 14.138 14.053 14.583 14.8374

90× 90 GPU 0.8299 0.854 0.8749 0.8424 0.84 0.8432 0.8335 0.8454
impr 19.0095 13.1686 22.8906 16.6655 16.8310 16.6663 17.4961 17.5325
CPU 19.2579 13.863 24.504 17.252 19.219 17.74 15.49 18.1894

100× 100 GPU 1.1157 1.149 1.1812 1.12 1.222 1.125 1.132 1.1493
impr 17.2608 12.0653 20.7450 15.4036 15.7275 15.7689 13.6837 15.8078

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 123

Figure 6: Comparison of the sequential Java and the parallel CUDA implementations.

GPU is almost 20-times faster than sequential implementa-
tion.

Acknowledgement

This study was made possible by grants from the Turk-
ish Ministry of Science, Industry and Technology (In-
dustrial Thesis – San-Tez Programme; with Grant Nr.
01568.STZ.2012-2) and the Scientific and Technological
Research Council of Turkey - TÜBITAK (with Grant Nr.
112E168). The authors would like to express their grati-
tude to these institutions for their support.

References
[1] R. Marler, S. Arora (2009) Transformation methods

for multiobjective optimization, Engineering Opti-
mization, vol. 37, no. 1, pp. 551–569.

[2] N. Srinivas, K. Deb (1995) Multi-Objective function
optimization using non-dominated sorting genetic al-
gorithms, Evolutionary Computation, vol. 2, no. 3,
pp. 221-–248.

[3] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan (2002)
A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 2, pp. 182-–197.

[4] J. D. Schaffer (1985) Multiple objective optimization
with vector evaluated genetic algorithms, Proceed-
ings of the International Conference on Genetic Al-
gorithm and their Applications, pp. 93–100.

[5] J. Branke, K. Deb (2008) Integrating user prefer-
ences into evolutionary multiobjective optimization,
Knowledge Incorporation in Evolutionary Comput-
ing, Springer, pp. 461–478.

[6] O. T. Altinoz, A. E. Yilmaz, G. Ciuprina (2013) A
Multiobjective Optimization Approach via Systemat-
ical Modification of the Desirability Function Shapes,
Proceedings of the 8th International Symposium on
Advanced Topics in Electrical Engineering.

[7] G. Derringer, R. Suich (1980) Simultaneous op-
timization of several response variables,Journal of
Quality Technology, vol. 12, no. 1, pp. 214–219.

[8] NVIDIA Corporation (2012) CUDA dynamic paral-
lelism programming, NVIDIA.

[9] E. Ziztler, K. Deb, L. Thiele (2000) Comparison of
multiobjective evolutionary algorithms: Empirical re-
sults, Evolutionary Computation Journal, vol. 8, no.
2, pp. 125–148.

124 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

Informatica 39 (2015) 125–133 125

Using a Genetic Algorithm to Produce Slogans

Polona Tomašič
XLAB d. o. o., Pot za Brdom 100, SI-1000 Ljubljana, Slovenia and
Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: polona.tomasic@xlab.si

Gregor Papa
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia and
Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: gregor.papa@ijs.si

Martin Žnidaršič
Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia and
Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: martin.znidarsic@ijs.si

Keywords: genetic algorithm, slogan generation, computational creativity, linguistic resources

Received: December 1, 2014

Creative tasks, such as creation of slogans for companies, products or similar entities, can be viewed from
the combinatorial perspective – as a search through the space of possible combinations. To solve such a
combinatorial optimization problem, we can use evolutionary algorithms. In this paper, we present our
solution for generation of slogans based on a genetic algorithm and linguistic resources. We also compare
it to the unguided slogan generator.

Povzetek: Na kreativne naloge, kot je snovanje sloganov za podjetja in produkte, lahko gledamo s kombi-
natoričnega vidika – kot na iskanje v prostoru možnih kombinacij. Za reševanje tovrstnih kombinatoričnih
optimizacijskih problemov lahko uporabljamo evolucijske algoritme. V tem članku predstavljamo rešitev
za generiranje sloganov na podlagi genetskega algoritma in jezikovnih virov. Predstavljeno rešitev primer-
jamo tudi z generatorjem sloganov brez vodenja.

1 Introduction
Automated generation of slogans is a problem from the
field of Computational Creativity [5]. There are very few
studies dedicated to slogan generation. In fact, the only one
we came across is the BRAINSUP framework [19], which
is based on beam search through a carefully defined space
of possible slogans. This space gets reduced by applying
user specified constraints on keywords, domain, emotions,
and other properties of slogans.

High quality slogans are often a result of group brain-
storming. Several individuals present their ideas and the
proposed slogans are then mixed into new slogans, and
some new ideas emerge. This brainstorming process is sim-
ilar to the evolution, from which we got the idea of using
evolutionary algorithms for slogan generation. The initial
slogans from brainstorming represent an initial population,
mixing the best proposed slogans represents recombina-
tion, and new included ideas represent mutations. Evolu-
tionary algorithms have already been applied to different
natural language processing problems [2].

In this paper, we present our slogan generation proce-

dure which is not influenced by the user in any way, apart
from being provided with a short textual description of
the target entity. The method is based on a genetic algo-
rithm (GA) [3]. Genetic algorithms are the most traditional
evolutionary algorithms and they ensure a good coverage
of the search space. They have been successfully used
for generating recipes [17], poetry [13] and trivial dialog
phrases [16]. However, genetic algorithms have not been
previously used for slogan generation. Our method follows
the BRAINSUP framework in the initial population genera-
tion phase, and it uses a collection of heuristic slogan func-
tions in the evaluation phase.

We tested our slogan generator and compared it to the
random slogan generator. The statistical results are in fa-
vor of our method. However, even though the generated
slogans can present a good starting point for brainstorm-
ing, their quality is not yet at the desired level.

The rest of the paper is organized as follows. In Section
2 we present the linguistic and semantic resources used in
our solution. Section 3 provides a detailed description of
the entire slogan generation process. It includes descrip-
tion of the evaluation functions and it clarifies the differ-

126 Informatica 39 (2015) 125–133 P. Tomašič et al.

ence between the slogan generator and the unguided slogan
generator. The performed experiments and the discussion
of the results are presented in Section 4. The conclusions
are drawn in Section 5.

2 Resources
Linguistic and semantic resources are a prerequisite for any
kind of text generation. We use them at several steps of
our method – for generation of initial population, mutation,
and evaluation. Some are available as extended libraries for
programming languages, others are available for download
from the Internet, and some databases were created by our-
selves. The origin of the data and the process is briefly
described in the following paragraphs.

1. Database of famous slogans: it serves as a basis for
the initial population generation and for comparison
with generated slogans. It contains 5,249 famous slo-
gans obtained from the Internet.

2. Database of frequent grammatical relations be-
tween words in sentences: for its acquisition we used
the Stanford Dependencies Parser [14]. Stanford de-
pendencies are triplets containing two words and the
name of the relation between them. The parser also
provides part-of-speech (POS) tags and phrase struc-
ture trees. To get representatives of frequent gram-
matical relations between words, we parsed 52,829
random Wikipedia pages, sentence by sentence, and
obtained 4,861,717 different dependencies.

3. Database of slogan skeletons: slogan skeletons were
obtained by parsing famous slogans with the Stanford
Dependencies Parser. A slogan skeleton contains in-
formation about each position in the sentence – its
POS tag and all its dependence relations with other
words in the sentence. It does not contain any content
words, only stop words. An example of a skeleton is
shown in Figure 1.

Figure 1: Example of a skeleton.

3 Slogan Generation
An input of our slogan generator is a short textual descrip-
tion about the target entity. It is the only required input
from a user. It is used to obtain the name of the target en-
tity and a set of keywords. An output is a list of generated
slogans. The whole procedure is shown in Algorithm 1.

3.1 Extraction of the Keywords and the
Main Entity

The most frequent non-negative words from the input text
are selected as keywords. Negative words are detected us-
ing the Nodebox English Linguistics library [18]. The main
entity is usually the name of the company and is obtained
by selecting the most frequent entity in the whole text using
the nltk library [4].

3.2 Generation of the Initial Population of
Slogans

The procedure of generating the initial population of slo-
gans is based on the BRAINSUP framework [19], with some
modifications. It follows the steps in Algorithm 2. Skele-
tons are obtained from the database of slogan skeletons.
Fillers are the words from the database of all grammatical
relations between words in sentences that satisfy all pre-
defined dependencies and POS tags. If there are any key-
words in a set of all possible filler words, the algorithm
assigns them higher priority for the selection phase. The
main difference between our algorithm and the BRAIN-
SUP method is in the selection of filler words. We don’t
consider any user specified constraints, while the BRAIN-
SUP framework uses beam search in the space of all possi-
ble lexicalizations of a skeleton to promote the words with
the highest likelihood of satisfying the user specifications.
Thus using our method we can produce many different slo-
gans from the same slogan skeleton, whereas BRAINSUP
produces only one for given user specifications.

3.3 Evaluation of Slogans
An aggregated evaluation function is used to evaluate the
slogans. It is composed of 9 different sub-functions, each
assessing a particular feature of a slogan, with scores in the
interval [0,1]. Parameter of the aggregation function is a
list of 9 weights that sum to 1. They define the proportions
of sub-functions in the overall score. In this subsection, we
give a short description for every one of them.

3.3.1 Bigram Function

In order to work with 2-grams, we obtained the dataset
of 1,000,000 most frequent 2-grams and 5,000 most fre-
quent words in Corpus of Contemporary American English
(COCA) [6]. We assume that slogans containing many fre-
quent 2-grams, are more likely to be semantically coherent.

Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 127

Algorithm 1: SloganGenerator

1 Input: A textual description of a company or a product T , Size of the population SP, Maximum number of iterations
MaxIterations, Crossover probability pcrossover, Mutation probability pmutation, Set of evaluation weights W .

2 Output: A set of generated slogans S.
1: Keywords,Entity ⇐ GetKeywordsAndEntity(T)
2: P ⇐ CreateInitialPopulation(SP,Keywords,Entity)
3: Evaluate(P)
4: Iteration⇐ 0
5: while Iteration < MaxIterations do
6: Parents⇐ ChooseParentsForReproduction(P)
7: Children⇐ Crossover(Parents, pcrossover)
8: Children⇐Mutation(Children, pmutation)
9: NewGeneration⇐ DeleteSimilarSlogans(P,Children)

10: while Size(NewGeneration) < SP do
11: AddRandomlyGeneratedSlogan(NewGeneration)
12: end while
13: Evaluate(NewGeneration)
14: P ⇐ SPBestSlogans(NewGeneration)
15: Iteration⇐ Iteration+ 1
16: end while
17: S ⇐ P

Algorithm 2: CreateInitialPopulation

1 Input: Size of the population SP, a set of target keywords K, and the target entity E.
2 Output: A set of initial slogans S.

1: S ⇐ ∅
2: while SP > 0 do
3: SloganSkeleton⇐ SelectRandomSloganSkeleton()
4: while not AllEmptySlotsFilled(SloganSkeleton) do
5: EmptySlot⇐ SelectEmptySlotInSkeleton(SloganSkeleton)
6: Fillers⇐ FindPossibleFillerWords(EmptySlot)
7: FillerWord⇐ SelectRandomFillerWord(Fillers)
8: FillEmptySlot(SloganSkeleton, F illerWord)
9: end while

10: AddFilledSkeleton(S, SloganSkeleton)
11: SP ⇐ SP − 1
12: end while

3.3.2 Length Function

The length function is very strict, it assigns score 1 to slo-
gans with less than eight words, and score 0 to longer ones.
The threshold between 0 and 1 was set according to the re-
sults of the experiments, which showed that a large major-
ity of the generated slogans that contained more than seven
words were grammatically incorrect and semantically in-
coherent. Also, more than 90% of the famous slogans are
less than eight words long. This function acts as an abso-
lute constraint and that is why no values between 0 and 1
are allowed.

3.3.3 Diversity Function

The diversity function evaluates a slogan by counting the
number of repeated words. The highest score goes to a slo-

gan with no repeated words. If a slogan contains identical
consecutive words, it receives score 0.

3.3.4 Entity Function

It returns 1, if slogan contains the main entity, and 0, if it
doesn’t.

3.3.5 Keywords Function

If one up to half of the words in a slogan belong to the set
of keywords, the keywords function returns 1. If a slogan
doesn’t contain any keyword, the score is 0. If more than
half of the words in the slogan are keywords, the score is
0.75.

128 Informatica 39 (2015) 125–133 P. Tomašič et al.

3.3.6 Word Frequency Function

This function prefers slogans with many frequent words. A
word is considered to be frequent, if it is among 5,000 most
frequent words in COCA. The frequency score is obtained
by dividing the number of frequent words by the number of
all words in the slogan.

3.3.7 Polarity and Subjectivity Functions

Polarity of a slogan indicates whether slogan contains pos-
itive or negative words. For instance, the adjective “happy"
is a positive word. In a similar way subjectivity of a slogan
indicates whether slogan contains words that express the
attitude of the author. For instance, the adjectives “good"
and “bad" both represent the opinion of the author and are
therefore subjective. The polarity and subjectivity scores
are calculated based on the adjectives in the slogan, using
the sentiment function from pattern package for Python [7].

3.3.8 Semantic Relatedness Function

This function computes the relatedness between all pairs
of content words in a slogan. Stop words are not taken into
account. Each pair of words gets a score based on the path
distance between corresponding synsets (sets of synonyms)
in WordNet [15]. The final score is the sum of all pairs’
scores divided by the number of all pairs.

3.4 Production of a New Generation of
Slogans

A list of all generated slogans is ordered descending with
regard to the evaluation score. We use 10% elitism [8]. The
other 90% of parent slogans are selected using a roulette
wheel [11].

A new generation is built by pairing parents and per-
forming the crossover function followed by the mutation
function, which occur with probabilities pcrossover and
pmutation, respectively. Offspring are then evaluated and
compared to the parents, in order to remove very similar
ones. If the number of the remaining slogans is smaller
than the size of the population, some additional random
slogans are generated using the method for creation of ini-
tial population. After that, slogans proceed into the next
generation. These steps are repeated until the predefined
number of iterations is achieved.

3.4.1 Crossover

We use two types of crossover functions, the big and the
small one. Both inspect POS tags of the words in both par-
ents, and build a set of possible crossover locations. Each
element in the set is a pair of numbers. The first one pro-
vides a position of crossover in the first parent and the sec-
ond one in the second parent. The corresponding words
must have the same POS tag. Let the chosen random pair
from the set be (p, r). Using the big crossover, the part of

the first parent, from the p-th position forward, is switched
with the part of the second parent, from the r-th position
forward. For the small crossover only the p-th word in
the first parent and the r-th word in the second parent are
switched. Examples for the big and the small crossover are
illustrated in Figure 2.

We [PRP] bring [VBP] good [JJ] things [NNS] to [DT] life [NN].

Fly [VB] the [DT] friendly [JJ] skies [NNS].

We bring friendly skies.

Fly the good things to life.

Just [RB] do [VB] it [PRP].

Drink [VB]more [JJR] milk [NN].

Just drink it.

Do more milk.

big:

small:

Figure 2: Examples for the big and the small crossover.1

3.4.2 Mutation

Two types of mutation are possible. Possible big muta-
tions are: deletion of a random word; addition of an ad-
jective in front of a noun word; addition of an adverb in
front of a verb word; replacement of a random word with
new random word with the same POS tag. Small mutations
are replacements of a word with its synonym, antonym,
meronym, holonym, hypernym or hyponym. A meronym
is a word that denotes a constituent part or a member of
something. The opposite of a meronym is a holonym – the
name of the whole of which the meronym is a part. A hy-
pernym is a general word that names a broad category that
includes other words, and a hyponym is a subdivision of
more general word.

Functions for obtaining such replacements are embedded
into the Nodebox English Linguistics library and are based
on the WordNet lexical database.

3.4.3 Deletion of Similar Slogans

Every generated slogan is compared to all its siblings and
to all the evaluated slogans from the previous generation.
If a child is identical to any other slogan, it gets removed.
If more than half of child’s words are in another slogan, the
two slogans are considered similar. Their evaluation scores
are being compared and the one with higher score remains
in the population while the other one is removed. The child
is also removed if it contains only one word or if it is longer
than 10 words. Deletion of similar slogans prevents the
generated slogans to converge to the initial ones. This has
been checked by testing our method without the deletion of
similar slogans phase.

1Slogans used in the examples were or still are official slogans of the
following companies: General Electric, United Airlines, Nike, and BC
Dairy Association.

Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 129

3.5 Correction of Grammatical Errors
Crossover and mutation functions may cause grammatical
errors in generated slogans. For instance, incorrect usage
of determiners (e.g., “a apple" instead of “an apple"), se-
quence of incompatible words (e.g., “a the"), and others.
Spelling mistakes were much less frequent.

In order to remove both types of errors in the final slo-
gans, we tested different spell- and grammar checkers. One
example of a spell-checker is Hunspell [12]. Its downside
is that it works on one word at a time and does not take
the word’s context into account. As the majority of er-
rors in slogans originated from grammar, we tested sev-
eral grammar checkers. They, on the other hand, work on
the sentence level rather than on the word level. Most of
these grammar checkers are available as online services,
and don’t support API calls. One that does is python-
ginger [10] – a Python package for fixing grammar mis-
takes. It comes with an unofficial Ginger [9] API. This tool
corrects different types of grammatical mistakes. It is also
used for contextual spelling correction. We used python-
ginger only on final slogans, the ones that are displayed
to the user, because the corrected slogan may not have the
same structure anymore. Possible added words, or replac-
ing a word with another one with different POS tag would
cause errors while executing crossover, mutation and eval-
uation functions.

3.6 Unguided Slogan Generator
For the purpose of evaluation of our slogan generation
method, we also implemented an unguided slogan gener-
ator (USG). This generator produces random slogans, such
as the ones in the initial population. The only difference
between our method and the unguided slogan generation
method is in the production of a new generation. USG has
no crossover and the mutation steps. Instead it produces a
new generation using a method for creation of initial popu-
lation. Thus children are independent of the previous gen-
eration. The algorithmic steps are shown in Algorithm 3.

4 Experiments
We tested the slogan generation method on different input
texts and for different values of algorithm parameters. We
analyzed the results of every iteration of the genetic algo-
rithm to see how the slogans’ scores changed and made
further assessment of the generator by comparing its results
with the results of the unguided slogan generator.

4.1 Experimental Setting
4.1.1 Input Text

In the presented experiments, we use a case of the Croatian
provider of marine solutions, Sentinel. Sentinel is a control
module that provides more security to boat owners, and is

comprised of a network of sensors and a central informa-
tion hub. It ensures the vessel is monitored at all times. The
input text was obtained from the Sentinel’s web-page [21].

4.1.2 Algorithm Parameters

Different combinations of weights of the evaluation func-
tion were tested on a set of manually evaluated slogans. We
added one constraint – the weight of the keywords function
had to be at least 0.2 in order to include keywords in the slo-
gans. Without this constraint the computed weight for the
keywords was almost zero. The comparison of the com-
puted and the manually assigned scores showed that the
highest matching was achieved with the following weights:
[bigram: 0.25, length: 0.01, diversity: 0.01, entity: 0.1,
keywords: 0.2, frequent words: 0.25, polarity: 0.01, sub-
jectivity: 0.02, semantic relatedness: 0.15].

Probabilities for crossover and mutation were set to
pcrossover = 0.8 and pmutation = 0.7. The probability
for mutation was set very high, because it affects only one
word in a slogan. Consequently the mutated slogan is still
very similar to the original one. Thus the high mutation
probability does not prevent population from converging to
the optimum solution. For the algorithm to decide which
type of crossover to perform, we set probabilities for the
big, the small and both crossovers to 0.4, 0.2 and 0.4, re-
spectively. The mutation type is chosen similarly. Proba-
bilities of the big and the small mutation were set to 0.8 and
0.2. These algorithm parameters were set according to the
results of testing on a given input text, as their combination
empirically leads to convergence.

We performed three experiments and for each of them
we executed 20 runs of the algorithm using the same input
parameter values. The difference between these three tests
was in the size of the population (SP) and the number of it-
erations (NIt). Those were chosen according to the desired
number of all evaluations (≈ 6, 800 NoE), and the NoE was
set according to the desired execution time for one run of
the algorithm – approximately 2 hours.

1. SP: 25, NIt: 360
2. SP: 50, NIt: 180
3. SP: 75, NIt: 120

4.1.3 Comparison with the Unguided Slogan
Generator

For comparison, we performed three experiments with the
unguided slogan generator. For each of them we executed
20 runs of the algorithm using the same input parameter
values as in the experiments with slogan generator. The
initial populations were also identical. The number of iter-
ations were again chosen so as to match the number of all
evaluations (≈ 6, 800 NoE) in the experiments with slogan
generator:

1. SP: 25, NIt: 300
2. SP: 50, NIt: 150
3. SP: 75, NIt: 100

130 Informatica 39 (2015) 125–133 P. Tomašič et al.

Algorithm 3: UnguidedSloganGenerator

1 Input: A textual description of a company or a product T , Size of the population SP, Maximum number of iterations
MaxIterations, Set of evaluation weights W .

2 Output: A set of generated slogans S.
1: Keywords,Entity ⇐ GetKeywordsAndEntity(T)
2: P ⇐ CreateInitialPopulation(SP,Keywords,Entity)
3: Evaluate(P)
4: Iteration⇐ 0
5: while Iteration < MaxIterations do
6: Children⇐ CreateInitialPopulation(SP,Keywords,Entity)
7: NewGeneration⇐ DeleteSimilarSlogans(P,Children)
8: while Size(NewGeneration) < SP do
9: AddRandomlyGeneratedSlogan(NewGeneration)

10: end while
11: Evaluate(NewGeneration)
12: P ⇐ SPBestSlogans(NewGeneration)
13: Iteration⇐ Iteration+ 1
14: end while
15: S ⇐ P

In USG, children in new generations are frequently identi-
cal to parents, and therefore need no evaluation (we already
have the scores of the parents). We wanted to compare the
two generators based on the number of evaluations, not the
number of iterations. For our slogan generator to reach the
same number of evaluations as the unguided slogan gen-
erator, it needs to perform more iterations of genetic algo-
rithm. That is why the numbers of iterations in SG and
USG differ.

4.2 Results and Discussion
Comparing the statistical results of the initial and final pop-
ulations of slogans, there were no major differences be-
tween the 20 runs of the algorithm on the same input data
for all 6 experiments. The number of evaluations for each
run is approximately 6, 800.

Statistics of average initial slogans’ scores are in Table 1.
The numbers are the same for both generators. Average fi-
nal slogans’ scores are in Table 2. The average minimum
score is much higher using the unguided slogan generator
(USG). This is because in our slogan generator (SG) many
slogans get deleted in the deletion phase of the algorithm.
Consequently some new random slogans are automatically
included in a new generation, and they can have very low
evaluation scores. However, SG has higher maximum slo-
gan scores. This suggests that the usage of crossover and
mutation functions actually increases the slogan scores.
The average score of the 10 best slogans is higher using
the SG.

Numbers in both tables show that average slogans’
scores increased a lot from the initial population to the fi-
nal one. Figures 3 and 4 show the relation between average
slogan scores and the number of performed evaluations in
a genetic algorithm using SG and USG. Using the USG
causes the scores to increase immensely already in the first

few iterations of the genetic algorithm. After that, they do
not increase much anymore. In SG slogans’ scores increase
a little bit slower, but at some point they exceed the USG
scores.

From the two graphs in Figures 3 and 4 one might con-
clude that the unguided slogan generator is at least as good
as our developed slogan generation method. However, the
numbers are calculated on slogans from a whole genera-
tion. In practice we don’t expect the user to go through all
75 final slogans, but only a few. Thus only the best few
slogans from the final list are important. Table 3 shows the
average scores for the 10 best final slogans. In this case the
slogan generator outperforms the unguided slogan genera-
tor.

In the following two lists, there are examples of slogans
for one specific run of the algorithm. The first list contains
10 best-rated initial slogans and the second one contains
10 best-rated final slogans for the case when the size of
the population was set to 50. Evaluation scores are in the
brackets. The final slogans list contains the corrected ver-
sions of slogans using the Ginger API.

Initial Population:

1. Former offices for all its members houses. (0.692)
2. The lowest water to play Sentinel build. (0.664)
3. Land routes to better places. (0.663)
4. The Sentinel performance is topic. (0.662)
5. On day to perform. (0.642)
6. The side take in region. (0.639)
7. Even now right as not. (0.638)
8. A precise application consists with a pair. (0.632)
9. Draft the choice of allowing. (0.629)

10. The initiative in pursuing systems and weapons.
(0.623)

Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 131

Table 1: Comparison of average initial slogans’ scores for population sizes 25, 50 and 75.

Size of the population Minimum Maximum Average Median Standard deviation
25 0.000 0.713 0.287 0.359 0.257
50 0.000 0.740 0.289 0.302 0.257
75 0.000 0.730 0.274 0.295 0.251

Table 2: Comparison of average final slogans’ scores using our slogan generator (SG) and the unguided slogan generator
(USG) for population sizes 25, 50 and 75
Size of the population Minimum Maximum Average Median Standard deviation

25 (SG) 0.578 0.906 0.801 0.823 0.088
50 (SG) 0.511 0.927 0.793 0.807 0.090
75 (SG) 0.488 0.939 0.773 0.791 0.094

25 (USG) 0.763 0.840 0.795 0.796 0.021
50 (USG) 0.723 0.837 0.767 0.761 0.032
75 (USG) 0.707 0.840 0.750 0.743 0.036

Table 3: Comparison of average scores of 10 best final slogans, using our slogan generator (SG) and the unguided slogan
generator (USG) for population sizes 25, 50 and 75

Size of the population Minimum Maximum Average Median Standard deviation
25 (SG) 0.833 0.906 0.869 0.870 0.023
50 (SG) 0.877 0.927 0.895 0.892 0.019
75 (SG) 0.871 0.939 0.902 0.902 0.023

25 (USG) 0.799 0.840 0.816 0.813 0.013
50 (USG) 0.804 0.837 0.819 0.813 0.011
75 (SG) 0.801 0.840 0.818 0.814 0.013

Final Slogans:

1. Enjoy the part like water for sentinel. (0.958)
2. Enjoy a take of routine on sentinel. →

Enjoy a track of routine on sentinel. (0.958)
3. Make all safety in safe for sentinel. →

Make all safety in safe for a sentinel. (0.958)
4. Demand and enjoy the use in sentinel. →

Demand and enjoy the ease in sentinelthe sentinel.
(0.958)

5. Write a base for demand on sentinel. (0.948)
6. Demand the of potential as sentinel. (0.945)
7. Enjoy a sentinel performance show. (0.922)
8. Themes for head on sentinel. (0.913)
9. Contents with application on sentinel. →

Contents with application of sentinel. (0.913)
10. Make the sentinel performance plays. (0.897)

The analysis of initial populations and final slogans in
all runs of experiments shows that the majority of slogans
are semantically incoherent and have grammatical errors.
However, slogans produced with the unguided slogan gen-
erator seemed more structured and semantically coherent.
This is understandable, since the crossover and mutation
functions in our slogan generator affect the sentence struc-
ture a lot. The percentage of corrected final slogans is also
in favor of the unguided slogan generator: 24.6% of final
slogans produced with USG got corrected with the Ginger

API, while the percentage of corrected final slogans for SG
is 33.9%. But we need to take into account the fact that
Ginger API does not work without mistakes. Some of the
corrections are strange or unnecessary (e.g., see example 4
in the final slogans list).

5 Conclusion
The proposed slogan generation method works and could
be potentially useful for brainstorming. It produces slo-
gans solely from the textual description of the target en-
tity. No other user specifications are needed. The genetic
algorithm ensures higher slogan scores with each new iter-
ation. Our method outperforms the unguided slogan gen-
erator whose best 10 final slogans have significantly lower
average scores. The unguided slogan generator also needs
more than six times more time to produce and evaluate the
same number of slogans as our slogan generator.

The evaluation function is inherently hard to formalize
and seems not yet fully aligned with human evaluation.
The definitions of evaluation sub-functions need further
improvement in order to increase the quality of slogans,
not only their scores.

The current algorithm is suitable only for production of
slogans in English. The lack of resources and different lan-
guage properties would require a lot of work in order to
adapt our algorithm to another language.

132 Informatica 39 (2015) 125–133 P. Tomašič et al.

0 1,000 2,000 3,000 4,000 5,000 6,000
0.2

0.4

0.6

0.8

Number of Evaluations

A
ve

ra
ge

Sl
og

an
s’

Sc
or

es

Population size: 25
Population size: 50
Population size: 75

Figure 3: Slogan generator: average scores of slogans in a relation to the number of evaluations.

0 1,000 2,000 3,000 4,000 5,000 6,000
0.2

0.4

0.6

0.8

Number of Evaluations

A
ve

ra
ge

Sl
og

an
s’

Sc
or

es

Population size: 25
Population size: 50
Population size: 75

Figure 4: Unguided slogan generator: average scores of slogans in a relation to the number of evaluations.

Following are some ideas for the future work that would
improve the quality of slogans. One is detecting and cor-
recting grammatical errors already during the generation
phase. New weights for the evaluation could be com-
puted periodically with semi-supervised learning on manu-
ally assessed slogans. The parallelization of GA [1] might
provide gains in performance. Also, the GA parameters
could be adaptively calculated during the optimization pro-
cess [20].

Acknowledgement
This research was partly funded by the European Union,
European Social Found, in the framework of the Opera-
tional Programme for Human Resources Development, by
the Slovene Research Agency and supported through EC
funding for the project ConCreTe (grant number 611733)
and project WHIM (grant number 611560) that acknowl-
edge the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Frame-

work Programme for Research of the European Commis-
sion.

References
[1] E. Alba, J. M. Troya (1999) A survey of parallel dis-

tributed genetic algorithms, Complexity, vol. 4, pp.
31–52.

[2] L. Araujo (2009) How evolutionary algorithms are
applied to statistical natural language processing, Ar-
tificial Intelligence Review, vol. 28, pp. 275–303.

[3] T. Bäck (1996) Evolutionary Algorithms in Theory
and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Oxford Univer-
sity Press.

[4] S. Bird, E. Klein, E. Loper (2009) Natural language
processing with Python, O’Reilly Media.

Using a Genetic Algorithm to Produce Slogans Informatica 39 (2015) 125–133 133

[5] S. Colton, R. Mantaras, O. Stock (2009) Computa-
tional Creativity: Coming of age, AI Magazine, vol.
30, no. 3, pp. 11–14.

[6] M. Davies, N-grams data from the Corpus of Contem-
porary American English (COCA), www.ngrams.
info, downloaded on April 15, 2014.

[7] T. De Smedt, W. Daelemans (2012) Pattern for
Python, Journal of Machine Learning Research, vol.
13, pp. 2063–2067.

[8] D. Dumitrescu, B. Lazzerini, L. C. Jain, A. Du-
mitrescu (2000) Evolutionary Computation, CRC
Press.

[9] Ginger, www.gingersoftware.com/
grammarcheck, accessed on October 17, 2014.

[10] Ginger API, github.com/zoncoen/
python-ginger, accessed on October 17,
2014.

[11] J. H. Holland (1992) Adaption in Natural and Artifi-
cial Systems, MIT Press.

[12] Hunspell, hunspell.sourceforge.net, ac-
cessed on October 20, 2014.

[13] R. Manurung, G. Ritchie, H. Thompson (2012) Using
genetic algorithms to create meaningful poetic text,
Journal of Experimental & Theoretical Artifcial In-
telligence, vol. 24, pp. 43–64.

[14] M. Marneffe, B. MacCartney, C. Manning (2006)
Generating typed dependency parses from phrase

structure parses, Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC), pp. 449–454.

[15] G. A. Miller (1995) WordNet: A Lexical Database
for English, Communications of the ACM, vol. 38, pp.
39–41.

[16] C. S. Montero, K. Araki (2006) Is it correct?: Towards
web-based evaluation of automatic natural language
phrase generation, Proceedings of the Joint Confer-
ence of the International Committee on Computa-
tional Linguistics and the Association for Computa-
tional Linguistics (COLING/ACL), pp. 5–8.

[17] R. G. Morris, S. H. Burton (2012) Soup over bean
of pure joy: Culinary ruminations of an artifcial chef,
Proceedings of the International Conference on Com-
putational Creativity (ICCC), pp. 119–125.

[18] NodeBox, nodebox.net/code/index.php/
Linguistics, accessed on October 17, 2014.

[19] G. Özbal, D. Pighin, C. Strapparava (2013) BRAIN-
SUP: Brainstorming Support for Creative Sentence
Generation, Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics, pp.
1446–1455.

[20] G. Papa (2013) Parameter-less algorithm for
evolutionary-based optimization, Computational
Optimization and Applications, vol. 56, pp. 209–229.

[21] Sentinel, sentinel.hr, accessed on October 10,
2014.

134 Informatica 39 (2015) 125–133 P. Tomašič et al.

Informatica 39 (2015) 135–145 135

Comparing Evolutionary Operators, Search Spaces, and Evolutionary
Algorithms in the Construction of Facial Composites

Joseph James Mist, Stuart James Gibson and Christopher John Solomon
School of Physical Sciences, University of Kent, Canterbury, United Kingdom
E-mail: jm441@kent.ac.uk, s.j.gibson@kent.ac.uk, c.j.solomon@kent.ac.uk

Keywords: interactive evolutionary algorithm, facial composite

Received: December 1, 2014

Facial composite construction is one of the most successful applications of interactive evolutionary com-
putation. In spite of this, previous work in the area of composite construction has not investigated the
algorithm design options in detail. We address this issue with four experiments. In the first experiment a
sorting task is used to identify the 12 most salient dimensions of a 30-dimensional search space. In the sec-
ond experiment the performances of two mutation and two recombination operators for interactive genetic
algorithms are compared. In the third experiment three search spaces are compared: a 30-dimensional
search space, a mathematically reduced 12-dimensional search space, and a 12-dimensional search space
formed from the 12 most salient dimensions. Finally, we compare the performances of an interactive
genetic algorithm to interactive differential evolution. Our results show that the facial composite construc-
tion process is remarkably robust to the choice of evolutionary operator(s), the dimensionality of the search
space, and the choice of interactive evolutionary algorithm. We attribute this to the imprecise nature of hu-
man face perception and differences between the participants in how they interact with the algorithms.

Povzetek: Kompozitna gradnja obrazov je ena izmed najbolj uspešnih aplikacij interaktivnega evoluci-
jskega računanja. Kljub temu pa do zdaj na področju kompozitne gradnje niso bile podrobno raziskane
možnosti snovanja algoritma. To vprašanje smo obravnavali s štirimi poskusi. V prvem je uporabljeno
sortiranje za identifikacijo 12 najbolj izstopajočih dimenzij 30-dimenzionalnega preiskovalnega prostora.
V drugem primerjamo učinkovitost dveh mutacij in dveh rekombinacijskih operaterjev za interaktivni
genetski algoritem. V tretjem primerjamo tri preiskovalne prostore: 30-dimenzionalni, matematično re-
ducirani 12-dimenzionalni in 12-dimenzionalni prostor sestavljen iz 12 najpomembnejših dimenzij. Na
koncu smo primerjali uspešnost interaktivnega genetskega algoritma z interaktivno diferencialno evolucijo.
Rezultati kažejo, da je proces kompozitne gradnje obrazov izredno robusten glede na izbiro evolucijskega
operatorja(-ev), dimenzionalnost preiskovalnega prostora in izbiro interaktivnega evolucijskega algoritma.
To pripisujemo nenatančni naravi percepcije in razlikam med interakcijami uporabnikov z algoritmom.

1 Introduction
Consider a situation in which a person witnesses a crime
being committed by an unknown perpetrator. In the in-
terests of identifying and subsequently locating the perpe-
trator, a facial image is often created from the witnesses’
memory of the event. The traditional method is for the
witness to select, from a database, individual facial fea-
tures which a composite system operator then combines to
form a likeness to the perpetrator called a facial compos-
ite. However, psychological research has shown that peo-
ple generally recognise faces as whole objects (holistically)
as opposed to recognising faces as collections of individual
features [24, 6]. Also, people find it difficult to recall faces
from memory and describe them whereas recognising an
individual from a photograph of their face is a relatively
easy task. Holistic methods for facial composite construc-
tion have been developed that account for these facets of
human memory. EFIT-V [26] and EvoFIT [7] are commer-
cial systems based on these principles that were developed

in the early 2000s. EFIT-V is now used by over 75% of
police constabularies in the UK and by many other law en-
forcement agencies in countries around the world.

The holistic method represents faces as points in a mul-
tidimensional search space. In our work, we refer to such
a search space as a face-space due to its conceptual simi-
larity to the notion of face-space in cognitive psychology
research [25]. The key idea is to navigate from an initial
starting point navigate to a unique region of face-space that
corresponds to a facial likeness of the perpetrator.

The dimensions of face-space are determined by the
principle components (PCs) of a training set of face images
[5]. Each PC represents a unique holistic aspect of facial
appearance and accounts for a proportion of the statistical
image variance within the training set. The PCs are ordered
by decreasing variance such that the first PC accounts for
more variation than the second PC which accounts for more
variation than the third PC etc. Faces not included in the
training set, such as a perpetrator’s face, may also be ap-

136 Informatica 39 (2015) 135–145 J. Mist et al.

proximated by a weighted sum of the PCs.
To produce a likeness of a perpetrator, some process for

searching the face-space is required. A simple approach is
to use a bank of sliders in which each slider corresponds to
a single PC. This method has been used in a workable com-
posite system [3] but has two drawbacks: it is unlikely that
any one slider will produce a change in facial appearance
that maps to a simple semantic description (e.g. thin face)
and the number of permutations of for the bank of sliders
becomes cognitively prohibitive even for a relatively small
number of PCs.

An alternative, less demanding, method for locating a
face in a face-space is to use an iterative process whereby
generated faces are assessed by the witness according to
their similarity to the perpetrator. This method is imple-
mented in EFIT-V and EvoFIT using interactive evolution-
ary algorithms (IEAs). In IEAs the fitness function evalua-
tion, standard in evolutionary algorithms (EAs), is replaced
by subjective human evaluation. IEAs are suitable for tasks
requiring human assessment of solutions in which input
values are difficult to optimise individually because of in-
teraction between input values and because of the noisy and
imprecise nature of human interaction. Takagi [23] pro-
vides many examples of tasks that IEAs have been applied
to, including the fitting of hearing aids, graphic art, and in-
dustrial design.

Genetic algorithms (GAs) were introduced by Holland
in 1973 [12]. GAs can be used to solve problems requiring
binary, integer, and real valued inputs and are easy to im-
plement. For these reasons, interactive genetic algorithms
(IGAs) are a popular choice of IEA. IGAs were used in the
implementation of EFIT-V and EvoFIT and have also been
applied to tasks such as image filtering [15] and product
design [4].

The use of human evaluation places limitations on an
IEA which are not usually present in an EA. Fatigue will
limit the number of individuals (faces) a user is willing to
evaluate. Fatigue also limits the granularity of the scale
upon which individuals can be rated. For example, a scale
of 1–100 is overly burdensome whereas a simple “good”
or “not good” decision is less so [28]. It is a demanding
task for users to assign absolute fitness scores to individu-
als, which limits the number of individuals that a user can
be expected to evaluate. An alternative approach that en-
ables users to evaluate more individuals, albeit generally
less thoroughly, is to allow the user to compare individuals
to each other. For example, individual “A” could be better
than, as good as, or worse than individual “B”. The latter
approach to evaluation is used in the IEAs implemented for
comparison in this work.

When using an EA to solve a problem, care is taken to
choose an appropriate algorithm, operators, and parameter
values. In most cases it is feasible to perform many runs,
comparing different algorithm design options and parame-
ter values to see which yield the best result. Such compar-
isons are prohibitively difficult when working with IEAs
because of the limitations placed by human evaluation.

In an effort to make these comparisons, mathematical

models of human evaluation, which we refer to here as vir-
tual users, have been used in place of human participants
when optimising aspects of IEAs. These virtual users are
effectively EAs implemented with limitations that model
those imposed by human evaluation. Virtual users were
used in the early development of EFIT-V and EvoFIT to
choose effective IGAs, set population sizes, mutation rates,
and selection pressures [19, 11, 8, 9].

It is difficult to judge the usefulness of the virtual user
approach as there is virtually no work evaluating design
decisions at the parameter/operator level of algorithm de-
sign that use human participants. An experiment conducted
by Breukelaar et al. [2] used a colour matching task to
compare the use of three fixed step size and one variable
step size mutation parameters in an interactive evolution
strategy. The work concluded that using variable step size
enabled colour matches to be achieved quicker than using
fixed step sizes. Oinuma et al. [18] compared four recombi-
nation operators in a face beautification task and concluded
that a novel recombination method introduced in the pa-
per performed better than existing recombination methods.
These results were not confirmed using statistical analysis
and therefore it is not known whether the observed differ-
ences were due to genuine differences between the opera-
tors or if they were due noise in the data gathered. More
robust testing of design decisions using human participants
is required to gauge whether the comparison of parameter
values and operators is useful or whether differences be-
tween users generally renders any differences between the
design options irrelevant.

EFIT-V uses a face-space model determined by 60 PCs
[21] whereas the number of PCs used in EvoFIT is harder to
discern but [9] and [10] imply that the maximum possible
number of PCs is used. The question of the optimal num-
ber of PCs to use does not appear to have been addressed
since the earliest work in the development of EFIT-V and
EvoFIT. The imperfect nature of human face recognition
implies that the number of dimensions used in holistic fa-
cial composite systems could be reduced significantly with-
out any perceived loss in image accuracy. If the number
of PCs to be used is reduced then the most obvious PCs
to retain are those which account for the most statistical
variation in the training set. These PCs may not necessar-
ily, however, be those that account for the most perceptual
variation. In this paper we ask if human evaluation should
play a role in selecting those PCs that are used to create a
face-space of reduced dimensionality.

It is reasonable to expect that the difference between al-
gorithms is more significant than the difference between
operators. Differential evolution (DE) is a relatively recent
metaheuristic algorithm having been introduced by Storn
and Price in 1997 [22]. Examples of applications for inter-
active differential evolution (IDE) include forensic image
segmentation [17] and optimising optical illusions [16].

Work on comparing IEAs is as scant as that for com-
paring operators and parameter settings. Kurt et al. [13]
compared a number of biologically inspired metaheuristic

Comparing Evolutionary Operators, Search Spaces, and. . . Informatica 39 (2015) 135–145 137

algorithms, including IDE and IGAs, for facial composite
construction. It was found that IDE required fewer evalua-
tions create a composite but the recognition rate of the IDE
composites was lower than for the other algorithms. Lee
and Cho [14] compared an IDE algorithm to an IGA and to
a direct input manipulation method for an image enhance-
ment task and found that participants generally favoured
the IDE algorithm for usability. In neither of these experi-
ments was a statistical comparison between the algorithms
undertaken and so it is unknown whether these results are
reliable.

In this work we construct a 12-dimensional “human
reduced” face-space using human evaluation of the dif-
ferences between pairs of faces drawn from a larger 30-
dimensional face-space. We then compare two mutation
operators and two recombination operators in an IGA us-
ing a task in which participants create facial composites
from memory. In the third experiment the performance of
searches using the human-reduced face-space, developed
in the first experiment, is compared to that of the larger 30-
dimensional face-space and a “mathematically reduced”
12-dimensional face-space using the same facial compos-
ite task. In the final experiment, we compare an IGA to an
IDE algorithm.

2 Theory

2.1 Face-space model
A face-space model was constructed that captures the nat-
ural variation of shape and texture (the shading and colour)
of human faces. The training set of photographs used to
build our face-space model consists of 27 male and 63 fe-
male faces of various ages. The model building process
starts with manually placing 190 land mark points on each
photograph to delineate the key facial features at, for ex-
ample, at the corners of the eyes, the bottom of the chin,
and the outline of the eyebrows. The face shape of each
subject in the training set is hence defined by a 380 dimen-
sional vector containing the x-y coordinates of 190 land
mark points.

The face shapes are aligned, using the Procrustes
method, and the mean face shape s̄ calculated. Princi-
pal components analysis (PCA) is used to reduce the 380-
dimensional shape model to a smaller number of dimen-
sions. Any face shape s can then be approximated as ŝ by
the shape model using

ŝ = Psbs + s̄ (1)

where Ps are the PCs of the shape model ordered from
most important (the PCs which account for the most vari-
ance in the data) to least important and bs is a vector of pa-
rameters that determine how the shape PCs are combined
to make the face shape.

In order to create the texture model that encodes the
image pixel values, each photograph in the training set is

partitioned using its land mark points and Delaunay tri-
angulation. Piecewise affine transforms are used to warp
each training image to the mean face shape thereby form-
ing shape normalised texture patterns. PCA is then used
to find a texture model of much fewer dimensions than the
original pixel space of the normalised texture patterns. As
with the face shapes, any face texture g may be approxi-
mated using

ĝ = Pgbg + ḡ. (2)

where Pg are the PCs of the face texture ordered from the
most important to least important and bs are parameters
that determine how the texture PCs are combined to make
the face texture. Finally, a face-space model is created from
the combined shape and texture models using PCA to fur-
ther reduce the number of dimensions. Thus, the appear-
ance model parameters, c, of any face can be approximated
as ĉ using

ĉ = QT

[
wbs
bg

]
≡ QT

[
wPT

s (ŝ− s̄)
PT
g (ĝ − ḡ)

]
(3)

where Q are the appearance PCs of the training set or-
dered from the most important to the least important and
w scales the shape parameters such that equal significance
is assigned to shape and texture.

New faces can be generated by setting the values of an n-
dimensional parameter vector c and performing the above
process in reverse. Starting with the extraction of b

b =

n∑
i=1

qici (4)

where qi is the i-th column of matrix Q in Equation 3.
The shape and texture parameters bs and bg are extracted
from b and are used in Equations 1 and 2 to find the shape
parameters s and texture parameters g. The pixel intensi-
ties in g are rearranged into a two-dimensional (or three-
dimensional for colour images) array of pixels which then
form an intermediate face image with mean face shape. As-
pects of the edge of the face image which are due to the
land marking process have a dominant unwarranted effect
on the perception of the face. To counter this effect the gen-
erated face texture is inserted and blended into a softened
background. The resulting image is subsequently warped
according to the shape parameters, s, to form the final face
image.

It is important to note that there are many features which
cannot be reproduced using this method. Apart from obvi-
ous highly distinctive features such as birthmarks and scars,
more mundane high frequency features such as beards and
hair cannot be effectively rendered. In commercial soft-
ware these features are added separately using overlays and
drawing packages.

2.2 The interactive algorithms used
The IEAs used in this work both used the same representa-
tion for the genotypes: n-dimensional real valued vectors

138 Informatica 39 (2015) 135–145 J. Mist et al.

where n is the number of dimensions of the face-space be-
ing used.

A larger population requires more processing time to
generate the composites and imposes a greater cognitive
burden on the user whereas a smaller population size means
that a greater number of generations is required to achieve
a satisfactory composite. EvoFIT uses a population size of
18, EFIT-V uses uses a population size of 9. We used a
population size of 9 for both the IGA and IDE because this
number of images could be displayed at a reasonable scale
and also limits the cognitive demands placed on the user
when comparing faces.

The IGA used in this work is very similar to that devel-
oped by Frowd [8]. Only three levels of fitness evaluation
are allowed: preferred (best), selected, and not selected.
Every generation exactly one individual is chosen as the
preferred individual. This individual is carried unaltered
into the following generation. Eight new individuals are
needed to populate each generation. Each new individual
has two parents and so a mating pool of sixteen individuals
is required.

Stochastic universal sampling (SUS) [1] is used to select
the parents to go into the mating pool. In SUS a “wheel”
bearing a superficial similarity to a roulette wheel, is con-
structed based on the fitness values of individuals in the
previous generation. In the IGA used in this work, each
selected individual is assigned an equal sized section of the
wheel except for the preferred individual which is assigned
a double sized wedge. To select the parents, a “spinner”
comprising sixteen equally spaced arms is spun and for ev-
ery arm that “comes to rest” on a particular section the in-
dividual corresponding to that section is added once to the
parent pool.

Once the parent pool is filled, individuals are drawn from
the pool in pairs to undergo recombination to form new in-
dividuals. Uniform crossover and arithmetic crossover re-
combination operators are used in our experiments. In our
implementation of uniform crossover there is equal chance
that the offspring will inherit each gene from either parent.
In our implementation of arithmetic crossover the value of
each gene in an offspring is the mean of the values for that
gene in the parents.

After a new individual is created using recombination it
undergoes mutation. We used Gaussian addition and Gaus-
sian replacement mutation operators in our experiments. In
Gaussian addition, the mutated gene value c′i is given by

c′i = ci + σi ·m · ri (5)

where σi is the standard deviation (SD) of the data on the
i-th PC, m is the mutation factor set by the user on the
interface, and ri is a random number from the Gaussian
distribution N(0, 1). Gaussian replacement is the name
given in this paper to an analogous method to the uniform
mutation operator. In uniform mutation, each gene ci in
an offspring’s genotype will be replaced, with probability
pm, by a uniformly distributed random value c′i such that
c′i ∈ [Lower limit,Upper limit]. The Gaussian replacement
operator is similar except that c′i is a random number taken

from N(0, 1) and multiplied by the SD of the data on the i-
th PC. c′i has the further restriction that it is bounded by
a hyperrectangle which designates the edge of the face-
space, that is c′i ∈ [−2.5, 2.5] SDs. This was done to re-
duce the likelihood of implausible faces or faces exhibiting
image artefacts. The mutation probability is set by the mu-
tation slider and is restricted to the range [0, pmax] where
pmax = 5/ (the dimensionality of the face-space).

The IDE algorithm used is an adaptation of basic DE as
presented by Price et al. [20]. In DE each member of the
population is the main parent of exactly one offspring. This
main parent is the target vector and the offspring is known
as the trial vector. Three other parents are used to gen-
erate each trial vector; the base vector and two difference
vectors. Once the trial vectors have been generated each is
compared to its target vector. If the trial vector is found to
be fitter than its target vector then the trial vector takes the
place of target vector in the population.

The first step in creating a trial vector is to create a mu-
tant vector according to

xmutant = xbase + F (xdiff1 − xdiff2) (6)

where xbase is the base vector, xdiff1 and xdiff2 are the dif-
ference vectors, and F is the mutation scale factor which is
usually constrained to the range (0, 1). The second step is
to cross the mutant vector with the target vector to create
the trial vector according to

xi,trial =

{
xi,mutant if ri < Cr
xi,target otherwise (7)

where Cr is the crossover probability and ri is a random
number drawn from a uniform distribution in the range
(0, 1). To ensure that xtrial 6= xtarget, if xtrial = xtarget

one random position i in xtrial would be set such that
xi,trial = xi,mutant. A virtual user was used to find optimal
values of F and Cr for the IDE implemented in this work,
as some values of F and Cr can lead to, for example, pre-
mature convergence. The optimal values were found to be
F = 0.6 and Cr = 0.5. Preliminary testing with human
evaluation confirmed that these values were suitable.

The target, base, and difference vectors were chosen to
be different members of the population. Each vector was
used as the base vector exactly once per generation. The
order for the base vectors was determined using the ran-
dom permutation method. The difference vectors for each
trial vector were chosen at random from the population ex-
cluding the trial vector’s target and base vectors.

3 Software for Experiments 2, 3,
and 4

We developed software using Matlab that generates faces
from our face-space model using input values determined
using IEAs. The IEAs were designed and built specifically
for this work.

Comparing Evolutionary Operators, Search Spaces, and. . . Informatica 39 (2015) 135–145 139

Figure 1: Screenshot of the interface for the IGA

A screenshot of the interface developed for the IGA is
given in Figure 1. For every generation the participant
would choose, using the left mouse button, exactly one pre-
ferred composite face that best resembled the target face
they were trying to recreate. Additionally, if the partici-
pant thought that any of the other faces were a good like-
ness, they had the option of selecting these using the right
mouse button. Anywhere from zero to eight faces could
be selected in this way. A green border was placed around
the face the participant preferred, a yellow border for those
faces the participant thought were also good, and a black
border for those faces that were not selected. Once they
were satisfied that they had selected the best match, and
any other matches they considered to be good, the par-
ticipant would go to the next generation by pressing the
‘Next’ button. The participant would repeat the process
until they thought no further improvement was possible, at
which point they would click on the ‘Finish’ button.

A mutation slider was included so that participants could
adjust the value of the mutation parameter. For the experi-
ments reported in this paper, the mutation slider was decre-
mented by 0.03 per generation by the software (the slider’s
range was [0, 1]). A ‘Back’ button was included which
enabled the participant to go back to the previous gener-

ation and make alternative selections or adjust the muta-
tion slider if they were not satisfied with the current gener-
ation. This design decision was based on comments from
participants in earlier experiments who expressed a desire
for such functionality when the population as a whole was
worse than that of the previous generation.

Screenshots of the interface developed for the IDE algo-
rithm are given in Figures 2 and 3. In every generation the
participant would look for a satisfactory match to the target
face within the population. If a satisfactory face was ap-
parent the participant could select it and click the ‘Finish’
button. If no such face was apparent they would click the
‘Next’ button to generate the trial vectors and their corre-
sponding faces (Figure 2). The faces generated from the
trial vectors would be compared to those generated from
their target vectors on a pairwise basis (Figure 3). From
each pair of faces, the participant was asked to click on the
face which most closely resembled the target and then click
on the ‘OK’ button. Once the participant had completed the
nine pairwise comparisons the new population of individ-
uals was presented to them. At this stage the participant
could continue or finish. The participant also had the op-
tion of redoing the pairwise comparisons if they thought
that the current population was generally worse than that
of the previous generation by pressing the ‘Redo’ button.

140 Informatica 39 (2015) 135–145 J. Mist et al.

Figure 2: Screenshot of the main interface for the IDE algorithm

Figure 3: Screenshot of the pairwise selection interface for
the IDE algorithm

Comparing Evolutionary Operators, Search Spaces, and. . . Informatica 39 (2015) 135–145 141

(a) Faces generated at ±3 SDs on the 1-st PC (b) Faces generated at ±3 SDs on the 30-th PC

Figure 4: The pairs of faces at ±3 SDs on the 1-st and 30-th PCs

4 Experiment 1: Identifying the
most perceptually significant PCs

4.1 Method
In the first experiment 32 participants performed a face
sorting task to determine which 12 of the first 30 PCs, de-
rived using PCA, are perceptually most significant. Ac-
cordingly, thirty pairs of faces were generated from the first
30 PCs. Each pair of faces was constructed from points
at ±3 SDs along one of the PCs. If we form a ‘large’
30-dimensional face-space in which a face’s representation
is given by c = [c1, c2, . . . , ci, . . . , c30] then each pair of
points (c+k, c−k) representing a pair of faces has the face-
space coordinates

c±i =

{
±3 SDs if i = k
0 otherwise (8)

The pairs of faces from the 1-st and 30-th PCs are shown
in Figure 4

The faces were printed in their respective pairs on matt
photographic paper. Each pair was 5.8 cm high by 10.2 cm
wide. There are three reasons why the task was limited to
30 pairs of faces: 30 pairs of faces fit comfortably on a
desk’s surface, the differences between each pair of faces
becomes smaller for higher order PCs, and the difficulty of
the task increases with the number of pairs.

At the start of the experiment the pairs of faces were ar-
ranged randomly in a grid six pairs high by five pairs wide.
The participants were instructed to group the 12 pairs of
faces which “exhibited the most within pair dissimilarity”.
Once the participants had done this they were instructed to
sort the 12 pairs of faces from the most similar to the least
similar. In preliminary testing, it was observed that the de-
gree of dissimilarity between pairs of faces became very
hard to discern beyond the 12 most dissimilar pairs. Con-
sequently, 12 dimensions were used for the human reduced
face-space.

4.2 Results
A pair of faces was awarded 12 marks when judged to be
the most dissimilar by a participant. Similarly, the second

most dissimilar pair was awarded 11 marks, the third 10
marks and so on until the 12 most dissimilar face pairs had
been accounted for. The marks were summed over all of
the participants to obtain the aggregated rank order of face
pairs and hence the perceptual ordering of PCs. The 12
most perceptually significant PCs were found, in order, to
be 1, 2, 3, 5, 15, 7, 4, 14, 13, 6, 18, and 9. These are
the PCs that were used to build the human reduced face-
space. It can be seen that 8 of the 12 PCs in the human
reduced face-space are in the first 12 PCs of the larger 30-
dimensional face-space.

5 Experiment 2: Comparison of
recombination and mutation
operators

5.1 Method
In this experiment 15 participants were used to compare
two recombination operators (uniform crossover and arith-
metic crossover) and two mutation operators (Gaussian re-
placement and Gaussian addition).

The 12-dimensional human reduced face-space was used
in this experiment. This face-space was chosen because it
was thought that a face-space constructed using fewer di-
mensions may lead to a face match more quickly than one
constructed using many dimensions and thus induce less
fatigue in the participants. It was not thought that choice
of face-space would affect the relative performances of the
different recombination and mutation operators. Testing
each combination of recombination and mutation opera-
tor required 2 × 2 = 4 runs per participant. Each par-
ticipant also did a practice run at the start of the experi-
ment in order to gain familiarity with the task and the in-
terface. The initial population was the same for every run
of the experiment and was designed to be roughly evenly
distributed across the human reduced face-space. In an at-
tempt to achieve this, K-means clustering was used. To
generate the initial population, 1000 points were generated
using a 12-dimensional uniform distribution with the limits

142 Informatica 39 (2015) 135–145 J. Mist et al.

being at ±2.5 SDs on each axis. The points were grouped
into nine clusters using K-means clustering via Matlab’s
kmeans function. The centroids of the nine clusters were
used as the genotypes for the initial population of faces.

At the start of each run the participants were given 10
seconds to study the target face which they then tried to
recreate from memory using the IGA facial composite pro-
cess. The target face was not shown to the participants
again until the end of the run. The target faces were cho-
sen to be equidistant from the centre of the human re-
duced face-space. At the end of every run, participants
were shown the composite they had just created and were
asked to rate its similarity to the target on a scale from 1
to 10. Composites were then displayed side-by-side with
their corresponding target faces and in each case the partic-
ipant provided an additional similarity score. The purpose
of the without target comparison was to gauge how well
the composites matched the faces held in the minds of the
participants; in reality witnesses would not have an image
of the perpetrator to compare their composites to. The with
target comparison was included as a slightly less subjective
measure of how good the composites were.

Three sets of objective data were gathered: the time
taken to create the composites, the number of generations
it took to create the composites, and the number of times
the Back button was used. The time taken, and the num-
ber of generations, were used as indicators of how quickly
the participants were able to attain face matches. The use
of the ‘Back’ button was recorded to provide an indication
of how often the searches were producing a generation that
was worse than the proceeding one.

5.2 Results
Table 1 comprises the means and standard deviations of the
following measured variables: number of generations, time
taken, number of times the Back button was used, partici-
pant rating of their composite without reference to the tar-
get, and participant rating of the their composite with ref-
erence to the target. Each of the measured variables were
subjected to aligned rank transform (ART) with two-way
ANOVA [27]; having two mutation operators (Gaussian
addition and Gaussian replacement) and two recombina-
tion operators (uniform crossover and arithmetic crossover)
(Table 2). The differences between the mutation operators,
and the differences between the recombination operators,
were not significant for any of the measured variables. The
interaction between the operators, that is the effect of using
any particular mutation/recombination operator pair, was
not significant.

6 Experiment 3: Comparison of
Face-Spaces

6.1 Method
In this experiment 21 participants were used to compare
three face-spaces: a face-space constructed from the first

30 PCs of the PCA analysis (the large face-space), a face-
space constructed from the first 12 PCs (the mathematically
reduced face-space), and a face-space constructed form the
12 most perceptually important PCs identified in the first
experiment (the human reduced face-space).

As the results of the second experiment showed no sig-
nificant difference between the operators on any of the
recorded measures, arithmetic crossover and Gaussian ad-
dition were arbitrarily chosen as the operators for this ex-
periment.

As there were only three test conditions (large face-
space, human reduced face-space, and mathematically re-
duced face-space) each participant performed two runs for
each condition, equal to 2 × 3 = 6 runs in total. Each
participant also performed an additional practice run at the
start of the experiment.

The initial populations for each of the face-spaces were
generated using the same method as that used in Exper-
iment 2. The target faces were chosen to be equidistant
from the centre of the 30-dimensional face-space. They
were also chosen such that they could not be represented
exactly in the two 12-dimensional face-spaces. This was
done to model the error in reconstruction associated with
using a low-dimensional face-space.

6.2 Results
The measured variables were the same as those for Exper-
iment 2. The means and standard deviations of the mea-
sured variables for each of the face-spaces are presented in
Table 3.

Performing Friedman’s test on each of the measured
variables showed that the differences between the face-
spaces were not significant for any of the measured vari-
ables (number of generations: χ2(2) = 2.11, p = 0.349,
number of times the ‘Back’ button was used: χ2(2) =
0.54, p = 0.765, time taken: χ2(2) = 2.14, p = 0.343,
without comparison rating: χ2(2) = 2.37, p = 0.306, and
with comparison rating: χ2(2) = 0.71, p = 0.700).

7 Experiment 4: Comparison of
IGA and IDE

7.1 Method
In this experiment 22 participants were used to compare an
IGA to an IDE algorithm.

As the results of the second experiment showed no sig-
nificant difference between the operators on any of the
recorded measures, arithmetic crossover and Gaussian ad-
dition were arbitrarily chosen as the operators used for this
experiment. As the results of the third experiment showed
no significant difference between the face-spaces, the hu-
man reduced face-space was used in this experiment.

Comparing Evolutionary Operators, Search Spaces, and. . . Informatica 39 (2015) 135–145 143

Table 1: Means (standard deviations) of the dependent variables in the comparison of mutation and recombination opera-
tors in the creation of facial composites

Mutation Gauss. replacement Gauss. replacement Gauss. addition Gauss. addition
Recombination uniform arithmetic uniform arithmetic

Generations 10.6 (5.10) 12.5 (8.64) 11.5 (4.73) 9.73 (2.49)
Back count 0.73 (1.33) 0.47 (0.74) 0.87 (1.41) 0.47 (0.64)
Time taken 195s (91.5s) 222s (155s) 220s (71.1s) 188s (66.2s)

Without rating 6.27 (1.22) 5.47 (2.00) 6.07 (1.03) 6.07 (1.49)
With rating 4.40 (2.10) 5.07 (2.19) 4.60 (2.41) 4.40 (2.32)

Table 2: ART with two-way ANOVA of the dependent variables in the comparison of mutation and recombination opera-
tors in the creation of facial composites

Mutation Recombination Interaction
Variable F (1, 56) p-value F (1, 56) p-value F (1, 56) p-value

Generations 0.025 0.874 0.041 0.840 0.826 0.367
Back count 0.153 0.670 0.368 0.547 0.055 0.816
Time taken 0.427 0.516 0.553 0.460 0.851 0.360

Without comparison rating 0.132 0.718 0.510 0.478 0.771 0.384
With comparison rating 0.425 0.517 0.214 0.645 0.571 0.529

Table 3: Means (standard deviations) of the dependent variables in the comparison of the large, human reduced and
mathematically reduced face-spaces in the creation of facial composites

Without With
Face-space Generations Back count Time taken target rating target rating

Large 10.7 0.50 205s 5.81 4.10
(4.73) (0.55) (80.3s) (1.13) (1.25)

Human 9.38 0.36 186s 6.02 3.95
reduced (4.31) (0.42) (91.8s) (1.08) (1.33)

Mathematically 10.5 0.48 193s 5.86 4.12
reduced (4.75) (0.56) (85.6s) (1.16) (1.82)

144 Informatica 39 (2015) 135–145 J. Mist et al.

There were two test conditions (IGA and IDE) hence we
had each participant perform two runs using each condi-
tion, equal to 2× 2 = 4 runs in total. Each participant also
performed two practice runs at the start of the experiment,
one for each of the IEAs.

The initial populations were generated using the same
method as that used in Experiment 2. The target faces were
chosen to be equidistant from the centre of the human re-
duced face-space.

7.2 Results
The measured variables were the same as those for Ex-
periments 2 and 3 but the use of the IGA’s “Back” button
was compared to the use of the IDE’s “Redo” button. The
means and standard deviations of the measured variables
for each of the algorithms are presented in Table 4.

Performing exact calculations for Wilcoxon’s signed-
rank test on the measured variables showed that the dif-
ferences between the face-spaces were not significant for
any of the measured variables (number of generations:
p = 0.571, number of times the “Back”/“Redo” button was
used: p = 0.625, time taken: p = 0.305, without com-
parison rating: p = 0.553, and with comparison rating:
p = 0.520).

The participants were also asked which of the two IEAs
they preferred as it was possible to differentiate between
the IEAs because of the difference between the interfaces.
The IGA was preferred by 6 of the 22 participants, 14 pre-
ferred IDE and 2 stated no preference. Performing exact
calculations for the sign test showed that this difference
was not significant: p = 0.115. Those who preferred IDE
often stated that they found it easier to compare two faces
at a time than nine, which they found made the composite
process easier.

8 Conclusion
A human reduced face-space for use with an IEA in the
creation of facial composites was derived from a higher
dimensional PCA based face-space. The performances of
searches for faces in the human reduced face-space were
compared to those of a mathematically reduced face-space
and to the larger face-space. Searches performed using an
IGA with two different mutation operators and two differ-
ent recombination operators were compared. Searches per-
formed using the IGA were compared to those performed
using IDE.

The prioritisation of the PCs with regards to human eval-
uation was found to be similar to the numerical ordering
returned by PCA itself. The human reduced face-space
was found to share 8 of its 12 dimensions with the math-
ematically reduced face-space. We note that our data set
comprised images captured under conditions of controlled
pose, lighting and facial expression. If this were not the
case, one might expect greater differences between the per-

ceptual and numerical orderings of PCs. This is because
users can filter out variability due to lighting, pose, and
camera angle; something that selecting the most significant
PCs mathematically does not account for.

No significant differences in the performances of the
searches conducted using the different operators were de-
tected, nor were any significant differences found between
the performances of the IEAs. The difficulty and uncertain
nature of creating a facial composite render any difference
in the performances of the operators or the IEAs insignifi-
cant. This observation calls into question the utility of us-
ing virtual users or even testing with human users to aid in
making algorithmic design decisions; and lends strength to
the idea that it is safe to make these decisions based on the
judgement of the people implementing an IEA. Our work
also brings into doubt the validity of conclusions in prior
work based on experiments with virtual users or where sta-
tistical analysis has been omitted.

No significant differences in the performances of the
searches conducted in the different face-spaces was ob-
served. Again this is likely to be due to the imperfect na-
ture of face recall and recognition. This result implies that
it is possible to reduce the dimensionality of the face-space
without any loss of performance. It also shows that using
the mathematical ordering of the PCs is acceptable when
truncating the face-space and it is unlikely to be necessary
to make allowances for human perception.

References
[1] J. E. Baker (1987) Reducing bias and inefficiency in

the selection algorithms, Proceedings of the Second
International Conference on Genetic Algorithms, pp.
14–21.

[2] R. Breukelaar, M. Emmerich, T. Bäck (2006) On In-
teractive Evolution Strategies, Lecture Notes in Com-
puter Science, vol. 3907, pp. 530–541.

[3] R. Brunelli, O. Mich (1996) SpotIt! an interactive
identikit system, Graphical Models and Image Pro-
cessing, vol. 58, no. 5, pp. 399–404.

[4] F. Cluzel, B. Yannou, M. Dihlmann (2012) Using evo-
lutionary design to interactively sketch car silhouettes
and stimulate designer’s creativity, Engineering Ap-
plications of Artificial Intelligence, vol. 25, no. 7, pp.
1413–1424.

[5] T. F. Cootes, G. J. Edwards, C. J. Taylor (1998) Ac-
tive appearance models, Proceedings of the European
Conference on Computer Vision (ECCV), pp. 484–
498.

[6] G. Davies, D. Christie (1982) Face recall: An exami-
nation of some factors limiting composite production
accuracy, Journal of Applied Psychology, vol. 67, no.
1, pp. 103–109.

Comparing Evolutionary Operators, Search Spaces, and. . . Informatica 39 (2015) 135–145 145

Table 4: Means (standard deviations) of the dependent variables in the comparison of the IGA and IDE algorithm

Back/Redo Without With
Algorithm Generations count Time taken target rating target rating

IGA 5.05(2.50) 0.07(0.23) 150s(74.4s) 6.39(1.41) 5.00(1.74)
IDE 5.34(2.19) 0.14(0.32) 161s(55.3s) 6.55(1.21) 4.68(1.74)

[7] C. D. Frowd, P. J. B. Hancock, EvoFIT, www.
evofit.co.uk, Accessed 27/04/2015.

[8] C. D. Frowd (2001) EvoFIT: A Holistic, Evolution-
ary Facial Imaging System. PhD thesis, Department
of Psychology, University of Stirling.

[9] C. D. Frowd, P. J. B. Hancock, D. Carson (2004)
EvoFIT: a holistic, evolutionary facial imaging tech-
nique for creating composites, Transactions in Ap-
plied Perception, vol. 1, no. 1, pp. 19–39.

[10] C. D. Frowd, J. Park, A. McIntire, V. Bruce, M. Pitch-
ford, S. Fields, M. Kenirons, P. J. Hancock (2008) Ef-
fecting an improvement to the fitness function. How
to evolve a more identifiable face, Proceedings of the
ECSIS Symposium on Bio-inspired Learning and In-
telligent Systems for Security, pp. 3–10.

[11] S. J. Gibson, C. J. Solomon, A. Pallares Bejarano
(2003) Synthesis of photographic quality facial com-
posites using evolutionary algorithms, Proceedings of
the British Machine Vision Conference, pp. 221–230.

[12] J. H. Holland (1973) Genetic algorithms and the opti-
mal allocation of trials, SIAM Journal on Computing,
vol. 2, no. 2, pp. 88–105.

[13] B. Kurt, A. S. Etaner-Uyar, T. Akbal, N. Demir, A.
S. Kanlikilicer, M. C. Kus, F. H. Ulu (2006) Ac-
tive appearance model-based facial composite gener-
ation with interactive nature inspired heuristics, Lec-
ture Notes in Computer Science, vol. 4105, pp. 183–
190.

[14] M.-C. Lee, S.-B. Cho (2012) Interactive differential
evolution for image enhancement application in smart
phone, Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC), pp. 2411–2416.

[15] J. J. Mist, S. J. Gibson (2013) Optimization of
weighted vector directional filters using an inter-
active evolutionary algorithm, Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO), pp. 1691–1694.

[16] Z. S. Mohamad, A. Darvish, S. Rahnamayan (2011)
Eye illusion enhancement using interactive differen-
tial evolution, Proceedings of the IEEE Symposium
on Differential Evolution, pp. 135-141.

[17] H. Mushtaq, S. Rahnamayan, A. Siddiqi (2015) Color
Separation in Forensic Image Processing Using Inter-
active Differential Evolution, Journal of Forensic Sci-
ences, vol. 60, no. 1, pp. 212–218.

[18] J. Oinuma, K. Arakawa, H. Harashima (2014) Evalu-
ation of genetic algorithm for interactive evolutionary
face image beautifying system, Proceedings of the 6th
International Symposium on Communications, Con-
trol and Signal Processing, pp. 594-597.

[19] A. Pallares-Bejarano (2006) Evolutionary Algorithms
for Facial Composite Synthesis. PhD thesis, School of
Physicial Sciences, University of Kent.

[20] K. Price, R. M. Storn, J. A. Lampinen (2006) Differ-
ential evolution: a practical approach to global opti-
mization, Springer Science & Business Media.

[21] C. J. Solomon, S. J. Gibson, J. J. Mist (2013) Interac-
tive evolutionary generation of facial composites for
locating suspects in criminal investigations, Applied
Soft Computing, vol. 13, no. 7, pp. 3298–3306.

[22] R. Storn, K. Price (1997) Differential evolution — a
simple and efficient heuristic for global optimization
over continuous spaces, Journal of global optimiza-
tion, vol. 11, no. 4, pp. 341–359.

[23] H. Takagi (2001) Interactive Evolutionary Computa-
tion: Fusion of the Capabilities for EC Optimization
and Human Evaluation, Proceedings of the IEEE, vol.
89, no. 9, pp. 1275–1296.

[24] J. W. Tanaka, M. J. Farah (1993) Parts and wholes in
face recognition, Quarterly Journal of Experimental
Psychology, vol. 46A, pp. 225–245.

[25] T. Valentine (1991) A unified account of the effects of
distinctiveness, inversion and race in face recognition,
Quarterly Journal of Experimental Psychology, vol.
43A, pp. 161–204.

[26] Visionmetric, EFIT-V, www.visionmetric.com,
Accessed 27/04/2015.

[27] J. O. Wobbrock, L. Findlater, D. Gergle, J. J. Higgins
(2011) The aligned rank transform for nonparametric
factorial analyses using only anova procedures, Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 143–146.

[28] D.-M. Yoon, K.-J. Kim (2012) Comparison of scor-
ing methods for interactive evolutionary computation
based image retouching system, Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO), pp. 617–618.

146 Informatica 39 (2015) 135–145 J. Mist et al.

Informatica 39 (2015) 147–159 147

Heuristics for Optimization of LED Spatial Light Distribution Model

David Kaljun and Darja Rupnik Poklukar
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
E-mail: david.kaljun@fs.uni-lj.si

Janez Žerovnik
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia and
Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, Slovenia
E-mail: janez.zerovnik@fs.uni-lj.si

Keywords: local search, iterative improvement, steepest descent, genetic algorithm, Wilcoxon test, least squares approx-
imation

Received: December 1, 2014

Recent development of LED technology enabled production of lighting systems with nearly arbitrary light
distributions. A nontrivial engineering task is to design a lighting system or a combination of luminaries
for a given target light distribution. Here we use heuristics for solving a problem related to this engineering
problem, restricted to symmetrical distributions. A genetic algorithm and several versions of local search
heuristics are used. It is shown that practically useful approximations can be achieved with majority of
the algorithms. Statistical tests are performed to compare various combinations of parameters of genetic
algorithms, and the overall results of various heuristics on a realistic dataset.

Povzetek: Napredek tehnologije LED je omogočil izdelavo osvetljevalnih sistemov s skoraj poljubno po-
razdelitvijo svetlobe. Netrivialna inženirska naloga je, kako načrtovati osvetljevalni sistem ali kombinacijo
svetilk za dano ciljno porazdelitev svetlobe. V sestavku predstavljamo uporabo hevrističnih algoritmov
za reševanje te naloge, kjer predpostavljamo, da je porazdelitev svetlobe osno simetrična. Izkaže se, da
lahko dobimo praktično uporabne rešitve z algoritmi za lokalno optimizacijo, z genetskimi algoritmi in s
hibridnimi algoritmi, ki povezujejo obe ideji. Za izbiro parametrov genetskih algoritmov in za primerjavo
različnih algoritmov na izbranem vzorcu realnih podatkov so uporabljeni statistični testi.

1 Introduction
Even the most simply stated optimization problems such as
the traveling salesman problem are known to be NP-hard,
which roughly speaking means that there is no practical
optimization algorithm provided the famous P6=NP conjec-
ture is correct [26]. From practical point of view, knowing
that the problem is computationally intractable implies that
we may use heuristic approaches. It is well known that best
results are obtained when a special heuristics is designed
and tuned for each particular problem. This means that the
heuristics should be based on considerations of the partic-
ular problem and perhaps also on properties of the most
likely instances. On the other hand, it is useful to work
within a framework of some (one or more) metaheuristcs
which can be seen as a general strategies to attack an op-
timization problem. Metaheuristics in contrast to heuris-
tics often make fewer assumptions about the optimization
problem being solved, and so they may be usable for a va-
riety of problems, while heuristics are usually designed for
particular problem or even particular type of problem in-
stances. Compared to optimization algorithms, metaheuris-
tics do not guarantee that a globally optimal solution can be
found on some class of problems. We say that the heuris-

tics search for so called near optimal solutions because in
general we also have no approximation guarantee. Several
books and survey papers have been published on the sub-
ject, for example [25].

Most studies on metaheuristics are experimental, de-
scribing empirical results based on computer experiments
with the algorithms. As experiments provide only a sam-
ple that may in addition be biased for a number of reasons,
it is often hard to draw any firm conclusions from the ex-
perimental results, even when statistical analysis is applied
(see, c.f. [4] and the references there). Some theoretical
results are also available, often proving convergence of a
particular algorithm or even only showing the possibility
of finding the global optimum.

Perhaps the most natural and conceptually simple meta-
heuristics is local search. In the search space of feasible
solutions that is usually regarded as a “landscape”, the so-
lutions with extremal values of the goal functions are to be
found. In order to speak about local search on the land-
scape, a topology is introduced, usually via definition of a
neighborhood structure. It defines which feasible solutions
can be obtained in “one step” from a given feasible solu-
tion. It is essential that the operation is computationally

148 Informatica 39 (2015) 147–159 D. Kaljun et al.

cheap and that the new value of the goal function is pro-
vided. There are two basic variants of the local search, iter-
ative improvement and best neighbor (or steepest descent).
As the names indicate, starting from initial feasible solu-
tion, iterative improvement generates a random neighbor,
and moves to the new solution based on the difference in
goal function. The procedure stops when there has been no
improvement for sufficiently long time. On the other hand,
best neighbor heuristics considers all neighbors and moves
to the new solution with best value of the goal function. If
there is no better neighbor, the current solution is clearly
a local optima. Note that given a particular optimization
problem, often many different neighborhood structures can
be defined giving rise to different local search heuristics.
Recently, there has been some work on the heuristics that
use and switch among several neighborhoods [21].

In fact, most metaheuristics can be seen as variations or
improvement of the local search [1]. Examples of popular
metaheuristics that can be seen as variations of local search
include iterated local search, simulated annealing [17],
threshold accepting [7], tabu search [11], variable neigh-
borhood search [21], and GRASP (Greedy Randomized
Adaptive Search Procedure) [8]. The other type of search
strategy has a learning component added to the search, aim-
ing to improve the obvious drawback of the local search,
complete lack of memory. (An exception is the tabu search
that successfully introduces a short time memory.) Meta-
heuristics motivated by idea of learning from past searches
include ant colony optimization [6, 28, 10, 9, 19], evolu-
tionary computation [3] and its special case, genetic algo-
rithms, to name just a few. It is however a good question
in each particular case whether learning does indeed mean
an improvement [29], namely a successful heuristic search
must have both enough intensification and diversification.

Genetic algorithms (GA) are optimization and search
techniques based on the natural evolution principles. The
basic idea is to allow a population composed of many indi-
viduals to evolve under specified selection rules to a point
where some of the population individuals reach or at least
get close to the optimal solution. The method was devel-
oped by John Holland, and popularized by one of his stu-
dents, David Goldberg, who was able to solve a difficult
problem involving the control of gas-pipeline transmission
for his dissertation. Since the early days of GA, many ver-
sions of evolutionary based algorithms have been tried with
varying degrees of success. Nevertheless there are some
advantages of GA worth noticing [12, 23]. GA is able to
work with continuous or discrete variables, does not require
derivative information, it simultaneously searches from a
wide sampling of the cost surface, deals with a large num-
ber of variables, is well suited for parallel computers, opti-
mizes variables with extremely complex cost surfaces (they
can jump out of a local minimum), provides a list of opti-
mum variables not just a single solution and works well
with numerically generated data, experimental data, or an-
alytical functions.

In this paper, a comprehensive experimental study of

several heuristics on an industrial problem is carried out. It
extends and upgrades previous published work on the sub-
ject, in particular by introducing a statistically based com-
parison of the algorithms. The results of algorithms are
statistically tested in order to determine significant differ-
ences between them. Another extension of previous work
is the genetic algorithm parameter tunning, presented bel-
low. Previous related work is the following. The suitability
of the model and practical applicability have been shown
in [14]. Attempting to improve and speed up the optimiza-
tion, different metaheuristics have been implemented and
compared. The conference paper [13] reports results of a
comparison of local search with a naive genetic algorithm.
A hybrid genetic algorithm was proposed in [15].

Here we implement and run two versions of genetic algo-
rithm, a standard genetic algorithm (SGA) and a hybrid ge-
netic algorithm (HGA) where we infuse a short local search
as an evolution rule in hope to enhance the population. As
the initial experiment was run on various computers, and
consequently the results on various computers slightly dif-
fered because of different environments and in particular
different random generators. The new experiment therefore
repeated the complete experiment, this time on the same
computer, a standard home PC with a Intel Core I7-4790K
@ 4.4 GHz processor. The experiment was run in parallel
on 6 threads. In addition, part of the code was rewritten
to make it more machine independent. Furthermore, sta-
tistical tests on the experimental results were applied thus
providing ground for tuning the parameters of genetic al-
gorithms and for comparison of various algorithms’ per-
formance on the dataset considered.

The rest of the paper is organized as follows. In the next
section we provide background of the engineering applica-
tion. Section 3 provides the analytical model and the opti-
mization problem that is addressed. In Section 4, overview
of the experimental study is given. Details of local search
heuristics and genetic algorithms used are given in Sections
5 and 6. Section 7 elaborates tuning of parameters for the
genetic algorithms. Main experiment, comparison of local
search, standard and hybrid genetic algorithms is presented
in Section 8. The paper ends with a summary of conclu-
sions and ideas for future work, Section 9.

2 Motivation – the Engineering
Problem

The mass production of high power - high efficacy white
Light Emitting Diodes (LEDs), introduced a revolution in
the world of illumination. The LEDs at the basics enable
lower energy consumption, never before seen design free-
doms and of course endless possibilities on the design of
optics systems. The latter in turn enables the optics de-
signer to build a lighting system that delivers the light to
the environment in a fully controlled fashion. The many
possible designs lead to new problems of choosing the op-
timal or at least near optimal design depending on possibly

Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 149

different goals such as optimization of energy consump-
tion, production cost, and, last but not least, the light pol-
lution of the environment. Nevertheless the primary goal
or challenge of every luminaire design process is to design
a luminaire with an efficient light engine. A light engine
consists of a source, which are LEDs, and the appropriate
secondary optics. The choice of the secondary optics is
the key in developing a good system while working with
LEDs. For designing such a system nowadays technology
provides two options. The first option is to have the know-
how and the resources to design a specific lens to accom-
plish the task. However, the cost of resources coupled with
the development and production of optical elements may
be enormous. Therefore a lot of manufactures are using
the second option, that is to use ready made of the shelf
lenses. These lenses are produced by several specialized
companies in the world that offer different types of lenses
for all of the major brands of LEDs. The trick here is to
choose the best combination of lenses to get the most ef-
ficient system. The usual current practice in development
process is a trial and error procedure, where the developer
chooses a combination of lenses, and then simulates the
system via Monte Carlo ray-tracing methods. The success
heavily depends on the engineers’ intuition and experience
but also needs sizable computation resources for checking
the proposed design by simulation. In contrast to that, we
believe that using analytical models and optimization tools
may speed up the design and also at the same time possi-
bly improve the quality of solutions. The first step towards
this ambitious goal is to investigate an analytical model and
its use for representing single ready made lenses. For this
purpose we adopt an analytical model presented by Moreno
and Sun [22] and use heuristic methods based on this model
to provide good approximations.

3 Analytical Model and Problem
Definition

With so many different LED’s that have different beam
patterns and many different secondary optics that can be
placed over these LED’s to control the light distribution,
finding the right combination of a LED - lens combo is
presumably a very complicated and challenging task. Con-
sequently, providing a general analytical model for all of
them is also likely to be a very challenging research prob-
lem. Here we therefore restrict attention to LED-lens com-
binations that have symmetrical spatial light distributions.
In other words, the cross section of the surface which repre-
sents the spatial distribution with a section plain that is co-
incident with the vertical axis of the given coordinate sys-
tem is alike at every azimuthal angle of offset. This yields
an analytical model in two dimensions, so it describes a
curve rather a surface. To produce the desired surface, we
just revolve the given curve around the central vertical axis
with the full azimuthal angle of 360◦.

In [14], a normalizing parameter Imax is introduced in

Figure 1: Fitting results on the C13353 lens with the 3D
represenation.

addition to the parameters of the original model [22] as this
simplifies (unifies) the range intervals of the other three pa-
rameters: a = [0, 1], b = [0, 90] and c = [0, 100], for all
test lenses. The model used is based on the expression

I (Φ; a,b, c) = Imax

K∑
k=1

ak ∗ cos(Φ− bk)ck (1)

Assume that we have measured values Im(Φi) at angles
Φi, i = 1, 2, . . . , N . The goodness of fit is, as usual, de-
fined to be minimizing the root mean square error (RMS),
or, formally [22, 24]:

RMS (a,b, c) =

√√√√ 1

N

N∑
i=1

[Im(Φi)− I(Φi, a,b, c)]
2 (2)

For a sufficiently accurate fit, the RMS value must be
less than 5% [22, 24]. On the other hand, current standards
and technology allow up to 2% noise in the measured data.
Therefore, the target results of the fitting algorithms are at
less than 5% RMS error, but at the same time there is no
practical need for a solution with less than 1% or 2% RMS
error.

We will assume that all data is written in form of vec-
tors v= (polar angle [Φ], intensity [I]). In reality, measured

150 Informatica 39 (2015) 147–159 D. Kaljun et al.

photometric data from the lens manufacturers is available
in one of the two standard coded formats. These are the
IESNA photometric digital format *.ies [27] used primar-
ily in the USA and the European format EULUMDAT *.ldt
[2]. The data in the two standard formats can easily be
converted into a list of vectors. In addition, due to the pa-
rameter Imax each dataset will be normalized during the
preprocessing so that in each instance the maximal inten-
sity of the vectors will be 1, and the normalizing value Imax
is given as additional input value to the algorithms.

The problem can formally be written as:

INPUT: Imax and a list of vectors v= (polar angle [Φ], in-
tensity [I])
TASK: Find parameters (a1, b1, c1, a2, b2, c2, a3, b3, c3)
that minimize the RMS error (2).

4 Overview of the Experimental
Study

Although the minimization problem defined above is con-
ceptually simple, it is on the other hand likely to be com-
putational hard. In other words, it is a min square error
approximation of a function for which no analytical solu-
tion is known.

The experiment was set-up to test the algorithms perfor-
mance on different real life LED-lens combinations.

We have chosen a set of real available lenses to be ap-
proximated. The set was taken from the online catalogue
of one of the biggest and most present manufacturer in
the world Ledil Oy Finland [18]. The selection from the
broad spectrum of lenses in the catalogue was based on
the decision that the used LED is of the XP-E product line
from the manufacturer Cree [5]. And the demand that the
lenses have a symmetric spatial light distribution. We have
preserved the lens product codes from the catalog, so the
reader can find the lens by searching the catalog for the
code from the first column in tables below, c.f. Table 1.

All of the chosen lenses were approximated with all al-
gorithms. To ensure that algorithms’ results could be com-
pared the target error was set to 0% and the runtime was de-
fined in terms of basic steps that is defined as a generation
of a feasible solutions in the local search and an adequate
operation for genetic algorithms. This implies that the wall
clock runtime was also roughly the same for all algorithms.
Details are given below.

In the experiment and in the study, we address the opti-
mization problem as a discrete optimization problem. Nat-
ural questions that may be asked here is why use heuris-
tics and why discrete optimization heuristics on a continu-
ous optimization problem. First, application of an approx-
imation method is justified because there is no analytical
solution for best approximation of this type of functions.
Moreover, in order to apply continuous optimization meth-
ods such as the Newton method, usually we would need a

good approximation in order to assure convergence. There-
fore a method for finding good starting solution before run-
ning fine approximation based on continuous optimization
methods is needed. However, in view of the at least 2%
noise in the data, these starting solutions may in many cases
already be of sufficient quality! Nevertheless, it may be of
interest to compare the two approaches and their combina-
tion in future work, although it is not of practical interest
for the engineering problem regarded here.

When considering the optimization problem as a dis-
crete problem, the values of parameters to be esti-
mated will be a? ∈ [0, 0.001, 0.002, . . . , 1], b? ∈
[−90,−89.9,−89.8, . . . , 90], and c? ∈ [0, 1, 2, . . . , 100].
Hence, the discrete search space here consists of Nt =
1000i ∗ 1800i ∗ 100i ∼ 5, 83 ∗ 1024 tuples t =
(a1, a2, a3, b1, b2, b3, c1, c2, c3).

In the experiments, all the heuristics were tested on all
instances of the dataset, a long run and a short run. The
long run is defined to be 4 million steps that are defined to
be equivalent of one iteration of a basic local search heuris-
tics, in other words it is the number of feasible solutions
generated by the iterative improvement. The time for other
heuristics is estimated to be comparable, and will be ex-
plained in detail later. Short runs are one million and two
hundred thousand steps long and the long runs have four
million steps. The long run CPU time per algorithm and
lens was measured to be 16 minutes on the processor Intel
Core I7-4790K @ 4.4 GHz and 16 GB of RAM. The code
is not fully optimized. The overall runtime of the exper-
iment was substantially lowered by use of parallelization.
We ran the experiment on 6 of the 8 available CPU threads.

5 Local Search Heuristics

First we discuss the specific local search type heuristics. As
the original problem is a continuous optimization problem,
compared to discrete optimization, there are even more
possibilities to define a neighborhood for the local search
based heuristics. In fact, the neighborhoods we use can be
seen as variable neighborhoods though they are all simi-
lar. Below we define two neighborhoods that were imple-
mented.

We have started our experiments with two basic local
search algorithms, steepest descent (SD) and iterative im-
provement (IF), where in both cases the neighborhoods
were defined in the same way. We call this neighborhood
fixed step size neighborhood. The third local search al-
gorithm (IR) is iterative improvement using a second type
of neighborhood with random step size. Roughly speak-
ing, given a step size and direction as before, we randomly
make a step in the direction chosen and the step is at most
as long as in the fixed size neighborhood search. Of course,
there may be other neighborhoods that would be worth con-
sideration. The main reason for not extending the selection
of neighborhoods is simply the fact that they already gave
us results of sufficient quality. The local search type heuris-

Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 151

tics used here are explained in more detail below.

5.1 Steepest Descent (SD)
The steepest descent (SD) algorithm begins with the ini-
tialization of the initial function parameter values that are
a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0, and
c1 = c2 = c3 = 1. Next it initializes the search step
values which are for da = 0.01, for db = 1 and for
dc = Imax

10 giving the 512 neighbors of the initial solu-
tion: (a1 ± da, b1 ± db, c1 ± dc, a2 ± da, b2 ± db, c2 ± dc,
a3 ± da, b3 ± db, c3 ± dc). If there are several neighbors
with better RMS value, the search moves to the neighbor
with minimal RMS value (if there are more minimal neigh-
bors, one of them is chosen, all with the same probability).
If none of the 512 is better than the current solution, a new
set of neighboring solutions is generated, this time with a
step size of dn+1 = dn+d0. This is repeated until n = 10.
If there still is no better solution the search stops, the ini-
tial step value is multiplied by 0.9 and the search resumes
from the current solution with a smaller initial step. The
algorithm stops when the number of generated solutions
reaches Tmax.

5.2 Iterative Improvement – Fixed
Neighborhood (IF)

The iterative improvement with fixed neighborhood (IF) al-
gorithm initializes the same neighborhood as SD. Instead
of considering all 512 neighbors, the algorithm generates a
neighbor randomly, and immediately moves to that neigh-
bor if its RMS value is better than the current RMS value.
If no better neighbor is found after 1000 trials, it is as-
sumed that no better neighbor exists. As above, the al-
gorithm changes the size of the step value and continues
the search in the same manner as SD algorithm does. The
algorithm stops when the number of generated solutions
reaches Tmax.

5.3 Iterative Improvement – Variable
Neighborhood (IR)

The iterative improvement with a variable neighborhood
(IR) algorithm begins as the previous two algorithms. It ini-
tializes the same initial function parameter values but a dif-
ferent neighborhood which has the search step value within
a range, rather than a static fixed value. The ranges are for
da1 = da2 = da3 = {−0.1,−0.099,−0.098, . . . , 0.1},
for db1 = db2 = db3 = {−9,−8.9,−8.8, . . . , 9} and dc1
= dc2 = dc3= {−10,−9,−8, . . . , 10} It begins generating
solutions, using the step range around the initial solution
and calculating their RMS error. As soon as it generates
a better solution, it stops, shifts the focus on that solution,
resets the step range to the initial value, and continues the
search in the neighborhood of the new best solution. If after
four hundred thousand generated solutions no better solu-
tion is found, the step range gets doubled, and the search

Table 1: RMS error (best values) after 4 · 106 calculating
operations

Lens/Alg. SD IF RAN IR

C13353 9.7572 4.9422 5.3896 9.2435
CA11265 4.154 2.5374 3.722 4.9367
CA11268 2.6058 2.4788 2.4984 4.0278
CA11483 3.2673 3.3951 3.1944 3.5698
CA11525 3.5799 1.0365 1.4805 2.8385
CA11934 2.1729 1.4969 2.6169 3.5317
CA12392 1.639 1.5905 1.9988 3.3103
CA13013 1.7555 0.9042 1.2872 1.7656
CP12632 4.576 4.3207 4.9078 6.7152
CP12633 7.1202 2.936 2.7363 3.8963
CP12634 5.7641 5.6363 6.1473 6.4242
CP12636 3.1178 3.0801 3.9602 4.3642

Median 3.4236 2.7367 2.9654 3.9621

continues in the current neighborhood with a larger neigh-
borhood. The stopping condition is the same as before.

5.4 Comparison of Local Search Heuristics
To reduce the performance influence of the initial solution
we fixed it on all of the local search heuristics which be-
gan from the same initial solution that had the parameters
set to a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0, and
c1 = c2 = c3 = 1. As the number of steps the local
search heuristics need to find a local optima can vary heav-
ily, it is natural to run a multi start version. As the local
search runs sometimes improve the solutions in later it-
erations and because some preliminary experiments with
multi start versions of the local search algorithms did not
show any obvious advantage, we do not consider the mul-
tistart version here. However, the trivial random search al-
gorithm (RAN) is included in the comparison of the local
search algorithms. RAN algorithm is essentially a random
solution generator that has only one simple rule. The rule is
the boundary definition of the search space, so that the so-
lutions generated stay inside the search space limits, hence
RAN resembles a pure guessing exercise and any meaning-
ful algorithm has to outperform RAN.

Table 1 and Table 2 provide best found solutions for dif-
ferent local search algorithms. Best two solutions are writ-
ten in bold.

We can observe that most of the algorithms find a good
(RMS<5%) solution on almost all instances on both the
long and short runs. Obviously, the majority of IF results
are among the best, but also SD and RAN perform very
good on some instances. Therefore we further compare the
algorithms using a statistical test. We test the null hypoth-
esis H0: The median of differences between results of algo-
rithms equals 0. The test used is a non-parametric related
samples Wilcoxon signed rank test, see [30], and the sig-
nificance level is 0.05. This means that if asymptotic sig-
nificance is less or equal to 0.05, the H0 is rejected (there
is a significant difference between algorithms). Note that

152 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 2: RMS error (best values) after 1.2 · 106 calculating
operations

Lens/Alg. SD IF RAN IR

C13353 9.7572 5.0976 5.3896 10.137
CA11265 4.154 2.5389 3.9455 6.4726
CA11268 2.6058 2.4797 2.4984 4.0278
CA11483 3.2673 3.4077 3.6977 4.3763
CA11525 3.5799 1.0381 1.4805 4.4415
CA11934 2.1729 1.5547 2.6169 3.5317
CA12392 1.639 1.5924 1.9988 3.3103
CA13013 1.7555 0.9043 1.2872 2.7156
CP12632 4.576 4.3292 4.9078 6.7152
CP12633 7.1202 2.9366 2.7363 4.2827
CP12634 5.7641 5.638 6.1473 6.4713
CP12636 3.1178 3.0801 3.9602 5.2287

Median 3.4236 2.7377 3.217 4.4089

Table 3: Asymptotic significances of Wilcoxon signed rank
test for results of local search heuristics at 4·106 calculating
operations

SD IF RAN IR

SD 0.007 0.388 0.136
IF 0.008 0.002
RAN 0.002

the same test will be repeated on the other versions of al-
gorithms further down the text.

Tables 3 and 4 confirm that IF significantly outperforms
the other algorithms on the dataset. Also we can observe
that the null hypothesis could not be rejected between RAN
and SD. However we can see a significant deviation in the
result of the IR algorithm which is the worst of the algo-
rithms having the median value of Md = 3, 9621.

We conclude that in both the long and short runs algo-
rithm IF prevails. Therefore IF will be our choice when
infusing local search in the hybrid genetic algorithm.

6 Genetic Algorithms
The search for a more advanced heuristic method resulted
in a very large pool of promising alternatives such as parti-
cle swarm optimization [19], firefly algorithm [28, 10], bat
algorithm [9] and of course the well known genetic algo-
rithms to name just a few of them. In this experimental

Table 4: Asymptotic significances of Wilcoxon signed rank
test for results of local search heuristics at 1.2 · 106 calcu-
lating operations

SD IF RAN IR

SD 0.008 0.695 0.034
IF 0.004 0.002
RAN 0.002

study we use a standard genetic algorithm (SGA) [23] and
a hybrid genetic algorithm (HGA) [15] that in fact mimics
the evolutionary behavior [12, 20, 23], but is enhanced at
every generation with the use of a local search algorithm.
Encouraging preliminary results with HGA are reported in
[15]. We wish to note that in the conference paper [13] lo-
cal search based heuristics were compared to another ver-
sion of genetic algorithm. As the algorithm in [13] used
nonstandard genetic operators, it has been argued that the
results are not very useful, and hence we decided to do an-
other comparison including SGA. We wish to note that the
experimental results given in this paper may slightly dif-
fer to preliminary reports [13, 15] because the preliminary
results were performed on various computers, and the new
experiment reported here is completely rerun on the same
machine. Also, parts of the code were rewritten in order to
be more computer and system independent.

6.1 Standard Genetic Algorithm (SGA)

In our genetic algorithms we use three genetic operators:
selection, cross-breading and mutation. The selection [12]
operator works as a kind of a filter where more fitter in-
dividuals in a population get to have higher weights as the
less fitter. This is then transmitted to the cross-breading op-
erator in the way that the individuals with higher weights
are more likely to be chosen as parents.

The cross-breading or crossover operator [12, 20, 23] is
where a population is created by generating new solutions.
These are created by randomly combining and crossing pa-
rameters from two randomly chosen parent solutions from
the current population. The crossing is done via cross point
so that every parent pair produces a pair of children. The
cross point is chosen randomly and the children are gener-
ated in the following sequence C1 = [P bCP1 , CP, P aCP2]
and C2 = [P bCP2 , CP, P aCP1], where Cn is the child being
generated, CP is the cross point parameter, P aCPn are all
of the parents parameters that are after the CP and P bCPn

are all of the parents parameters that are before the CP .
The last operator in every generation is the self adapt-

ing mutation[23] operator which finalizes the individuals
in the new population. The mutation operates in the fol-
lowing manner: in the randomly chosen individual, a ran-
dom number of parameters are chosen to be changed (mu-
tated) which is done by adding a randomly chosen value for
da1 = da2 = da3 = {−0.01,−0.009,−0.008, . . . , 0.01},
for db1 = db2 = db3 = {−0.25,−0.24,−0.23, . . . , 0.25}
and dc1 = dc2 = dc3 = {−2.5,−2.4,−2.3, . . . , 2.5} to
the current parameter value.

The whole algorithm then begins with the generation and
calculation of the initial population (the zero population).
Next it sorts the population entities from the fittest to the
least fit and applies weights to them. After the sorting pro-
cess the algorithm generates with the crossover operator
the next generation, which is then submitted to mutation
with the adaptive mutation operator. When the new gener-
ation is fully formed the algorithm begins the process from

Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 153

the point of selection. It continues to do so until the last
generation is finalized. In order to assure comparable run-
ning times, the number of generations to be generated is
calculated as the quotient of the maximal number of iter-
ations minus the population size and the population size
NG = (Tmax − NP)/NP . Where NG stands for number
of generations, Tmax for the total number of iterations and
NP for the number of individuals in each generation (pop-
ulation size).

6.2 Hybrid Genetic Algorithm (HGA)
To test our theory of an advanced genetic algorithm we al-
tered the standard genetic algorithm in a way that we in-
fused a local optimization as an operator in every genera-
tion. We call the modified algorithm hybrid genetic algo-
rithm (HGA). The hybrid genetic algorithm works in the
same way as the standard one but with an extra operator
before the crossover. It starts with generating the initial so-
lution and sorts the entities in the current solution from the
fittest to least fit. Then instead of directly cross breading
the new generation it first runs the iterative improvement
with fixed neighborhood algorithm on 10 best entities of the
current generation which in turn get locally optimized (en-
hanced) for a number of iterations. After that the HGA fol-
lows the same path as the standard genetic algorithm does.
For the number of generations to be executed on HGA algo-
rithm, the formula is a bit more complicated, because it has
to include the iterations of the local search. The formula
can be written as NG = (Tmax −NP)/(NP + 10 ∗Nlo).
Where the additional parameter Nlo stands for number of
local search iterations. The result has to be rounded, be-
cause the algorithm cannot stop in the middle of a gener-
ation evaluation. For example if you would calculate the
number of generations for the HGA13 with the above for-
mula you would get 9.972 which gets rounded to 10. This
is the reason for the minor deviation (divmax = 2, 5%) of
the overall Tmax on the HGA algorithms.

7 Parameters of the Genetic
Algorithms

In order to enable fair comparison among various heuris-
tics, the same runtime was given to all competitors. As
the wallclock runtime can depend heavily on particular im-
plementation, we measure runtime in so called basic time
steps. One step of local search algorithm is naturally de-
fined as a generation (and handling) of one feasible solu-
tion. For the genetic algorithms, time needed for the basic
operations is estimated in terms of local search basic steps.
This is explained in detail in the first subsection. Genetic
algorithms are divided into four groups depending on the
time allowed for local search improvement of the members
of population.

We fix the length of the local search runs and then look
for most suitable parameters of the particular HGA version.

Table 5: Parameter combinations for SGA*

Algorithm # pop. # gen. # LS iter.

SGA 1 1000 3999 NA
SGA 2 5000 799 NA
SGA 3 10000 399 NA
SGA 4 50000 79 NA
SGA 5 100000 39 NA

Table 6: Parameter combinations for HGA*1

Algorithm # pop. # gen. # LS iter.

HGA 1 1 1000 40 10000
HGA 2 1 5000 38 10000
HGA 3 1 10000 36 10000
HGA 4 1 50000 26 10000
HGA 5 1 100000 20 10000

This gives rise to four groups of algorithms: SGA, HGA*1,
HGA*2, and HGA*3. Tables 5, 6, 7, and 8 give different
parameter combinations for the genetic algorithms.

Tuning of other parameters of genetic algorithms is ex-
plained in detail below.

7.1 Runtime
To be able to compare the genetic algorithm performance
to the local search algorithms we locked the total amount
of computation iterations (one computation iteration in our
case is the evaluation of the RMS error at the given coef-
ficient values) on the genetic algorithms to four million on
the long run and 1.2 million on the short runs, as it was in
the local search algorithms. We then chose different pop-
ulation sizes and calculated the number of generation and
local search iterations needed to achieve the desired four
million calculation iterations as close as possible (minor
deviations can occur due to the restriction that we are al-
ways evaluating a whole generation).

7.2 Parameter Tuning
In order to perform the final experiment we first have to
choose the algorithms that would be competing in the ex-
periment. As it would be unfeasible to compare all of the
possible variations of the multi start genetic algorithms, we
formed four groups, as presented in the previous section.
We applied the statistical test on these groups and accord-

Table 7: Parameter combinations for HGA*2

Algorithm # pop. # gen. # LS iter.

HGA 1 2 1000 20 20000
HGA 2 2 5000 19 20000
HGA 3 2 10000 19 20000
HGA 4 2 50000 16 20000
HGA 5 2 100000 13 20000

154 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 8: Parameter combinations for HGA*3

Algorithm # pop. # gen. # LS iter.

HGA 1 3 1000 10 40000
HGA 2 3 5000 10 40000
HGA 3 3 10000 10 40000
HGA 4 3 50000 9 40000
HGA 5 3 100000 8 40000

Table 9: RMS error (best values) after 4 · 106 calculating
operations for SGA*

Lens/Alg. SGA1 SGA2 SGA3 SGA4 SGA5

C13353 9.3526 8.0242 9.3895 4.8163 4.848
CA11265 5.2983 5.2999 3.8483 3.0568 2.8673
CA11268 4.5748 3.3628 2.7874 2.7845 2.5248
CA11483 3.8848 3.8262 3.8775 3.6547 3.5613
CA11525 4.0658 1.6667 2.2655 2.0129 1.2501
CA11934 2.5642 3.3076 3.3842 1.8616 2.1933
CA12392 3.493 2.5458 2.376 2.3139 2.4982
CA13013 2.9739 1.1658 1.4496 1.2332 1.128
CP12632 4.3657 4.5959 5.9514 4.4332 4.4827
CP12633 4.447 3.3542 2.855 2.5418 2.5485
CP12634 5.7747 5.7038 5.6663 5.7493 5.6712
CP12636 4.2818 4.1577 3.8485 3.5941 3.491
Median 4.3238 3.5945 3.6163 2.9207 2.7079

ing to the results chose the one that would advance into the
final experiment.

7.3 SGA* Test

When observing the test results presented in Table 11 and
Table 12 we see that SGA1 in both the long and short runs
statistically differs from the other four algorithms. It also
has the worst median where Md = 4.3238. We could not
reject the null hypothesis in the case of SGA2 and SGA3 on
the long run and on the short run between SGA2, SGA3 and
SGA5. The long run shows us shared leadership between
SGA4 and SGA5, but in the long run the SGA5 prevailes
with the overall best median of Md = 2.7079. This leads
us to ultimately choose the SGA5 as the representative of
the standard genetic algorithms in the final experiment.

7.4 HGA*1 Test

The statistical results show that there in no significant sta-
tistical difference between the HGA*1 algorithms (the null
hypothesis could not be rejected). Because of that we have
to take a look at the median values. In both runs HGA41
had the best median value which was a bit lower on the long
run Md = 2.5840. Hence we chose the HGA41 algorithm
from this group to advance in the final experiment.

Table 10: RMS error (best values) after 1.2·106 calculating
operations for SGA*

Lens/Alg. SGA1 SGA2 SGA3 SGA4 SGA5

C13353 9.3526 8.0242 9.3895 6.3401 5.7489
CA11265 5.2983 5.2999 3.8483 3.3367 3.933
CA11268 4.5748 3.3628 2.7874 2.7845 2.8694
CA11483 3.8848 3.8262 3.8775 3.6547 3.6344
CA11525 4.0658 1.6667 2.2655 2.0129 2.0875
CA11934 2.5642 3.3076 3.3842 2.4779 2.8535
CA12392 3.493 2.5458 2.376 2.3139 2.5325
CA13013 2.9739 1.1658 1.4496 1.2493 1.4786
CP12632 4.3657 4.5959 5.9514 4.4332 4.807
CP12633 4.447 3.3542 2.855 2.6167 2.5485
CP12634 5.7747 5.7038 5.6663 5,7493 5.7481
CP12636 4.2818 4.1577 3.8485 3,5941 3.8838

Median 4.3238 3.5945 3.6163 3.0606 3.2519

Table 11: Asymptotic significances of Wilcoxon signed
rank test for results of SGA* at 4 · 106 calculating oper-
ations

SGA* 1 2 3 4 5

1 0.034 0.071 0.004 0.004
2 0.937 0.019 0.002
3 0.005 0.005
4 0.272

7.5 HGA*2 Test

In the HGA*2 group the HGA12 significantly differs from
the rest of the group in both runs, with the worst median of
Md = 3.1785. The rest of the algorithms perform pretty
much the same, so there is no visible difference between
them in the long run and a slight inconclusive difference in
the short run. Therefore we once again chose the algorithm
to be advanced to the final experiment based on the minimal
median value. The HGA42 algorithm has the best overall
median value of Md = 2.7805 and consequently is the one
which represents this group in the final experiment.

7.6 HGA*3 Test

The last group’s results are similar to the previous two. On
the long run the HGA13 algorithm shows no significant dif-
ference from the others. There is also no significant statis-

Table 12: Asymptotic significances of Wilcoxon signed
rank test for results of SGA* at 1.2 · 106 calculating op-
erations

SGA* 1 2 3 4 5

1 0.034 0.071 0.004 0.015
2 0.937 0.019 0.117
3 0.005 0.158
4 0.084

Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 155

Table 13: RMS error (best values) after 4 · 106 calculating
operations for HGA*1

Lens/Alg. HGA11 HGA21 HGA31 HGA41 HGA51

C13353 5.9871 3.8263 3.8339 3.5616 5.4869
CA11265 2.9985 2.8531 3.025 2.824 2.8131
CA11268 2.5578 2.3826 2.5418 2.5907 2.3417
CA11483 3.1709 3.1571 3.2288 3.2077 3.6024
CA11525 1.4021 1.3965 1.5203 1.5096 1.4318
CA11934 3.0945 2.1895 2.5715 1.8058 1.9126
CA12392 2.3158 2.365 2.3345 2.038 2.0077
CA13013 1.3588 1.0952 1.2681 0.9672 1.1257
CP12632 4.38 4.3803 4.3495 4.3852 4.402
CP12633 3.1962 2.5102 2.8362 2.5773 2.6248
CP12634 5.7581 5.6829 5.6919 5.7342 5.7757
CP12636 2.288 3.0882 2.3877 2.5551 2.8276

Median 3.0465 2.6816 2.7038 2.5840 2.7189

Table 14: RMS error (best values) after 1.2·106 calculating
operations for HGA*1

Lens/Alg. HGA11 HGA21 HGA31 HGA41 HGA51

C13353 6.1767 4.3002 4.3135 3.8082 5.4869
CA11265 3.2252 3.3075 3.4191 3.1401 2.8131
CA11268 2.5578 2.3826 2.5418 2.6582 2.3417
CA11483 3.2573 3.4174 3.3694 3.2284 3.6024
CA11525 1.4021 1.4084 1.5203 1.5822 1.4318
CA11934 3.0945 2.4831 3.0026 1.8058 1.9126
CA12392 2.4432 2.365 2.3345 2.038 2.0077
CA13013 1.5113 1.3467 1.4484 1.1819 1.1989
CP12632 4.5072 4.5397 4.3849 4.3852 4.5023
CP12633 3.2601 2.6138 3.0894 2.5944 2.8204
CP12634 5.8198 5.7005 5.6919 5.9876 5.7757
CP12636 2.288 3.0882 2.9039 2.5551 2.8276

Median 3.1599 2.8509 3.0459 2.6262 2.8167

Table 15: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*1 at 4 · 106 calculating op-
erations

HGA*1 1 2 3 4 5

1 0.060 0.347 0.136 0.239
2 0.117 0.347 0.814
3 0.099 0.695
4 0.117

Table 16: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*1 at 1.2 · 106 calculating op-
erations

HGA*1 1 2 3 4 5

1 0.239 0.583 0.158 0.099
2 0.308 0.136 0.48
3 0.041 0.239
4 0.583

tical difference between HGA23 and HAGA53. The best
two on the long run are HGA33 and HGA43, comparing
the medians. The short run results confirm the picture we
get from the long run. The HGA13 and HGA23 do not sig-
nificantly differ, and are the worst in the group. Also there
is no significant difference between HGA33, HGA43 and
HGA53. As above we choose the winner based on the me-
dian values. The best median value result was obtained by
the HGA43 algorithm Md = 2.6589.

8 Final Experiment
Based on statistical tests on four groups of genetic algo-
rithms we acquired four winning algorithms, with seem-
ingly best tuned parameters inside each group. The final
experiment will compare those four algorithms with the
best local search algorithm IF. Table 25 show the lowest

Table 17: RMS error (best values) after 4 · 106 calculating
operations for HGA*2

Lens/Alg. HGA12 HGA22 HGA32 HGA42 HGA52

C13353 4.7054 4.2986 4.1253 3.3723 3.4518
CA11265 3.796 2.9932 2.9978 3.0308 3.0097
CA11268 2.5909 2.5584 2.4421 2.6774 2.5356
CA11483 3.2911 3.2074 3.1022 3.3761 3.1906
CA11525 1.6185 1.4497 1.5384 1.356 1.5003
CA11934 3.0659 2.7858 2.9067 2.5005 2.2335
CA12392 2.3725 2.0664 2.3302 2.2183 2.4562
CA13013 1.1562 1.2387 0.9072 1.0672 1.1936
CP12632 4.4391 4.5954 5.1023 4.4996 4.3441
CP12633 2.7446 2.5122 2.6415 2.5266 2.576
CP12634 5.7346 5.7481 5.7068 5.7009 5.8207
CP12636 4.2152 3.1483 3.2091 2.8835 4.1649

Median 3.1784 2.8895 2.9522 2.7804 2.7929

156 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 18: RMS error (best values) after 1.2·106 calculating
operations for HGA*2

Lens/Alg. HGA12 HGA22 HGA32 HGA42 HGA52

C13353 5.3734 4.4111 4.1253 3.3723 3.7201
CA11265 4.061 2.9932 3.3168 3.1738 3.2775
CA11268 2.7644 2.5751 2.4421 2.7098 2.5356
CA11483 3.7451 3.2304 3.7034 3.3761 3.2599
CA11525 1.6185 1.5703 1.5384 1.356 1.5177
CA11934 3.3468 2.7858 3.0841 3.0173 3.1701
CA12392 2.4229 2.1467 2.4255 2.2183 2.4562
CA13013 1.1562 1.2387 1.1321 1.1125 1.1936
CP12632 4.4624 4.5954 5.3015 4.6303 4.356
CP12633 2.7446 2.5122 2.8733 2.5266 2.588
CP12634 5.7346 5.7481 5.7068 5.7586 5.8207
CP12636 4.2152 3.4343 3.2091 2.8969 4.2121

Median 3.5459 2.8895 3.1466 2.9571 3.2149

Table 19: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*2 at 4 · 106 calculating op-
erations

HGA*2 1 2 3 4 5

1 0.019 0.023 0.019 0.023
2 0.638 0.239 0.937
3 0.182 0.754
4 0.754

RMS errors at four million calculating iterations for ev-
ery competing algorithm. Table 26 show the lowest RMS
errors at bout one million calculating iterations for every
competing algorithm. The asymptotic significances of re-
lated samples Wilcoxon signed rank test for results are
shown in Table 27 and Table 28.

We can see a significant deviation in the result of the
SGA5 algorithm which is the worst of the algorithms hav-
ing the median value of Md = 3.2519 on the short run.
In short runs SGA5 significantly differs to all other algo-
rithms, hence is clearly the worst among the competitors.
However, there is no significant difference between algo-
rithms HGA41, HGA42, HGA43 and IF. Simply counting
the number of emphasized results (best two on particular
instance) favourizes IF (8 + 8 = 16), followed by HGA41
(6 + 7 = 13). The other two only have eight emphasized
results: HGA42 (3 + 5 = 8) and HGA43 (4 + 4 = 8).
So we conclude that on the dataset used here the best are

Table 20: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*2 at 1.2 · 106 calculating op-
erations

HGA*2 1 2 3 4 5

1 0.015 0.084 0.008 0.019
2 0.182 0.875 0.347
3 0.019 0.814
4 0.209

Table 21: RMS error (best values) after 4 · 106 calculating
operations for HGA*3

Lens/Alg. HGA13 HGA23 HGA33 HGA43 HGA53

C13353 4.7929 7.4605 4.1179 3.673 3.3926
CA11265 3.5219 2.8982 3.2986 3.3426 3.4874
CA11268 2.4712 2.6368 2.6012 2.4733 2.5077
CA11483 3.1692 3.9305 3.3611 3.5551 3.3291
CA11525 1.924 1.7202 1.3482 1.6992 1.8313
CA11934 2.7798 3.1422 2.9557 2.1928 3.1123
CA12392 2.4091 2.379 2.3175 1.9166 2.3143
CA13013 1.4897 1.2844 1.1117 1.031 1.7124
CP12632 4.5923 4.8078 4.4902 4.424 4.5191
CP12633 2.7836 2.6338 2.5233 2.4582 2.7832
CP12634 5.806 5.7097 5.8002 5.8213 5.9054
CP12636 2.617 4.2187 3.3837 2.8446 3.2144

Median 2.7817 3.0202 3.1271 2.6589 3.1633

Table 22: RMS error (best values) after 1.2·106 calculating
operations for HGA*3

Lens/Alg. HGA13 HGA23 HGA33 HGA43 HGA53

C13353 5.6511 7.8509 5.0076 4.6041 3.3926
CA11265 3.5219 3.4391 3.3527 3.5108 3.4874
CA11268 2.7614 2.761 2.6012 2.4733 2.5077
CA11483 3.48 3.9305 3.4179 3.8551 3.3291
CA11525 2.1053 1.773 1.6147 1.6992 1.8313
CA11934 3.0145 3.4084 2.9764 2.4433 3.1123
CA12392 2.5199 2.4228 2.6216 1.9166 2.3143
CA13013 1.7247 1.5402 1.1117 1.031 1.7124
CP12632 4.7738 4.8078 4.4902 4.7755 4.5191
CP12633 3.5175 2.6338 2.5233 2.4582 2.7832
CP12634 5.9669 5.7097 5.8002 5.8213 5.9054
CP12636 2.6872 4.2187 3.4892 3.2777 3.2144
Median 3.2472 3.4237 3.1646 2.8755 3.1634

the algorithms HGA41 and IF which share the leadership.
Finally, as the HGA41 has a slightly lower median value
Md = 2, 6263 than the IF, the overall winner of the exper-
iment is the HGA41 algorithm. (Note however that the last
conclusion is not confirmed with statistical test.) Conver-
gence of the best two algorithms on an instance is shown
on Figure 2.

9 Conclusions
An experimental comparison of several heuristics on an en-
gineering problem has been carried out. Among several
local search heuristics, a version of iterative improvement
on a suitably defined neighborhood was chosen, based on
statistical test. A standard genetic algorithm, and three ver-
sions of hybrid genetic algorithms, in which members of
population were improved by short runs of local search
were considered. Parameters of the algorithms were tuned
by running the algorithms on the dataset with several ver-
sions of parameters and the best combination of parame-

Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 157

Figure 2: The convergence curves of the winning algorithms approximating the C13353 lens.

Table 23: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*3 at 4 · 106 calculating op-
erations

HGA*3 1 2 3 4 5

1 0.308 0.347 0.084 0.48
2 0.034 0.023 0.53
3 0.099 0.347
4 0.041

Table 24: Asymptotic significances of Wilcoxon signed
rank test for results of HGA*3 at 1.2 · 106 calculating op-
erations

HGA*3 1 2 3 4 5

1 0.814 0.05 0.05 0.05
2 0.015 0.012 0.099
3 0.433 0.814
4 0.53

ters was selected. It may be interesting to observe that in
hybrid genetic algorithms, versions with the shortest lo-
cal searches were selected in all cases, meaning there is
substantial number of generations possible within the run-
time limit. Similarly, the standard genetic algorithm per-
formed best when many generations were allowed and con-
sequently, the population was smaller.

Table 25: RMS error (best values) of the final experiment
after 4 · 106 calculating operations

Lens/Alg. SGA5 HGA41 HGA42 HGA43 IF

C13353 4.848 3.5616 3.3723 3.673 4.9422
CA11265 2.8673 2.824 3.0308 3.3426 2.5374
CA11268 2.5248 2.5907 2.6774 2.4733 2.4788
CA11483 3.5613 3.2077 3.3761 3.5551 3.3951
CA11525 1.2501 1.5096 1.356 1.6992 1.0365
CA11934 2.1933 1.8058 2.5005 2.1928 1.4969
CA12392 2.4982 2.038 2.2183 1.9166 1.5905
CA13013 1.128 0.9672 1.0672 1.031 0.9042
CP12632 4.4827 4.3852 4.4996 4.424 4.3207
CP12633 2.5485 2.5773 2.5266 2.4582 2.936
CP12634 5.6712 5.7342 5.7009 5.8213 5.6363
CP12636 3.491 2.5551 2.8835 2.8446 3.08

Median 2.7078 2.5840 2.7804 2.6589 2.7367

In the final experiment, the best local search and the ver-
sions of genetic algorithms selected after tuning the main
parameters were compared. Interesting enough, all three
versions of the hybrid genetic algorithm performed better
than the standard genetic algorithm, and that conclusion is
supported by statistical tests. On the other hand, there is no
statistically significant differences among the versions of
the hybrid algorithm and the local search IF. Looking at the
results closer, we conclude that a version of hybrid genetic

158 Informatica 39 (2015) 147–159 D. Kaljun et al.

Table 26: RMS error (best values) of the final experiment
after 1.2 · 106 calculating operations

Lens/Alg. SGA5 HGA41 HGA42 HGA43 IF

C13353 5.7489 3.8082 3.3723 4.6041 5.0976
CA11265 3.933 3.1401 3.1738 3.5108 2.5389
CA11268 2.8694 2.6582 2.7098 2.4733 2.4797
CA11483 3.6344 3.2284 3.3761 3.8551 3.4077
CA11525 2.0875 1.5822 1.356 1.6992 1.0381
CA11934 2.8535 1.8058 3.0173 2.4433 1.5547
CA12392 2.5325 2.038 2.2183 1.9166 1.5924
CA13013 1.4786 1.1819 1.1125 1.031 0.9043
CP12632 4.807 4.3852 4.6303 4.7755 4.3292
CP12633 2.5485 2.5944 2.5266 2.4582 2.9366
CP12634 5.7481 5.9876 5.7586 5.8213 5.638
CP12636 3.8838 2.5551 2.8969 3.2777 3.0801

Median 3.2519 2.6263 2.9571 2.8755 2.7377

Table 27: Asymptotic significances of Wilcoxon signed
rank test for results of the final experiment at 4 · 106 calcu-
lating operations

SGA5 HGA41 HGA42 HGA43 IF

SGA5 0.060 0.583 0.239 0.034
HGA41 0.099 0.099 0.814
HGA42 0.814 0.308
HGA43 0.347

algorithm performs slightly better.

While the comparison here is based on extensive experi-
ments and the conclusions are supported by statistical tests,
there are obvious reasons that relativize the conclusions.
Namely, the experiment was run on a realistic dataset that is
relevant for the engineering application, and confirmed the
hypothesis that these type of problems can successfully be
solved by the heuristics used. On the other hand, the dataset
used is relatively small, and hence the observations can
be generalized only conditionally. Further work on other
datasets and related optimization problems is planned.

Nevertheless, we believe that inclusion of a carefully
chosen local search into a genetic algorithm is a good idea,
and the present experimental study proves that.

Table 28: Asymptotic significances of Wilcoxon signed
rank test for results of the final experiment at 1.2 · 106 cal-
culating operations

SGA5 HGA41 HGA42 HGA43 IF

SGA5 0.006 0.008 0.01 0.005
HGA41 0.638 0.136 0.48
HGA42 0.347 0.239
HGA43 0.099

References
[1] E. H. L. Aarts, J. K. Lenstra (1997) Local Search Al-

gorithms, John Wiley & Sons.

[2] I. Ashdown (2001) Thinking Photometrically Part
II., Proceedings of the Pre-Conference Workshop
(LIGHTFAIR).

[3] T. Bäck (1996) Evolutionary Algorithms in Theory
and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Oxford Univer-
sity Press.

[4] M. Coffin, M. J. Saltzman (2000) Statistical Analysis
of Computational Tests of Algorithms and Heuristics,
INFORMS Journal of Computing, vol. 12, pp. 24–44.

[5] Cree, Inc. XLamp XP-E, www.cree.
com/led-components-and-modules/
products/xlamp/
discrete-directional/xlamp-xpe

[6] M. Dorigo, M. Birattari, T. Stützle (2006) Ant colony
optimization, IEEE Computational Intelligence Mag-
azine, vol. 1, no. 4, pp. 28–39.

[7] G. Dueck, T. Scheuer (1990) Threshold Accepting: A
General Purpose Optimization Algorithm Appearing
Superior to Simulated Annealing, Journal of Compu-
tational Physics, vol. 90, pp. 161–175.

[8] P. Festa, M. G. C. Resende (2002) GRASP: An an-
notated bibliography, Essays and Surveys on Meta-
heuristics, C. C. Ribeiro, P. Hansen (eds.), Kluwer
Academic Publishers, pp. 325—367.

[9] I. Fister Jr., S. Fong, J. Brest, I. Fister (2014) A Novel
Hybrid Self-Adaptive Bat Algorithm, The Scientific
World Journal, vol. 2014, Article ID 709738.

[10] I. Fister, M. Perc, S. M. Kamal, I. Fister (2015) A re-
view of chaos-based firefly algorithms: Perspectives
and research challenges, Applied Mathematics and
Computation, vol. 252, pp. 155—165.

[11] F. Glover, M. Laguna (1997) Tabu Search In M.
Panos, Handbook of Combinatorial Optimization,
New York, Springer US, pp. 2093-2229.

[12] R. L. Haupt, S. E. Haupt (2004) Practical Genetic Al-
gorithms, 2nd Ed., John Wiley & Sons.

[13] D. Kaljun, J. Žerovnik (2014) Local Search Optimiza-
tion of a Spatial Light Distribution Model, Proceed-
ings of the Student Workshop on Bioinspired Opti-
mization Methods and their Applications (BIOMA),
pp. 81–91.

[14] D. Kaljun, J. Žerovnik (2014) Function fitting the
symmetric radiation pattern of a LED with attached
secondary optic, Optics Express, vol. 22, pp. 29587–
29593.

Heuristics for Optimization of LED. . . Informatica 39 (2015) 147–159 159

[15] D. Kaljun, J. Žerovnik (2014) On local search based
heuristics for optimization problems, Croatian Oper-
ational Research Review, vol. 5, no. 2, pp. 317–327.

[16] S. Kennedy (2005) Escaping the bulb culture: the fu-
ture of leds in architectual illumination. LEDs maga-
zine, vol. 1, pp. 13–15.

[17] P. J. Laarhoven, E. H. Aarts (1987) Simulated anneal-
ing: theory and applications, Mathematics and Its Ap-
plications, M. Hazewinkel (ed.), Springer, pp. 7–15.

[18] Ledil Oy., www.ledil.com/.

[19] L. Lobachinsky, A. Bahabad (2014) Using Particle
Swarm Optimization to Design Broadband Optical
Nano-antennas for Nonlinear Optics, Frontiers in Op-
tics, Optical Society of America, paper FTh4E.3.

[20] M. Mitchell (1999) An Introduction to Genetic Algo-
rithms, 5th Ed., The MIT Press.

[21] N. Mladenović, P. Hansen, J. Brimberg (2013) Se-
quential clustering with radius and split criteria, Cen-
tral European Journal of Operations Research, vol.
21, suppl. 1, pp. 95–115.

[22] I. Moreno, C.-C. Sun (2008) Modeling the radiation
pattern of leds, Optics Express, vol. 16, pp. 1808–
1819.

[23] D. Simon (2013) Evolutionary Optimization Algo-
rithms, John Wiley & Sons.

[24] C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, S.-M.
Huang (2006) Precise optical modeling for led light-
ing verified by cross correlation in the midfield re-
gion, Optics Letters, vol. 31, pp. 2193–2195.

[25] E.-G. Talbi (2009) Metaheuristics: From Design to
Implementation, John Wiley & Sons.

[26] The Millennium Prize Problems are seven problems
in mathematics that were stated by the Clay Math-
ematics Institute in 2000, www.claymath.org/
millenium-problems/p-vs-np-problem.

[27] The Subcommittee on Photometry of the IESNA
Computer Committee (2002) Iesna standard file for-
mat for the electronic transfer of photometric data
and related information, Technical Report ANSI
IESNA LM-63-02, Illuminating Engineering Society
of North America.

[28] M. Tuba, N. Bacanin (2014) Improved seeker opti-
mization algorithm hybridized with firefly algorithm
for constrained optimization problems, Neurocom-
puting, vol. 143, pp. 197–207.

[29] A. Vesel, J. Žerovnik (2000) How well can ants colour
graphs?, CIT. Journal of Computing and Information
Technology, vol. 8, pp. 131–136.

[30] F. Wilcoxon (1945) Individual comparisons by rank-
ing methods, Biometrics, vol. 1, pp. 80–83.

160 Informatica 39 (2015) 147–159 D. Kaljun et al.

Informatica 39 (2015) 161–168 161

Implicit and Explicit Averaging Strategies for Simulation-Based Optimization
of a Real-World Production Planning Problem

Juan Esteban Diaz and Julia Handl
Manchester Business School, The University of Manchester, Booth Street West
M15 6PB Manchester, United Kingdom
E-mail: juan.diaz@postgrad.mbs.ac.uk, j.handl@manchester.ac.uk

Keywords: discrete event simulation, failure-prone manufacturing, genetic algorithms, noise handling, production plan-
ning, simulation-based optimization, uncertainty

Received: December 1, 2014

In this study, we explore the impact of noise handling strategies on optimization performance in the context
of a real-world production planning problem. Uncertainties intrinsic to the production system are captured
using a discrete event simulation (DES) model, and the production plan is optimized using an evolutionary
algorithm. The stochastic nature of the fitness values (as returned by the DES simulation) may impact on
optimization performance, and we explore explicit and implicit averaging strategies to address this issue.
Specifically, we evaluate the effectiveness of different strategies, when a limited budget of evaluations
is available. Our results indicate a general advantage of implicit averaging in this setting, and a good
degree of robustness with regard to population size. On the other hand, explicit averaging is found to be
non-competitive, due to the cost of repeat-evaluations of the same solution. Finally, we explore a hybrid
approach that uses explicit averaging to refine fitness estimates during final solution selection. Under
increasing levels of fitness variability, this hybrid strategy starts to outperform pure implicit and explicit
averaging strategies.

Povzetek: V študiji smo raziskali vpliv strategij za ravnanje s šumom na uspešnost optimizacije v okviru
realnega problema načrtovanja proizvodnje. Negotovosti, ki se pojavljajo v proizvodnem sistemu so bile
zajete z modelom simulacije diskretnih dogodkov (DES), proizvodni načrt pa je bil optimiran z uporabo
evolucijskega algoritma. Ker stohastična narava vrednosti kriterijske funkcije (kot jo vrača DES) lahko
vpliva na uspešnost optimizacije, smo raziskali eksplicitne in implicitne strategije povprečenja za reševanje
tega problema. Natančneje, oceniti smo učinkovitost različnih strategij v primerih, ko je na voljo omejeno
število ocenitev kriterijske funkcije. Rezultati v splošnem kažejo na prednost implicitnega povprečenja in
dobro stopnjo robustnosti glede na velikost populacije. Po drugi strani pa smo za eksplicitno povprečenje
ugotovili, da ni konkurenčno zaradi stroškov večkratnih ovrednotenj iste rešitve. Končno, raziskali smo
hibridni pristop, ki uporablja eksplicitno povprečenje za izpopolnitev ocene kriterijske funkcije pri končni
izbiri rešitev. S povečano stopnjo spremenljivosti kriterijske funkcije začne hibridna strategija prekašati
čisti, eksplicitni in implicitni strategiji.

1 Introduction
Optimization problems that include uncertainty pose chal-
lenges that are difficult to address using standard optimiza-
tion methodologies. While a portion of the optimization
literature is concerned with the development of method-
ologies capable of identifying optimal solutions to prob-
lems with uncertainty, the application of these methods
often requires stringent assumptions and / or simplifica-
tions that are necessary to satisfy relevant optimality con-
ditions. Those methods are often insufficiently powerful to
accurately incorporate the full complexity and uncertainty
intrinsic to real-world problems into the problem formu-
lation, even when their consideration is essential for the
generation of reliable and feasible solutions. For this rea-
son, solutions obtained from traditional approaches to op-
timization under uncertainty (such as fuzzy, stochastic and

stochastic dynamic programming) may often be of limited
value in producing realistic solutions for real-world prob-
lems.

Simulation-based optimization constitutes an interesting
alternative in situations where the high level of complex-
ity precludes a complete analytic formulation of a prob-
lem [7] and where uncertainty needs to be considered [8].
Simulation-based optimization involves the development
of a detailed simulation model, which is then coupled with
an optimizer in a black-box fashion. In other words, the op-
timizer operates on a (sub-)set of model parameters and the
optimization process is based exclusively on the (usually
stochastic) simulation responses. Evolutionary algorithms
(EAs) are well-suited to black-box optimization settings,
as highlighted by their wide application to real-world op-
timization problems that cannot be handled by analytical

162 Informatica 39 (2015) 161–168 J. E. Diaz and J. Handel

approaches [14]. The feasibility and reliability of solutions
become the primary consideration in such settings [8], and
the EAs’ flexibility in this respect typically offsets its dis-
advantages (specifically, the lack of guaranteed optimality
of its identified solutions).

When EAs are employed as optimizers of simulation-
based optimization models, fitness values become sub-
ject to the variability arising from the stochastic responses
within the simulation model. The resulting noisy nature of
the fitness values poses a challenge to the evolutionary opti-
mizer, for it may mislead selection procedures [1] and lead
to the propagation of inferior individuals or to the elimina-
tion of superior ones, thereby undermining algorithm per-
formance [17]. Under these circumstances, noise handling
strategies can play an important role in compensating for
the impact of noise on the optimizer, and, specifically, in
helping the optimizer to identify solutions that exhibit low
fitness variability and give rise to high average fitness. Mul-
tiple studies have analysed situations in which noise causes
perturbations during fitness evaluation, thus generating dis-
crepancies between the observed and “true" fitness [14].
We refer the reader to [10] for a comprehensive survey of
noise handling strategies proposed in the existing literature.

Implicit and explicit averaging are the two strategies
most commonly employed to reduce the influence of noise
in evolutionary optimization under noise. Implicit averag-
ing relies on the EA mechanism itself to compensate for
the impact of noise. Specifically, it assumes that the use
of sufficiently large populations will ensure that individu-
als from promising regions of the search space are sampled
repeatedly [10, 17], and the impact of noise can be reduced
in this manner. On the other hand, explicit averaging strate-
gies ensure that individuals are evaluated using average fit-
ness values obtained across a specific number (n) of fitness
evaluations (replicates). Statistically, this approach ensures
that the expected error of fitness estimates (i.e. the differ-
ence between the observed and the “true" fitness mean) re-
duces with a factor of

√
n [10].

Both implicit and explicit averaging strategies incur ad-
ditional fitness evaluations due to (i) the increase in popula-
tion size and due to (ii) the increase in the number of trials,
respectively. Fitness evaluations present an important con-
sideration in simulation-based optimization, as each repli-
cation of a simulation is time-consuming and the number
of these replications may be limited by available computa-
tional time. Here, we investigate the efficiency and effec-
tiveness of different noise-handling strategies in a realistic
simulation-based optimization setting, in which the compu-
tational budget available for the optimization (and, there-
fore, the overall number of simulation replicates) is lim-
ited. Specifically, we compare explicit averaging against
implicit averaging strategies for two different population
sizes. Finally, we investigate a hybrid scheme that aims to
combine the strengths of both approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the real-world optimization problem con-
sidered and the corresponding simulation-based optimiza-

tion model developed in this study. Explicit averaging, im-
plicit averaging and a hybrid strategy combining both ap-
proaches are described in Section 3. Section 4 presents de-
tails about the comparative analysis, and empirical findings
are presented in Section 5. Overall conclusions, as well as
the limitations of this study and future research directions,
are discussed in Sections 6 and 7, respectively.

2 Simulation-Based Optimization
Model

In this study, a simulation-based optimization approach
based on the integration of discrete event simulation (DES)
and a genetic algorithm (GA) is applied to address the pro-
duction planning problem of a real manufacturing company
presented by Diaz Leiva and Handel [6] with the difference
that, here, the objective is to achieve profit maximization.
Additional modifications made to the original DES and op-
timization models presented in [6] are stated in Sections 2.1
and 2.2, respectively.

This problem corresponds to a big bucket, multi-product,
multi-level (sub-products), capacitated (constraints are
considered) production planning problem of a failure-prone
manufacturing system, consisting of multiple work centres
with insufficient capacity to fully cover demand require-
ments.

The DES model was developed in SimEventsr (The
MathWorks, Inc., 2014) and Matlab’s GA (MI-LXPM) im-
plementation [5] was used as the optimizer. This is the de-
fault MATLABr R2014a’s (The MathWorks, Inc., 2013)
implementation for solving integer and mixed integer prob-
lems with GA. The GA employs Laplace crossover, power
mutation and binary tournament selection as operators. The
truncation procedure, which ensures compliance with in-
teger constraints after crossover and mutation is described
in [5]. The inbuilt constraint-handling method is the param-
eter free penalty function approach proposed by Deb [4].

All computations were executed in parallel on a 12 core
Intel(R) Xeon(R) CPU L5640 @ 2.27GHz with 24 GB of
RAM running Scientific Linux, release 6.2.

2.1 Simulation Model

The DES model employed in this study is a modified ver-
sion of the model presented by Diaz Leiva and Handel [6].

The DES model represents the production of 31 prod-
ucts k within 7 work centres l. A work centre corresponds
to the set of resources (e.g., machines, people, etc.) needed
to manufacture certain products. Given that some prod-
ucts can be manufactured in several work centres a total of
41 processes j are considered in the DES model. A pro-
cess j includes all series of events involved in the initial-
ization of orders of a product k, its manufacturing in a spe-
cific work centre l and its storage in an specific sink s (with
s = 1, 2, . . . , 41).

Implicit and Explicit Averaging Strategies for Simulation-Based. . . Informatica 39 (2015) 161–168 163

This model intends to capture the delays (αl) caused
by work centre failures and provides the stock of products
manufactured during a production period of one month (24
days composed of 3 shifts of 8 hours each). The total stock
of a specific product (Sk) corresponds to the sum of lots
manufactured across the different work centres as shown
by the following equation:

Sk =

7∑
l=1

Sk,l, (1)

where Sk,l is the stock of product k manufactured in work
centre l.

The first modification to the original model is that in-
stead of using probability distribution functions (PDFs) to
represent the time required to manufacture a specific pro-
duction lot (Tj), constant values are assigned to those at-
tributes according to specifications provided by the com-
pany.

Moreover, unlike the original DES model, the probabil-
ity of occurrence of a work centre failure during the manu-
facturing of a product lot is here denoted as Pl and is mod-
elled as attributes assigned to each work centre (rather than
to each process). The probabilities used for Pl, as well as
the PDFs employed to represent the delays caused by those
failures (αl), are summarized in Table 2.

Finally, an additional server was added to each process,
so that the first lot of every process is processed by this
server during the entire duration of each simulation repli-
cation (24 days). This modification was made to allow de-
cision variables to take values equal to zero, a possibility
not accounted for in the original model [6].

2.2 Optimization Model

The objective here is to generate production plans that try to
maximize the expected sum of contributions to profit gen-
erated from processes undertaken by a failure-prone man-
ufacturing system. The expected sum of contributions to
profit is later referred to as “profit" for simplification pur-
poses.

A total of 41 decision variables (xj) are considered,
which correspond to the number of lots to be produced in
each process j, and are constrained to be non-negative inte-
gers. Those decision variables, specified by the GA, con-
stitute the input to the DES model and the responses Sk
obtained from the DES model are used for computing the
value of the fitness function.

The fitness value f is calculated across n independent
simulation replicates for each individual x as follows:

maximize f(x) = c̄ =
1

n

n∑
m=1

cm, (2)

where the value of n varies depending on the strategy ap-
plied (see Section 4 for details about n).

For each replication m, the responses (Sk) of the DES
model are used to calculate cm as follows:

cm =

31∑
k=1

Pk, (3)

where the total profit derived from product k is defined as:

Pk = Sk × ρk, (4)

where ρk denotes the contribution margin per lot of product
k.

Additional constraints are imposed in the form of Equa-
tion 5 to avoid production levels greater than the maximum
demand, to represent the requirement of sub-products and
labour needed to undertake each process.

41∑
j=1

ai,j × xj ≤ bi (i = 1, 2, . . . , 44), (5)

where bi denotes the magnitude of constraint i and ai,j cor-
responds to the amount deployed from bi by manufacturing
one lot in process j.

3 Noise Handling Strategies
In this study we focus exclusively on implicit and ex-
plicit averaging strategies, as these are straightforward to
implement in any EA and present the approaches most
commonly employed in practice. Other noise handling
strategies, such as averaging by means of approximated
models [3, 12, 16] and modifications of the selection
scheme [2, 15] have been proposed in the literature, but
are not considered here.

An explicit averaging strategy uses a fixed number n of
simulation replicates to obtain an average fitness value for
each individual, as described in Equation 2. These average
fitness estimates are then used to inform selection proba-
bilities in the evolutionary algorithm. Therefore, under the
explicit averaging strategy (ES) here analysed, fitness of
an individual x is computed across 10 independent fitness
evaluations (n = 10) and the population size employed cor-
responds to 50 individuals. n is set at this relatively small
level because a limited computational budget of 25,000 fit-
ness evaluations is available, and assigning higher values to
n or using a larger population size would reduce the num-
ber of generations that can be executed under ES.

In contrast, an implicit averaging strategy uses a sin-
gle simulation replicate (n = 1) to evaluate the quality of
an individual. Increased robustness towards noise is then
achieved by increasing population size relative to standard
settings of this parameter. Consequently, under the implicit
averaging strategy (IS), a single fitness evaluation (n = 1)
is used to compute fitness and a population size of 100 in-
dividuals is applied. Additionally, a baseline strategy (BS)
is also analysed in order to evaluate the performance of im-
plicit averaging when the population size is the same as in

164 Informatica 39 (2015) 161–168 J. E. Diaz and J. Handel

ES, and therefore, twice as many generations are evolved
compared to IS.

Moreover, we further describe a hybrid strategy (HS)
that attempts to combine aspects of implicit and explicit
averaging. This strategy applies implicit averaging (n = 1
and a population size of 100 individuals) throughout the
evolution process, but switches behaviour towards the end
of the optimization: instead of choosing the final solution
based on a single fitness value, we propose to select from
the final population the feasible individual with the best av-
erage fitness. Consequently, we implement a mechanism
that computes the average fitness of every feasible indi-
vidual of the final population across a number γ of fitness
evaluations, generated from independent simulation repli-
cations. The value of γ depends on the number of feasible
individuals (δ) in the final population and on the computa-
tional budget available for this last step (E), which in this
case corresponds to 1000 fitness evaluations. γ is computed
as follows:

γ =

⌊
E

δ

⌋
. (6)

Therefore, having a population size of 100, if every in-
dividual in the final population is feasible, 10 fitness eval-
uations are used to compute the average fitness of each in-
dividual. However, if infeasible individuals are present in
the final population, those 1000 fitness evaluations are dis-
tributed amongst feasible individuals only.

Parameters specified for all four noise handling strate-
gies introduced in this section are presented in Table 1.

4 Comparative Analysis

In order to test the effectiveness of the strategies under dif-
ferent levels of fitness variability, the following compar-
ative analysis is undertaken for two different problem in-
stances. Table 2 shows the different levels of uncertainty
incorporated into each instance of the problem.

The performance of the EA under the proposed HS is
compared with the performance observed for IS, ES and
BS. In order to provide a fair comparison of the four strate-
gies analysed, the stopping criteria selected to terminate the
optimization procedure is the number of fitness evaluations.
As mentioned in Section 3, a total budget of 25,000 fitness
evaluations is allocated for every strategy as shown in Ta-
ble 1.

The simulation-based optimization model is run 60 dif-
ferent times for each strategy; in each run, the best solution
(based on last fitness evaluations) is selected from the final
population. Consequently, 240 production plans are gen-
erated per problem instance. The precise quality of each
of these plans is evaluated using extensive simulation: av-
erage profit, measured in United States Dollar (USD), is
computed for every production plan across 1000 profit val-
ues obtained via stochastic simulation.

Subsequently, the four sets of average profit values are
depicted as cumulative distribution functions (CDFs) and
stochastic dominance criterion [18] is applied to determine
whether or not the optimization performance, as measured
in average profit values, differs between strategies.

Furthermore, Mann-Whitney U test [11] is then con-
ducted for paired comparisons to test whether the optimiza-
tion performance achieved under the different strategies is
statistically significant, expressed in the form of the follow-
ing hypotheses:

– Ho : stochastic homogeneity of CDFs of average
profit values obtained under both strategies

– Ha : average profit values obtained under one strategy
are stochastically smaller than the ones obtained under
the other strategy

Mann-Whitney U test is employed instead of t-test, since
distributions of the samples analysed do not fulfil the nor-
mality assumption.

5 Results
Descriptive statistics (means, minimum values, maximum
values and standard deviations) of the average profit values
(as computed across 1000 independent replications) ob-
tained under the four strategies as well as the corresponding
average computation times are presented in Tables 3 and 4
for problem instance 1 and 2, respectively.

Since our intention is to test the hypothesis presented in
section 4 among the four strategies, homogeneity of vari-
ances of the ranked values across the different samples is a
necessary condition for Mann-Whitney U test to be a reli-
able test [9]. Therefore, non-parametric Levene tests [13]
were performed on every combination of samples in both
problem instances. In both problem instances, results from
these tests indicate that variances did not differ significantly
(p > 0.05) between the samples of ranks analysed, con-
firming the suitability of Mann-Whitney U test to evaluate
the hypothesis above mentioned (Section 4).

Figures 1 and 2 illustrate as CDFs the 60 average profit
values obtained with production plans generated under
each strategy in problem instance 1 and 2, respectively.
Both figures clearly show that the CDFs of average profit
obtained under BS, IS and HS dominate the CDF of profit
obtained under ES (first-order stochastic dominance). Fur-
thermore, results from Mann-Whitney U test statistically
show that average profit values obtained under ES are
stochastically smaller (p < 0.01) than the ones obtained
under BS, IS and HS in both problem instances, as shown
in Tables 5 and 6.

These results demonstrate that ES is an inadequate noise
handling strategy in our setting: this result is likely to be
driven by the limited computational budget available, and
a stronger performance of ES may potentially be achieved
when considering performance upon convergence.

Implicit and Explicit Averaging Strategies for Simulation-Based. . . Informatica 39 (2015) 161–168 165

Table 1: Parameters used for baseline, implicit averaging, explicit averaging and hybrid strategies

BS IS ES HS
n 1 1 10 1
PopulationSize 50 100 50 100
Generations 500 250 50 240
Fitness evaluations 25,000 25,000 25,000 ≤ 25,000

Table 2: Probabilities for Pl and PDFs for αl

Instance 1 Instance 2 Instance 1 and 2

Work centre (l) Pl Pl
αl

PDF Mean (d)
1 0.00 0.00 — —
2 0.10 0.30 Exponential 0.0847
3 0.25 0.45 Exponential 0.0935
4 0.15 0.35 Exponential 0.1338
5 0.00 0.00 — —
6 0.00 0.00 — —
7 0.00 0.00 — —

Table 3: Descriptive statistics of average profits and average computation times per strategy in problem instance 1

BS IS ES HS
Mean (USD) 703,689 715,376 555,932 707,503
Minimum (USD) 550,417 484,229 460,416 550,014
Maximum (USD) 793,316 795,716 689,685 792,696
Std dev (USD) 55,539 60,416 47,322 60,754
Average computation time (s) 1256 1144 1235 1369

Table 4: Descriptive statistics of average profits and average computation times per strategy in problem instance 2

BS IS ES HS
Mean (USD) 707,600 703,420 543,140 723,460
Minimum (USD) 536,840 538,990 437,930 561,550
Maximum (USD) 785,810 783,040 656,800 790,460
Std dev (USD) 60,137 61,744 43,412 51,258
Average computation time (s) 1284 1108 1214 1265

166 Informatica 39 (2015) 161–168 J. E. Diaz and J. Handel

No dominance (neither first nor second degree stochas-
tic dominance) can be determined among the CDFs of av-
erage profit obtained under BS, IS and HS in problem in-
stance 1, where all three strategies appear equally compet-
itive. These results are in accordance with results from
Mann-Whitney U test, which indicate stochastic homo-
geneity (p > 0.05) among samples obtained under BS, IS
and HS in problem instance 1. It is interesting that popula-
tion size (i.e. different setups of implicit averaging) has no
significant effect in this setting as evidenced under BS and
IS.

In problem instance 2, results from Mann-Whitney U
tests also indicate stochastic homogeneity (p > 0.05)
among samples obtained under BS, IS and HS. However,
the CDFs of average profit obtained under HS dominates
the CDFs of average profit obtained under IS and under BS,
respectively (first and second-order stochastic dominance).
These results indicate that, even in a setting with a lim-
ited evaluation budget, the accurate fitness estimates from
explicit averaging can be beneficial to optimization. It is
clear that the difference between IS and HS arises during
the final stages of the optimization only, while IS contin-
ues optimization during additional generations, HS focuses
resources on explicit averaging across its last population.
When seen in combination with the poor performance of
ES, our results suggest that the trade-off between improved
exploration (from evaluating more individuals) and accu-
rate fitness evaluations (through simulation replicates for
the same individual) needs to be carefully balanced in this
setting. This finding appears in line with previous research
that has delivered contradictory results regarding the rela-
tive performance of explicit and implicit averaging.

Table 5: Values for Mann-Whitney U statistic obtained in
problem instance 1

BS IS HS ES
BS — 1525 1705 107**
IS — — 1662 117**
HS — — — 113**
ES — — — —

** p < 0.01

Table 6: Values for Mann-Whitney U statistic obtained in
problem instance 2

BS IS HS ES
BS — 1719 1549 103**
IS — — 1485 96**
HS — — — 36**
ES — — — —

** p < 0.01

6 Conclusion

Implicit averaging strategies reduce the impact of noise by
having a sufficiently large population, which ensures that
individuals from promising regions of the search space are
sampled repeatedly [10, 17]. On the other hand, explicit
averaging strategies use average fitness values, obtained
across a specific number of fitness evaluations, to ensure
that evaluation of individuals is based on fitness estimates
that are more robust to noise [10].

One of the key findings of this study was that, in the con-
text of our real-world problem, a noise-handling strategy
based on explicit averaging did not provide a competitive
performance. More generally, this points to the fact that the
computational costs incurred by simulation replicates may
be problematic in constrained time settings.

Furthermore, we found that implicit averaging per-
formed robustly for both of the population sizes used. The
performance of our hybrid strategy does indicate that some
effort towards explicit averaging may become important
with increasing variability. Under low levels of fitness
variability, the hybrid strategy, implicit averaging and our
baseline showed a comparable performance. This situation
changed with increasing levels of fitness variability, when
HS started to enhance overall performance.

Compared to a pure, implicit averaging strategy, the hy-
brid strategy misses out on the last few generations of op-
timization. Our results show, however, that this disadvan-
tage is more than counter-balanced by the benefits from an
accurate final selection step that reduces the likelihood of
choosing an inferior individual (in terms of average fitness)
as the final solution.

7 Limitations and Future Research

The relevance of obtaining more reliable fitness estimates
increases with the level of variability, since there is a higher
risk of choosing an inferior solution. It is, therefore, intu-
itive that the final selection mechanism implemented in HS
would be more beneficial in such circumstances. But at
the same time, the number of fitness evaluations needed to
obtain reliable estimates is expected to raise with higher
fitness variability, leaving to the evolutionary process a
smaller share of the computational budget. Therefore, fur-
ther research may focus on investigating the right trade-
off between exploration (IS) and accurate fitness evaluation
(ES). In this sense, the application of different sampling
techniques (e.g., Latin Hypercube) during the final selec-
tion mechanism might be worthy of future investigation, as
it may allow a reduction in the number of fitness evalua-
tions required in this last step.

Our results underline issues around the computational
cost of explicit averaging, but also highlight that sporadic
use of this strategy may, nevertheless, be beneficial. In this
study, the use of explicit averaging in the hybrid strategy
was limited to the final selection step only. Future research

Implicit and Explicit Averaging Strategies for Simulation-Based. . . Informatica 39 (2015) 161–168 167

Figure 1: CDFs of average profit values obtained with production plans generated under the four different strategies in
problem instance 1.

Figure 2: CDFs of average profit values obtained with production plans generated under the four different strategies in
problem instance 2.

168 Informatica 39 (2015) 161–168 J. E. Diaz and J. Handel

may consider the possibility of using explicit averaging at
earlier points during the optimization process.

Acknowledgement

Juan Esteban Diaz expresses his gratitude to the Secretariat
for Higher Education, Science and Technology of Ecuador,
who has supported him with a doctoral scholarship.

References
[1] M. Bhattacharya, R. Islam, A. N. Mahmood (2014)

Uncertainty and evolutionary optimization: A novel
approach, Proceedings of the 9th IEEE Conference on
Industrial Electronics and Applications (ICIEA), pp.
988–993.

[2] J. Branke, C. Schmidt (2003) Selection in the pres-
ence of noise, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO), pp. 766–
777.

[3] J. Branke, C. Schmidt, H. Schmec (2001) Efficient fit-
ness estimation in noisy environments. Proceedings
of the Genetic and Evolutionary Computation Con-
ference (GECCO), pp. 243–250.

[4] K. Deb (2000) An efficient constraint handling
method for genetic algorithms, Computer methods in
applied mechanics and engineering, vol. 186, no. 2,
pp. 311–338.

[5] K. Deep, K. P. Singh, M. Kansal, C.Mohan (2009) A
real coded genetic algorithm for solving integer and
mixed integer optimization problems, Applied Math-
ematics and Computation, vol. 212, no. 2, pp. 505–
518.

[6] J. E. Diaz Leiva, J. Handl (2014) Simulation-based
ga optimization for production planning, Proceedings
of the Student Workshop on Bioinspired Optimization
Methods and their Applications (BIOMA), pp. 27–39.

[7] C. Ehrenberg, J. Zimmermann (2012) Simulation-
based optimization in make-to-order production:
scheduling for a special-purpose glass manufacturer,
Proceedings of the Winter Simulation Conference
(WSC), pp. 1–12.

[8] G. Figueira, B. Almada-Lobo (2014) Hybrid
simulation-optimization methods: A taxonomy
and discussion, Simulation Modelling Practice and
Theory, vol. 46, pp. 118–134.

[9] M.-R. Ghasemi, J. Ignatius, A. Emrouznejad (2014)
A bi-objective weighted model for improving the dis-
crimination power in MCDEA, European Journal of
Operational Research, vol. 233. no. 3, pp. 640–650.

[10] Y. Jin, J. Branke (2005) Evolutionary optimization in
uncertain environments - a survey, IEEE Transactions
on Evolutionary Computation, vol. 9, no. 3, pp. 303–
317.

[11] H. B. Mann, D. R. Whitney (1947) On a test of
whether one of two random variables is stochasti-
cally larger than the other, The annals of mathemati-
cal statistics, vol. 18, no. 1, pp. 50–60.

[12] F. Neri, X. del Toro Garcia, G. L. Cascella, N. Salva-
tore (2008) Surrogate assisted local search in pmsm
drive design, COMPEL: The International Journal
for Computation and Mathematics in Electrical and
Electronic Engineering, vol. 27, no. 3, pp. 573–592.

[13] D. W. Nordstokke, B. D. Zumbo (2010) A new non-
parametric levene test for equal variances, Psicológ-
ica, vol. 31, no. 2, pp. 401–430.

[14] C. Qian, Y. Yu, Y. Jin, Z.-H. Zhou (2014) On the ef-
fectiveness of sampling for evolutionary optimization
in noisy environments, Lecture Notes in Computer
Science, vol. 8672, pp. 302–311.

[15] G. Rudolph (2001) A partial order approach to noisy
fitness functions, Proceedings of the Congress on
Evolutionary Computation (CEC), vol. 1, pp. 318–
325.

[16] Y. Sano, H. Kita, I. Kamihira, M. Yamaguchi (2000)
Online optimization of an engine controller by means
of a genetic algorithm using history of search, Pro-
ceedings of the 26th IEEE Annual Conference of the
Industrial Electronics Society (IECON), vol. 4, pp.
2929–2934.

[17] A. Syberfeldt, A. Ng, R. I. John, P. Moore (2010)
Evolutionary optimisation of noisy multi-objective
problems using confidence-based dynamic resam-
pling, European Journal of Operational Research,
vol. 204, no. 3, pp. 533–544.

[18] S. Yitzhaki (1982) Stochastic dominance, mean vari-
ance, and gini’s mean difference, The American Eco-
nomic Review, vol. 72, no. 1, pp. 178–185.

Informatica 39 (2015) 169–176 169

Data Mining-Assisted Parameter Tuning of a Search Algorithm

Jurij Šilc
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: jurij.silc@ijs.si

Katerina Taškova
Institute of Computer Science, Johannes Gutenberg University Mainz, Staudingerweg 9
55128 Mainz, Germany
E-mail: ktaskova@uni-mainz.de

Peter Korošec
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia, and
Faculty of Mathematics, Science and Information Technologies, University of Primorska
Glagoljaška 8, SI-6000 Koper, Slovenia
E-mail: peter.korosec@ijs.si

Keywords: data mining, differential ant-stigmergy algorithm, low-discrepancy sequences, meta-heuristic optimization,
parameter tuning

Received: December 1, 2014

The main purpose of this paper is to show a data mining-based approach to tackle the problem of tuning the
performance of a meta-heuristic search algorithm with respect to its parameters. The operational behavior
of typical meta-heuristic search algorithms is determined by a set of control parameters, which have to
be fine-tuned in order to obtain a best performance for a given problem. The principle challenge here is
how to provide meaningful settings for an algorithm, obtained as result of better insight in its behavior. In
this context, we discuss the idea of learning a model of an algorithm behavior by data mining analysis of
parameter tuning results. The study was conducted using the Differential Ant-Stigmergy Algorithm as an
example meta-heuristic search algorithm.

Povzetek: Osnovni namen članka je pokazati, kako se lahko z uporabo tehnik podatkovnega rudar-
jenja lotevamo problema uglaševanja sposobnosti metahevristčnega iskalnega algoritma z vidika njegovih
parametrov. Delovanje značilnega metahevrističnega iskalnega algoritma je določeno z naborom njegovih
krmilnih parametrov, ki morajo biti za dosego najboljših sposobnosti pri danem problemu dobro uglašeni.
Temeljni izziv je kako zagotoviti najboljšo nastavitev algoritma, ki bo rezultat vpogleda v njegovo vedenje.
V zvezi s tem razpravljamo o ideji učenja modela za obnašanje algoritma na osnovi analize podatkovnega
rudarjenja rezultatov uglaševanja njegovih parametrov. Študija je narejena z uporabo Diferencialnega al-
goritma s stigmergijo mravelj, kot primera metahevrističnega iskalnega algoritma.

1 Introduction

The research interest for meta-heuristic search algorithms
has been significantly growing in the last 25 years as a
result of their efficiency and effectiveness to solve large
and complex problems across different domains [2]. The
state-of-the-art nature-inspired meta-heuristic algorithms
for high-dimensional continuous optimization include also
algorithms inspired from the collective behavior of social
organisms [14].

One such algorithm, which we will address in this paper,
is the Differential Ant-Stigmergy Algorithm (DASA) ini-
tially proposed by Korošec [6], and further improved in [8].
DASA is inspired by the efficient self-organizing behav-
ior of ant colonies emerging from a pheromone-mediated
communication, known as stigmergy [3]. One of the first
stigmergy-based algorithms designed for continuous func-

tion optimization was Multilevel Ant Stigmargy Algorithm
[7].

Naturally, DASA can be classified within the Ant Colony
Optimization (ACO) framework. However, the use of a
continuous pheromone model in the form of Cauchy prob-
ability distribution with representation of the search space
in the form of the so-called differential graph makes DASA
dissimilar from the original ACO paradigm. The rationale
behind DASA is in memorizing (via the pheromone model
updates) the “move” in the search space that improves the
current best solution and using it in further search. As it
is the case with most of the meta-heuristic algorithms, the
operational behavior of DASA is determined by a set of
control parameters. In practice, these parameters have to
be fine-tuned in order to obtain best performance of the al-
gorithm. It can be quite inconvenient for the users as:

170 Informatica 39 (2015) 169–176 J. Šilc et al.

– they usually do not have insight into the behavior of
the algorithm, and

– even if a default setting exists, it may not be adequate
for a specific instance or type of a problem. Moreover,
parameter tuning is computationally expensive task.

The principle challenge here is how to provide meaning-
ful (default) settings for DASA, obtained as result of better
insight into the algorithm’s behavior. Furthermore, can we
find optimal regions in DASA parameter space by analyz-
ing the patterns in the algorithm’s behavior with respect to
the problem characteristics? Related to this, we discuss the
preliminary findings based on data mining analysis of pa-
rameter tuning results. More precisely, the parameter tun-
ing task is approached by two-step procedure that combines
a kind of experimental design with data mining analysis.

We use Sobol’ sequences [10] for even sampling of the
algorithm parameter space to generate a large and diverse
set of parameter settings. These are used as input to DASA
to be tuned on a given function optimization problem. The
performance of DASA on the given function optimization
problem, in terms of function error, is captured at different
time points for all sampled parameter settings. The data
collected in the first step, DASA performance with corre-
sponding parameter settings, is subject for intelligent data
analysis, i.e., multi-target regression with Predictive Clus-
tering Trees [1].

Parameter sampling combined with regression has been
already used by Stoean et al. [11] for tuning meta-
heuristics: Latin hypercubes parameter sampling is com-
bined with single-target regression with Support Vector
Machines. Our approach modifies the former by replacing
the Latin hypercube sampling by Sobol’ sequences, as the
former is best suited in the case when a single parameter
dominates the algorithm’s performance, while it should be
used with care if there are interactions among the sampled
parameters [9]. Moreover, we define the regression task as
multi-target regression, taking into account more than one
target (in this case the function error at few time points)
with the goal to find parameter settings for the given al-
gorithm that will not only solve the problem but will also
solve the optimization problem fastest.

The reminder of this paper is structured as follows. Sec-
tion 2 introduces the differential ant-stigmergy algorithm.
Then, Section 3 addresses the parameter tuning task and
Section 4 presents the experimental evaluation with the re-
sults. After that, Section 5 discusses the idea of post-hoc
analysis of parameter tuning by data mining. Finally, Sec-
tion 6 summarizes this study and outlines possible direc-
tions for further work.

2 The Differential Ant-Stigmergy
Algorithm

The version of DASA used in our experimental evaluation
is described in details by Korošec et al. [8] (see Figure 1).

DASA introduces the concept of variable offsets (re-
ferred as to parameter differences) for solving the continu-
ous optimization problems. By utilizing discretized offsets
of the real-valued problem parameters, the continuous op-
timization problem is transformed to a graph-search prob-
lem. More precisely, assuming a multidimensional param-
eter space with xi being the current solution for the i-th
parameter, we define new solutions x′i as follow:

x′i = xi + ωδi, (1)

where δi is called the parameter difference and is selected
from the following set:

∆i = ∆−i ∪ {0} ∪∆+
i , (2)

where

∆−i = {δ−i,k| δ
−
i,k = −bk+Li−1, k = 1, 2, . . . , di} (3)

and

∆+
i = {δ+i,k| δ

+
i,k = bk+Li−1, k = 1, 2, . . . , di}. (4)

Here,
di = Ui − Li + 1, (5)

Li = blogb(εi)c, (6)

Ui = blogb(max(xi)−min(xi))c, (7)

i = 1, 2, . . . , D, D is dimension of the problem, b is the
discretization base, ε is the maximal computer arithmetic’s
precision, and the weight ω = Random_Integer(1, b−
1) is added to enable a more flexible movement over the
search space.

In principle, DASA relies on two distinctive characteris-
tics, differential graph and continuous pheromone model.
Here, we will briefly discuss these two characteristics and
outline the main loop of the DASA search process.

First, DASA transforms theD-dimensional optimization
problem into a graph-search problem. The corresponding
differential graph is a directed acyclic graph obtained by
fine discretization of the continuous parameters’ offsets.
The graph has D layers with vertices, where each layer
corresponds to a single parameter. Each vertex corresponds
to a parameter offset value that defines a change from the
current parameter value to the parameter value in the next
search iteration. Furthermore, each vertex in a given layer
is connected with all vertices in the next layer. The set
of possible vertices for each parameter depends on the pa-
rameter’s range, the discretization base and the maximal
computer arithmetic’s precision, which defines the minimal
possible offset value. Ants use these parameters’ offsets to
navigate through the search space. At each search itera-
tion, a single ant positioned at a certain layer moves to a
specific vertex in the next layer, according to the amount
of pheromone deposited in the graph vertices belonging to
this layer.

Data Mining-Assisted Parameter Tuning of a Search Algorithm Informatica 39 (2015) 169–176 171

1: ~x tbest= Rnd_Solution()
2: y best= f (~x tbest)
3: y tbest= inf
4: G = Graph_Initialization(b, ~L, ~U, ~ǫ)
5: Pheromone_Initialization(G)
6: while terminating condition is not metdo
7: k = 0
8: for all m antsdo
9: repeat

10: ~pi = Find_Path(G) {path of thei-th ant}
11: k = k+ 1
12: if k > m2 then
13: ~x tbest= Rnd_Solution()
14: y best= f (~x tbest)
15: Pheromone_Initialization(G)
16: goto line 7 {a local optimum was found, so the search process is restarted}
17: end if
18: until (~pi = 0) {means of all parameters’ offsets are 0}
19: ω = Random_Integer(1, b− 1)
20: ~xi = ~x tbest+ ωδ(~p)
21: end for{ants created solutions}
22: y cbest= inf
23: for all m antsdo
24: y = f (~xi) {function evaluation}
25: if y < y cbestthen
26: y cbest= y
27: ~p cbest= ~pi

28: ~x cbest= ~xi

29: end if
30: end for {created solutions were evaluated}
31: if y cbest< y tbestthen
32: y tbest= y cbest

33: ~x tbest= ~x cbest

34: s= Update_Scales(sglobal, slocal)
35: Pheromone_Redistribution(~pcbest, s)
36: if y tbest< y bestthen
37: y best= y tbest

38: ~x best= ~x tbest

39: end if
40: else
41: Update_Scale(sglobal)
42: Pheromone_Evaporation(G, ρ)
43: end if
44: end while

6

Figure 1: The Differential Ant-Stigmergy Algorithm

172 Informatica 39 (2015) 169–176 J. Šilc et al.

Second, DASA performs pheromone-mediated search
that involves best-solution-dependent pheromone distribu-
tion. The amount of pheromone is distributed over the ver-
tices according to the Cauchy Probability Density Function
(CPDF) [9]. DASA maintains a separate CPDF for each
parameter. Initially, all CPDFs are identically defined by
a location offset set to zero and a scaling factor set to one.
As the search process progresses, the shape of the CPDFs
changes: CPDFs shrink and stretch as the scaling factor de-
creases and increases, respectively, while the location off-
sets move towards the offsets associated with the better so-
lutions. The search strategy is guided by three user-defined
real positive factors: the global scale increase factor, s+,
the global scale decrease factor, s−, and the pheromone
evaporation factor, ρ. In general, these three factors de-
fine the balance between exploration and exploitation in the
search space. They are used to calculate the values of the
scaling factor and consequently influence the dispersion of
the pheromone and the moves of the ants.

Finally, the main loop of DASA consists of an iterative
improvement of a temporary-best solution, performed by
searching appropriates paths in the differential graph. The
search is carried out by m ants, all of which move simul-
taneously from a starting vertex to the ending vertex at the
last level, resulting in m constructed paths. Based on the
found paths, DASA generates and evaluates m new can-
didate solutions. The best among the m evaluated solu-
tions is preserved and compared to the temporary-best so-
lution. If it is better than the temporary-best solution, the
latter is replaced, while the pheromone amount is redis-
tributed along the path corresponding to the path of the pre-
served solution and the scale factor is accordingly modified
to improve the convergence. If there is no improvement
over the temporary-best solution, then the pheromone dis-
tributions stay centered along the path corresponding to the
temporary-best solution, while their shape shrinks in or-
der to enhance the exploitation of the search space. If for
some fixed number of tries all the ants only find paths com-
posed of zero-valued offsets, the search process is restarted
by randomly selecting a new temporary-best solution and
re-initializing the pheromone distributions.

3 Parameter Tuning

To obtain the best possible performance on a given prob-
lem, one should consider a task specific tuning of the pa-
rameter setting for the optimization algorithm used. Deter-
mining the optimal parameters is an optimization task in it-
self, which is extremely computationally expensive. There
are two common approaches for choosing parameters val-
ues: parameter tuning and parameter control. The first ap-
proach selects the parameter settings before running the op-
timization algorithm (and they remain fixed while perform-
ing the optimization). The second approach optimizes the
algorithm’s parameters along with the problem’s parame-
ters. Here, we will focus on the first approach, parameter

tuning.
A detailed discussion and survey of parameter tuning

methods is given by Eiben and Smit [4]. According to
this survey, one way to approach parameter tuning is by
sampling methods. Sampling methods reduce the search
effort by decreasing the number of investigated parameter
settings as compared to the full factorial design: the ba-
sic full factorial design investigates 2k parameter settings,
subject to k parameters, each of which have 2 possible val-
ues; in the more general case, parameters can have arbitrary
number of values; moreover, an increase in the number of
investigated parameters means an exponential increase in
the number of parameter settings to be tested. Two widely
used sampling methods are Latin-squares [9] and Taguchi
orthogonal arrays [12]. However, these are not the most ro-
bust sampling techniques, e.g., Latin-squares or Latin hy-
percube sampling is good in the case where one of the pa-
rameters dominates the algorithm’s performance, while it
should be used with care if there are interactions among
the parameters.

Ultimately, we would like to find a sampling schema that
will be able to detect the interactions among the parame-
ters, will be independent from user-specified information
regarding the particular parameter values to be considered
(typical for factorial design), and will deliver small but rep-
resentative sample of the parameter search space. The first
two requirements are satisfied by the pure random sam-
pling, but the last is not, as random sampling does not guar-
antee that the sampled values are evenly spread across the
entire domain. The so-called low-discrepancy sequences
were specially designed to fulfill all three requirements.
Therefore, Sobol’ sequences, a representative variation of
low-discrepancy sequences introduced by Sobol’ [10], was
considered for sampling the parameter space of DASA in
this study.

Sobol’ sequences, sampled from a D-dimensional unit
search space, are quasi-random sequences of D-tuples that
are more uniformly distributed than uncorrelated random
sequences of D-tuples. These sequences are neither ran-
dom nor pseudo-random: they are cleverly generated not
to be serially uncorrelated by taking into account which tu-
ples in the search space have already been sampled. For a
detailed explanation and overview of the schemas for gen-
erating Sobol’ sequences, we refer to [9]. The particular
implementation of Sobol’ sampling used in our analysis is
based on the Gray code order [5].

4 Experimental Evaluation

Since data mining methods can only discover patterns actu-
ally present in the data, the dataset subject to analysis must
be large enough and informative enough to contain these
patterns, i.e., to describe different types of algorithm’s be-
havior. For this reason, we decided to use a simple test
function, which matched this requirement and was used for
building an example case model.

Data Mining-Assisted Parameter Tuning of a Search Algorithm Informatica 39 (2015) 169–176 173

Table 1: Parameter settings for DASA* and DASA◦

Algorithm DASA◦ DASA*
Parameter D = 20 D = 40 D = 20 D = 40
m 10 10 5 7
ρ 0.2 0.2 0.324 0.388
s+ 0.02 0.02 0.201 0.136
s− 0.01 0.01 0.289 0.344
b 10 10 6 8

Table 2: Median values of the function errors for the Sphere function

Algorithm DASA◦ DASA*
FEs D = 20 D = 40 D = 20 D = 40
25×D 16.7 18.3 2.53 9.31
250×D 0.0003 0.0021 0 0
2500×D 0 0 0 0
25000×D 0 0 0 0

Therefore, the performance of DASA was evaluated on
the Sphere function:

f(x) = |z|2 + f(xopt), (8)

where z = x − xopt and xopt is optimal solution vector,
such that f(xopt) is minimal. Function f(x) is defined over
D-dimensional real-valued search space x and is scalable
with the dimension D. It has no specific value of its optimal
solution (it is randomly shifted in x-space) and has an artifi-
cially chosen optimal function value (it is randomly shifted
in f -space). In this study, we considered the Sphere func-
tion with respect to two dimensions, D = 20 and D = 40.

The performance of DASA is dependent on the values of
five parameters: three real-valued parameters that directly
influence the search heuristic (s+, s−, and ρ) and two
integer-valued parameters (m and b). Therefore, we con-
sidered all of them for tuning DASA performance on the
Sphere function for both search space dimensions, D = 20
and D = 40. Using the Gray-code-based Sobol’ genera-
tor we generated 5000 parameter settings (5-tuples). Note
that the Sobol’ sampling generates numbers on the unit in-
terval: in order to obtain the true parameter settings, we
mapped these values on the predefined search range of pa-
rameter values. The latter for each of the five tuned param-
eters was defined as follows: 4 ≤ m ≤ 200, 0 ≤ ρ ≤ 1,
0 ≤ s+ ≤ 1, 0 ≤ s− ≤ ρ, and 2 ≤ b ≤ 100. Moreover,
the mapped values for the integer-valued parametersm and
b were rounded to the closest integer value. Finally, due
to implementation reasons, the upper bound of the global
scale decrease factor s− was actually limited by the value
of the evaporation factor ρ.

In the next step, the performance of the Sobol’ sampled
parameter settings were tested on the Sphere benchmark
function. Due to the stochastic nature of DASA, every
parameter setting was used in a multiple-run experimental
evaluation. Each run included 25000×D function evalua-
tions (FEs). The number of runs was set to 15. The results

gathered by the parameter tuning process are most often
subjected to ordinal data analysis, which includes ranking
of the different sampled parameter sets according to some
calculated statistics, e.g., best or mean performance of the
algorithm in some predefined number of runs [13]. In this
case, performance of the algorithm is expressed in terms
of the function error, i.e., the difference between the ob-
tained and optimal function value. In order to find a setting
that will be satisfactory in terms of convergence speed, we
captured the error values at four different time points, cor-
responding to 25×D, 250×D, 2500×D, and 25000×D
FEs.

The optimal performing parameter setting was chosen
based on the median best performance over all runs aggre-
gated over all time points for a given dimension (D = 20
and D = 40). A common approach is to use the mean
performance, but we took the median in order to avoid
the problems that the mean has when observing large vari-
ance in the function values across the runs. More precisely,
given a function, an individual rank is assigned to every
setting (out of 5000) for the four time points. A single fi-
nal rank is calculated by ranking the sum of the four in-
dividual rankings assigned to the parameter settings. The
best-ranked parameter setting for a given dimension defines
instance of DASA referred to as DASA*.

The results of DASA tuning subject to ordinal data anal-
ysis are presented in Tables 1 and 2. Table 1 reports the
tuned parameter settings for both DASA* instances.

In addition, the default parameter setting for DASA from
[8] is given as a reference for comparison. The correspond-
ing instance is referred to as DASA◦.

Results in Table 2 represent the median values of the
function errors, at the four time points, obtained by DASA*
and DASA◦ instances for both dimensions. Note, that er-
ror value below 10−8 was treated as zero. The table clearly
shows that DASA* is better than DASA◦.

174 Informatica 39 (2015) 169–176 J. Šilc et al.

< 1.0E-08 1.0E-06 ... 1.0E-04 … 11.0E-02 … 11.0E-01 … 1
1000 0 0 0 0 0

10000 0 1.5 2.5 3.5 24
100000 38 9 10.5 21 9

1000000 86 3 5.5 4 1.5

0%

20%

40%

60%

80%

100%

1.0E+03 1.0E+04 1.0E+05 1.0E+06

FEs

Error
> 1.0E+02

1.0E+01 … 1.0E+02

1.0E+00 … 1.0E-01

1.0E-01 … 1.0E-02

1.0E-02 … 1.0E-04

1.0E-04 … 1.0E-02

1.0E-06 ... 1.0E-08

< 1.0E-08

Figure 2: Median error distributions for the Sphere func-
tion in the case of D = 40.

5 Data Mining Analysis

Parameter tuning of an algorithm leads to a better per-
formance, however it is a computationally expensive and
problem-dependent task. Considering this, the idea is to
extend the simple tuning that delivers a single parameter
set and analyze the gathered data in an intelligent way. The
intelligent analysis can extract patterns (regularities) in the
explored parameter space that define a specific behavior of
DASA. To this end, data mining methods for automated
discovery of patterns in data can be used. As data mining
methods can only discover patterns that are present in the
data, the dataset subject to analysis must be large enough
and informative enough to contain these patterns, i.e., to
describe different types of algorithm’s behavior. Related to
this, we considered a data mining approach on a represen-
tative example, i.e., error model of the Sphere function.

To begin with, consider the graph in Figure 2 that visu-
alizes the Sphere function error distribution. The graph de-
picts the distribution of the median error values obtained by
5000 parameter settings at four different points forD = 40.
As we are more concerned with the practical significance
between a large and a small error value than the statisti-
cal significant difference between two actual error values,
the error values are discretized into nine intervals, each
of which is represented with a color chosen according to
the error magnitude between black (error below 10−8) and
white (error above 102). The graph clearly shows that the
sampled settings determine different DASA performance.
As evident, there is a big cluster of parameter settings
that solve this function to the aimed accuracy (error below
10−8) in the given time budget (106 FEs). Moreover, subset
of this cluster solves the function for an order of magnitude
less FEs. Our aim, therefore, is to find a (common) descrip-
tion of this cluster, in terms of DASA parameter relations,

that represents a good behavior of DASA (as well as what
parameter relations lead to a bad DASA performance).

For this purpose, we formulated the problem as a predic-
tive modeling task using decision trees to model the func-
tion error values in terms of the values of DASA parame-
ters. Since the function error variables are continuous, the
task at hand is a regression task. Furthermore, as our goal
is to model the behavior of DASA at all time points simul-
taneously, the problem at hand is then a multi-target re-
gression. To this end, we used Predictive Clustering Trees
(PCTs) which are implemented in Clus system [1]. In this
case, the median error at the four time points define the four
target attributes considered for modeling (with the PCT) in
dependence from the descriptive attributes, i.e., the func-
tion dimension and the five DASA parameters. The re-
sulting dataset is composed of 10002 rows described with
the 5001 parameter settings (including the default setting)
of DASA applied to the two different dimensions, and 10
columns corresponding to the 10 attributes.

Figure 3 presents a PCT model for the Sphere function
error. Each internal node of the tree contains a test on a
descriptive attribute, while the leaves store the model pre-
dictions for the function error, i.e., a tuple of four values.
The predictions are calculated as the mean values of the
corresponding error values for the data instances belonging
to the particular leaf (represented by a box). In fact, each
leaf identifies one cluster of data instances (the size of the
cluster is the value in the small box). The predictive perfor-
mance of the model was assessed with 10-cross-validation.
Note that this particular model was learned on the com-
plete dataset subject to constraints on the maximal tree size
of 25 nodes. We did this because the original model con-
tained 1643 nodes (of which 822 leaves) and despite its
better predictive performance, both training and testing, it
was not comprehensible; aiming for an explanatory model,
small and comprehensible, we considered the smaller tree
obtained with the limitation of the size. The predictive per-
formance of both models in terms of Root Relative Mean
Squared Error (RRMSE) and Pearson Correlation Coeffi-
cient (PCC) are given in Table 3. Note that RRMSE rep-
resents the relative error with respect to the mean predictor
performance, while PCC represents the linear correlation
between the data and the model predictions. Good models
have RRMSE values closer to 0 and PCC closer to 1.

The model in Figure 3 outlines 13 clusters of data in-
stances, of which two (depicted with light-gray boxes)
represent a good DASA performance. According to this
model, the number of ants, m, is the most important
DASA parameter for its performance on the Sphere func-
tion. More precisely, if m > 83, independent of the values
of the other parameters, DASA solves the 20-dimensional
functional problem for the given time budget. Moreover,
if m ≤ 83 another DASA parameters become important
as well. For example, if 43 < m ≤ 83 and s+ > 0.009
and D = 20 then DASA solves the function with error
3 × 10−6, while the pattern m ≤ 43 and s≤0.040 and
s− > 0.656 describes a poor DASA performance regard-

Data Mining-Assisted Parameter Tuning of a Search Algorithm Informatica 39 (2015) 169–176 175

Figure 3: Predictive clustering tree representation of the error model for the Sphere function.

less of the function dimension. An interesting fact is that,
the evaporation factor is not essential for DASA perfor-
mance on the Sphere function. Moreover, the model also
shows that is more difficult to describe the behavior of
DASA for the 40-dimensional function problem than the
20-dimensional one.

Finally, note that the training performance (learned on
the complete dataset) of the model in terms of the error and
the correlation coefficient is best for the first target, while
it gets worse with respect to the other three targets (see Ta-
ble 3). This is especially significant if we take into account
the testing performance of the model estimated with 10-
cross-validation. However, the training performance is ac-
ceptable in our case, as we are interested in understanding
the behavior of DASA and not aiming to obtain a model for
prediction.

6 Conclusion
The principle challenge of meta-heuristic design is provid-
ing a default algorithm configuration, in terms of parameter
setting, that will perform reasonably well in general (prob-
lem) case. However, while it is a good initial choice, the
default algorithm configuration may result in low quality
solutions on a specific optimization problem. In practice,
the algorithms parameters have to be fine-tuned in order
to obtain best algorithm’s performance for the problem at
hand, leading to the computational expensive task of pa-
rameter tuning. So, if the tuning task is unavoidable, the
question is: can we use the results from the parameter tun-
ing to extract some knowledge about the algorithm’s be-

havior?

Related to this, the study focused on the problem of tun-
ing the performance of the Differential Ant-Stigmergy Al-
gorithm (DASA) with respect to its parameters. As it is the
case with most of the meta-heuristic algorithms, the oper-
ational behavior of DASA is determined by a set (five) of
control parameters. The existing default setting of DASA
parameters [8] is obtained by experimentation with both
real and benchmark optimization problems, but not as a
result of some systematic evaluation. Furthermore, there
is no deeper understanding of the impact of a particular
parameter or parameters relations on the performance of
DASA. In this context, we performed a systematic evalua-
tion of DASA performance obtained by solving the Sphere
function optimization problem with 5000 Sobol’ sampled
DASA parameter settings regarding two dimensions, 20
and 40.

Furthermore, we discussed the idea of learning a model
of DASA behavior by data mining analysis of the parame-
ter tuning results. In this context, we formulated the prob-
lem as multi-target regression and applied predictive clus-
tering trees for learning a model of DASA behavior with
respect to the function error performance. The obtained
model revealed that the parameter denoting number of ants
is the most important parameter for DASA performance on
the 20-dimensional function problem. On the other hand,
the evaporation factor is not essential for DASA perfor-
mance on the Sphere function.

Further work will focus on additional experimental eval-
uation and data mining analysis of data with respect to
more complex functions problems. This idea can be fur-

176 Informatica 39 (2015) 169–176 J. Šilc et al.

Table 3: Model performance with respect to RRMSE and PCC

Measure RRMSE PCC
Training 1643 nodes 25 nodes 1643 nodes 25 nodes
25×D 0.166 0.408 0.986 0.913
250×D 0.373 0.679 0.928 0.734
2500×D 0.487 0.562 0.873 0.827
25000×D 0.472 0.546 0.882 0.837
Mean 0.396 0.557 0.843 0.689
Testing 1643 nodes 25 nodes 1643 nodes 25 nodes
25×D 0.219 0.450 0.976 0.893
250×D 0.638 0.817 0.777 0.584
2500×D 1.019 1.039 0.304 0.246
25000×D 1.053 1.055 0.234 0.218
Mean 0.806 0.875 0.426 0.312

ther extended to building models of DASA behavior that
will include the optimization problem characteristics (such
as multimodality, separability, and ill-conditioning) as de-
scriptive attributes as well. The latter can provide insights
on how to configure DASA performance with respect to
the type of the optimization problem. Moreover, these in-
sights can serve as a valuable information for improvement
of DASA design.

References
[1] H. Blockeel, J. Struyf (2002) Efficient Algorithms for

Decision Tree Cross-validation, Journal of Machine
Learning Research, vol. 3, pp. 621–650.

[2] C. Blum, A. Roli (2003) Metaheuristics in Combina-
torial Optimization: Overview and Conceptual Com-
parison, ACM Computing Surveys, vol. 35, no. 3, pp.
268–308.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz (1999) Swarm
Intelligence: From Natural to Artificial Systems, Ox-
ford University Press.

[4] A. E. Eiben, S. K. Smit (2011) Parameter Tuning for
Configuring and Analyzing Evolutionary Algorithms,
Swarm and Evolutionary Computation, vol. 1, no. 1,
pp. 19–31.

[5] S. Joe, F. Y. Kuo (2008) Constructing Sobol Se-
quences with Better Two-dimensional Projections,
SIAM Journal on Scientific Computing, vol. 30, no.
5, pp. 2635–2654.

[6] P. Korošec (2006) Stigmergy as an Approach to
Metaheuristic Optimization, Ph.D. dissertation, Jožef
Stefan International Postgraduate School, Ljubljana,
Slovenia.

[7] P. Korošec, J. Šilc (2008) Using Stigmergy to Solve
Numerical Optimization Problems, Computing and
Informatics, vol. 27, no. 3, pp. 341–402.

[8] P. Korošec, J. Šilc, B. Filipič (2012) The Differential
Ant-stigmergy Algorithm, Information Sciences, vol.
192, no. 1, pp. 82–97.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery (1992) Numerical Recipes, Cambridge Uni-
versity Press.

[10] I. M. Sobol’ (1967) Distribution of Points in a Cube
and Approximate Evaluation of Integrals, USSR Com-
pututational Mathematics and Mathematical Physics,
vol. 7, no. 4, pp. 86–112.

[11] R. Stoean, T. Bartz-Beielstein, M. Preuss, C. Stoean
(2009) A Support Vector Machine-Inspired Evolu-
tionary Approach for Parameter Setting in Meta-
heuristics, CIOP Technical report 01/09, Faculty of
Computer Science and Engineering Science, Cologne
University of Applied Science, Germany.

[12] G. Taguchi, T. Yokoyama (1993) Taguchi Methods:
Design of Experiments, ASI Press.

[13] E.-G. Talbi (2009) Metaheuristics: From Design to
Implementation, John Wiley & Sons.

[14] X.-S. Yang (2008) Nature-Inspired Metaheuristic Al-
gorithms, Luniver Press.

Informatica 39 (2015) 177–187 177

A High Resolution Clique-based Overlapping Community Detection
Algorithm for Small-world Networks

András Bóta
University of Szeged, Institute of Informatics Address,
P. O. Box 652., 6701 Szeged, Hungary
E-mail: bandras@inf.u-szeged.hu

Miklós Krész
University of Szeged, Juhász Gyula Faculty of Education,
Boldogasszony bvd. 6, 6720 Szeged, Hungary
E-mail: kresz@jgypk.u-szeged.hu

Keywords: network science, community detection, overlapping communities

Received: June 24, 2013

In this paper we propose a clique-based high-resolution overlapping community detection algorithm. The
hub percolation method is able to find a large number of highly overlapping communities. Using different
hub-selection strategies and parametrization we are able to fine tune the resolution of the algorithm. We
also propose a weighted hub-selection strategy, allowing the algorithm to handle weighted networks in a
natural way, without additional filtering. We will evaluate our method on various benchmarks, and we will
also demonstrate the usefulness of our algorithm on a real-life economic case-study.

Povzetek: Predstavljena je nova hevristika za reševanje evklidskega BDMST problema. Primerjalni testi
pokažejo prednosti pred obstoječimi metodami.

1 Introduction

One of the landmarks in graph theory was the introduc-
tion of small-world networks by Watts and Strogatz [31].
They have observed, that in real-life networks, the typical
distance between two randomly chosen nodes grows pro-
portionally to the logarithm of the number of nodes in the
network. Since then, several other properties of real-life
networks was discovered. The degree distribution of these
networks follows a power-law [2], and the edge distribution
is not only globally, but also locally inhomogeneous. This
latter feature is called community structure [11]. The goal
of community detection is the discovery of this structure.
While the phenomenon of communities is well observed,
an exact definition is difficult to find.

In recent years, a large number of community detection
algorithms have been proposed. Most of these consider
communities to be disjoint vertex sets, and adopt the fol-
lowing intuition: They are looking for a partitioning of the
nodes, which maximizes the number of edges between the
nodes inside the sets, and minimizes them between the sets.
It is also a goal to find meaningful communities, i.e. they
discard trivial solutions of the problem (like a single com-
munity containing all of the vertices). Newman proposed
modularity [27] as an efficient way to measure the good-
ness of disjoint communities. A comprehensive review of
community detection can be found in [10].

The traditional definition of community allows disjoint
vertex sets only. Based on the observation that in real-life

networks, nodes can belong to multiple communities, Palla
et al. introduced the concept of overlapping community de-
tection and proposed the clique percolation method [29] as
a solution. The idea of finding maximal cliques and joining
them according to some criteria is the basis of several over-
lapping community detection algorithms [17, 21]. Other
approaches are based on block models [12, 7], edge cluster-
ing [9, 1], label propagation [13] or optimization according
to some fitness function [25, 20].

Measuring the goodness of overlapping community de-
tection algorithms is complicated, since there is no agree-
ment on the definition of an overlapping community. The
specifications of different applications depend mainly on
the ratio of overlaps between communities: several ap-
proaches require only a loose relaxation of the original
”non-overlapping” definition in such way that occurence
of nodes belonging to multiple communities is strongly
restricted [13]; other concepts prefer highly overlapping
community structure [20]. The resolution of the methods
are closely tied to the ratio of overlaps. A highly overlap-
ping community structure is often associated with a large
number of relatively small communities, however the op-
posite is not always true. Hierarchical or multiresolutional
methods combine these approaches.

Corresponding to this, the output of the above mentioned
algorithms can be fundamentally different. There are basi-
cally two types of evaluation in the literature: one can use
some kind of benchmark network like in [18, 22, 26, 32],
and compare the results to the already known community

178 Informatica 39 (2015) 177–187 A. Bóta et al.

structure of the network [14, 28]. Another option is using a
real-life application as an example, similar to a case-study.

In this paper, the authors propose the hub percolation
overlapping community detection method. A node, that is
a member of many adjacent cliques is considered more im-
portant. We refer to these nodes as hubs. We expand and
join cliques if they contain the same hubs. One of the ad-
vantages of this method is, that both the hub selection and
the joining criteria is adjustable. This allows us to discover
different kinds of community structures from large, loosely
overlapping groups to ones with a dense, highly overlap-
ping structure. We also propose a hub-selection strategy
able to handle weighted networks in a natural way with-
out the need for filtering or pruning edges. Finally, we will
rely on the framework proposed by Pluhár et al. in [3], and
show how several popular algorithms can be represented in
it.

We will use well-known benchmark networks [29, 26,
11] to demonstrate the difference between hub selection
strategies in terms of community sizes, the size of over-
laps and the number of singletons: nodes without com-
munities. Then we will evaluate the performance of our
method in two different ways. We will use the community
based graph generator of Lancichinetti and Fortunato [18]
to compare the results of our method to the OSLOM al-
gorithm of the same authors [20], the COPRA method of
Gregory [13], and the clique percolation method of Palla et
al. [29]. We will also present a case study: we will exam-
ine the communities of an economic network constructed
from the Hungarian company register. We will focus our
attention on three aspects of the companies: the geograph-
ical location of them, the industrial sector they belong to
and the age of the companies.

2 General framework

The authors of [3] described a general framework for over-
lapping community detection. In this section we summa-
rize their approach. Here, and throughout the paper, by a
graph G we mean an undirected simple graph with vertex
(or node) set V (G) and edge set E(G). Edges might have
arbitrary weight.

According to the framework introduced in [3], most
community detection algorithms consist of two phases.
Taking an input graph G, the first phase constructs a hyper-
graph F = (V,H), where V (F) = V (G), and H ⊂ 2V .
The elements of H are considered the building blocks of
communities. The second phase adds a distance function
d to set H, creating a metric space M = (H, d). Using
function d, a clustering algorithm creates a set of clusters
C. Finally, the arising clusters are associated to the subsets
of V such that Ki = ∪H∈Ci∈CH , where Ki, the ith com-
munity corresponds to Ci, the ith cluster and Ki is just the
union of the vertex set of those hyperedges that belong to
Ci.

It is easy to show, that this framework applies to most

community detection algorithms. In the case of the clique
percolation method [29], H contains the k-cliques1 of the
original graph, and function d is:

d(Ki,Kj) =

{
1, if |Ki ∩Kj | = k − 1,

∞, otherwise

In the same paper [3], the authors have proposed
the N++ community detection algorithm with a general
distance function, where H is the same as above and
d(Ki,Kj) = 1 only if |Ki ∩Kj | ≥ c, where c is a param-
eter of the algorithm. In other cases d(Ki,Kj) =∞. This
method has proven its usefulness in applications [6, 16].

It is also possible to describe non-clique based methods
using this formulation. In the case of COPRA [13], each
element of H initially only contains one unique vertex v ∈
V (G). In the second phase, these are joined according to a
belonging coefficient. A threshold is introduced to provide
a lower bound for community membership.

3 The hub percolation method
The motivation for creating an advanced community de-
tection algorithm came from our previous work with the
general framework of community detection [3]. Our aim
was to create a flexible clique-based method taking into
consideration our experiences with the clique percolation
method [29] and the N++ method [3]. Much of the details
of the algorithm described in this section comes from expe-
riences gained during test runs on well-known benchmark
networks like [32, 29, 26, 22].

The hub percolation method has two simple ideas at its
core. A natural property of most approaches for overlap-
ping community detection2 is that cliques (fully connected
subgraphs) are considered to be the purest communities.
Therefore our method uses cliques at the beginning of the
building process. An important observation on real-life net-
works is, that inside a community some members are more
important than others with respect to the role of the nodes
in connecting different communities. We will denote these
nodes as hubs. In the building process the cliques of the
graph are extended according to a limited percolation rule:
two k-cliques are joined if they share k − 1 vertices. As
a result of this process, the set of extended cliques consists
of the building blocks of community detection. The joining
phase of our method merges these extended cliques if they
share the same hubs. Considering these ideas, an outline of
the hub percolation algorithm is as follows:

1. Find the set C of all maximal cliques of size greater
or equal than 3 on graph G.

2. Select the set of hubs H .

3. Create the set of extended cliques C ′.
1Fully connected subgraphs containing exactly k nodes.
2In the following chapters, we will refer to overlapping community

detection simply as community detection.

A High Resolution Clique-based Overlapping. . . Informatica 39 (2015) 177–187 179

4. Compute the set of communitiesK: Take the union of
extended cliques if one of them contains all the hubs
in the other one.

Finding the set of all maximal cliques in a graph is a
well-studied NP-hard problem of graph theory. Unfortu-
nately an n-vertex arbitrary graph may contain i3n/3 maxi-
mal cliques in the worst case [24]. Because of their unique
structure, this number is significantly lower in small world
networks allowing algorithms like in [30, 4, 8] to list the set
of maximal cliques in reasonable time even for large net-
works. In this work we used the modified Bron-Kerbosch
algorithm described in [8].

The hub selection strategy is an important part of the
algorithm. Hubs represent the locally important nodes in
the network. As a consequence, whether a node is a hub
should depend on the t-neighborhood3 of the given node,
where t is a small number. In our interpretation hubs con-
nect communities, therefore the deciding factor in hub se-
lection should be the number of cliques the vertex belongs
to. Each node v is assigned a hub value hv according to the
above rule, then some of them are selected if their value
is higher than the average or median hub values in their
t-neighborhood. It is also possible to extend the selection
strategy to weighted networks. We will discuss hub selec-
tion in the next subsection.

In our method, cliques of the network are extended with
a a one-step percolation rule, then merged if they share the
same hubs. Introducing the filtering parameter k ≥ 2, let
us consider all cliques of size equal to k on the subgraph
induced by the set of hubs H . We will denote the set of k-
cliques on G[H] as CH . Then, we expand the elements of
CH according to a one-step percolation rule. LetCe denote
the set of merged cliques ce = cH ∪c0∪· · ·∪c` with cH ∈
CH , c0, . . . , c` ∈ C and |c0 ∩ cH | ≥ 2, . . . , |c` ∩ cH | ≥ 2
4.

The last step of our method corresponds to the joining
phase of the community detection framework. We merge
elementary communities if they contain the same hubs,
more precisely, we take the union of two elementary com-
munities ce0 and ce1 if ce0 ∩ H ⊆ ce1 ∩ H . We iterate
this process by adding the new merged clique to Ce and
removing the original ones. At the end of the process Ce
contains the communities of graph G. Note, that depend-
ing on the hub selection strategy Ce may contain duplicate
members, the merging process eliminates this problem as
well. Each element of Ce is a union of the cliques of G and
contains at least k hubs. We will refer to the members of
Ce as elementary communities.

The hub percolation method
Input : Graph G, parameter k

3A t-neighbothood of a vertex v is the set of vertices Nt
v , where u ∈

Nt
v only if the length of the shortest path from u to v is less or equal then

t.
4Our experiances on various benchmark networks indicate that this

value gives the best performance.

1. Find all maximal cliques of graph G using any exact
algorithm or heuristic. Let C denote the set of cliques.

2. For all v ∈ V (G), let hv = |Hv|, Hv = {h|v ∈
h, h ∈ C}.

3. Select the set of hubsH according to the hub selection
strategy.

4. Let CH denote the set of k-cliques on the subgraph
induced by the hubs G[H].

5. Create the set of extended cliques Ce according to the
following rule: for all cH ∈ CH find all cliques c ∈ C
where |c ∩ cH | ≥ 2. Let c0, . . . , c` denote the cliques
satisfying this criterion. Create the union of cliques
ce = cH ∪ c0 ∪ · · · ∪ c`, and add ce to Ce.

6. For all ce0 , ce1 ∈ Ce add the union of them to Ce if
ce0 ∩H ⊆ ce1 ∩H , and remove ce0 and ce1 from Ce.
Iterate until there are no more merges.

7. The set Ce contains the communities of graph G.

Figure 1: The communities of Zachary’s karate club net-
work [32]. Hubs are marked as diamond shapes. Nodes
with multiple colors indicate overlapping nodes. The me-
dian hub selection strategy was used with k = 2. Nodes
9, 3, 33 form an additional community and node 9 belongs
to three communities.

It is easy to see, that the general framework proposed in
applies to the hub percolation method. The edges of the
hypergraph correspond to the extended communities in Ce,
while the distance function is

d(Ki,Kj) =


1, if Ki ∩H ⊆ Kj ∩H or

Kj ∩H ⊆ Ki ∩H,
∞ otherwise

180 Informatica 39 (2015) 177–187 A. Bóta et al.

The community structure of Zachary’s karate club net-
work [32] can be seen on Figure 1. This network is a well-
known social network, that represents friendships between
the members of the club. Our method identifies five com-
munities5, the most interesting ones being the green and
blue ones, as well as the one represented by the red triangle.
During Zachary’s observation the club split into two parts,
because some friendships were broken. Most community
detection algorithms are able to identify these subgroups
even before the actual split. In our case the borders of the
green and blue communities represent the borders between
the two subgroups, and the red group identifies the edge
that was broken when the split occurred.

3.1 Hub selection strategies
Hub selection is a crucial part of the algorithm. As we
have mentioned before, each node in the graph is assigned
a hub value based on the number of cliques it belongs to.
Based on this value the selection strategy chooses the set of
hubs H . Hubs represent ”locally important” nodes so the
criterion of the hub property of nodes or “hubness" should
depend only on the tight neighborhood of the node. In our
interpretation, this criterion depends on some simple sta-
tistical property of the first or second neighborhood of the
given node, namely the average or median of neighboring
hub values.

At the beginning of our work on several famous bench-
mark networks [26, 32] we have quickly found out, that
the 2-neighborhood strategies are often not robust enough
to select the appropriate hubs: hubs were relatively rare,
which resulted in small overlaps and a larger than accept-
able number of nodes without community memberships.
A general experience was, that hubs should be ”common
enough”, so that most of the nodes have one or more in
their direct neighborhood.

Considering this, the 1-neighborhood median selection
strategy provided the best community structure on these
benchmark networks. This may not be the case, however,
with other real-life networks. In order to extend our algo-
rithm to handle different kinds of networks, we can gener-
alize suggest another hub selection rule. Still considering
only the direct neighborhood of nodes, we calculate the av-
erage hub value and multiply it with a parameter q > 0. If
the hub value of the node is higher than the mean, we select
it as a hub. This approach makes hub selection more flex-
ible, allowing the algorithm to adapt to different require-
ments. A small value of q selects higher number of hubs re-
sulting in larger communities with greater overlaps, while
increasing q has the opposite effect. This also allows the al-
gorithm to discover several layers of community structure
on the network.

Finally, hub selection can be extended to weighted
graphs in a natural way. As before, the hub value of a node
is the number of cliques it belongs to. Then the values are

5The median hub selection strategy was used with k = 2, see subsec-
tion 3.1.

multiplied with the strength6 of the node. After this, the
process is the same as in the previous strategies.

In summary we propose the following hub selection
strategies:

– 1-neighborhood median: A node is selected as a hub if
its hub value is greater than the median of hub values
in its one-neighborhood.

– 1-neighborhood mean with multiplier: A node is se-
lected as a hub if its hub value is greater than the mean
of hub values in its one-neighborhood multiplied with
a parameter q > 0.

– 1-neighborhood weighted mean with multiplier: The
hub values are multiplied with the strength of the
nodes. Beside this, the strategy is the same as above.

As a recommendation, the median strategy should be
tried first, and if it does not give satisfactory results the
average strategy should be used with q = 1 initially, de-
creasing or increasing its value in small steps depending on
the requirements. In practice 0 < q < 2 seems to hold.

3.2 Implementation
The bottleneck of the algorithm is finding all maximal
cliques in graph G. A general graph with n vertices may
contain up to 3n/3 maximal cliques. In correspondence,
the original algorithm of Bron and Kerbosch has a worst-
case running time of O(3n/3). In small-world networks
however, the number of maximal cliques is smaller by
magnitudes, decreasing the running time of the algorithm.
Furthermore, refinements of the Bron-Kerbosch algorithm
have been published in recent years, enabling the use of
this method on large sparse networks [30, 8]. In cases
when even faster computation is required, there are existing
heuristics for clique search [5].

The hub value of each node can be calculated in a single
pass on the set C of cliques. All of the hub selection strate-
gies suggested in the previous section have a local fashion:
they can be computed in a single pass on the vertices and
their one-neighborhoods.

The computation of CH does not require a repeated run
of the Bron-Kerbosch algorithm onG[H], since the cliques
of G contain the cliques of G[H] as subsets. Therefore it
is enough, that for each c ∈ C, if |c ∩ H| ≥ k, simply
add all k-combinations of c to CH . Depending on the size
of the network and the hub selection strategy, H may be
quite large, but the use of flags on the nodes of the graph
G to signal the hub property can reduce the computation
of this step to a single pass on C. The percolation step
can be executed by computing the 1-neighborhood of each
cH ∈ CH . Let c+H contain all of the direct neighbors of
vertex set cH , and initially let ce ← cH . For all nodes
v ∈ c+H , if |{v}+ ∩ cH | ≥ 2 add v to ce. Again this step
can be computed by making a single pass on CH .

6The sum of the weights on all adjacent edges.

A High Resolution Clique-based Overlapping. . . Informatica 39 (2015) 177–187 181

In order to make the joining step, the computation of the
hubs of each elementary community is required: for each
ce ∈ Ce let cHe = ce∩H . Let CHe denote the sets of hubs
of the elementary communities. An important remark is,
that CHe

6= CH since in the previous step additional hubs
may have been added to the elements of CH . Removing
the ”sub-hubs” (hubs being contained in other elements of
CHe) can be executed in quadratic time in worst case. In
general, performance can be improved by sorting CHe in
descending order according to the sizes of cHe

∈ CHe
.

After this, starting from the first element, remove all the
sets of vertices from CHe

which are subsets of the first one,
then repeat for the second, third, ... until no more vertex
sets can be removed from CHe . Finally, the elements of
Ce and CHe

must be compared: for all cHe
∈ CHe

find all
ce ∈ Ce where ce ∩H ⊆ cHe

and take the union of these
vertex sets.

We can conclude, that the two most time-consuming
steps of the method is the computation of C and CH , all
other operations take at most quadratic time7. The algo-
rithm of Eppstein and Strash [8] is able to list all maximal
cliques in large sparse networks in reasonable time. For
faster computation heuristics [5] or the use of quasi-cliques
[23] can be applied. The size of CH depends on two fac-
tors: the size of H and k. The former is governed by the
hub selection strategy, the latter is a parameter of the al-
gorithm. Choosing a different hub selection strategy, that
produces a smaller number of hubs, or decreasing k may
speed up computations.

4 Sensitivity to parameters
We have created the hub percolation method with the intent
to provide a versatile tool for community detection. There-
fore, an important question arises: how does the hub selec-
tion strategy and the filtering parameter influence the com-
munity structure found by the algorithm? For the purpose
of examining their effect, we will use several well-known
benchmark networks including the word association graph
of Palla et al.[29], a scientific collaboration network [26]
and a graph of American football games [11].

The first network we will examine was created by New-
man [26] on the condensed matter archive at www.arxiv.org
based on preprints posted to the archive between January
1, 1995 and March 31, 2005. The graph is undirected, un-
weighted and contains 39540 nodes and 175683 edges. We
will evaluate the median and average hub selection strate-
gies and we will also experiment with different values for
k. We will measure the number of communities, the av-
erage overlap8, the number of singletons9 and hubs in the
network. We will also present the community size distribu-
tion for each selection strategy.

7We have also conducted experiments, and found that clique detection
may take from 60% up to 95% of the running time.

8The sum of the cardinalities of all community divided by the number
of nodes.

9Nodes without communities.

Figure 2: Upper left: Number of communities for different
hub selection strategies and values for k; Upper right: The
percentage of nodes without communities; Lower left: The
average overlap; Lower right: The percentage of hub nodes
in the network.

Figure 3: Upper left: Number of communities for the aver-
age hub selection strategy with q = 0.3, . . . , 1.1 and k = 2;
Upper right: The percentage of nodes without communi-
ties; Lower left: The average overlap; Lower right: The
percentage of hubs in the network.

On Figure 2 we have compared four different hub selec-
tion properties: the median strategy and the average strat-
egy with values q = 1, 0.8, 0.5. The number of commu-
nities is the greatest and the number of singletons is the
lowest with the median strategy and the average strategy
with q = 0.5; these strategies provide the greatest cover
on the network. The number of hubs is also the greatest
with these strategies: roughly one in three nodes, this con-
firms our expectations, that hubs should be ”common”. We
can see, that the average overlap and the number of sin-
gletons increases with k, while the number of communi-
ties does not change. The reason for the above fact is that
by increasing k, the nodes are concentrated in highly over-
lapping communities keeping the number of communities
constant, while many nodes are left out of the community
building process.

We will further examine the average hub selection strat-
egy with k = 2 on Figure 3. The main observations remain
the same with higher values for k. As before, the num-
ber of hubs and communities grows inversely proportional

182 Informatica 39 (2015) 177–187 A. Bóta et al.

Figure 4: The community size distribution of the median
hub selection strategy with different values of k. Left: The
number of communities with size below 150. Right: The
number of communities with size greater than 150.

Figure 5: The community size distribution of the average
hub selection strategy with different values of q, k = 2.
Left: The number of communities with size below 150.
Right: The number of communities with size above 150.

with q, while the number of singletons grows proportion-
ally with it. The average overlap slowly decreases when q
is increased, indicating that decreasing the number of hubs
causes communities to become smaller and scarcer.

We can see, that the community size distributions follow
a power-law on Figures 4 and 5. The median hub selection
strategy is depicted with different values for k. Increasing
k results in much larger communities: With k = 2 , The
largest community had 255 members, with k = 4 the maxi-
mum was 869. This confirms our previous observation, that
increasing k creates a highly overlapping community struc-
ture. Similar observations can be made with the average
hub selection strategy. Increasing q decreases the number
of communities evenly among the community sizes, even
the size of the largest communities does not change much.

A strict requirement for all community detection algo-
rithms should be, that the number of nodes left without
community memberships should be minimized. Therefore
we can conclude, that the filtering parameter should be kept
as low as possible, and the ratio of hubs should be above
30%.

We have measured the running time of our method as
well10. The results for the average hub selection strategy
with different values of q and k can be seen on Figure 6.
We have seen before, that decreasing q increases the num-
ber of hubs – the size of H and CH . This directly increases
the computational time of the joining phase. The filtering
parameter k also has an impact on the running time of the
method, since it influences the size of CH . As a conclu-
sion we can say, that the filtering parameter should be kept
as low as possible, and the average hub selection strategy

10We have implemented our method in JAVA, and we have used a com-
puter with an Intel i7-2630QM processor, and 8 gigabytes of memory.

Figure 6: The running time measured in seconds with the
average hub selection strategy and different values of q and
k.

should be used to further refine the results of the algorithm.
We can draw similar conclusions on the other two net-

works, with a few exceptions. The relationship between the
ratio of hubs, the community size and the average overlap
is the same in all networks. The ratio of singletons shows
a similar behavior as it grows inversely proportional to the
ratio of hubs. There is a difference however; the graph of
football games contains no singletons for the majority of
the parameter configurations, while the ratio of singletons
never goes below 30% in the word association network.
This can be explained by the difference in the structure of
the networks. The graph of football games is an union of
cliques by definition, while word associations do not have
this property. Since our method is clique-based, it is able
to cover all nodes of the former test set, while in the lat-
ter case nodes not part of any triangles are left out of the
building process.

The relationship between the ration of hubs and the hub
selection strategies is also similar, that is for the average se-
lection strategy increasing q decreases the number of hubs.
However, the exact pairs of these values change together
with the networks. For example setting q = 0.5 results in
35% of nodes being selected as hubs on the collaboration
network, 21% on the word association network and 90% on
the graph of football games. Therefore in any application,
it is important to find the hub selection strategy that pro-
duces the ratio of hubs so that the number of communities,
the size of the overlaps and the number of singletons move
according to the specifications of the application.

We have previously concluded that the filtering param-
eter should be kept as low as possible to reduce both the
ratio of singletons and the computation speed. As we will
see below, there are some situations where a higher value
is desirable. In the next chapter we are going to examine
networks with a large number of highly overlapping com-
munities.

5 Performance on benchmark
networks

For the purpose of evaluation, we have used benchmark
networks created with the graph generator of Lancichinetti

A High Resolution Clique-based Overlapping. . . Informatica 39 (2015) 177–187 183

Figure 7: The performance of hub percolation compared to
CPM and OSLOM with µt = 0.1.

and Fortunato [18]. We have generated both weighted and
unweighted networks, with the following parameters:

– We have created undirected graphs with |V (G)| =
1000

– The average degree was 15

– The maximum degree was 50

– The exponent of the degree distribution was -2

– The minimum community size was 3

– The maximum community size was 25

– The exponent of the community size distribution was
-1

– The mixing parameter µt was between 0.1 and 0.2

– The fraction of overlapping nodes on was between 0.3
and 0.9

A detailed description of the used model and its parame-
ters can be found in [18]. We have selected the parameters
above, because they are close to the recommendations of
Lancichinetti and Fortunato, yet they provide a challenge
to our method. Again following the recommendations of
the above authors, we have used mutual information [19]
to measure the similarity between the communities given
by our method and those of the benchmark. Because of the
probabilistic nature of the benchmark we have generated
10 different networks for each parameter configuration and
averaged the similarity measurements.

We have compared the performance of our method to
that of the clique percolation method and OSLOM. We
have tried several values for k-clique percolation, and have
found that k = 4 clearly provides the best results, therefore
we have used this parameter setting for comparison. We
have also made comparisons with COPRA but found, that
the above methods are clearly superior on these benchmark
networks, so we have omitted these results from the figures.

On Figures 7 and 8 we can see that the best results
were provided by the 1-neighborhood average hub selec-
tion strategy with low q values and k = 4. We can also see,

Figure 8: The performance of hub percolation compared to
CPM and OSLOM with µt = 0.2.

Figure 9: The performance of hub percolation compared to
CPM and OSLOM with µt = µw = 0.1.

that our method reaches peak performance at q = 0.1, but
the selection of q has little influence on the results. The me-
dian selection strategy performs poorly on these networks,
and increasing or decreasing k worsens performance. If we
compare our method to CPM and OSLOM, we can con-
clude, that hub percolation gives better results on networks
with a high number of overlapping nodes.

Our observations remain the same when using the
weighted benchmarks of the same authors with the recom-
mended parameters µt = µw and β = 1.5. Low values
of q and k = 4 gives the best results for hub percolation,
and 4-clique percolation with a weight threshold l = 1.5
is the best for CPM. As before, hub percolation gives bet-
ter results on networks with a high number of overlapping
nodes.

6 Case-study: an economic network

In this section, we will examine the community structure
of a specific economic network constructed from the Hun-
garian company register. We will consider a network of
companies: each vertex is a special type of company (Ltd.),
and the companies are connected if they share a common
owner (or member in the case of Ltd.’s). We will call this
network as an intersection network, because two vertices

184 Informatica 39 (2015) 177–187 A. Bóta et al.

Figure 10: The performance of hub percolation compared
to CPM and OSLOM with µt = µw = 0.2.

Figure 11: The locality of the communities of the intersec-
tion network with different hub-selection strategies, using
all digits of the zip-code (left) or the first two digits (right).

are connected, if the sets of owners associated with them
have a non-empty intersection. Due to the changes in the
regulations governing the company register’s construction,
there are large amounts of missing and erroneous data. The
register’s sometimes has unordered structure so the identifi-
cation of the companies, owners and the construction of the
graph itself required the application of several data mining
methods, data cleaning and filtering.

The resulting graph is not connected, there is a high
number of small disconnected components in it, but for-
tunately it contains a giant component as well. The small
components often cannot be divided into two or more com-
munities, thus they do not provide useful information about
the structure of the graph. Therefore, in our analysis we
will consider only the giant component. This graph is a
small-world network with the previously mentioned prop-
erties. It has 239685 vertices and 1423080 edges. Depend-
ing on the hub-selection strategy, our method was able to
discover the community structure of this network in 5-7
hours11. We have considered comparing our method with
CPM on this dataset, but the publicly available12 imple-
mentation was unable to produce results.

There are several points of interests regarding the com-
munity structure of the network. In this paper, we are going
to focus on three of them. The first one is the geographical

11On the same hardware as above.
12We have used CFinder [29] downloaded from http://cfinder.org/

location of these groups and companies inside them. Our
main question is, are the communities of the graph local
in a geographical sense? Using the register, we can as-
sign zip-codes to the companies, and by counting the num-
ber of different zip-codes inside the community – the fre-
quency of individual zip-codes, we can easily address the
above question. We can further divide the frequency of the
most frequent location by the size of the community, and
by averaging this fraction over all of the communities we
can represent the locality of these communities as a simple
number. The structure of the zip code also allows us to fine-
tune the resolution of the analysis. The Hungarian zip-code
contains four digits: the first one divides the country into
nine large regions, the first two identifies 80 sub-regions.
On Figure 11 we can see the computed average locality of
the communities. Both the accurate locations – all digits
of the zip-code – and the sub-region classification system
is used. We can conclude, that the communities are local
indeed; in average 77% of companies inside communities
belong to the same sub-region, and even in the case of the
accurate locations, this percentage does not go below 55%.
This implies, than companies owned by the same people
tend to stay in the same geographical area. It is important to
emphasize, that we are observing a special form of compa-
nies: the Ltd.’s. Our results makes sense, because this com-
pany form is popular for small companies, that do not have
the resources to cover a large area. On Figure 11 we can
also see a comparison between the different hub-selection
strategies13. Even though the number of communities and
the size of overlap changes according to the observations
in the previous section, all strategies gave a similar stable
performance.

We can perform the same analysis considering the indus-
trial sectors the companies belong to. Do the communities
of the graph belong to similar industrial sectors? The sec-
tor classification numbers for the individual companies are
available, but due to changes in regulation it is impossi-
ble perform a high-resolution scan. On the other hand we
can make use of a rough classification system containing
118 different industrial sectors. The method is the same
as before: we compute the most frequent sector for each
community, and we average the relative frequencies over
all communities. As a result we can say, that in average
84% of the companies inside the communities belong to
the same industrial sector. The communities are even more
“local” to the industrial sector most of their members be-
long to, than to their geographical location. The reason for
this is similar to the previous one: small companies tend
to specialize, and it is rare for an owner to have an inter-
est in multiple sectors. Again, we have compared different
hub-selection strategies and found, that they have similar
performance.

We can see a small example of this behavior on Figure
12. The whole economic graph is too large to visualize, so
we are going to take a look at a small subgraph of three
communities. The red community contains companies fo-

13k = 2 was used in all experiments.

A High Resolution Clique-based Overlapping. . . Informatica 39 (2015) 177–187 185

Figure 12: Three communities of the economic intersection
graph.

cusing on printing services, the blue one on distributing in
general, while the companies in the yellow one are cen-
tered around public utilities in real estate and engineering.
A huge overlap can be seen between the red and yellow
companies: vertices in the non-overlapping part of the red
groups are focused on distributing, while the companies in
the overlap are either copy shops, smaller publishing com-
panies or hardware and electronics retail shops.

Our last point of interest is the age of the companies.
Since the date of establishment is available for all compa-
nies, we can ask the question: Were the companies inside
the communities of the graph established in a short time pe-
riod? We can answer this question by computing the stan-
dard deviation of the dates of establishments for all com-
panies. The expected value of the standard deviation inside
the communities is 5 years. This relatively large value in-
dicates, that the establishment of these companies is spread
in time over a considerable interval.

As a conclusion we can say, that our method is capable of
identifying communities that share a common geographical
location and industrial sector.

7 Conclusions

In this paper, we have introduced the hub-percolation
method: a clique-based high-resolution overlapping com-
munity detection algorithm. This method is based on two
observations: cliques are the most natural representations
of communities, and some vertices are crucial in the birth
of communities: they connect different sub-communities
together by forming bridges between them. There are mul-
tiple ways to select these vertices; that authors have sug-
gested several hub-selection strategies, some of them have
tunable parameters. The method also has a filtering param-
eter k which influences the size and structure of the over-
laps between the communities. Adjusting k and the hub-
selection strategy allows the user to apply this method to
a variety of small-world networks with different densities.
It also allows the user to discover several layers of com-
munity structure on the same network. We have examined
the effect of different parameter choices on several well-
known benchmark networks. We have concluded, that the
selection strategy should be chosen so that 30-50% of the

vertices are selected as hubs and k should be kept low to
minimize the number of singletons.

We have shown two ways to measure the goodness of
the hub-percolation algorithm. One of them was an eco-
nomical case-study, a network where the vertices represent
companies, or more precisely Ltd.’s, and the companies are
connected if they share one or more members. Our method
is able to identify communities, that are geographically lo-
cal and belong to the same industrial sectors in reasonable
time considering the size of the network. We have also
used benchmark graphs created with the graph generator
of Lancichinetti and Fortunato [18]. Using these networks,
we have compared our method with the well-known clique
percolation algorithm of Palla et al. We have concluded,
that in average the two methods have similar performance,
but hub-percolation gives better performance on networks
with a high number of overlapping nodes.

Finally, a slight adjustment in the hub-selection strategy
allows us to handle weighted networks without the need
to filter the graph edges according to some possibly non-
trivial weight limit. Using the previously mentioned graph
generator, we have created weighted benchmark graph, and
compared the goodness of our method with those of the
weighted clique percolation algorithm. Our conclusions
were the same as before: similar performance in average,
better results with high overlaps.

Acknowledgement

The first author was supported by the European Union
and the European Social Fund through project FuturICT.hu
(grant no.: TÁMOP-4.2.2.C-11/1/KONV-2012-0013)

The second author was supported by the European Union
and co-funded by the European Social Fund. Project title:
“Telemedicine-focused research activities on the field of
Mathematics, Informatics and Medical sciences.” Project
number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073 .

References
[1] Y-Y. Ahn, J. P. Bagrow, S. Lehman, Link communi-

ties reveal multiscale complexity in networks. Nature,
466(7307):761–764, 2010.

[2] A-L. Barabási, R. Albert, Emergence of Scal-
ing in Random Networks. Science, 286(5439):509–
512,1999.

[3] A. Bóta, L. Csizmadia, A. Pluhár, Community detec-
tion and its use in Real Graphs. Proceedings of the
2010 Mini-Conference on Applied Theoretical Com-
puter Science, 95–99, 2010.

[4] F. Cazals, C. Karande, A note on the problem of re-
porting maximal cliques, Theoretical Computer Sci-
ence, 407(1):564–568, 2008.

186 Informatica 39 (2015) 177–187 A. Bóta et al.

[5] James Cheng, Linhong Zhu, Yiping Ke, and Shumo
Chu, Fast algorithms for maximal clique enumeration
with limited memory. Proceedings of the 18th ACM
SIGKDD. ACM, New York, 1240–1248, 2012.

[6] A. Csernenszky, Gy. Kovács, M. Krész, A. Pluhár, T.
Tóth, The use of infection models in accounting and
crediting. Challenges for Analysis of the Economy,
the Businesses, and Social Progress Szeged (2009)
pp. 617–623..

[7] A. Decelle, F. Krzakla, C. Moore, L, Zdeborova,
Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications.
Phys. Rev. E, 84(6):066106, 2011.

[8] D. Eppstein, D. Strash, Listing all maximal cliques
in large sparse real-world graphs. Experimental Algo-
rithms, Springer Berlin Heidelberg, 364–375, 2011.

[9] T. Evans, R. Lambiotte, Line Graphs, Link Parti-
tions and Overlapping Communities, Phys. Rev. E,
80(2):016105, 2009.

[10] S. Fortunato, Community detection in graphs. Physics
Report, 486(3):75–174, 2010.

[11] M. Girvan, M. E. J. Newman, Community structure
in social and biological networks. Proc. Natl. Acad.
Sci., 99(12):7821–7826, 2002.

[12] P. K. Gopalan, D. M. Blei, Efficient discovery of over-
lapping communities in massive networks. PNAS,
110(36):14534-14539, 2013.

[13] S. Gregory, Finding overlapping communities in
networks by label propagation. New J. Phys.,
12(10):103018, 2010.

[14] E. Griechisch, A. Pluhár, Community Detection by
using the Extended Modularity. Acta Cybernetica,
10:69–85, 2011.

[15] D. Kempe, J. Kleinberg, E. Tardos, Influential Nodes
in a Diffusion Model for Social Networks. Pro-
ceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP),
Springer-Verlag (2005) 1127–1138.

[16] M. Krész and A. Pluhár, Economic Network Analysis
based on Infection Models. To appear in Encyclope-
dia of Social Network Analysis and Mining, Springer
(2014).

[17] J. M. Kumpula, M. Kivela, K. Kaski, J. Saramaki, Se-
quential algorithm for fast clique percolation. Phys.
Rev. E, 78(2):026109, 2008.

[18] A. Lancichinetti, S. Fortunato, Benchmarks for test-
ing community detection algorithms on directed
and weighted graphs with overlapping communities.
Phys. Rev. E, 80(1):016118, 2009.

[19] A. Lancichinetti, S. Fortunato, J. Kertész Detecting
the overlapping and hierarchical community struc-
ture in complex networks. New Journal of Physics,
11(3):033015, 2009.

[20] A. Lancichietti, F. Radicchi, J. J. Ramasco, S. Fortu-
nato, Finding statistically significant communities in
networks. PLoS One, 6(4):e18961, 2011.

[21] C. Lee, F. Reed, A. McDaid, N. Hurley, Detecting
highly overlapping community structure by greedy
clique expansion. Preprint, 2010.

[22] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E.
Slooten, S. M. Dawson, The bottlenose dolphin com-
munity of Doubtful Sound features a large proportion
of long-lasting associations. Behavioral Ecology and
Sociobiology, 54(4):396-405, 2003.

[23] V. Maniezzo, R. Battiti, J-P Watson, On Effectively
Finding Maximal Quasi-cliques in Graphs. In Learn-
ing and Intelligent Optimization, Lecture Notes in
Computer Science (5313) 41–55, Springer Berlin
Heidelberg, 2008.

[24] J. Moon, L. Moser, On cliques in graphs. Israel Jour-
nal of Mathematics, 3(1):23-28, 1965.

[25] T. Népusz, A. Petróczi, L. Négyessy, F. Bazsó, Fuzzy
communities and the concept of bridgeness in com-
plex networks. Phys. Rev. E, 77(1):016107, 2008.

[26] M. E. J. Newman, The structure of scientific collabo-
ration networks. PNAS, 98(2):404–409, 2001.

[27] M. E. J. Newman, M. Girvan, Finding and evaluat-
ing community structure in networks. Phys. Rev. E,
69(2):026113, 2004.

[28] V. Nicosia, G. Mangioni, C. Carchiolo, M. Mal-
geri, Extending the definition of modularity to di-
rected graphs with overlapping communities. Jour-
nal of Statistical Mechanics: Theory and Experiment,
3:P03024, 2009.

[29] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering
the overlapping community structure of complex net-
works in nature and society. Nature, 435(7043):814–
818, 2005.

[30] E. Tomita, A. Tanaka, H. Takahashi, The worst-case
time complexity for generating all maximal cliques
and computational experiments. Theoretical Com-
puter Science, 363(1):28–42, 2006.

[31] D. J. Watts, S. H. Strogatz, Collective dynamics of
small-world networks Nature, 393(6684):440–442,
1998.

[32] W. W. Zachary, An information flow model for con-
flict and fission in small groups. Journal of anthropo-
logical research, 452–473, 1977.

 Informatica 39 (2015) 187–194 187

History-based Approach for Detecting Modularity Defects in Aspect

Oriented Software

Hanene Cherait and Nora Bounour

LISCO Laboratory, BadjiMokhtar – Annaba University P.O. Box 12, 23000 Annaba, Algeria

E-mail: {hanene_cherait, nora_bounour}@yahoo.fr

Keywords: modularity defects, aspect oriented programming, crosscutting concerns, frequent itemset mining, logical

coupling, refactoring.

Received: May 4, 2014

The evolution of Aspect oriented (AO) software would degrade and modify its structure and its modularity.

In this scenario, one of the main problems is to evaluate the modularity of the system, is the evolved AO

software still has a good modularity or not? Unfortunately, this research area is not explored yet. This

paper presents a history-based approach that detects modularity defects in evolved AO software. It is a

two-step automated approach: 1) in the first step, it applies data mining over an AO software repository

in order to detect logical couplings among its entities. It analyses fine-grained logical couplings between

AO software entities as indicated by common changes. 2) These last are then analysed to detect modularity

defects in the AO software system. The approach focuses on the evaluation of an AO system’s modularity

and points out potential enhancements to get a more stable one. We provide a prototype implementation

to evaluate our approach in a case study, where modularity defects are detected in 22 releases of three

well-known AspectJ systems: Contract4J, Health-Watcher and Mobile-Media. The results show that the

approach is able to detect logical couplings among aspect entities, as well as modularity defects that are

not easily (or not) detectable using static source code analysis.

Povzetek: Članek se ukvarja z zaznavanjem defektnosti modulov med evolucijo programov.

1 Introduction
Aspect-oriented programming (AOP) [11] allows a

developer to modularize a crosscutting concern’s

implementation by introducing a new kind of module

called “Aspect”. This last encapsulates crosscutting

concerns and thus improves modularity,

understandability, and evolvability of the code. As any

software system, AO systems are continuously modified

and increase in size and complexity. After many

enhancements and other evolution activities, the AO

software modularity can be violated, and modifications

become hard to do. The insufficient modularity of

crosscutting concerns complicates AO software evolution

and reduces crosscutting concern reusability. Therefore,

methods and techniques are needed to detect modularity

defects in AO software, in order to improve its

decomposition and enhance its modularity.

To detect modularity defects in AO software, we need

to understand the relationships among entities that belong

to software aspects, more specifically, to the crosscutting

concerns of the system. However, many works [2, 5, 20]

have proved with empirical evidence the ripple effects in

AO software i.e. changes are propagated to unrelated

entities in the program. So, it is difficult to detect

modularity defects in AO software through a static

analysis of the source code (e.g. [26]). In reality, two

crosscutting concerns that are supposed to be independent

statically may frequently change together.

This paper presents a history-based approach to detect

modularity defects in AO software. It consists of two main

steps: first, an AO software repository is mined to detect

logical couplings between the aspect’s entities of the

system—how entities actually change together. In our

approach, we don’t detect coupled aspects only. But, we

can extract the aspect entities related to this coupling.
Second, the resulted logical couplings are analysed to

detect modularity defects. We identify modularity defects

by external logical couplings i.e. if two entities always

change together to accommodate modification requests,

but they belong to two independent aspects; we consider

this as a modularity defect. These last can be used to

improve the AO software modularity in order to prevent it

from decay. For example, the detected defects could be

removed or minimized by using appropriated refactorings

to change the AO software decomposition.

The rest of the paper is organized as follows: in the

next section we give the background used in this paper.

We describe our approach in section 3; where we present

the relationship between logical couplings and modularity

defects, and how this relationship can be used to detect

modularity defects in AO software. The tool chain is

presented in section 4. Our approach is applied on a case

study in section 5. Section 6 summarizes related work.

Finally, section 7 closes with conclusions and future work.

2 Background
In this section, we first introduce definitions of important

concepts related to our proposal. Then, we give a brief

description of the AspectJ language.

188 Informatica 39 (2015) 187–194 H. Cherait et al.

2.1 Modularity defects

The IEEE Standard Glossary of Software Engineering

Terminology (IEEE, 1990) defines modularity as “the

degree to which a software system is composed of discrete

components such that a change to one component has

minimal impact on other components”. So, it allows each

part to be modified, substituted or deleted with minimal

impact on the rest of the system. Modularity has been

playing a pervasive role in the context of software

development and evolution. It can be considered a

fundamental engineering principle as it allows:

- to develop different parts of the same system by

distinct people;

- to test systems in a simultaneous fashion;

- to substitute or repair defective parts of a system

without affecting with other parts;

- to reuse existing parts in different contexts; and

- to restrict change propagation.

In reality, however, during software evolution two

modules that are supposed to be independent may always

change together, due to unwanted side effects caused by

quick and dirty implementation [24]. When such

couplings exist, the software can deviate from its designed

modular structure, which is called a modularity defect

(violation). Such modularity defects could cause

modularity decay over time and may require expensive

system-wide refactorings. Detecting and fixing

modularity defects make programs easier to understand

and to evolve.

2.2 Logical coupling

Semantically coupled software entities may not

structurally depend on each other i.e. different entities of

a software system may be related to each other although

this relationship is not easily detectable in the software

source code. When different entities of a software system

change together (as the system evolves) their common

behavior is referred to as logical coupling [7]. Recently,

researchers have used revision histories to more

effectively identify semantically coupled components by

checking how components historically change together [9,

10].

Logical couplings detection extract interesting

dependencies between software entities that is not possible

with the analysis of a single version. So, based on the

historical data we can detect logical couplings between the

entities of a software system. In this last, two entities are

coupled whenever a change in an entity A implies a

change in another entity B—one says that B depends on

A.

The logical couplings have been used for different

purposes: to identify hidden architectural dependencies, to

point developers to possible places that need change, or to

use them as change predictors. In our context, we use such

dependencies to evaluate the modularity of an AO

software system.

2.3 AspectJ

AOP is a new paradigm introduced by Kiczales et al. [11]

that provides separation of crosscutting concerns. It

modularizes the crosscutting concerns in a clear-cut

fashion, yielding a system architecture that is easier to

implement, and to evolve. With AOP, a program is

composed with a set of aspects, and a base code describing

the core modules. An aspect weaver, which is a compiler-

like entity, composes the final system by combining the

core and crosscutting modules through a process called

weaving [12].

AO languages offer abstractions for the

implementation of crosscutting concerns whose

modularization cannot be achieved by using traditional

programming languages. During the last decade, a

considerable number of AO languages have been

introduced. AspectJ [12] has been the pioneer of the AO

languages, and it is still one of the most relevant

frameworks supporting the AOP methodology. For the

remaining of this paper, we will use AspectJ as our target

language, although the observations made are also valid

for other currently available AspectJ-like languages.

AspectJ defines two types of crosscutting: dynamic

crosscutting and static crosscutting.

Dynamic crosscutting: is the weaving of new

behaviour into the execution of a program using: join

point, pointcut and advice. We briefly introduce each of

these constructs as follows:

- Join Point: denotes points at which crosscutting code

can be executed. The join point is a well-defined “point”

in the dynamic execution flow of an application. For

instance, in object oriented languages, join points may

refer to passing messages and writing on instance

variables.

- Pointcut: is a program element that picks out join points

and exposes data from the execution context of those

join points. The pointcut language of AspectJ offers a set

of primitive pointcut designators, like call specifying

method call or get/set specifying field access. These

primitive pointcut designators can be combined using

logical operators (and “&&”, or “||”, not “!”).

- Advice: represents a program module which is to be

executed at the designated join points. There are three

types of advices before, after and around, which

correspond to the program modules to be executed prior,

after or instead of the designated events, respectively. It

is defined in terms of pointcuts. The code of a piece of

advice runs at every join point picked out by its pointcut.

Static crosscutting: is the weaving of modifications

into the static structure—the classes, interfaces, and

aspects—of the system. By itself, it does not modify the

system behavior, but it operates over the static structure of

type hierarchies. AspectJ provides inter-type member

declarations (introductions) and other declare forms. It

makes static changes to the modules of the system, for

example, we can add a method or field to a class.

Finally, an Aspect is a modular unit designed to

implement a crosscutting concern. It contains the code that

History-based Approach for Detecting... Informatica 39 (2015) 187–194 189

expresses the weaving rules for both dynamic and static

crosscutting. An aspect may also incorporate member

variables, methods, etc., just like a normal class Java.

3 Our approach

3.1 Basic idea

To understand better our contribution, it is important to

define clearly the relationship between logical coupling

detection and modularity defects. In this section, we

present the utility of logical couplings in the detection of

software modularity defects. And, we explain how this

idea can be used in the context of AO software.

 There is a strong correlation between modularity

defects and logical couplings. Some modularity defects

are not easily detectable by static or dynamic software

analysis. Fluri et al.’s [7] study shows that a large number

of change coupling relationships are not entailed by

structural dependencies.

Extracting logical couplings and analysing them can

help in detecting modularity defects in a software system.

The basic idea is that we can distinguish two types of

logical couplings, as depicted in Figure 1: internal and

external logical couplings. A logical coupling is an

internal logical coupling, if it relates two entities that

belong to the same module in the software decomposition.

On the other hand, an external logical coupling relates two

entities that belong to two different (independent)

software modules.

The last type is the most important in our context;

because the existence of external logical couplings in a

software system presents possible modularity defects in

that system. Two modules that are supposed to be changed

independently are changed together i.e. a change in an

entity that belong to a specific module will necessitate

changes in other(s) entity(s) that belong to other

module(s). So, we call such logical couplings “negative

logical couplings” or “modularity defects”.

In AOP, the crosscutting concerns are modularized by

identifying a clear role for each one in the system,

implementing each role in its own module, and loosely

coupling each module to only a limited number of other

modules [12]. Unfortunately, these systems need to evolve

continually in order to cope with ever-changing software

requirements. Empirical results show that AO software is

not immune from the negative side effects of software

evolution [2, 5, 20]. This fact harms the modularity of the

AO program, hinders the concerns encapsulation and

reduces the aspect reusability. To overcome this problem

is a hot topic.

Our research question is: how we can detect

efficiently the modularity defects in AO software? To this

end, we use the idea described above to achieve our goal.

In this context, software modules (Figure 1) are the

crosscutting concerns (Aspects) of the system, and the

modularity defects are considered as external logical

Figure 1: Types of logical couplings.

couplings among these aspects. So a modularity defect in

AO software can be defined as follows:

Definition of a modularity defect: let A and B two

independent aspects. A modularity defect (x, y) is a logical

coupling between the two entities x and y, where xA and

yB.

To resume up, just how well does the AO software

system evolution justify its best modularity? The existence

of modularity defects (external logical couplings) in an

AO system shows that the separation of crosscutting

concerns (modularity) into that system is violated. The

coupled crosscutting concerns are candidates for

restructuring or refactoring. Here, the detected modularity

defects are used to guide improvement efforts; in order to

get a more stable decomposition with very little

dependencies i.e. an ideal situation would allow changing

each crosscutting concern independently of the others.

This is very useful to reconstruct a best modularization for

the AO software system and a good reusability of their

crosscutting concerns.

3.2 Approach overview

The purpose of this paper is to present an approach to

uncover modularity defects in AO software by analysing

its evolution history. As depicted in Figure 2, our approach

consists of two complementary steps, which form an

integrated approach for detecting modularity defects: 1)

An AO software repository is mined to detect logical

couplings between the software entities that belong to the

different aspects of the system; 2) The resulted logical

couplings are then analysed according to the AO software

decomposition to detect and locate modularity defects. If

two entities x and y are frequently changed together, and

they belong to two independent aspects A and B

respectively, so the logical dependency (x,y) represents a

modularity defect. The main purpose of such modularity

defects is to evaluate how modular an AO application is,

and to guide improvement efforts i.e. these couplings can

be used to guide the software developer during

restructuring and refactoring tasks.

Module A

E 1

Module B

Internal logical coupling

External logical coupling

E 2

E 3 E 4

E 7

E 6

E 9

E 5

E 8

190 Informatica 39 (2015) 187–194 H. Cherait et al.

Figure 2: Modularity defect detection.

So, it is to the developer to examine the corresponding

code (the entities that are related to a modularity defect) to

improve it and enhance the AO software modularisation.

3.3 Logical coupling detection

In this step, a syntactic analysis of the Aspects source code

is performed, such that additions and modifications of

aspect’s entities can be recorded. So, the source data for

the mining will constitutes of the different building blocks

of the software aspects: fields, methods, pointcuts,

advices, and introductions. With our Mining approach, we

address the following questions: 1) what are the coupled

aspect entities in the AO system? and 2) what are the

strengths of these couplings?

3.3.1 Coupled aspect entities

As we are mining for entities that are frequently

changed together, it seems natural to use the technique

called frequent itemset mining, which is able to discover

interesting relations in a database. Our mining approach

follows these steps: it acquires aspects data from a

repository and transforms them into change-sets, which

consist of the names of the entities added or modified in

each transaction. Filtering may help in avoiding irrelevant

data at this stage. We aim to track and mine software

entities belonging to aspects, so we do not take into

account base code entities. We focus on the logical

couplings among crosscutting concerns only. So, we keep

in every transaction only the aspect entities of an AO

system (not base code entities). These are then processed

using the Apriori frequent itemset mining algorithm [1].

Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} be a set of aspect’s entities

i.e. entities that belong to the different aspects of the AO

software, and 𝑋 ⊆ 𝐸 an entity-set. We define repository 𝑅

as a set of transactions: 𝑅 = {𝑡1, 𝑡2, … , 𝑡𝑚}, where 𝑡𝑖 =
{𝑒𝑖1, 𝑒𝑖2, … , 𝑒𝑖𝑘} and 𝑒𝑖𝑗 ∈ 𝐸. Also, let 𝑠(𝑋) be the set of

transactions that contain entity-set 𝑋, formally 𝑠(𝑋) =
{𝑌 ∈ 𝑅|𝑌 ⊇ 𝑋}. Finally, the support of an entity-set 𝑋 is

the fraction of transactions in the repository that

contain 𝑋: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =
|𝑠(𝑋)|

|𝑅|
. Then 𝑋 is called a

logical coupling when its support is higher than a given

minimum support: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡.

Figure 3: Analysing logical couplings.

3.3.2 Strength of a logical coupling

The strength of a logical coupling is considered as the

support of this logical coupling. So, the strength of a

logical coupling {𝑒1, … , 𝑒𝑛} where each 𝑒𝑖 is an aspect

entity, is measured by support which is the number (or

percentage) of transactions containing the

entities 𝑒1, … , 𝑒𝑛.

3.4 Modularity defect detection

The logical couplings extracted in the above step, are then

analysed to detect modularity defects in the AO software

system. This analysis is based on the structural

decomposition of the AO software as crosscutting

concerns (Aspects). In this step, the detected logical

couplings are classed into two categories: internal and

external logical couplings. As depicted in Figure 3, we

define internal coupling as a dependency between two

entities that belong to the same Aspect. The couplings

between entities of an Aspect and any other entities that

belong to other aspects are considered as external

couplings.

These external logical couplings are considered as

possible defects in the AO software modularity. Formally,

a set of external logical couplings ELC is defined as ELC

= {(𝑒i, 𝑒𝑗)|𝑒i ∈ A, 𝑒𝑗 ∈ B}, where A and B are two

independent aspects. So, the set of modularity defects MD

in an AO program P is defined as:

𝑀𝐷(𝑃) = ∑ 𝐸𝐿𝐶𝑖

|𝐸𝐿𝐶|

𝑖=1

Since modularity defects are logical couplings, each

modularity defect has a strength/support value (the

number of transactions that contain the external logical

coupling). So, we can say that (x, y) is a modularity defect

that occurred once, (y, z) is a modularity defect that

occurred twice, and so on.

3.5 Discussion

Using the detected logical couplings between aspect

entities, we can deduce the coupled crosscutting concerns

(aspects) in the AO system. As depicted in Figure 4, if two

aspect entities e1 and e2 that belong to the independent

aspects A1 and A2 respectively (modularity defect). Then,

we deduce automatically that A1 and A2 are coupled

aspects.

AO

software

repository

Mining

Logical

couplings
Analysing

Modularity

defects

AO software

decomposition

Developer

Aspect B Aspect A

External coupling Internal coupling

Change Transaction

History-based Approach for Detecting... Informatica 39 (2015) 187–194 191

Figure 4: Coupled aspects.

The detected modularity defects can be used to assist

restructuring and refactoring tasks. If some aspects change

at the same time very often over several releases, they can

be used to point to candidates for refactoring.

On the other hand, our results can be used to evaluate

the AO software modularity. We can for example define a

modularity measure using the detected logical couplings

(it can be equal to the number of no coupled aspects,

devised by the total number of aspects). Based on this

measure we can evaluate the AO system modularity. This

measure can be used later to compare many

implementations of AO software systems. So, we can

answer interesting questions as: Is the AO program P more

modularized then the AO program P’? Is the

implementation of the crosscutting concern C in program

P is much more encapsulated than in program P’? If we

detect crosscutting concerns (aspects) that have no

coupling to any other crosscutting concerns, these can be

a perfect reusable crosscutting concerns.

4 Tool chain
This section describes the tool-chain with which we

identify modularity defects in AO programs written in

AspectJ [12]. This last is a well-established AOP

language. As depicted in Figure 5, the overall process is

performed using three main tools:

The AspectJML Tool: an existing open source

proposed by Melo Junior and Mendonça [13]. It is an

XML-based markup language for representing source

code written in AspectJ. The AspectJ source code is

converted in XML (eXtended Markup Language) format

[21] through the power of AspectJML. This XML-based

representation is then used by the other tools in the tool-

chain.

The Mining Tool: We have implemented this tool to

extract logical couplings from the AspectJ repository.

First, this tool takes change transactions from the

repository and filters them to keep just the changed entities

belonging to the aspects of the system (not base

Figure 5: Tool chain.

code entities) in every transaction. Then, every entity in

the transactions is replaced by its identifier. This last is

extracted from the XML-based representation of the

AspectJ source code. So, the tool gets change transactions

of entity identifiers and organizing them in a single XML

document. Finally, the transactions are mined using the

Apriori algorithm.

Here, we used the XQuery implementation of the

Apriori algorithm proposed by Wan and Dobbie [22]. The

output of this tool is the logical couplings in the AspectJ

source code that have a support higher than a specific

threshold (min support). Every logical coupling is a set of

entity identifiers.

The MDD Tool: a Modularity Defect Detection tool

is implemented to filter the logical couplings obtained by

the Mining tool. Here, the tool extracts modularity defects

by eliminating internal logical couplings. It uses the XML-

based representation of the source code to test if the

entities that belong to a specific logical coupling are

existing in the same aspect, or in different aspects using

their identifiers. The results present possible modularity

defects.

A4
A1

A2

A3

E3

E4

E2 E1

E5
E6

Logical coupling dependency

Membership dependency

AspectJ

Software

Repository

Mining

Tool

Logical

Coupling

s

MDD

Tool

Modularity

Defects

AspectJ

Source

Code

AspectJML

Tool

XML

Representation

http://www.eclipse.org/aspectj/

192 Informatica 39 (2015) 187–194 H. Cherait et al.

5 Case study
In order to assess the feasibility and correctness of our

approach, this case study uses 22 releases of three well-

known AspectJ programs available as open source. These

systems were selected because they are rich in kinds of

crosscutting concerns. Also they are used as case study in

different research works [4, 5, 8, 14].

Table 1 describes these systems. It gives the number

of versions and aspects of each software system. The first

one, called Contract4J, it supports "Design by Contract"

programming in Java. We considered the 5 releases of

Contract4J in our study. The second is a product line for

deriving applications that manipulate photos, videos and

music on mobile devices called Mobile Media [6]. We

selected its 7 releases in this experimentation. The last

system called Health Watcher [19]; is a real Web-based

information system that allows citizens to register

complaints about health issues in public and heath care

institutions to investigate and take the required actions.

We selected the 10 releases of Health Watcher in our

study.

After the application of our approach on these

systems, we find many internal logical couplings as:

“frequently changing a pointcut involves changing its

related advices”, “changing a field, involves changing the

methods that use this field”, etc. Many modularity defects

(external logical couplings) are detected also. Table 2

presents the detected coupled aspects in each system. For

each coupled aspects, it gives the number of detected

modularity defects (external logical couplings). Besides, it

gives the support of each coupling. Here the support is the

average of the supports of the related modularity defects

i.e. the support of a logical dependency between two

Aspects A and B is the sum of supports of their related

modularity defects, devised by the number of such

modularity defects.

In the program Contract4J we have detected that the

aspects ConstructorBoundaryConditions and Method-

BoundaryConditions are tightly coupled with 7

modularity defects. Here the coupled low-level entities

with the higher support for these aspects are: the method

doTest in the aspect ConstructorBoundaryConditions and

the method doBeforeTest in the aspect MethodBound-

aryConditions.

Software #versions #Aspects

Contract4J 5 814

Mobile Media 7 442

Health Watcher 10 1123

Table 1: Subject programs.

The aspect ConstructorBoundaryConditions is also

coupled with the aspect UsageEnforcement through 3

modularity defects. The modularity defect with the higher

support here is between: the advice applied after the

pointcut postCtor in the aspect ConstructorBound-

aryConditions and the pointcuts preNotInContract, post-

NotInContract, and invarNotInContract that belong to the

aspect UsageEnforcement.

In the Mobile Media program, we have detected much

more coupled aspects than those detected in the

Contract4J program. The aspects DataModelAspectEH

and UtilAspectEH are coupled via 2 modularity defects:

the pointcuts loadMediaDataFromRMS and readMe-

diaAsByteArray belonging to DataModelAspectEH and

UtilAspectEH respectively are frequently changed

together. Also, the pointcuts getMedias and getBytes-

FromMediaInfo are tightly coupled.

We have also detected that the aspect SortingAspect is

coupled with 3 other aspects, which restricts its

evolvability and reusability. It is coupled with the aspect

FavouritesAspect via 4 modularity defects. Besides, it is

coupled with the aspects ControllerAspectE and Copy-

PhotoAspect through one modularity defect. The most

frequent detected modularity defects here are of the type

pointcut duplications. For instance, the pointcuts han-

dleCommandAction and appendMedias are duplicated in

the aspects FavouritesAspect and SortingAspect. Besides,

the pointcut showImage is defined in the aspects Con-

trollerAspectEH and SortingAspect. So any modification

in such pointcuts implies changes in many aspects.

Application Coupled aspects #Modularity defects Support

Contract4J ConstructorBoundaryConditions

MethodBoundaryConditions

7 0,6

ConstructorBoundaryConditions

UsageEnforcement

3 0,6

Mobile Media DataModelAspectEH

UtilAspectEH

2 0,4

FavouritesAspect

SortingAspect

4 0,4

ControllerAspectEH

SortingAspect

1 0,2

CopyPhotoAspect

SortingAspect

1 0,2

Health Watcher   

Table 2: Detected modularity defects.

History-based Approach for Detecting... Informatica 39 (2015) 187–194 193

Finally, in the Health Watcher application we have

detected many internal logical couplings, but we do not

detect serious modularity defects in that system (except of

a few external logical couplings which are detected once).

So, in contrast to the above applications (Contract4J and

Mobile Media), we can say that Health Watcher has a

good modularization, and their crosscutting concerns

(Aspects) are good reusable modules.

6 Related work
This section of the paper presents related works discussing

the benefits of our proposal in contrast to the other ones.

Our work involves the following research areas:

AO software analysis: Existing approaches for

detecting dependencies among AO software generally use

static analysis [15, 17, 25, 26]. Such approaches are

mainly based on an instruction-level to analyse the

evolution of an AO software system: the source code is

analysed and source code slicing is used to perform

change impact analysis. We may say that such code-based

approaches reveal syntactic dependencies and what we are

really interested in is logical dependencies among AO

software concerns. On the other hand, the information is

derived using analysis of textual software artefacts that are

found in a single version of the software. In contrast, our

approach is based on an empirical observation of AO

system structural modifications. We treat the whole

evolution history to detect the modularity defects.

Mining AO software repositories: There are many

approaches and techniques for detecting logical couplings

in OO software [9, 10]. These works prove that such

historical analysis is often able to capture couplings

among software entities that cannot be captured by static

and dynamic analysis. But this research area still not

enough explored for AO software. Few works are

dedicated to mine AO software repositories. For instance,

Qian et al. [16] treat the detection of change patterns in

AspectJ programs. They analyse the successive versions

of an AspectJ program, and then decompose their

differences into a set of atomic changes. Finally, they

employ the Apriori data mining algorithm to generate the

most frequent item-sets. In [3], we have also detected

change patterns in AspectJ software by Mining a rewriting

rule-based repository. In this paper, our goal is different,

as we aim at identifying logical couplings between the

aspect entities instead of change patterns.

Detecting software modularity defects: Many

works prove the benefits of analysing the OO software

evolution history for assessing its modularity. In [18] the

authors state that to improve current modularity views, it

is important to investigate the impact of design decisions

concerning modularity in other dimensions, as the

evolutionary view. They propose the ModularityCheck

tool to assess package modularity using co-change

clusters, which are sets of classes that usually changed

together in the past.

Wong et al. [23, 24] presented CLIO, a tool that

detects and locates modularity violations. CLIO compares

how components should co-change according to the

modular structure and how components usually co-change

retrieving information from version history. A modularity

violation is detected when two components usually change

together but they belong to different modules, which are

supposed to evolve independently. We use the same idea

to detect modularity defects in AO software. However,

these works extract couplings at a file level; in contrast,

we detect logical couplings at entity level. Our detected

fine-grained logical couplings can be very useful for

restructuring and refactoring tasks.

7 Conclusion
Unintended modularity defects of AO software may not

be easily detectable by static or dynamic analysis

techniques, but could cause modularity decay and bad

separation of crosscutting concerns. To detect such

modularity defects, we suggested a history-based

approach based on the logical couplings in the AO

software system.

Our approach applies frequent itemset mining over an

AO software repository in order to detect logical

couplings among its entities. The extracted logical

couplings are then analysed to detect modularity defects

in the AO software system. Many case studies are

experimented to demonstrate the feasibility of our

approach. The results show that the approach is able to

detect logical couplings among aspect entities, as well as

modularity defects. The approach leads naturally to an

evaluation of AO system’s modularity. The results of our

approach can be used for reducing the dependencies

between AO software Aspects and consequently

promoting its modularity.

The same idea can be used for detecting other types of

AO software defects. For example, we can analyse the AO

software evolution history for detecting bad smells, anti-

patterns, etc.

References
[1] R. Agrawal, and R. Srikant (1994). Fast algorithms

for mining association rules in large databases. In J.

B. Bocca, M. Jarke, and C. Zaniolo, editors,

Proceedings of 20th International Conference on

Very Large Data Bases, Santiago, Chile, pp. 487–

499.

[2] R.T. Alexander, J. M. Bieman, and A. A. Andrews

(2004). Towards the Systematic Testing of Aspect-

Oriented Programs. Report CS-04-105, Colorado

State University, Fort Collins-USA.

[3] H. Cherait, and N. Bounour (2014). Detecting

Change Patterns in Aspect Oriented Software

Evolution: Rule-based Repository Analysis.

International Journal of Software Engineering and

Its Applications (IJSEIA), Vol. 8, No. 1, pp. 247-

266.

[4] R. Dyer, H. Rajan, and Y. Cai (2012). An

Exploratory Study of the Design Impact of Language

Features for Aspect-oriented Interfaces. In

Proceedings of AOSD’12, Potsdam, Germany.

[5] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E.

Figueiredo, N. Cacho, F. Lopes, N. Temudo, L.

194 Informatica 39 (2015) 187–194 H. Cherait et al.

Silva, S. Soares, A. Rashid, P. Masiero, T. Batista,

and J. Maldonado (2010). An Exploratory Study of

Fault-Proneness in Evolving Aspect-Oriented

Programs. In Proceedings of ICSE '10, Cape Town,

South Africa, ACM press, pp. 65 – 74.

[6] E. Figueiredo, N. Cacho, C. Sant’Anna, M.

Monteiro, U. Kulesza, A. Garcia, S. Soares, F.

Ferrari, S. Khan, F. Castor Filho, and F. Dantas

(2008). Evolving software product lines with

aspects: an empirical study on design stability. In

Proceedings of ICSE’08.

[7] B. Fluri, H. C. Gall, and M. Pinzger (2005). Fine-

grained analysis of change couplings. In Proceedings

of 5th WICSA’05, pp. 66–74.

[8] P. Greenwood, T. T. Bartolomei, E. Figueiredo, M.

Dósea, A. F. Garcia, N. Cacho, C. Sant’Anna, S.

Soares, P. Borba, U. Kulesza, and A. Rashid (2007).

On the impact of aspectual decompositions on design

stability: An empirical study. In Proceedings of

ECOOP, pp. 176–200.

[9] A. E. Hassan (2008). The road ahead for mining

software repositories. In Frontiers of Software

Maintenance, pp. 48–57.

[10] H. Kagdi, M. L Collard, and J. I. Maletic (2007). A

Survey and Taxonomy of Approaches for Mining

Software Repositories in the Context of Software

Evolution. Journal of Software Maintenance and

Evolution: Research and Practice, Vol. 19, No. 2, pp.

77-131.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J. M. Loingtier, and J. Irwin (1997).

Aspect-oriented programming. In Proceedings of

11th European Conference on Object-Oriented

Programming, Springer-Verlag, LNCS Vol. 1241,

pp. 220–242.

[12] R. Laddad (2003). AspectJ in Action: Pratical

Aspect-Oriented Programming. Manning

Pubblications Company.

[13] L. S. Melo Junior, and N. C. Mendonça (2005).

AspectJML: A Markup Language for AspectJ. In

Proceedings of the 2nd Brazilian Workshop on

Aspect Oriented Software Development,

Uberlândia, MG, Brazil.

[14] A. C. Neto, M. Ribeiro, M. Dosea, R. Bonifacio, P.

Borba, and S. Soares (2007). Semantic

Dependencies and Modularity of Aspect-Oriented

Software. In Proceeding of the First International

Workshop on Assessment of Contemporary

Modularization Techniques (ACoM'07).

[15] E. K. Piveta , M. Hecht , M. S. Pimenta , and R. T.

Price (2006). Detecting bad smells in AspectJ.

Journal of Universal Computer Science.

[16] Y. Qian, S. Zhang and Z. Qi (2008). Mining Change

Patterns in AspectJ Software Evolution. In

Proceedings of the International Conference on

Computer Science and Software Engineering, pp.

108-111.

[17] M. Rinard, A. Salcianu, and S. Bugrara (2004). A

classification system and analysis for aspect-oriented

programs. In Proceedings of FSE’04, pp. 147–158.

[18] L. L. Silva, D. Félix, M. T. Valente, M. de A. Maia

(2014). ModularityCheck: A Tool for Assessing

Modularity using Co-Change Clusters. In

Proceedings of the Brazilian Conference on

Software: Theory and Practice (CBSoft’14) - Tool

Session.

[19] S. Soares, E. Laureano, and P. Borba (2002).

Implementing distribution and persistence aspects

with AspectJ. In Proceedings of the 17th OOPSLA.

[20] F. Steimann (2006). The Paradoxical Success of

Aspect-Oriented Programming. In Proceedings of

OOPSLA’06, pp. 481-497.

[21] J. Suzukiand, and Y. Yamamoto (1998). Managing

the software design documents with xml. In

Proceedings of the 16th annual international

conference on Computer documentation, ACM

Press: New York, pp. 127-136.

[22] J. W. W. Wan, and G. Dobbie (2003). Extracting

Association Rules from XML Documents using

XQuery. In Proceedings of WIDM’03, New Orleans,

Louisiana, USA, pp. 94-97.

[23] S. Wong, Y. Cai, and M. Dalton (2009). Detecting

Design Defects Caused by Design Rule Violations.

Report DU-CS-09-04, Drexel University.

[24] S. Wong, Y. Cai, M. Kim, and M. Dalton (2011).

Detecting software modularity violations. In

Proceedings of 33rd International Conference on

Software Engineering (ICSE’11), pp. 411–420.

[25] G. Xu, and A. Rountev (2008). AJANA: A General

Framework for Source-Code-Level Interprocedural

Dataflow Analysis of AspectJ Software. In

Proceedings of AOSD’08, Brussels, Belgium.

[26] J. Zhao (2002). Change Impact Analysis for Aspect-

Oriented Software Evolution. In Proceedings of the

5th International Workshop on Principles of

Software Evolution, Orlando, Florida, pp. 108-112.

http://dl.acm.org/author_page.cfm?id=81100162809&coll=DL&dl=ACM&trk=0&cfid=477820885&cftoken=67396174

 Informatica 39 (2015) 195–208 195

Towards Crafting an Improved Functional Link Artificial Neural

Network Based on Differential Evolution and Feature Selection

Ch. Sanjeev Kumar Dash and Ajit Kumar Behera

Silicon Institute of Technology, Silicon Hills

Patia, Bhubaneswar-751024, Odisha, India

E-mail: sanjeev_dash@yahoo.com, ajit_behera@hotmail.com

Satchidananda Dehuri

Department of Systems Engineering

Ajou University, San 5, Woncheon-dong

Yeongtong-gu, Suwon-443-749, South Korea

E-mail: satchi@ajou.ac.kr

Sung-Bae Cho

Soft Computing Laboratory

Department of Computer Science, Yonsei University

134 Shinchon-dong, Sudaemoon-gu

Seoul 120-749, South Korea

E-mail: sbcho@yonsei.ac.kr

Gi-Nam Wang

Department of Industrial Engineering

Ajou University, San 5, Woncheon-dong

Yeongtong-gu, Suwon-443-749, South Korea

E-mail: gnwang@ajou.ac.kr

Keywords: differential evolution, functional link artificial neural networks, classification, feature selection, genetic

algorithms

Received: October 11, 2014

The proposed work describes an improved functional link artificial neural network (FLANN) for

classification. The improvement in terms of classification accuracy of the network is realized through

differential evolution (DE) and filter based feature selection approach. Information gain theory is used

to filter out irrelevant features and provide relevant features to the functional expansion unit of FLANN

as an input, which in turn maps low to high dimensional feature space for constructing an improved

classifier. To fine tune the weight vector of the given network, differential evolution is used. The work is

validated using skewed and balanced dataset retrieved from the University of California Irvine (UCI)

repository. Our systematic experimental study divulges that the performance of the differential-evolution

trained FLANN is promising than genetic algorithm trained FLANN, ISO-FLANN, and PSO-BP.

Povzetek: Predstavljena je gradnja klasifikacijske nevronske mreže, ki doseže boljše performanse z več

novimi pristopi.

1 Introduction
Recently it is noticed that classification of big data [4]

has demanded a great deal of attention. In this task, it is

required to predict the value (the class label) of a user

specified attribute based on the values of other predicting

attributes. Although the task has been studied for many

decades by the machine learning, statistics, and data

mining communities but the complexity and shear size of

the dataset creates lots of avenues in pursuit of

perfection. Hence, an effort towards developing a

smooth, accurate, and scalable classifier is always

encouraging; it can face the challenge posed by the big

data analysis. In this context, we urged that this work is a

step towards handling big data, which has been plagued

with many local optimal solutions and highly non-linear.

Although, we have carried out our experimentation with

the dataset obtained from the University of California,

Irvine (UCI) repository [18] for validation, but it can be

extended to handle big data.

Over the decades, neural networks [60] have been

used as an alternative tool for approximating non-linearly

separable boundary of classes in a classification problem.

Pao et al. [41], have shown that FLANN may be

conveniently used for function approximation and can be

extended for classification with faster convergence rate

mailto:sanjeev_dash@yahoo.com

196 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

and lesser computational load vis-à-vis multi-layer

perceptron (MLP) structure. With this motivation,

several classifiers such as adaptive Particle Swarm

Optimization-Back-propagation (PSO-BP) learning [13],

improved swarm optimized FLANN (ISO-FLANN)

Dehuri, et al. [15] have already been developed with

certain efficacy. The FLANN is basically a flat network

and the need of the hidden layer is removed and hence

the learning algorithm used in this network becomes very

simple. The functional expansion effectively increases

the dimensionality of the input vector and hence the

hyper planes generated by the FLANN provide greater

discrimination capability in the input pattern space.

Feature selection can be broadly classified into two

categories: i) filter approach (it depends on generic

statistical measurement); and ii) wrapper approach

(based on the accuracy of a specific classifier) [2]. In the

proposed work, the feature selection is performed based

on information gain theory (entropy) measure with a goal

to select a subset of features that preserves as much as

possible the relevant information found in the entire set

of features. We know that the architectural complexity of

FLANN [12] is directly proportional to the number of

features and the functions considered for expansion of

the given feature value. Therefore, for reducing the

architectural complexity, we first select a subset of

features (i.e., feature selection) [28, 29] using gain ratio

and then apply the usual procedure of function expansion

and training by differential evolution [56]. In this work,

the remarkable performance of DE as a global optimizer

on continuous error function minimization problems has

been studied [8] in the classification by effectively

learning the FLANN. DE has also become a powerful

tool for solving optimization problems that arise in other

application areas like finance, medical, image processing

[62], automatic clustering of big unlabeled datasets, et

cetera.

This paper is set out as follows. Section 2 gives an

overview of FLANN network, feature selection, and

differential evolution. In Section 3, the proposed method

is discussed. Experimental setup, results, and analysis are

presented in Section 4. Section 5 concludes the paper

with a future line of research

2 Background
The background of the research work is presented in this

Section. In Subsections 2.1 and 2.2, literatures study of

FLANN as a classifier and predictor is discussed. Feature

selection and its importance are the focus of Subsection

2.3. Differential evolution, a meta-heuristic computing

paradigm is discussed in Subsection 2.4.

2.1 Review of Literature

FLANNs are higher-order neural networks without

hidden units introduced by Klasser and Pao [30]. Despite

of their linear nature, FLANNs can capture non-linear

input–output relationships, provided that these are fed

with an adequate set of polynomial inputs, or the

functions might be a subset of a complete set of

orthonormal basis functions spanning through n-

dimensional representation space, are constructed out of

the original input attributes [41]. FLANNs can be used

for non-linear prediction and classification. Related to

this context, Subsections 2.1.1 and 2.1.2 are briefing out

some of the works on FLANNs for classification and

non-linear prediction.

2.1.1 FLANNs for Classification

In [53] a genetic algorithm used to select an appropriate

number of polynomials as a functional input to the

FLANN has been applied to the classification problem.

However, their main concern was the selection of the

optimal set of functional links to construct the classifier.

In contrast, the proposed method gives much emphasis

on how to develop the learning skill of the classifier by

using filtered feature vectors. Misra and Dehuri [36] have

used a FLANN for classification problem in data mining

with a hope to get a compact classifier with less

computational complexity and faster learning. Hu and

Tseng [63] have used the functional link net known as

BpFLANN for classification of bankruptcy prediction.

With a motivation to restrict certain limitations, Dehuri,

et al. [12] have coupled genetic algorithm based feature

selection with FLANN (GFLANN). In the sequel, Dehuri

and Cho [13] have given a road map on FLANN and

designed a new PSO-BP adaptive learning mechanism

for FLANN. In [14], Dehuri and Cho have contributed

another stimulating work on FLANN [14] in succession

with an improved swarm optimized FLANN for

classification [15].

2.2 FLANNs for Prediction

Pao et al., have presented a functional link neural

network (CoFLANN) in [40] to learn the control

systems. They have shown several beneficial properties

of generalized delta rule network with hidden layer and

back-propagation (BP) learning. Haring and Kok [20],

have proposed an algorithm (ClFLANN) using

evolutionary computation (specifically genetic algorithm

and genetic programming) for the determination of

functional links (one based on polynomials and another

based on expression tree) in neural network. Patra et al.

[44] have proposed a CeFLANN based on BP learning

and applied to the problem of channel equalization in a

digital communication channel. Haring et al. [21], have

proposed a ClaFLANN to select and transform features

using evolutionary computation and showed that this

kind of selection of features is a special case of so-called

functional links. Hussain et al. [25] have described a new

approach for decision feedback equalizer (DFE) based on

the functional-link neural network (DfFLANN). The

structure is applied to the problem of adaptive

equalization in the presence of inter-symbol interference

(ISI), additive white Gaussian noise, and co-channel

interference (CCI). The experimental results provide

significantly superior bit-error rate (BER) performance

characteristics as compared to the conventional methods.

Chen et al. [6] have presented an adaptive

implementation of the functional-link neural network

Towards Crafting an Improved Functional Link... Informatica 39 (2015) 195–208 197

(AFLNN) architecture together with a supervised

learning algorithm named Rank-Expansion with Instant

Learning (REIL) that rapidly determines the weights of

the network. The beauty of their proposed algorithm is

one-shot training as opposed to iterative training

algorithms in the literature. Dash et al. [9], have

proposed an ElfFLANN with trigonometric basis

functions to forecast the short-term electric load.

Panagiotopoulos et al. [39] have reported better results

by applying FLANN for planning in an interactive

environment between two systems: the challenger and

the responder. Patra et al. [44] have proposed a FLANN

with BP learning (SiFLANN) for identification of non-

linear dynamic systems. Moreover, Patra et al. [44] have

used FLANN to adaptive channel equalization in a

digital communication system with 4-QAM signal

constellation named as QsFLANN. They have compared

the performance of the FLANN with a multilayer

perceptron (MLP) and a polynomial perceptron network

(PPN) along with a conventional linear LMS-based

equalizer for different linear and nonlinear channel

models. Out of the three ANN equalizer structures, the

performance of the FLANN is found to be the best in

terms of MSE level, convergence rate, BER and

computational complexity for linear as well as nonlinear

channel models over a wide range of SNR and EVR

variations. With the encouraging performance of FLANN

[47, 48, 49], Patra et al. [45] have further motivated and

came up with another FLANN known as IpFLANN with

three sets of basis functions such as Chebyshev,

Legendre, and power series to develop an intelligent

model of the CPS involving less computational

complexity. In the sequel, its implementation can be

economical and robust. Park and Pao [43] have reported

the performance of a holistic-styled word-based approach

to off-line recognition of English language script. The

authors have combined the practices of radial basis

function neural net (RBNN) and the random vector

functional-link net approach (RVFLANN) and obtained a

method called the density-based random-vector

functional-link net (DBRVFLANN). The combination is

helpful in improving the performance of word

recognition. A Chebyshev functional link artificial neural

networks (CFLANN) is proposed by Patra et al. [49] for

non-linear dynamic system identification. Sing et al. [54]

has estimated the degree of insecurity in a power system

by the proposed IeFLANN with a set of orthonormal

trigonometric basis functions. An evolutionary search of

genetic type and multi-objective optimization [34] such

as accuracy and complexity of the FLANN in the Pareto

sense is used to design a generalized FLANN

(SyFLANN) with internal dynamics and applied to

system identification. A reduced-decision feedback

functional link artificial neural network (RDF-FLANN)

structure for the design of a nonlinear channel equalizer

in digital communication systems is proposed by Weng

et al. [58]. Authors have reported that the use of direct

decision feedback can greatly improve the performance

of FLANN structures. Weng et al. [57], have proposed a

reduced decision feed-back Chebyshev functional link

artificial neural networks (RDF-CFLANN) for channel

equalization. In [46], FLANNs with trigonometric

polynomial functions (IsFLNN) are used in intelligent

sensors for harsh environment that effectively linearizes

the response characteristics, compensates for non-

idealises and calibrates automatically.

Interval regression analysis has been a useful tool for

dealing with uncertain and imprecise data. Since the

available data often contain outliers, robust methods for

interval regression analysis are necessary. Hu [24] has

proposed a genetic-algorithm-based method (IraFLANN)

for determining two functional-link nets for the robust

nonlinear interval regression model: one for identifying

the upper bound of data interval, and the other for

identifying the lower bound of data interval.

2.3 FLANNs Classifier

The FLANN architecture [10, 47, 48, 49] uses a single

layer feed forward neural network by removing the

concept of hidden layers. The learning of a FLANN may

be considered as approximating or interpolating a

continuous, multivariate function f(X) by an

approximating function)(XfW
. In FLANN a set of basis

functions and a fixed number of weight parameters W

are used to represent)(XfW
. With a specific choice of a

set of basis functions, the problem is to find the weight

parameters W that provides the best possible

approximation of ‘f’ on the set of input-output examples.

So, the most important thing is that how to choose the

basis functions to obtain better approximation.

Let us consider a set of basis

function  
Iii AL


)( with the following properties:

(i) 1 =1, (ii) the subset  j

iij 1
  is a linearly

independent set, i.e., if  


j

i
iiw

1
0)(, then

0iw
 for all

i=1,2,…j, and

 (iii) 

















2/1
2

1

sup

A

j

i

ij
.

Let  N
iN 1 be a set of basis functions to be

considered for FLANN. Thus, the FLANN consists of N

basis functions
  NN  ,...,, 21 with the following

input-output relationship for the jth output:

);(ˆ
jsy  




N

i

ijij Xws
1

))(.(

, (1)

where
nX A R  , i.e.,  TnxxxX ,...,, 21 is the

input pattern vector,
mRyˆ

 i.e.,  Tmyyyy ,...,,ˆ
21 is the

output vector and  jNjjj wwww ,...,, 21 is the weight vector

associated with the jth output of the FLANN. The non-

linear function tanh(.)(.)  is used to transfer the weighted

sum into desired output format of an input pattern.

Considering the m-dimension output vector, equation

(1) can be written in matrix notation as follows:

198 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

 S W  , (2)

where W is an)(Nm weight matrix of the FLANN

given by T
mwwwW],...,,[21 , T

N XXX)](),...,(),([21  is the

basis function vector, and T
NSSSS],...,,[21 is a matrix

of linear outputs of the FLANN. The m-dimensional

output vector ŷ may be given by

ˆ () ()wy s f X 

, (3)

The training of the network is done in following way:

Let ‘k’ patterns be applied to the network in a

sequence repeatedly. Let the training sequence be

denoted by),(kk yX and the weight of the network be

)(kW , where the ‘k’ is also the iteration. Referring to

equation (1) the jth output of the FLANN at iteration k is

given by:

 
1

ˆ() (() ()) (() ())
N

T

ji i k j k

i

y k w k X w k X 


   
, (4)

for all AX  and j=1,2…,m, where
T

kNk XXXX)](),...,(),([)(2211 
.

Let the corresponding error be denoted by:

ˆ() () ()j j je k y k y k 

.

In words, the weighted sum of the functionally

expanded features is fed to the single neuron of the

output layer of the FLANN. The weights are optimized

by the DE method during the process of training. The set

of functions considered for function expansion may not

be always suitable for mapping the non-linearity of the

complex task. In such cases few more functions may be

incorporated into the set of functions considered for

expansion of the input data set.

However, dimensionality of many problems itself is

very high and further increasing the dimensionality to a

very large extent may not be an appropriate choice. So,

this is one of the reasons, why we are carrying out this

work.

2.4 Feature Selection

Feature selection (FS) [29] is an essential task to remove

irrelevant and/or redundant features. In other words,

feature selection techniques provide a way to select a

subset of potential attributes or variables from a dataset.

For a given classification problem, the network may

become unbelievably complex if the number of the

features used to classify the pattern increases very much.

So the reason behind using FS techniques include

reducing dimensionality by removing irrelevant and

redundant features, reducing the amount of attributes

needed for learning, improving algorithms’ predictive

accuracy, and increasing the constructed model’s

comprehensibility. After feature selection a subset of the

original features is obtained which retains sufficient

information to discriminate well among classes. The

selection of features can be achieved in two ways:

Filter Method: The filter approach is independent of

the learning algorithm, computationally simple, fast, and

scalable. Using filter method, feature selection is done

once and then can be provided as input to different

classifiers. In this method features are ranked according

to some criterion and the top k features are selected.

Wrapper model: This approach uses the method of

classification itself to measure the importance of feature

sets; hence the selected features depend on the classifier

model used [26]. In this method a minimum subset of

features is selected without learning performance

deterioration.

Wrapper methods generally result in better

performance than filter methods because the feature

selection process is optimized for the classification

algorithm to be used. However, wrapper methods are too

expensive for large dimensional database in terms of

computational complexity and time since each feature set

considered must be evaluated with the classifier

algorithm used. Filter based feature selection methods

are in general faster than wrapper based methods.

2.5 Differential Evolution

Differential evolution (DE) [50, 55, 57] is a population

based stochastic search algorithm. As a stochastic

optimizer, it has the capability to handle non-linearity,

non-convexity, multi-modality, and even dynamic

characteristics of the problem. Unlike canonical GA, it

typically operates on real valued individual encodings.

Like GAs [35], DE maintains a pool of potential

solutions which are then perturbed in an effort to explore

yet better solutions to a problem in hand. In GAs, the

individuals are perturbed based on crossover and

mutation. However in DE, individuals are perturbed

based on the difference of different individuals,

borrowing ideas from the Nelder-Mead simplex method

[50]. One of the advantages of this approach is that the

resulting ‘step’ size and orientation during the

perturbation process automatically adapts to the

landscape of fitness function.

There are many variants of DE algorithms developed

[8, 50] in past few years, the most classical variants is

based on the DE/rand/1/bin scheme [55]. The different

variants of the DE algorithm are described using the

notation DE/x/y/z, where x specifies how the base vector

is chosen (e.g., rand-if it is randomly selected, or best-if

the best individual is selected), y is the number of

difference vectors used, and z denotes the crossover

scheme (bin for crossover based on independent binomial

experiments, and exp for exponential crossover).

A pool of n, d-dimensional solution vectors

1 2(, ,...,), 1,2,...,i i i idx x x x i n 

is randomly initialized and evaluated using a fitness

function f(.). During the process of search, each

individual (i) is iteratively refined. The following three

steps are iterated one after another till desired optimum is

reached.

i) Mutation: Create a donor vector which encodes

a solution, using randomly selected members of

the population.

Towards Crafting an Improved Functional Link... Informatica 39 (2015) 195–208 199

ii) Crossover: Create a trial vector by combining

the donor vector with i.

iii) Selection: By the process of selection, determine

whether the newly-created trial vector replaces i

in the population or not.

The pseudo-code of DE is illustrated as follows:

DE (Scaled Factor fm, Crossover Rate Cr, Pool Size n)

{

INITIALIZATION: Generate a population of n, d-

dimensional solution vectors in the search space.

DO

FOR each i of the Population of individuals

 MUTATION: Generate a donor vector vi

 using equation (5).

 CROSSOVER: Generate a trial vector ui using

equation (6).

 SELECTION: Evaluate the trial vector (ui). if

f(ui) > f(xi) (for maximization problem) then

replace xi by ui else xi will survive to next

generation.

END FOR

WHILE (Termination Criterion Met)

}

For the mutation of ith individual of the population,

three different individuals’ xr1, xr2, and xr3 with r1 ≠ r2 ≠

r3 ≠ i will be randomly chosen from the pool to generate

a new vector known as donor vector. The donor vector is

described as follows.

 

Difference
Individial

rrm

Vector
base

ri xxfxv)(. 321 

, (5)

where, the scaling parameter mf called mutation

factor and a general setting for the parameter

is
[0,2]mf 

. However, Storn and Price suggest

[0.5,1]mf 
as such a setting may result in good

optimization effectiveness.

Selecting three indices randomly imply that all

individuals of the current pool have the same chance of

being selected, and therefore influencing the creation of

the difference vector. The mutation factor controls the

amplification of the difference vector and in turn used to

avoid stagnation of the search process. There are several

alternative versions of the above process for creating a

donor vector [for details see [8, 50]. In [62] a self-

adaptive DE is used that can tune this scaling factor

dynamically.

After the creation of the donor vector (vi), a binomial

crossover (bin) operates on the vector vi and the target

vector xi to generate a trial vector in the following way.

() ((1,2,...,))

() ((1,2,....,))

ij r

ij

ij r

v rand cif or j rand d
u

x rand cif and j rand d

 
 

  , (6)

where xij, vij, and uij are the j-dimensional components of

the vectors xi, vi, and ui, respectively; rand is a random

number generated in the range (0, 1); is the user-

specified crossover constant from the range (0, 1). The

resulting trial (child) vector replaces its parent if it has

higher fitness (a form of selection); otherwise the parent

survives unchanged into the next iteration of the

algorithm (shown in equation (7)).

() ((()) (()))
(1)

()

i i i

i

i

u t if f u t f x t
x t

x t otherwise


  

 (7)

 It is provided a comprehensive comparison of the

performance of DE with a range of other optimizers,

including GA, and report that the results obtained by DE

are consistently as good as the best obtained by other

optimizers across a wide range of problem instances in

[50]. There are a number of reasons to integrate FLANN

with DE. The first reason is to reduce local optimality

during the training of FLANN. Although genetic

algorithm coupled with FLANN has already been

established to reduce local optimality while designing a

classifier but DE has some merits over GA. Therefore,

we are ignited to carry out this work. Secondly, the real

encoding of DE solves the problem of encoding-

decoding mapping. Thirdly, it can achieve faster

convergence speed. Lastly DE does not undergo any

complex process of parameter tuning and works very

reliably with excellent overall results.

3 Proposed Method
With an objective to design a smooth and accurate

classifier, the proposed approach is combining the idea of

filter based feature selection and simple FLANN

classifier [15]. It is a two phase method. In phase one, we

are selecting a set of relevant features by using the

entropy while in the second phase the weights of FLANN

are trained using differential evolution. Figure 1 depicts

the overall architecture of the approach.

In the first phase, we rank the features or attributes

according to information gain ratio and then delete an

Figure 1: Architecture of Proposed Method.

200 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

appropriate number of features which have the least gain

ratio [2]. The exact number of features deleted varies

from dataset to dataset. The expected information needed

to classify a tuple in D is given by equation (8),





m

i

ii ppDInfo
1

2)(log)(, (8)

where pi is the non-zero probability that an arbitrary tuple

in D belongs to class Ci and is estimated by
, /i DC D . A

log function to the base 2 is used, because the

information is encoded in bits. Info(D) is the average

amount of information needed to identify the class level

of a tuple in D. Info(D) is also known as entropy of D

and is based upon only the properties of classes.

For an attribute ‘A’ entropy “ ()AInfo D ” is the

information still required to classify the tuples in D

after partitioning tuples in D into groups only on its

basis.

1

| |
() ()

| |

v
j

A j

j

D
Info D Info D

D

  , (9)

where v is the number of distinct values in the attribute

A, |D| is the total number of tuples in D and |Dj| is the

number of repetitions of the thj distinct value.

Information gain (Gain(A)) is defined as the difference

between the original information requirement and new

requirement (after partitioning on A) (refer equation

10)

)()()(DInfoDInfoAGain A . (10)

Information gain applies a kind of normalization to

information gain using split information value defined

analogously with)(DInfo as equation 11:

2

1

| | | |
() log

| | | |

v
j j

A

j

D D
SplitInfo D

D D

 
   

 
 . (11)

This value represents the potential information

generated by splitting the training data set, D, into v

partitions, corresponding to the v outcomes of test on

attribute A. For each outcome, it considers the number

of tuples having the outcome with respect to the total

number of tuples in D. The gain ratio is defined as in

equation (12).

() () / ()GainRatio A Gain A SplitInfo A . (12)

In summary, the feature selection is done in first

phase using information gain ratio and then the dataset

with reduced number of features is used for automatic

training and determination of the parameters of FLANN

using DE in the second phase.

In the second phase, we are focusing on the learning

of the classifier. Here, differential evolution is employed

to reveal the weight of the FLANN. This ensures

efficient representation of an individual of DE. Since the

performances of the FLANN mainly depend on weight;

we just encode the weight into an individual for

stochastic search. We have chosen a set of trigonometric

functions as the basis function for functional expansion.

The reason of choosing trigonometric functions for

functional expansion is as follows:

Without loss of generality, for all the polynomials of

Nth order with respect to an orthonormal system

 
1

()
N

i i
u


the best approximation in the metric space L2 is

given by the Nth partial sum of its Fourier series with

respect to the system. Thus, the trigonometric polynomial

basis functions provide a compact representation of the

function in the mean square sense. However, when the

outer product terms were used along with the

trigonometric polynomials for functional expansion,

better results were obtained in the case of learning the

classifier.

Suppose the maximum number of trigonometric

functions used to expand a particular feature is ‘F’ and

there are ‘L’ features selected for input to the network,

then the size of the weight vector is defined as

)1.(max  FLK , then the length of the individual is

BK max . The structure of the individual is represented

in Figure 2.

Figure 2: Structure of the Individual.

In other words, each individual has two constituent

parts such as weight and bias.

The fitness function which is used to guide the

search process is defined in equation (13).

2

1

1
ˆ() , () () ()

N

i

E e i e i y i y i
N 

   , (13)

where N is the total number of training

sample)(iy is the actual output of ith pattern and ˆ()y i is

the estimated output of FLANN. The error and hence

root mean square is denoted as e(i) and E respectively.

The algorithmic framework of FLANN-DE is

described as follows:

Initially, a set of pn individuals (i.e., i=1,2,..,np) is

the size of the population) pertaining to networks weights

and bias are created.

() () () ()

1 2, ,.. 1,2, .,., ,t t t t

i i id pix x x x i n  

where BKd  max
 and t is the iteration number.

At the start of the algorithm this pn set of

individuals is initialized randomly and then evaluated

using the fitness function f (.).

In each iteration, e.g., iteration t, for individual
 t

ix

undergoes mutation, crossover, and selection as follows:

Mutation: for vector
 t

ix a perturbed vector  1t

iV


called donor vector is generated according to equation

(14):

Towards Crafting an Improved Functional Link... Informatica 39 (2015) 195–208 201

(1) () () ()

1 2 3()t t t t

i r f r rV x m x x     , (14)

where mf is the mutation factor drawn from (0,2], the

indices r1, r2, and r3 are selected randomly from

{1,2,3,…,np }.

Crossover: The trial vector is generated as follows

(equation (15)):

)1()1(

2

)1(

1

)1(
,....,,




t

id

t

i

t

i

t

i uuuu ,

(1)

(1)

()

() ((1,2,..,)

() ((1,2..,)

t

ij rt

ij t

ij r

v if rand c or i rand d
u

x if rand c and i rand d




  

 
 

, (15)

where j=1, 2, …,d, rand is a random number generated in

the range (0,1) cr is the user specified crossover constant

from the range (0,1) and rand(1,2,…,d) is a randomly

chosen index from the range (1,2,…,d). The random

index is used to ensure that the trial solution vector

differs by at least one element from  t
ix . The resulting

trial (child) solution replaces its parent if it has higher

accuracy (a form of selection), otherwise the parent

survives unchanged into the next iteration of the

algorithm.

Finally, we use selection operation and obtain target

vector
(1)t

ix 
 as follows in equation (16):

(1) (1) ()

(1)

()

() ()
t t t

t i i i

i t

i

u if f x f x
x

x otherwise

 


 

 


. (16)

4 Experimental Study
The data set and experimental parameter setting are

discussed in Subsection 4.1. Results are analyzed in

Subsection 4.2.

4.1 Description of Dataset Parameters

The data set used to test the proposed method obtained

from the UCI machine learning repository [18]. Four

balanced and unbalanced datasets have been chosen to

validate the proposed method. The details about the four

data sets are given below.

Iris: This data set includes 150 instances and each

having 4 attributes, excluding the class attribute. The

instances are uniformly classified into 3 classes (i.e.,

every instance either belongs to class 1, or 2, or 3). Class

1 has 50 instances, class 2 contains 50, and remaining

instances (i.e., 50) are belong to class 3. None of the

attributes contain any missing values. All attributes are

continuous.

Wine: This data set includes 178 instances and each

having 13 attributes, excluding the class attribute. The

instances are classified into 3 classes (i.e., every instance

either belongs to class 1 or 2 or 3) in an almost balanced

way. Class 1 has 59 instances, class 2 contains 71, and

remaining instances (i.e., 48) are belong to class 3. None

of the attributes contain any missing values. All attributes

are continuous.

Lymphography: This data set includes 148

instances and each having 19 attributes including the

class attribute. The instances are classified into 4 classes

(i.e., every instance either belongs to class 1, or 2, or 3,

or 4). Class 1 has 2 instances, class 2 contains 81, class 3

contains 61 and remaining instances (i.e., 4) belong to

class 4. None of the attributes contain any missing

values. All attributes are continuous. However, this

dataset is purely unbalanced.

Stalog(Heart): There are 270 instances, 13

attributes, and 2 classes in this dataset. Class 1 has 151

instances and Class 2 has 119 instances. None of the

attributes contain any missing values. The distributions

of samples into different classes are almost balanced.

Pima: This data set includes 768 instances and each

having 8 attributes along with one class attribute. The

instances are classified into 2 classes (i.e., every instance

either belongs to class 1 or 2). Class 1 has 500 instances

and class 2 contains 268. None of the attributes contain

any missing values. All attributes are continuous.

However, the distribution of samples into various classes

is not balanced.

In our experiment, every dataset is randomly divided

into two mutually exclusive parts: 50% as training sets

and 50% as test sets. The parameters’ value used for

validating our proposed method is listed in Table 1.

These parameters were obtained after several rounds of

independent runs. However, the number of iterations are

varies from dataset to dataset.

Table 1: Parameters used for simulation

Parameter Iris Wine Lympho

- graphy

Stalog

(heart)

Pima

Population 50 50 50 50 50

Mutation 0.2 0.4 0.3 0.4 0.4

Crossover 0.8 0.8 0.6 0.8 0.8

In the case of Iris dataset, an ideal number of

iterations is lies within the range of 40~50. However, it

varies from 400~500 in the case of Lymphography,

Statlog (Heart), and Pima. In the case of Wine the ideal

number of iteration can varies from 1000~1200.

Similarly, the parameters setting of the methods ISO-

FLANN and PSO-BP have been fixed as suggested in the

respective literatures.

4.2 Result Analysis

The experimental test results are presented in Table 2.

The accuracy in terms of percentage of test samples

correctly classified using proposed method and method

ISO-FLANN, PSO-BP, and method proposed in [12] are

202 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

given in columns 2, 3, 4, and 5 of Table 2. In all the

cases, 1/3rd of the features have been removed.

In our comparison, it is noticed that the accuracy

obtained from our proposed method is better than the

method proposed in [12], ISO-FLANN, and PSO-BP,

moreover a paired t-test has been performed to judge the

performance all the algorithms properly. With the 5%

significance level, the critical value of t is 0.43 and it is

not coming under the specified range, so the null

hypothesis is rejected.

Table 2: Testing accuracy of proposed method vs.

method proposed in ISO-FLANN (Dehuri, et al., 2012),

PSO-BP (Zhang, et al., 2007) and (Dehuri, Mishra, and

Cho, 2008).

Dataset Propose

d

Method

ISO-

FLAN

N

PSO-BP Method

Proposed

in (Dehuri,

Mishra, and

Cho, 2008)

Iris 98.33 97.62 97.12 97.33

Wine 93.10 92.32 91.54 90.45

Lymphogra

phy

87.50 86.9 85.65 77.08

Statlog

(heart)

86.57 85.46 84.77 84.45

Pima 79.20 78.86 76.88 72.14

The features which are identified to remove during

the filter process are listed in Table 3. Further, the

mapping of numeric and actual name of the features are

shown in Table 4 to avoid confusion or ordering.

Table 3: Filtered Attributes of Datasets.

Dataset Attrib

utes of the

Dataset

Attributes

Removed

Iris 1~4 2

Wine 1~13 3,4,5,8

Lymphography 1~18 1,6,9,12,16,17

Statlog(heart) 1~13 1,4,6,7

Pima 1~8 1,3

Table 4: Features ordering of all datasets.

Dataset Attributes

Ordering

Name

Iris

1 Sepal Length

2 Sepal Width

3 Petal Length

4 Petal Width

Wine

1 Alcohol

2 Malic acid

3 Ash

4 Alcalinity of ash

5 Magnesium

6 Total phenols

7 Flavanoids

8 Nonflavanoid phenols

9 Proanthocyanins

10 Color intensity

11 Hue

12 OD280/OD315 of

diluted wines

13 Proline

Lymphography

1 Lymphatics: normal,

arched, deformed,

displaced

2 Block of affere: no, yes

3 Bl. of lymph. c: no, yes

4 Bl. of lymph. s: no, yes

5 By pass: no, yes

6 Extravasates: no, yes

7 Regeneration of: no, yes

8 Early uptake in: no, yes

9 Lym.nodes dimin: 0-3

10 Lym.nodes enlar: 1-4

11 Changes in lym.: bean,

oval, round

12 Defect in node: no,

lacunar, lac. marginal,

lac. central

13 Changes in node: no,

lacunar, lac. margin, lac.

central

14 Changes in stru: no,

grainy, drop-like,

coarse, diluted,

reticular, stripped, faint

15 Special forms: no,

chalices, vesicles

16 Dislocation of: no, yes

17 Exclusion of no: no, yes

18 No. of nodes in: 0-9, 10-

19, 20-29, 30-39, 40-49,

50-59, 60-69, >=70

Statlog

(heart)

1 Age

2 Sex

3 Chest pain type (4

values)

4 Resting blood pressure

5 Serum cholestoral in

mg/dl

6 Fasting blood sugar >

120 mg/dl

7 Resting

electrocardiographic

results (values 0,1,2)

8 Maximum heart rate

achieved

9 Exercise induced angina

10 Oldpeak = ST

depression induced by

exercise relative to rest

11 The slope of the peak

exercise ST segment

12 Number of major

Towards Crafting an Improved Functional Link... Informatica 39 (2015) 195–208 203

vessels (0-3) colored by

flourosopy

13 Thal: 3 = normal; 6 =

fixed defect; 7 =

reversable defect

Pima 1 Number of times

pregnant

2 Plasma glucose

concentration a 2 hours

in an oral glucose

tolerance test

3 Diastolic blood pressure

(mm Hg)

4 Triceps skin fold

thickness (mm)

5 2-Hour serum insulin

(mu U/ml)

6 Body mass index

(weight in kg/(height in

m)^2)

7 Diabetes pedigree

function

8 Age (years)

The error rate obtained from the proposed method varies

over a number of iterations of IRIS, Lymphography,

WINE, Statlog (Heart), and PIMA are illustrated in

Figures 3, 4, 5, 6, and 7.

Figure 3. Iteration Number vs Error Obtained from IRIS

Dataset.

Figure 4. Iteration Number vs. Error Obtained from

Lymphography Dataset.

Figure 5. Iteration Number vs. Error Obtained from

PIMA Dataset.

Figure 6. Iteration Number vs Error Obtained from

Statlog (Heart) Dataset.

204 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

Figure 7. Iteration Number vs. Error Obtained from

WINE Dataset.

Further, it is interestingly noticed that if we do not

eliminate any features from the dataset then the accuracy

of the results hardly makes any difference, except wine

dataset. In the case of wine dataset the accuracy obtained

with feature selection is poor than without feature

selection. With respect to optimal mutation factor the

results of proposed method without feature selection for

different datasets are described in Table 5. However, it is

better than ISO-FLANN, PSO-BP, and method proposed

in [12].

Name of Data set Mutati

on factor

Accuracy

in percentage

Iris 0.3 98.23

Wine 0.4 98.51

Lymphography 0.3 87.50

Stalog(heart) 0.4 86.56

Pima 0.4 78.91

Table 5: Results Obtained from proposed method

without feature selection.

Figures 8, 9, 10, 11, and 12 illustrate the

performance of the proposed method without feature

selection over different mutation rate. In the case of Iris

and Lymphography the accuracy of the proposed

classifier dropped after the mutation rate 0.3. Similarly,

in the case of Wine, Pima, and Statlog the accuracy

dropped after the mutation rate 0.4. Hence, our

experimental study recommends the mutation rate setup

mentioned in Table 5.

Figure 8: Mutation factor (0.1to 0.9) vs. accuracy

(without feature selection) obtained from IRIS.

Figure 9: Mutation factor (0.1to 0.9) vs. accuracy

(without feature selection) obtained from WINE.

Figure 10: Mutation factor (0.1to 0.9) vs. accuracy

(without feature selection) obtained from Lymhography.

Towards Crafting an Improved Functional Link... Informatica 39 (2015) 195–208 205

Figure 11: Mutation factor (0.1to 0.9) vs. accuracy

(without feature selection) obtained from Statlog (Heart).

Figure 12: Mutation factor (0.1to 0.9) vs. accuracy

(without feature selection) obtained from PIMA.

Figures 13, 14, 15, 16, and 17 demonstrate; how

accuracy of the proposed classifier with filter based

feature selection varies over different mutation rates.

Figure 13. Mutation factor (0.1to 0.9) vs. accuracy (with

feature selection) Obtained from IRIS.

Figure 14. Mutation factor (0.1to 0.9) vs. accuracy (with

feature selection) obtained from WINE.

Figure 15. Mutation factor (0.1to 0.9) vs. accuracy (with

feature selection) obtained from Lympography.

Figure 16. Mutation factor (0.1to 0.9) vs. accuracy (with

feature selection) obtained from Statlog (heart).

206 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

Figure 17. Mutation factor (0.1to 0.9) vs. accuracy (with

feature selection) obtained from PIMA.

In the case of Iris the accuracy of the proposed

classifier with mutation rate 0.2 is promising. In the case

of Wine and Lymphography the accuracy is dropped

after the mutation rate 0.3. Similarly the accuracy of

Statlog and Pima has been dropped after the mutation

rate 0.4.

5 Conclusion
An integrated framework of differential evolution and

FLANN along with a filter based feature selection has

been crafted in this work to classify unknown patterns.

The experimental results confirm that the combination of

filter based feature selection and training of FLANN

using differential evolution obtains accurate and smooth

classification. Further, it has been observed that if we

reduce 1/3rd of total attributes by the process of filter

approach, then the network shows an improvement and

constancy in accuracy. Finally, we have compared the

experimental outcomes obtained from this study with its

rival proposed by Dehuri et al. [12], ISO-FLANN, and

PSO-BP, we then conclude that the accuracy draws a

very sharp edge between the proposed method and the

rest of the methods consider for comparison. Our future

line of research includes: i) validation of its accuracy and

scalability in big data analysis and ii) dealing with noise

and uncertainty of the dataset by suitable integration with

other soft computing paradigm.

References
[1] Abu-Mahfouz, I.-A. (2005). A Comparative Study

of Three Artificial Neural Networks for the

Detection and Classification of Gear Faults.

International Journal of General Systems, 34(3),

pp. 261–277.

[2] Aruna, S., Nandakishore, L. V., and Rajagopalan, S.

P. (2012). A Hybrid Feature Selection Method

based on IGSBFS and Naïve Bayes for the

Diagnosis of Erythemato-Squamous Diseases.

International Journal of Computer Applications

(0975-8887), 41(7).

[3] Battiti, R. (1994). Using mutual information for

selecting features in supervised neural net learning.

Neural Networks, IEEE Transactions on, 5(4), 537-

550.

[4] Bifet, A. (2013). Mining Big Data in Real Time.

Informatica (Slovenia), 37(1), 15-20.

[5] Carvalho, D. R., & Freitas, A. A. (2004). A hybrid

decision tree/genetic algorithm method for data

mining. Information Sciences, 163(1), 13-35.

[6] Chen, C. P., LeClair, S. R., & Pao, Y. H. (1998).

An incremental adaptive implementation of

functional-link processing for function

approximation, time-series prediction, and system

identification. Neurocomputing, 18(1), 11-31.

[7] Das, M., Roy, R., Dehuri, S., and Cho, S.-B.

(2011). A New Approach to Associative

Classification Based on Binary Multi-objective

Particle Swarm Optimization. International Journal

of Applied Meta-heuristic Computing, 2(2), pp. 51-

73.

[8] Das, S. and Suganthan, P. N. (2011). Differential

Evolution: A Survey of the State-of- the- Art. IEEE

Transactions on Evolutionary Computation, 15(1),

pp. 4-31.

[9] Dash, P. K., Liew, A. C., and Satpathy, H. P.

(1999). A Functional Link Neural Network for

Short Term Electric Load Forecasting. Journal of

Intelligent and Fuzzy Systems, 7(3), pp. 209–221.

[10] Dash, P. K., Satpathy, H. P., Liew, A. C., and

Rahman, S. (1997). Real-Time Short-Term Load

Forecasting System Using Functional Link

Network. IEEE Transactions on Power Systems,

12(2), pp. 675-68.

[11] Dash, S. K., Behera, A., Dehuri, S., and Cho, S.-B.

(2013). Differential Evolution Based Optimization

of Kernel Parameters in Radial Basis Function

Networks for Classification. International Journal

of Applied Evolutionary Computation, .4(1), pp. 56-

80.

[12] Dehuri, S., Mishra, B. B., & Cho, S. B. (2008).

Genetic feature selection for optimal functional link

artificial neural network in classification. In

Intelligent Data Engineering and Automated

Learning–IDEAL 2008, pp. 156-163.

[13] Dehuri, S. and Cho, S.-B. (2009). A Comprehensive

Survey on Functional Link Neural Networks and an

adaptive PSO--BP learning for CFLNN. Neural

Computing and Applications, 19(2), pp. 187-205.

[14] Dehuri, S. and Cho, S.-B. (2010). Evolutionary

Optimized Features in Functional Link Neural

Networks for Classification. Expert Systems with

Applications, 37(6), pp. 4379-4391.

[15] Dehuri, S., Roy, R., Cho, S.-B., and Ghosh, A.

(2012). An Improved Swarm Optimized Functional

Link Artificial Neural Network (ISO-FLANN) for

Classification. The Journal of Systems and

Software, 85, pp.1333-1345.

[16] Derrac, J., Garcia, S., and Herrera, F. (2010). A

Survey on Evolutionary Instance Selection and

Generation. International Journal of Applied Meta-

heuristic Computing, 1(1), pp. 60-92.

Towards Crafting an Improved Functional Link... Informatica 39 (2015) 195–208 207

[17] Forerest, S. (1993). Genetic Algorithms: Principles

of Natural Selection Applied to Computation.

Science, 261, pp. 872-888.

[18] Frank, A. and Asuncion, A. (2010). UCI Machine

Learning Repository http://archive.ics.uci.edu/ml),

Irvine, CA: University of California, School of

Information and Computer Science.

[19] Goldberg, D. E. (1989). Genetic Algorithm in

Search Optimization and Machine Learning,

Addison-Wesley.

[20] Haring, B. and Kok, J. N. (1995). Finding

Functional Links for Neural Networks by

Evolutionary computation. In: van de Merckt, T., et

al. (eds) BENELEARN1995, Proceedings of the

Fifth Belgian– Dutch Conference on Machine

Learning, Brussels, Belgium, pp. 71–78

[21] Haring, S., Kok, J. N., and van Wezel, M. C.

(1997). Feature Selection for Neural Networks

Through Functional Links Found by evolutionary

Computation. In Advances in Intelligent Data

Analysis (IDA-97).LNCS 1280, pp. 199–210.

[22] Haykin, S. (1994). Neural Networks: A

Comprehensive Foundation. Upper Saddle River,

NJ: Prentice Hall.

[23] He, X., Zhang, Q., Sun, N., & Dong, Y. (2009).

Feature selection with discrete binary differential

evolution. In Artificial Intelligence and

Computational Intelligence, 2009. AICI'09.

International Conference on, Vol. 4, pp. 327-330).

[24] Hu, Y.-C. (2008). Functional Link Nets with

Genetic Algorithm Based Learning for Robust Non-

Linear Interval Regression Analysis.

Neurocomputing. 72(7). pp. 1808-1816.

[25] Hussain, A., Soraghan, J. J., & Durrani, T. S.

(1997). A new adaptive functional-link neural-

network-based DFE for overcoming co-channel

interference. Communications, IEEE Transactions

on, 45(11), 1358-1362.

[26] Karegowda, A. G., Manjunath, A. S., and Jayaram,

M. A. (2010). Comparative Study of Attribute

Selection Using Gain Ratio and Correlation Based

Feature Selection. International Journal of

Information Technology and Knowledge

Management, 2(2), pp. 271-277.

[27] Khusba Rami, N., Ahmed, A., and Adel, A. (2008).

Feature Subset Selection Using Differential

Evolution. In Proceedings of 15th International

conference on Advances in Neuro-Information

Processing, Springer-Verlag, Berlin, Heidelberg,

part-I, pp.103-110,.

[28] Khushaba, R. Al-Ani, A., AlSukker, A., and Al-

Jumaily, A. (2008). A Combined Ant Colony and

Differential Evolution Feature Selection Algorithm.

Ant Colony Optimization and Swarm Intelligence,

pp. 1-12.

[29] Khushaba, R., Al-Ani, A., and Al-Jumaily, A.

(2011). Feature Subset Selection using Differential

Evolution and a Statistical Repair Mechanism.

Expert Systems with Applications, 38(9), pp. 11511-

11526.

[30] Klasser, M.S. and Pao, Y. H. (1988).

Characteristics of the Functional Link Net: A

Higher Order Delta Rule Net. IEEE Proceedings of

2nd Annual International Conference on Neural

Networks, San Diago, CA, pp.507-513,

[31] Krishnaiah, D., Prasad, D. M. R., Bono, A.,

Pandiyan, P. M., and Sarbatly, R. (2008).

Application of Ultrasonic Waves Coupled with

Functional Link Neural Network for Estimation of

carrageenan Concentration. International Journal of

Physical Sciences, 3(4), pp. 90–96.

[32] Liu, H. and Motoda, H. (2002). On Issues of

Instance Selection. Data Mining and Knowledge

Discovery, 6, pp. 115-130.

[33] Majhi, B. and Shalabi, H. (2005). An Improved

Scheme for Digital Watermarking using Functional

Link Artificial Neural Network. Journal of

Computer Science, 1(2), pp. 169–174.

[34] Marcu, T. and Koppen-Seliger, B. (2004). Dynamic

Functional Link Neural Networks Genetically

Evolved Applied to System Identification. In

Proceedings of ESANN’2004, Bruges (Belgium),

pp. 115–120.

[35] Michalewicz, Z. (1998). Genetic Algorithm + Data

structure = Evolution Programs. Springer Verlag,

New York.

[36] Misra, B. B. and Dehuri, S. (2007). Functional Link

Neural Network for Classification Task in Data

mining. Journal of Computer Science, 3(12), pp.

948–955.

[37] Nayak, S. C., Misra, B. B., and Behera, H.S.

(2012). Index prediction with Neuro-Genetic

Hybrid network: A Comparative Analysis of

Performance Computing. In Proceedings of

International Conference on Communication and

Applications (ICCCA), pp. 1-6.

[38] Nayak, S. C., Misra, B. B., and Behera, H. S.

(2012). Evaluation of Normalization Methods on

Neuro-Genetic Models for Stock index Forecasting.

In Proceedings of 2012 World Congress on

Information and Communication Technologies

(WICT), pp. 602-607.

[39] Panagiotopoulos, D. A., Newcomb, R. W., and

Singh, S. K. (1999). Planning with a Functional

Neural Network Architecture. IEEE Trans. Neural

Network, 10(1), pp. 115–127.

[40] Pao, Y.-H., Phillips, S. M. (1995). The Functional

Link Net Learning Optimal Control.

Neurocomputing, 9(2), pp. 149–164.

[41] Pao, Y. H. and Takefuji, Y. (1992). Functional Link

Net Computing: Theory, system, Architecture and

Functionalities. IEEE Computer Journal, pp. 76–

79.

[42] Pao, Y. H., Phillips, S. M., and Sobajic, D. J.

(1992). Neural-net Computing and Intelligent

Control Systems. International Journal of Control,

56(2), pp. 263–289.

[43] Park, G. H. and Pao, Y. H. (2000). Unconstrained

Word-Based Approach for Off-Line Script

Recognition using Density Based Random Vector

208 Informatica 39 (2015) 195–208 Ch.S.K. Dash et al.

Functional Link Net. Neurocomputing, 31(1), pp.

45–65.

[44] Patra, J. C., Pal, R. N., Baliarsingh, R., and Panda,

G. (1999). Non-Linear Channel Equalization for

QAM Signal Constellation using Artificial Neural

Networks. IEEE Transactions on Systems, Man,

Cybernetics-Part B: Cybernetics, 29(2), pp. 262–

271.

[45] Patra, J. C. and van den Bos, A. (2000). Modelling

of an Intelligent Pressure Sensor using Functional

Link Artificial Neural Networks. ISA Transaction,

39(1), pp. 15–27.

[46] Patra, J. C., Goutam, C., and Subahas, M. (2008).

Functional Link Neural Networks-Based Intelligent

Sensors for Harsh Environments. Sensors and

Transducers Journal, vol. 90, pp. 209–220.

[47] Patra, J. C. and Pal, R. N. (1995). A Functional

Link Neural Network for Adaptive Channel

Equalization. Signal Processing, 43(2), pp. 181–

195.

[48] Patra, J. C., Pal, R. N. Chatterji, B. N., and Panda,

G. (1999). Identification of Nonlinear Dynamic

Systems using Functional Link Artificial Neural

Networks. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 29(2), pp.

254-262.

[49] Patra, J. C. and Kot, A. C. (2002). Nonlinear

Dynamic System Identification using Chebyshev

Functional Link Artificial Neural Networks. IEEE

Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, 32(4), pp. 505-511.

[50] Price, K., Storn, R., and Lampinen, J. (2005).

Differential Evolution: A Practical Approach to

Global Optimization, Springer-Verlag.

[51] Purwar, S., Kar, I. N., and Jha, A. N. (2007). On-

line System Identification of Complex Systems

using Chebyshev Neural Networks. Applied Soft

Computing, 7(1), pp. 364–372.

[52] Roy, R., Dehuri, S., and Cho, S. B. (2011). A

Novel Particle Swarm Optimization Algorithm for

Multi-objective Combinatorial Optimization

Problem. International Journal of Applied Meta-

heuristic Computing, 2(4), pp. 41-57.

[53] Sierra, A., Macias, J. A., and Corbacho, F. (2001).

Evolution of Functional Link Networks. IEEE

Transactions on Evolutionary Computation, 5(1),

pp. 54–65.

[54] Sing, S. N., Srivastava, K. N. (2002). Degree of

Insecurity Estimation in a Power System using

Functional Link Neural Network. European

Transactions on Electrical Power, 12(5), pp. 353–

359.

[55] Storn, R., & Price, K. (1995). Differential

evolution-a simple and efficient adaptive scheme for

global optimization over continuous spaces (Vol.

3). Berkeley: ICSI.

[56] Storn, R., & Price, K. (1997). Differential

evolution–a simple and efficient heuristic for global

optimization over continuous spaces. Journal of

global optimization, 11(4), 341-359.

[57] Weng, W. D., Yong, C. S., and Lin, R. C. (2007). A

Channel Equalizer using Reduced Decision

Feedback Chebyshev Function Link Artificial

Neural Networks. Information Sciences, 177(13),

pp. 2642–2654.

[58] Weng, W. D., Yen, C. T. (2004). Reduced Decision

Feed-back FLANN Non-Linear Channel Equaliser

for Digital Communication Systems. IEEE

Proceedings-Communications, 151(4), pp. 305–

311.

[59] Yan, Z., Wang, Z. and Xie, H. (2008). The

Application of Mutual Information Based Feature

Selection and Fuzzy LS-SVM based Classifier in

Motion Classification. Computer Methods and

Programs in Biomedicine, vol.90, pp. 275-284.

[60] Zhang, G. P. (2000). Neural Networks for

Classification: A Survey. IEEE Transactions on

Systems, Man, Cybernetics-Part C: Application and

Reviews, 30(4), pp. 451–461.

[61] Zhang, J. R., Zhang, J., Lok, T. M., and Lyu, M. R.

(2007). A Hybrid Particle Swarm Optimization-

Back Propagation Algorithm for Feed-Forward

Neural Network Training. Applied Mathematics and

Computation, vol. 185, pp. 1026-1037.

[62] Ghosh, A., Datta, A., and Ghosh, S. (2013). Self-

Adaptive Differential Evolution for Feature

Selection in Hyperspectral Image Data. Applied Soft

Computing, 13(4), pp. 1969-1977.

[63] Hu, Y. C. and Tseng, F. M. (2007). Functional-Link

Net with Fuzzy Integral for Bankruptcy Prediction.

Neurocomputing, 70(16), pp. 2959– 2968.

 Informatica 39 (2015) 209–216 209

Multimodal Score-Level Fusion Using Hybrid GA-PSO for

Multibiometric System

Cherifi Dalila and Hafnaoui Imane,

Institute of Electrical and Electronic Engineering

University of Boumerdes, Algeria

E-mail: dacherifi@yahoo.fr, hafmane@hotmail.com

Nait-Ali Amine

LiSSi, EA 3956, Paris-Est Creteil (UPEC)

Creteil, France

E-mail: naitali@u-pec.fr

Keywords: multibiometric, multimodal, fusion, score level, genetic algorithm, particle swarm optimization, hybrid,

GA-PSO

Received: May 16, 2014

Due to the limitations that unimodal systems suffer from, Multibiometric systems have gained much

interest in the research community on the grounds that they alleviate most of these limitations and are

capable of producing better accuracies and performances. One of the important steps to reach this is the

choice of the fusion techniques utilized. In this paper, a modeling step based on a hybrid algorithm, that

includes Particle Swarm Optimization and Genetic Algorithm, is proposed to combine two biometric

modalities at the score level. This optimization technique is employed to find the optimum weights

associated to the modalities being fused. An analysis of the results is carried out on the basis of

comparing the EER accuracies and ROC curves of the fusion techniques. Furthermore, the execution

speed of the hybrid approach is discussed and compared to that of the single optimization algorithms,

GA and PSO.

Povzetek: Predstavljena je nova optimirna metoda za iskanje uteži pri kombiniranju dveh virov

informacij za biometrično prepoznavo.

1 Introduction
It is becoming increasingly apparent that a unimodal

system using a single biometric trait is not sufficient to

meet a number of system requirements imposed by

several large-scale authentication applications. The

limitation of unimodal systems, such as noisy sensor

data, intra-classvariations, non-universality, vulnerability

to spoof attacks and more, can lower the performance of

the system, and make it more susceptible to refusing a

legitimate user and jeopardizing personal security.

Multibiometric systems seek to alleviate some of these

drawbacks by consolidating the evidence presented by

multiple biometric sources. These systems are expected

to significantly improve the recognition performance of a

biometric system besides improving population

coverage, deterring spoof attacks, and reducing the

failure-to-enroll rate. Multibiometric Fusion can be

implemented in different scenarios including the type of

fused sources and the level at which the fusion occurs.

The sources can be multiple-sensors data, multiple-

samples, multiple-algorithms, or multiple-modalities.

As for the levels, Sanderson and Paliwal [1]

proposed classifying fusion techniques into two

categories: pre-mapping and post-mapping fusion. Pre-

mapping fusion techniques, such as sensor-level and

feature-level fusion, perform fusion before matching.

Post-mapping fusion techniques, such as rank-level,

decision-level, and match score-level fusion, perform

fusion after matching. In this paper, our work is focused

on the fusion of multimodalities at the score level. This

scenario is extensively studied in literature because of the

relatively easy access to information at this level, and the

fusion of the scores output by the different matchers[2].

This offers the best trade-off between accessibility and

fusion convenience.

Paper contribution: we propose the use of a hybrid

algorithm GA-PSO to optimize the weights assigned to

the different biometric modalities used in the fusion at

the score level.

The idea of the hybrid GA-PSO is to take advantage

of both algorithms so as to gain in time performance and

obtain a Multibiometric system with an optimum

accuracy.

Paper structure: The rest of the paper is structured

as follow: We present some of the previous works in

literature that tackled this problem in the next section.

Section 3 gives a brief overview of GA and PSO as well

as some essential definitions. In section 4, we describe

how the hybrid GA-PSO works and how it is used to

obtain optimum biometric weights. Section 5 covers our

experiments including the results obtained and a brief

discussion. Our conclusions are highlighted in section 6.

mailto:naitali@u-pec.fr

210 Informatica 39 (2015) 209–216 D. Cherifi et al.

2 Literature review
In a comparison study, Damousis and al. [3] used

four machine learning techniques to fuse face and voice

modalities at the matching level; mainly Gaussian

Mixture Models (GMMs), Artificial Neural Networks

(ANNs), Fuzzy Expert Systems (FESs), and Support

Vector Machines (SVMs). Their research concluded that

although all four techniques performed well, SVM gave

the best accuracies.

The Sum Rule was proposed by Ross et al.[2] to fuse

face, fingerprint, and hand geometry modalities. In order

to compare this technique, Wang et al. [4] proposed

using the Weighted Sum Rule by assigning weights to

iris and face score modalities based on their false accept

rate (FAR) and false reject rate (FRR). They concluded

that the Weighted Sum Rule performs better at increasing

the accuracy of recognition than the Simple Sum Rule.

Various techniques were studied in order to assign said

weights with varying levels of accuracy and

performance. A recent trend has been the inclusion of

optimization techniques in the fusion process in the

hopes of obtaining the optimum of the biometric

performance. Genetic algorithms (Gas) have seen a

special interest. In the works of Alford and Hansen [5], a

fusion of face and periocular biometrics at the score level

based on Genetic and evolutionary computations (GEC)

was achieved. Their work showed that better accuracies

could be reached using this technique. Giot and al. [6]

proposed a faster technique to compute the EERs of

fused modalities as a fitness function for a Genetic

Algorithm. Particle Swarm Optimization (PSO) was used

in the works of Raghavendra and al. [7] in order to fuse

near infrared and visible images for improved face

verification. Mazouni and al. [8] did a comparison in

performance of some Multibiometric fusion techniques

on face and voice modalities. In their study, GA and PSO

were proven to give the best accuracies, especially with

degraded datasets. SVM in these cases gave the worst

performances.

The work presented in this paper builds on these

previous findings and increases the performance of the

implemented systems. Since the recognition systems

work with thousands of individuals, reducing the

computation times is essential. The proposed approach,

GA-PSO, strives to achieve this while keeping the

performances at their highest. To our knowledge, no

previous work employed a hybrid GA-PSO to fuse

biometric modalities at the score level in order to gain

good accuracies with better computational times.

3 Multimodal score level fusion
During score level fusion, scores are combined to

generate a single scalar score which is later used to make

the final decision. There are several combination

schemes to achieve this. These include statistical rule-

based methods such as Simple Sum, Max rule, Min rule,

Product rule and Weighted Sum.

3.1 Score Normalization

With the methods mentioned above, score normalization

is required before fusion of scores. Anil Jain and al. [9]

showed in their work that both min-max and z-score

methods are sufficient techniques but they are very

sensitive to outliers. On the other hand, tanh

normalization method, introduced by Hampel et al. [10]

is both robust and efficient. For this purpose, and in our

work, the tanh-estimators normalization rule was

employed.

Given a matching score 𝑆𝑖, the normalized score �̃�𝑖 is

computed using the following equation:

�̃�𝑖 =
1

2
{𝑡𝑎𝑛ℎ (0.01 (

𝑆𝑖 − 𝜇𝐺𝐻

𝜎𝐺𝐻

)) + 1}

(1)

Where μGHand σGH are the mean and standard

deviation estimates, respectively, of the genuine score

distribution as given by Hampel estimators.

3.2 Genetic Algorithm and Particle Swarm

Optimization

In this work, the focus is on finding the optimum weights

𝑤𝑚 for fusion of 𝑚 modalities by weighted sum which is

defined by:

𝑆𝑓𝑖
= ∑ 𝑤𝑚 × 𝑆𝑖

𝑚

𝑀

𝑚=1

(2)

Given that 𝑤𝑚 ∈ [0, 1] and ∑ 𝑤𝑚 = 1𝑀
𝑚=1 .

Genetic algorithm is a well-known and frequently used

evolutionary computation technique. This method was

originally developed by John Holland et al.[11]. The GA

is inspired by the principles of genetics and evolution,

and mimics the reproduction behavior observed in

biological populations.

In GA, a candidate solution for a specific problem is

called an individual or a chromosome and consists of a

linear list of genes. GA begins its search from a

randomly generated population of designs that evolve

over successive generations (iterations). To perform its

optimization-like process, the GA employs three

operators to propagate its population from one generation

to another.

1) Selection: In which the GA considers the principal

of “survival of the fittest” to select and generate

individuals that are adapted to their environment.

2) Crossover: It mimics mating in biological

populations. The crossover operator propagates

features of good surviving designs from the current

population into the future population, which will

have a better fitness value on average.

3) Mutation: It promotes diversity in population

characteristics. The mutation operator allows for

global search of the design space and prevents the

algorithm from getting trapped in local minima [11].

Multimodal Score-Level Fusion Using... Informatica 39 (2015) 209–216 211

Particle Swarm Optimization is one of the recent

evolutionary optimization methods. This technique was

originally developed by Kennedy & Eberhart [12] in

order to solve problems with continuous search space.

PSO uses social rules to search in the design space by

controlling the trajectories of a set of independent

particles. The position of each particle, 𝑥𝑖 representing a

particular solution of the problem, is used to compute the

value of the fitness function to be optimized. In fact, the

main PSO operator is the velocity update, 𝑣𝑖, that takes

into account the best position, in terms of fitness value

reached by all the particles during their paths during its

search 𝑔𝑏𝑒𝑠𝑡 , and the best position that the agent itself

has reached 𝑝𝑏𝑒𝑠𝑡 , resulting in a migration of the entire

swarm towards the global optimum.

At each iteration, the particle moves around

according to its velocity and position; the cost function to

be optimized is evaluated for each particle in order to

rank the current location. The velocity of the particle is

then stochastically updated according to [13]

𝑣𝑖
𝑡+1 = 𝑘 (

𝜔𝑣𝑖
𝑡 + 𝐶1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡)

+𝐶2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡)

)
(3)

After, the particle position is updated according to

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (4)

Where:

𝜔 Inertia weight, a parameter controlling the flying

dynamics.

𝑟1, 𝑟2 random variables in the range [0, 1].

𝐶1, 𝐶2 positive constants controlling the related

weighting of corresponding terms.

𝑘 Constriction parameter introduced by Clerc and

al. [14].

4 The proposed hybrid GA-PSO

approach
Although GAs have been successfully applied to a wide

spectrum of problems, using GAs for large-scale

optimization could be very expensive due to its

requirement of a large number of function evaluations for

convergence. Compared to GA, PSO has some attractive

characteristics. It has constructive cooperation between

particles; that is, particles in the swarm share information

among themselves. On the other hand, a drawback of

PSO is that the swarm may prematurely converge. The

underlying principle behind this problem is the fast rate

of information flow between particles, resulting in the

creation of similar particles with a loss in diversity that

increases the possibility of being trapped in local optima.

To deal with all these misgivings, and seeing as both

GA and PSO work with an initial population of solutions

and combining the searching abilities of both methods

seems to be a reasonable approach, we propose a new

algorithm, denoted as GA-PSO, that combines the

evolutionary natures and social interactions of both

algorithms.

To understand the workings of the algorithm, Figure

1 depicts a schematic representation of the proposed

hybrid GA-PSO. As can be seen, GA and PSO both work

with the same initial population. The hybrid approach

picks N initial individuals that are randomly generated.

The N individuals are sorted by fitness, and, according to

a user defined probability 𝑃𝑘, the set is divided into two

sub-sets{𝜓𝐺 , 𝜓𝑃}. The top set 𝜓𝑃 is used to adjust the

particles using the PSO algorithm. The other set 𝜓𝐺 is

fed into the real-coded GA to create new individuals by

selection, crossover and mutation operations. Both

resulting populations are combined into one single

population of N individuals, which are then sorted in

preparation for repeating the entire run.

In our experiments, and in terms of multimodal

fusion, the hybrid algorithm generates an initial

population of size N which consists of the weights

𝑤𝑖defined in equation (2). In this work, we will fuse two

modalities at a time to create fusion scores which makes

𝑚 = 2.

The fitness function is defined as the Equal Error

Rate (EER). As a reminder, the EER is the point at which

the error rates FAR and FRR are equal. The goal is to

minimize the value of the EER. For every set of

individuals(w1, w2), the EER of the fused scores 𝑆𝑓 is

computed. Knowing that the best fitness is the one with

the smallest EER, the individuals are then rearranged and

sorted. The whole set is split into two sets which will go

through the selection, crossover and mutation processes

in case of GA, and velocity and position update in case

of PSO. Evaluation of the fitness costs of the “offspring”

is once again run and the weights to produce the

minimum EER value is picked as optima. If the stopping

criteria are not satisfied yet, this procedure is repeated

until one of the conditions is met. This is summarized in

Algorithm 1.

Figure 1: Scheme representation of the Hybrid GA-PSO

Algorithm.

212 Informatica 39 (2015) 209–216 D. Cherifi et al.

5 Results and Discussion

5.1 Experiment Setup

Three publicly available Multibiometric databases were

used in order to validate the fusion techniques. The NIST

BSSR1 Set 1 [15] consists of sets of raw output

similarity scores from 517 users of faces and both left

and right index live-scan fingerprints coming from the

same person. XM2VTS database [16] is built on the

XM2VTS face and speech multimodal database,

respecting the Lausanne Protocols I and II (LP1 and

LP2). LP1 has eight baseline systems and LP2 has five

baseline systems. In here, we only deal with the LP1

dataset. The BANCA dataset [17] contains matcher

scores of face and speech. There are seven different

protocols: Mc, Md, Ma, Ua, Ud, G and P.

In order to validate the aforementioned algorithms

and their effectiveness when dealing with

Multibiometrics, we split the databases into two separate

sets:

 The training set which serves to compute the

biometric reference of each matcher. In other words,

we train the algorithms to attain the optimal weights

for each matcher.

 The testing set which serves to validate the results

of the training by computing the performance of the

fusion with the obtained weights.

In our experiments, the hybrid algorithm which combines

properties of both GA and PSO runs on the parameters

summarized in Table.1.

Parameter Value

Initial Population size 50

Maximum iterations 50

Splitting probability Pk=0.6

Crossover probability PC=1

Mutation probability Pm=0.05

Inertia factor w=1

C1 and C2 Ci=2.05

Constriction factor k=0.73

Table 1: The parameter values used in the hybrid GA-

PSO.

5.2 Experimental Results

To compare the performances of the biometric systems,

the EER values and Receiver Operating Characteristic

(ROC) curves are studied. Table 2 presents the EER

values of the single modalities involved in the fusion

from each database.

To evaluate its performance, the hybrid is compared

to the classical combination rules as well as the single

optimization techniques, GA and PSO. Table 3

summarizes the results we obtained from the

experiments. Before applying the rules on these scores,

they have all been put under the same range {0, 1} using

the tanh-normalization scheme. The best performance in

each of the fused modalities is shown in bold.

From the first look, an improvement in accuracy is

clearly observed between unimodal and multimodal

systems, regardless of the fusion rule applied. In Table 3,

even the best matcher in the NIST, Face-C with EER =

4.39%, is outperformed by a simple Max-rule, with an

EER = 3.66%.

Figure 2 plots the ROC curves of fused scores using

the classical combination rules. We observe that among

all these rules, Simple Sum gives the better performance

even when dealing with degraded data, as is the case of

the BANCA Ua subset with (EER = 10.4%).

What interests us is the Weighted Sum where the

weights associated to the different modalities are

optimized through the hybrid GA-PSO. In Figure 3, the

ROC curves of fused scores using Simple Sum are

plotted against those using GA-PSO. We notice that

although Simple Sum gave the best results previously, it

is outperformed by the hybrid GA-PSO in every dataset.

This is not only in terms of EER. From the same figure,

we can see that, even when considering the FAR and

FRR values, GA-PSO gives better rates.

These results are confirmed in Table 3, where

compared to the best EER obtained from Simple Sum in

the NIST dataset with the (FaG-FiR) pair (EER = 1.21

%), the improvement in accuracy is quite apparent where

the optimizations give a better optimized EER (= 0.43%).

Algorithm 1: Hybrid GA-PSO to find optimized

 fusion weights

1. Initialize parameter values

2. Generate random initial population (weights)

3. While k < itermax do

4. Evaluate then sort fitness function for every

individual based on EER

5. For i=1:m

6. Update particle’s personal best 𝑝𝑏𝑒𝑠𝑡and global

best 𝑔𝑏𝑒𝑠𝑡

7. Update particle’s velocity and position

according to eqs. (3) and (4)

8. End for

9. For i=m+1: end

10. Select parents to reproduce

11. Generate children though crossover and

mutation

12. End for

13. Merge the two resulting sub-populations into

one population

14. If (stopping criteria) then

15. Go to 18

16. End if

17. End while

18. Return individuals (fusion weights) that give

the best EER

Multimodal Score-Level Fusion Using... Informatica 39 (2015) 209–216 213

Although the performances of GA, PSO and the hybrid

GA-PSO are closely similar in most datasets, the

employment of the hybrid GA-PSO always reaches

optimum weights which in turn gives the best EER

values, to the contrary of GA and PSO, which sometimes

tend to get stuck on local minima. We notice that even

with the degraded data, the execution of this hybrid

optimization technique provides good performance rates.

5.3 Discussion

When it comes to comparing the optimization techniques

to each other, there are not one but many points to

consider. It is clear from the results discussed in the

previous section and as can be observed in Figure 4, that

GA, PSO, and GA-PSO mostly result in the same best

accuracies. But they differ in other aspects such as the

time consumption (see Figure 5). Genetic Algorithm, due

to the fact that it covers large search spaces, has a larger

computational time. On the other hand, we have PSO

that, as a consequence of its fast operations, consumes

less computational time but converges quickly to local

minima. The hybrid GA-PSO takes advantage of both

algorithms where it gains in computational time, by

adding the benefit of fast search property of PSO, and

still covers the large search space efficiently. This is

observed in Figure 5, where the cost function is plotted

against the number of iterations run by all three

algorithms. It can clearly be noted, with the XM2VTS

dataset, that GA-PSO takes much fewer iterations

(#iterations = 2) to reach the global optimum than either

PSO (#iterations = 9) or GA (#iterations = 38). Table 4

puts in value the amount of time in CPU-time that each

algorithm takes to be executed for 50 iterations and the

time to reach a global minimum. It seems, from a first

look, that the hybrid algorithm gives the least favorable

running time. That is quite logical since GA-PSO

computes the cost function three times in one iteration

while PSO computes it twice, and GA, once. But when

taking into consideration that it takes much fewer

iterations to reach a global optimum, it is actually faster

than the two other algorithms. After many runs of these

programs, it has been noticed that, although GA and PSO

mostly give good results, they would occasionally get

stuck in local minima, as is the case in Figure.5.b with

the NIST dataset. It appears at first glance that GA

reached a good place faster than the other algorithms.

But in fact, it reached a local minimum and got stuck

there. Be that as it may, after giving it more time, it did

reach the same global minimum.

On the other hand, the hybrid GA-PSO is observed

to always converge to a global point in the shortest time.

NIST BSSR1 XM2VTS BANCA

Face

– G

Finger

– R

Face

 – C

Finger

– L Face 1

Speech

2

Face

5

Speech

3 Face G

Speech

G

Face

Md

Speech

Md

Face

Ua

Speech

Ua

5.69 4.39 5.52 7.91 1.81 6.61 6.57 4.51 11.32 1.98 10.58 4.33 28.5 15.1

Table 2: EER (%) of unimodal Biometric modalit ies from NIST, XM2VTS and BANCA

NIST BSSR1 XM2VTS BANCA

Fusion Technique FaG – FiR FaC – FiL F1S2 F5S3 F – S (G) F – S (Md) F – S(Ua)

Max 5.49 3.66 1.45 3.06 2.19 5.45 15.4

Min 5.52 7.91 1.81 6.46 7.32 5.61 28.5

Product 2.70 4.77 1.64 5.66 2.35 3.36 16.9

Simple Sum 1.21 1.00 1.24 3.67 1.82 3.37 10.4

Genetic Algorithm 0.44 0.75 0.87 1.88 1.07 2.24 10.4

Particle Swarm O. 0.62 0.75 0.87 1.85 1.07 2.24 11.1

Hybrid GA-PSO 0.43 0.75 0.87 1.85 0.91 2.24 10.4

Table 3: EERs (%) of fused scores using fusion techniques

Running Time Genetic Algorithm Particle Swarm opt. Hybrid GA-PSO

Time to run 50 iterations 105 220 315

Time to reach a global min. 76 38 12

Table 4: Running time of optimization algorithms in (sec).

214 Informatica 39 (2015) 209–216 D. Cherifi et al.

(a) (b)

Figure 2: ROC curves of fused scores using classical combination rules from (a) NIST (b) BANCA.

(a) (b)

Figure 3: ROC curves of fused scores using hybrid GA-PSO from (a) NIST (b) XM2VTS.

(a) (b)

Figure 4: ROC Curves of fused scores from (a) NIST (b) BANCA Databases using Optimization Techniques.

Multimodal Score-Level Fusion Using... Informatica 39 (2015) 209–216 215

- XM2VTS - - NIST -

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5: Cost Function vs. Number of Iterations for (a) (b) Genetic Algorithm

(c) (d) Particle Swarm Optimization (e) (f) Hybrid GA-PSO.

216 Informatica 39 (2015) 209–216 D. Cherifi et al.

6 Conclusion
This paper proposes a hybrid GA-PSO approach to

combining biometric modalities at the score level. With

the Weighted Sum rule, the role of the hybrid is to

optimize the weights associated with the fused modalities

to reach optimum EER values. A normalization based on

the tanh-normalization scheme is performed beforehand

to put the score modalities on a same unified range. The

performance of the hybrid is compared to that of the

classical combination rules and the single GA and PSO

algorithms. Our results show that the GA-PSO was

successful in obtaining much better accuracies on the

three different public biometric databases as compared to

the classical rules. The time execution of the

optimization techniques is also studied. We observe that

the GA-PSO outperforms the single GA and PSO in

terms of computational time where we find that since the

hybrid takes advantage of the properties of both GA and

PSO, it assures that the optimum is reached and in the

least number of iterations. This makes the hybrid

GA-PSO a faster and more robust technique.

References

[1] C. Sanderson and K. K. Paliwal, “On the Use of

Speech and Face Information for Identity

Verification,” IDIAP Research Report 04-10,

Martigny, Switzerland, 2004.

[2] A. A. Ross, K. Nandakumar, and A. K. Jain,

Handbook of Multibiometrics, vol. 6, no. ISBN-

13:978–0–387–22296–7.Springer-Verlag, pp.

74–75, 2006.

[3] I. G. Damousis and S. Argyropoulos, “Four

Machine Learning Algorithms for Biometrics

Fusion: A Comparative Study,” Appl. Comput.

Intell. Soft Comput., vol. 2012, pp. 1–7, 2012.

[4] Y. Wang, T. Tan and A. K. Jain, "Combining Face

and Iris Biometrics for Identity Verification", Proc.

4th Int`l Conf. on Audio- and Video-Based

Biometric Person Authentication (AVBPA), pp.

805-813, Guildford, UK, June 9-11, 2003.

[5] A. Alford, C. Hansen, G. Dozier, K. Bryant, J.

Kelly, T. Abegaz, K. Ricanek, and D. L. Woodard,

“GEC-based multi-biometric fusion,” IEEE Congr.

Evol. Comput., pp. 2071–2074, Jun. 2011.

[6] R. Giot and C. Rosenberger, “Genetic

programming for multibiometrics,” Expert Syst.

Appl., vol. 39, no. 2, pp. 1837–1847, Feb. 2012.

[7] R. Raghavendra, B. Dorizzi, A. Rao, and G.

Hemantha Kumar, “Particle swarm optimization

based fusion of near infrared and visible images for

improved face verification,” Pattern Recognit., vol.

44, no. 2, pp. 401–411, Feb. 2011.

[8] M. Romaissaa and R. Abdellatif, “On Comparing

Verification Performances of Multimodal

Biometrics Fusion Techniques” Int. J. Comput.

Appl., vol. 33, no. 7, pp. 24–29, 2011.

[9] A. Jain, K. Nandakumar, and A. Ross, “Score

normalization in multimodal biometric systems,”

Pattern Recognit., vol. 38, no. 12, pp. 2270–2285,

Dec. 2005.

[10] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw,

and W. A. Stahel, Robust statistics: the approach

based on influence functions, vol. 114. John Wiley

& Sons, 2011.

[11] J. H. Holland, Adaptation in natural and artificial

systems: an introductory analysis with applications

to biology, control, and artificial intelligence. U

Michigan Press, 1975.

[12] J. Kennedy and R. Eberhart, “Particle swarm

optimization,” in Proceedings of ICNN’95-

International Conference on Neural Networks, vol.

4, pp. 1942–1948, 1995.

[13] A. T. Al-Awami, A. Zerguine, L. Cheded, A.

Zidouri, and W. Saif, “A new modified particle

swarm optimization algorithm for adaptive

equalization,” Digit. Signal Process., vol. 21, no. 2,

pp. 195–207, Mar. 2011.

[14] M. Clerc and J. Kennedy, “The particle swarm -

explosion, stability, and convergence in a

multidimensional complex space,” IEEE Trans.

Evol. Comput., vol. 6, no. 1, pp. 58–73, 2002.

[15] “NIST biometric score set,” National Institute of

Standards and Technology, 2006. [Online].

Available:

http://www.itl.nist.gov/iad/894.03/biometricscores/.

[16] N. Poh and S. Bengio, “Database, protocols and

tools for evaluating score-level fusion algorithms in

biometric authentication,” Pattern Recognition,

2006. [Online]. Available:

http://personal.ee.surrey.ac.uk/Personal/Norman.Po

h/web/fusion.

[17] N. Poh, “BANCA score database.” [Online].

Available: http://info.ee.surrey.ac.uk/Personal/

Norman.Poh/web/banca_multi.

Informatica 39 (2015) 217

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 900 staff,
has 700 researchers, about 250 of whom are postgraduates,
around 500 of whom have doctorates (Ph.D.), and around
200 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

From the Jožef Stefan Institute, the Technology park
“Ljubljana” has been proposed as part of the national strat-
egy for technological development to foster synergies be-
tween research and industry, to promote joint ventures be-
tween university bodies, research institutes and innovative
industry, to act as an incubator for high-tech initiatives and
to accelerate the development cycle of innovative products.

Part of the Institute was reorganized into several high-
tech units supported by and connected within the Technol-
ogy park at the Jožef Stefan Institute, established as the
beginning of a regional Technology park "Ljubljana". The
project was developed at a particularly historical moment,
characterized by the process of state reorganisation, privati-
sation and private initiative. The national Technology Park
is a shareholding company hosting an independent venture-
capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Higher Education,
Science and Technology and the Jožef Stefan Institute. The
framework of the operation also includes the University of
Ljubljana, the National Institute of Chemistry, the Institute
for Electronics and Vacuum Technology and the Institute
for Materials and Construction Research among others. In
addition, the project is supported by the Ministry of the
Economy, the National Chamber of Economy and the City
of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

Informatica 39 (2015)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit a manuscript to: http://www.informatica.si/Editors/
PaperUpload.asp. At least two referees outside the author’s coun-
try will examine it, and they are invited to make as many remarks
as possible from typing errors to global philosophical disagree-
ments. The chosen editor will send the author the obtained re-
views. If the paper is accepted, the editor will also send an email
to the managing editor. The executive board will inform the au-
thor that the paper has been accepted, and the author will send
the paper to the managing editor. The paper will be published
within one year of receipt of email with the text in Informat-
ica MS Word format or Informatica LATEX format and figures in
.eps format. Style and examples of papers can be obtained from
http://www.informatica.si. Opinions, news, calls for conferences,
calls for papers, etc. should be sent directly to the managing edi-
tor.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than twentyone years ago) it became truly international, although
it still remains connected to Central Europe. The basic aim of In-
formatica is to impose intellectual values (science, engineering)
in a distributed organisation.

Informatica is a journal primarily covering intelligent systems in
the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author’s country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees from 2008 on:

A. Abraham, S. Abraham, R. Accornero, A. Adhikari, R. Ahmad, G. Alvarez, N. Anciaux, R. Arora, I. Awan, J.
Azimi, C. Badica, Z. Balogh, S. Banerjee, G. Barbier, A. Baruzzo, B. Batagelj, T. Beaubouef, N. Beaulieu, M. ter
Beek, P. Bellavista, K. Bilal, S. Bishop, J. Bodlaj, M. Bohanec, D. Bolme, Z. Bonikowski, B. Bošković, M. Botta,
P. Brazdil, J. Brest, J. Brichau, A. Brodnik, D. Brown, I. Bruha, M. Bruynooghe, W. Buntine, D.D. Burdescu, J.
Buys, X. Cai, Y. Cai, J.C. Cano, T. Cao, J.-V. Capella-Hernández, N. Carver, M. Cavazza, R. Ceylan, A. Chebotko,
I. Chekalov, J. Chen, L.-M. Cheng, G. Chiola, Y.-C. Chiou, I. Chorbev, S.R. Choudhary, S.S.M. Chow, K.R.
Chowdhury, V. Christlein, W. Chu, L. Chung, M. Ciglarič, J.-N. Colin, V. Cortellessa, J. Cui, P. Cui, Z. Cui, D.
Cutting, A. Cuzzocrea, V. Cvjetkovic, J. Cypryjanski, L. Čehovin, D. Čerepnalkoski, I. Čosić, G. Daniele, G.
Danoy, M. Dash, S. Datt, A. Datta, M.-Y. Day, F. Debili, C.J. Debono, J. Dedič, P. Degano, A. Dekdouk, H.
Demirel, B. Demoen, S. Dendamrongvit, T. Deng, A. Derezinska, J. Dezert, G. Dias, I. Dimitrovski, S. Dobrišek,
Q. Dou, J. Doumen, E. Dovgan, B. Dragovich, D. Drajic, O. Drbohlav, M. Drole, J. Dujmović, O. Ebers, J. Eder,
S. Elaluf-Calderwood, E. Engström, U. riza Erturk, A. Farago, C. Fei, L. Feng, Y.X. Feng, B. Filipič, I. Fister, I.
Fister Jr., D. Fišer, A. Flores, V.A. Fomichov, S. Forli, A. Freitas, J. Fridrich, S. Friedman, C. Fu, X. Fu, T.
Fujimoto, G. Fung, S. Gabrielli, D. Galindo, A. Gambarara, M. Gams, M. Ganzha, J. Garbajosa, R. Gennari, G.
Georgeson, N. Gligorić, S. Goel, G.H. Gonnet, D.S. Goodsell, S. Gordillo, J. Gore, M. Grčar, M. Grgurović, D.
Grosse, Z.-H. Guan, D. Gubiani, M. Guid, C. Guo, B. Gupta, M. Gusev, M. Hahsler, Z. Haiping, A. Hameed, C.
Hamzaçebi, Q.-L. Han, H. Hanping, T. Härder, J.N. Hatzopoulos, S. Hazelhurst, K. Hempstalk, J.M.G. Hidalgo, J.
Hodgson, M. Holbl, M.P. Hong, G. Howells, M. Hu, J. Hyvärinen, D. Ienco, B. Ionescu, R. Irfan, N. Jaisankar, D.
Jakobović, K. Jassem, I. Jawhar, Y. Jia, T. Jin, I. Jureta, Ð. Juričić, S. K, S. Kalajdziski, Y. Kalantidis, B. Kaluža,
D. Kanellopoulos, R. Kapoor, D. Karapetyan, A. Kassler, D.S. Katz, A. Kaveh, S.U. Khan, M. Khattak, V.
Khomenko, E.S. Khorasani, I. Kitanovski, D. Kocev, J. Kocijan, J. Kollár, A. Kontostathis, P. Korošec, A.
Koschmider, D. Košir, J. Kovač, A. Krajnc, M. Krevs, J. Krogstie, P. Krsek, M. Kubat, M. Kukar, A. Kulis, A.P.S.
Kumar, H. Kwaśnicka, W.K. Lai, C.-S. Laih, K.-Y. Lam, N. Landwehr, J. Lanir, A. Lavrov, M. Layouni, G. Leban,
A. Lee, Y.-C. Lee, U. Legat, A. Leonardis, G. Li, G.-Z. Li, J. Li, X. Li, X. Li, Y. Li, Y. Li, S. Lian, L. Liao, C. Lim,
J.-C. Lin, H. Liu, J. Liu, P. Liu, X. Liu, X. Liu, F. Logist, S. Loskovska, H. Lu, Z. Lu, X. Luo, M. Luštrek, I.V.
Lyustig, S.A. Madani, M. Mahoney, S.U.R. Malik, Y. Marinakis, D. Marinčič, J. Marques-Silva, A. Martin, D.
Marwede, M. Matijašević, T. Matsui, L. McMillan, A. McPherson, A. McPherson, Z. Meng, M.C. Mihaescu, V.
Milea, N. Min-Allah, E. Minisci, V. Mišić, A.-H. Mogos, P. Mohapatra, D.D. Monica, A. Montanari, A. Moroni, J.
Mosegaard, M. Moškon, L. de M. Mourelle, H. Moustafa, M. Možina, M. Mrak, Y. Mu, J. Mula, D. Nagamalai,
M. Di Natale, A. Navarra, P. Navrat, N. Nedjah, R. Nejabati, W. Ng, Z. Ni, E.S. Nielsen, O. Nouali, F. Novak, B.
Novikov, P. Nurmi, D. Obrul, B. Oliboni, X. Pan, M. Pančur, W. Pang, G. Papa, M. Paprzycki, M. Paralič, B.-K.
Park, P. Patel, T.B. Pedersen, Z. Peng, R.G. Pensa, J. Perš, D. Petcu, B. Petelin, M. Petkovšek, D. Pevec, M.
Pičulin, R. Piltaver, E. Pirogova, V. Podpečan, M. Polo, V. Pomponiu, E. Popescu, D. Poshyvanyk, B. Potočnik,
R.J. Povinelli, S.R.M. Prasanna, K. Pripužić, G. Puppis, H. Qian, Y. Qian, L. Qiao, C. Qin, J. Que, J.-J.
Quisquater, C. Rafe, S. Rahimi, V. Rajkovič, D. Raković, J. Ramaekers, J. Ramon, R. Ravnik, Y. Reddy, W.
Reimche, H. Rezankova, D. Rispoli, B. Ristevski, B. Robič, J.A. Rodriguez-Aguilar, P. Rohatgi, W. Rossak, I.
Rožanc, J. Rupnik, S.B. Sadkhan, K. Saeed, M. Saeki, K.S.M. Sahari, C. Sakharwade, E. Sakkopoulos, P. Sala,
M.H. Samadzadeh, J.S. Sandhu, P. Scaglioso, V. Schau, W. Schempp, J. Seberry, A. Senanayake, M. Senobari,
T.C. Seong, S. Shamala, c. shi, Z. Shi, L. Shiguo, N. Shilov, Z.-E.H. Slimane, F. Smith, H. Sneed, P. Sokolowski,
T. Song, A. Soppera, A. Sorniotti, M. Stajdohar, L. Stanescu, D. Strnad, X. Sun, L. Šajn, R. Šenkeřík, M.R.
Šikonja, J. Šilc, I. Škrjanc, T. Štajner, B. Šter, V. Štruc, H. Takizawa, C. Talcott, N. Tomasev, D. Torkar, S.
Torrente, M. Trampuš, C. Tranoris, K. Trojacanec, M. Tschierschke, F. De Turck, J. Twycross, N. Tziritas, W.
Vanhoof, P. Vateekul, L.A. Vese, A. Visconti, B. Vlaovič, V. Vojisavljević, M. Vozalis, P. Vračar, V. Vranić, C.-H.
Wang, H. Wang, H. Wang, H. Wang, S. Wang, X.-F. Wang, X. Wang, Y. Wang, A. Wasilewska, S. Wenzel, V.
Wickramasinghe, J. Wong, S. Wrobel, K. Wrona, B. Wu, L. Xiang, Y. Xiang, D. Xiao, F. Xie, L. Xie, Z. Xing, H.
Yang, X. Yang, N.Y. Yen, C. Yong-Sheng, J.J. You, G. Yu, X. Zabulis, A. Zainal, A. Zamuda, M. Zand, Z. Zhang,
Z. Zhao, D. Zheng, J. Zheng, X. Zheng, Z.-H. Zhou, F. Zhuang, A. Zimmermann, M.J. Zuo, B. Zupan, M.
Zuqiang, B. Žalik, J. Žižka,

Informatica
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Litostrojska cesta 54, 1000 Ljubljana,
Slovenia.
The subscription rate for 2015 (Volume 39) is
– 60 EUR for institutions,
– 30 EUR for individuals, and
– 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: ABO grafika d.o.o., Ob železnici 16, 1000 Ljubljana.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Janez Perš)
Slovenian Artificial Intelligence Society (Dunja Mladenić)
Cognitive Science Society (Urban Kordeš)
Slovenian Society of Mathematicians, Physicists and Astronomers (Andrej Likar)
Automatic Control Society of Slovenia (Sašo Blažič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Vojteh Leskovšek)
ACM Slovenia (Andrej Brodnik)

Informatica is financially supported by the Slovenian research agency from the Call for co-financing of scientific
periodical publications.

Informatica is surveyed by: ACM Digital Library, Citeseer, COBISS, Compendex, Computer & Information
Systems Abstracts, Computer Database, Computer Science Index, Current Mathematical Publications, DBLP
Computer Science Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and
Language Behaviour Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt
Math

Volume 39 Number 2 June 2015 ISSN 0350-5596

Editors’ Introduction to the Special Issue on
"Bioinspired Optimization"

J. Šilc, A. Zamuda 103

Differential Evolution Control Parameters Study for
Self-Adaptive Triangular Brushstrokes

A. Zamuda, U. Mlakar 105

Parallel Implementation of Desirability
Function-Based Scalarization Approach for
Multiobjective Optimization Problems

O.T. Altinoz, E. Akca,
A.E. Yilmaz, A. Duca,
G. Ciuprina

115

Using a Genetic Algorithm to Produce Slogans P. Tomašič, G. Papa, M.
Žnidaršič

125

Comparing Evolutionary Operators, Search Spaces,
and Evolutionary Algorithms in the Construction of
Facial Composites

J.J. Mist, S.J. Gibson,
C.J. Solomon

135

Heuristics for Optimization of LED Spatial Light
Distribution Model

D. Kaljun, D.R. Poklukar,
J. Žerovnik

147

Implicit and Explicit Averaging Strategies for
Simulation-Based Optimization of a Real-World
Production Planning Problem

J.E. Diaz, J.Handl 161

Data Mining-Assisted Parameter Tuning of a Search
Algoritm

J. Šilc, K. Taškova,
P. Korošec

169

End of Special Issue / Start of normal papers

A High Resolution Clique-based Overlapping
Community Detection Algorithm for Small-world
Networks

A. Bóta, M. Krész 177

History-based Approach for Detecting Modularity
Defects in Aspect Oriented Software

H. Cherait, N. Bounour 187

Towards Crafting an Improved Functional Link
Artificial Neural Network Based on Differential
Evolution and Feature Selection

Ch.S.K. Dash, A.K. Behera,
S. Dehuri, S.-B. Cho,
G.-N. Wang

195

Multimodal Score-Level Fusion Using Hybrid
GA-PSO for Multibiometric System

D. Cherifi, I. Hafnaoui,
A. Nait-Ali

209

Informatica 39 (2015) Number 2, pp. 103–217

	00_aInformatica-front
	00_Editorial
	01_Zamuda - Differential Evolution Control Parameters Study for Self-Adaptive Triangular Brushstrokes
	02_Altinoz - Parallel Implementation of Desirability Function-Based Scalarization Approach for Multiobjective Optimization Problems
	03_Tomasic - Using a Genetic Algorithm to Produce Slogans
	04_Mist - Comparing Evolutionary Operators, Search Spaces, and Evolutionary Algorithms in the Construction of Facial Composites
	05_Kaljun - Heuristics for Optimization of LED Spatial Light Distribution Model
	06_Diaz - Implicit and Explicit Averaging Strategies for Simulation-Based
	07_Silc - Data-Mining of a Search Algorithm Parameters
	11_Bota - A High Resolution Clique-based Overlapping Community Detection
	12_Cherait - History-based Approach for Detecting Modularity Defects in
	13_Dash - Towards Crafting an Improved Functional Link
	14_Dalila - Multimodal Score-Level Fusion Using Hybrid GA-PSO for
	99_Informatica-back

