SYNTACTIC PARSING AND PLOTTING OF
MATHEMATICAL EXPRESSIONS

Descriptors: SYNTAX, ANALYSIS, TEXT NATURAL, SOFTWARE,

TREE GRAMMAR, MATHEMATICAL ANALYSIS, LANGUAGE

ANALYSIS

INTRODUCTION

Language
been one aof the most Intriguing research areas

The paper presents the parsing problem of a
simple context free language. The "language” sentences are
mathematical expressions with one variable. A computer program
parses the expression according to the developed context free
grammar rules. Upon building a parse tree, the program
evaluates the expression over a given range of variable
values, and plots the result on the screen. Even though the
program is developed on a PC AT personal computer, it is
highly portable since the C programming language {s used, and
graphics hardware dependent routines are removed in a separate
module.

SINTAKTICKA ANALIZA I GRAFICKI PRIKAZ MATEMATICKIH IZRAZA

U radu je predstavliien problem analize reteni&nog
sloga u kontekstno slobodnom jeziku. "Jezié&nu ree&enicu”
predstavlja matemati&ki izraz s jednom varijablom. Ra&unarski
program razlate izraz u skladu s razvijenim kontekstno slobod-
nim gramatiékim pravilima. Program gradi stablo sastavnih
dijelova matematié¢kog izraza, nalazi vrijednosti izraza za
dati niz vrijednosti varijable, i grafieki prikazuje rezultat.
Iake je program razvijen na ra&unalu PC AT, jednostavna je
prenosiv na druga ragunala, jer je pisan u vigem jeziku (C)}, a
grafitke, sklopovski ovisne rutine premjedtene su u odvojen
programski modul.

INFORMATICA 1/89

Nikola Bogunovi¢, Institut R. BoSkovi¢

Zagreb

parsing has traditionally 1. acoustic-phonetic: time domain and

frequency domain analysis of the

of artificial intelligence. The problem here incoming sound, and translation the
is to take the information provided from the input into words.
outside world and translate it into a precise 2. morphological-syntactic:

internal

representation
sentation,

operated

though, a common data structure of internal vtterance.
representation may have different forms, it is

taking words

representation. By the internal and establishing the syntactic form of
we mean a semantic repre-~ the utterance.
a common data structure praduced or 3. semantic-pragmatic: finding out the

by various program modules. Even meaning from the syntactically analyzed

assumed the translations from one to
another is easy, and all forms are variants of In this paper we will concentrate on
the same abstract representation. the problems of second and third level only.
Our goal is to develop an internal repre-
The application of language parsing, sentation from the <correctly received input
in the context of this paper, is directed to stream of information, looking at the major
engineering problems, e.g. intelligent 1in- data structures the computer program uses. The
dustrial process control, rather than attempt problems at first 1level, and partially at
to solve an over aspiring and not very well second, can be bound loosely to speech recog-
defined problem like automatic language trans- nition, with major research advances and
lation. more sensible to work on the results given in {2] and [3].

internal

representation generation, since this

is an intermediate polnt between words and A computer program that translates
actions. from any natural lanquage to internal repre-
sentation, must in the first step syntacti-

The problem of language parsing can be cally analyze, or parse, the sentence. In the

divided three areas, with the apparent process, one needs to know the rules of syntax
ambiguity at each level [1]: for the language, specifying the legal syntac-

tic structures for a sentence.

. A parsed sentence is wusually
presented in a tree structure known as parse
tree or phrase marker. Specifying the struc-
ture of a sentence in a formal knowledge
structure, by a series of production rules
i.e. grammar, could be far too complex for any
natural language {4]. The grammar must be, in
that case, context-~free, indicating how to
replace a nonterminal node of the parse tree
with lower constituents, without any reference
to the context in which the nonterminal node
finds itself [5].

Since the gquestion, whether a natural
language is context-free or not, is yet to be
answered and a context-free grammar for such a
language devised, in this paper we will con-
centrate on a much easier task of parsing the

~arithmetic expressions, which are inherently
controlled by a context-free grammar .
Nevertheless, the presented parser program
applies the very same methodology of natural
language parsing, and develops a parse tree of
an arithmetic, expression of considerable
complexity.

A rough outline of context-free pars-
ing can also be found in [6]. This paper
extends the presented idea with different and
nore efficient algorithms and data structures
available in C language, introduces conmplex
expressions based on a family of new func-
tions, evaluates the function of one variable
and develops a graphics interface for the
presentation of the evaluated function over a
given range of values on the terminal of a PC
XT/AT or PS/2 personal computer. The computer’
program was written in Microsoft C, and linked
with an assembly language program to run
industry standard monochrome or colour
graphics routines.

THE SYNTAX OF A LANGUAGE

A context-free language is one whose
syntax can be specified by a set of rules,
usually called productions, or simply grammar.
A context- free derivation of a sentence
always start with a nonterminal node of the
parser tree, or a nonterminal constituent,
i.e. with a node that appears only in the
interior of the tree structure, and not in the
final sentence. Each nonterminal node is then
replaced by the right hand side of the rule,
until we have only terminal nodes, or terminal
constituents, i.e. nodes that appear in the
final sentence.

A very simple context-free grammar
might have the following rules:

sentence(s) =--> noun-phrase(np) verb-phrase(vp)
verb-phrase(vp) «-> verb(v) noun-phrase{np)
verb-phrase(vp) --> verb(v)

noun-phrase(np) --> determiner{d) noun{(n)
noun-phrase(np) --> proper-noun(prn}

The last two rule pairs may be combined
with the loglcal operator OR (}):

vp., --=> v np H v
np =-=-> dn ' prn

The syntax of grammar rules can be
also described by the recursive set of grammar
rules themselves:

grammar_rule --> grammar_head [-->) grammar_body
grammar _head --> nonterminal_node

grammar-head --> nonterminal_node terminal_node
grammar _body --> grammar_body grammar_body
grammar_body --> grammar_item

grammar_item --> nonterminal_node

grammar_item ~--> terminal_node

‘The application of the context-free
grammar to a simple "sentence like "The parser
makes a tree.” is exceedingly clear from the
following parse tree:

/ \
np vp
/N / \
d n v np
) i) /7 A\
1 i H d n
;) i 1 i
The parser makes a tree
This simple example creates more

guestions thHan it really indicates the solu-
tion of the problem. It is extremely difficult
to express every rule of grammar with context-
free rules. The problem of number agreement
(singular-plural), morphology (differences
between go, goes, going), reflexivization
(reflexive pronouns), imperatives, passive
case, etc. are just the few most common. One
can add weakly context-free structure in the
variation of the above example with the sen-
tence like "It does."

Programming languages, on the other
hand, are context-free, and principal compiler
task for such a language is to parse it. In
that case we may even talk about the ef-
ficiency of parsing, optimal parsing, and so
forth. The expansion of RISC computer ar-
chitecture, as a contemporary industry trend,
causes the compiler construction and language
parsing problem to be of ocutmost importance.

Mathematical expressions are the most
simple case of finite character strings whose
syntax can be captured 1in a context-free
grammar. Since our primary goal in this paper
is to show the principles of a working parser,
we have constrained the presented application
to a “language" that can be described with
only a few production rules.

Let us assume a mathematical equation
with one variable, floating point constants,
four arithmetic (binary) operators, and five .
unary operators, with left to right evaluation
in the traditional fashion. An example of such
an expression is:

f(x)=2.5+3.4-4.55in(cos(5.8x+2.2)) (1)

‘' We have decided upon these basic set of opera-

tions with the following order of precedence:

- : unary minus
sin(x) : sine function
cos(x) t cosine function
log(x) : natural log
exp({x) : exponential

* : multiplication

\ H division

C 4 : -addition

subtraction

The syntax of the expression (1) can
be captured in the recursive set of context-
free grammar rules. We may use the notation
introduced at the beginning of this paper or
instead, we may use the familiar and tradi-
tional Backug-~Naur form, from the computer
science literature:

<expr)> ::= <term)> | <term>+<expr> |
<termd>-<expr)>

<termd> ::= <factor> | <factor>*<termd> |
<factor>\<term>
¢factor)> ::= <(variable)> | <number> |
-<factor> | sin<expr> |
cos<expr> | log<expr)> |
exp<expr> | (expr)

It is evident that the functions sin,
cos, log, and exp are implemented as unary
functions, like unary minus. Implied multi-
plication, used in the 1input expression, |is
later changed to explicit (*).

The application of +these production
rules to the equation (1), 1s presented 1in
Fig.l. Parsing starts with the <expr>, which
according to the first rule of our grammar may
have three forms: a <term), <termd>+<expr> or a
<termd-<expr>. Since 1t is obviously a
<term)+<exprd>, further application of grammar
rules to <term> part yields a <factor>, then a
<number) which is a floating point constant.

Parsing the other part needs a recur-
sive application of the same rules. Since it
is an <expr), we apply the first rule again,
which yields <term>-<expr>. The <term> part is
a <factor>, a <number)> and a constant. The
<expr> part 1is a <termd>, which is a
(factor>*<term)>. The process praoceeds until
the terminus of all branches 1is reached,
yielding a <number)> or a <variable>.

Once a parse tree is constructed, the
expression may be evaluated =starting at the
top of the tree by recursively evaluating left
and right branches, and then performing addi-
tion or subtraction at the top.

DATA STRUCTURES AND ALGORITHMS

The principal elements of a parse tree
are nodes. Looking at Fig.l, we may deduce
that there are four kinds of nodes. A node is
elither a number (a floating point constant), a
variable (x), a wunary operator node (=~
,s8in,cos,log,exp), or a binary operator node
(+,~,*,/)s In our case the root node 1is a
binary operator (+) with 1left and right
operands, i{.e. <term>+<expr)>, according to the
first grammar rule. Left operand will be
parsed 1into <factor> =--> <number)> --> 2.5.
Right operand will be parsed recursively
starting with the first grammar rule again.
All four kinds of nodes can be captured in a
structure, in C language sense (7), with the
following components:

struct node {
int tag;
char operator;
float number;
struct node *left_operand;
struct node *right_operand;
} TREENODE, *TREEPTR;

expr

la;m ; e;pr
!acéor .
numéer Le;m ; e;pr
2:5 recéor t;rm
number ' -
3:4 facécr : Le;m
numser (cc%or
4:5
a;n e%pr

term

factor

cos expr

térm ' exér

- o
ta%tor . térm laétor
nu%ber fn%ter nu@ber

5:5 var%able 2:2

x

Fig.1 The parse tree of equation (1).

Integer tag identifies a node as a number
(tag=@), a variable (tag=l), a binary operator
(tag=2), or a unary operator (tag=3). Charac-
ter operator identifies operator as +, -, *,
/. sin, cos, log, or exp. If the node is a
number, the floating point value {is held |In
the "number® structure member. If the node is
a binary operator, pointers left_operand and
right_operand point to the left and right
"child"” nodes (structures). If the node is a
unary operator, only left_operand pointer is
used. It is absolutely important to note that
the root node structure embeds the whole parse
tree, because left and right operands, as the
structure members, are pointers to the struc-
tures of the same type as the root node it~
self. This recursive declaration of a node is
correct, as given in (7). Typedef TREENODE and
TREEPTR, define a node type structure and a
pointer to such a node type structure.

At the beginning of the program, the
string, which corresponds to the input equa-
tion, is subject to the preprocess.ng opera-
tion. The string is converted to lower case,
and all surplus spaces are removed. Since sin,
cos, log, and exp functions are implemented as
unary operators, they are stripped to a single
unique character operators {s,c,l,e). Finally,
implicit multiplication 1is changed to ex-
plicit. After the preprocessing phase, our
equation (1) would fill an array of characters
that would look like:

2.5+43.4~4.5*s(c(5.8*x+2.2)) (2)

In the next step a parse tree is
constructed. Any expression, if not con-
gstrained with parenthesis to a subexpression,
must start with a term, which must start with
a factor (number,variable or unary operator
applied to <expr>). In the process of building
a parse tree, we actually make the instances
of node structures defined earlier. As already
stated, the root node contain pointers to the
neighbouring structures, and in essence embeds
the whole tree. There is an 1initial function
expr{), which calls the function term(), which
finally calls function factor(). These func-
tions mirror our grammar rules. The function
factor () analyses the beginning of the string.
In our case it will find a number 2.5 (a
constant), and it will make a number node and
return a pointer to its caller. The callee,
function term(), will further analyze the
string to find .if there is a multiplication
(*) or a division (/) sign according to the
second grammar rule. If not, which happens in
our case, term() will return a pointer of a
numkber node to expr(). The expr() function
will analyze the string further and find an
addition sign, hence the root node is a binary
operator node with left operator already
established (previously found number node).
The right node will be found by a recursive
call to expr() function again.

To 1illustrate the creation of the
number node structure, we give the function
numbernode(), which is called by the factor()
after it has extracted the number and its
value from the beginning of the string.

«define new()
(TREPTR) calloc(l,sizeof (TREENODE))

/* This is a global creation of the space
which will hold a node, and return a
pointer to that space. */

adefine NULL ©

TREEPTR numbernode{value)

/* take the number value and return a

pointer to a structure */

float value;

/* the type of passed parameter */

{ TREEPTR n;

/* declaration of the pointer */
n = new(); . .

/* creation of an empty struct. */
n->tag = @;

/* it is a number node */
n->number = value;

/* fill in the value */
n->left_operand = NULL;

/* numbernode has no neighbours */
n->right_operand = NOLL;

return(n);

/* returning a pointer */

t

Since this paper describes the equa-
tion parser and plotter, we have included in
List 1, an evaluation function which, for a
given wvariable wvalue, will traverse through
the parse tree in a recursive search fashion,
finding the value of the whole expression. The
function eval{root_node_pointer,x) will test
the tag of the root node and act accordingly.
If the node is a wunary or blnary operator

node, eval() will call itself with new poin-
ters.

float evalin, x)
TREEFTR n. 70 1nt panged parametsar
Lo the root node atrucey
float x: /' Znd paremeter 18 a veristile valus *7
‘ float opl.op2: '
awitch (n-.tag)

{ cane 0 /% 1t 18 a number node ¢/
returnin- number};
break.
case 1: /* it 18 a variable node */
returnix):
hreak:
case 2: /* 1t 15 a4 binary operator nods °

opl = evalin->left_operand.x}:

opl = evalin->right _cperand »}:

switch{n->operator)

{ case "+
return{opl+op2):
break;

case “-":
return{opl-op2}):
break;

case "¢
return{opl*op?):
break:

case "/
returntopl/op2):

. bresk: }
case 3; /* it is a unary operator node */
awitch(n->operator)

{ case ‘-':
return(-eval(n->left_operand.x)}:
break:

case ‘s’ .

returni(sin{eval (n->left_operand.»))):
break:

case ‘c’:

return(cosieval {n->ieft_oprerand . x)}1:
break:

;oturn(exp(eval(n—)left_operundAx)));
break:

return(log(eval (n->left_operand.x))):
break:

List 1. Evaluation of the expression.

The " presented function eval({) is only
a basic skeleton of the implemented function,
because one has to take great care how Ebinary
and unary functions are defined (no negative
values for log, divide with zero, etc.), and
whether a parenthesis is encountered indicat-
ing a subexpression.

Finally, after obtaining domain and
value points of the equation, we <can display
it graphically. The graphics functions greatly
depend on the used hardware and can not be
given generally. However, since industry
standards like personal computers PC XT/AT and
PS/2 are readily available, we will show the
prinzciples of implementation some simple
graphics procedures for these computers. Even
within the PC and PS family of computers,
graphics standards vary from 32@0x200Q pixels to
an impressive 1024x768 pixels (with additional
advanced display adapter). In this paper we

‘have chosen to show Hercules monochrome

graphics implementation, in belief to repre-
sent a popular, yet fully acceptable medium
resolution (720x348) graphics standard.

) Hercules graphlics functions library is
a set of memory resident routines, set up hy
INT10.COM, a program supplied and copywrited
by the vendor [8]. We have chosen to implement
grabhics routines in the assembly language and
link them with the main C program to achieve
maximum portability. The assembly language
program treats Hercules graphics functions as
the extension of the standard display control
software interrupt procedures (int 1@h). All
parameters are simply loaded in reglisters,
with the function code in AH register, prior
to int 108h .call. Unlike the original set of
functions within int 10h group, only segment
registers are preserved, along with all regis-
ters used to pass parameters.

http://INT10.COM

An example of assembly language func-
tion, which moves the cursor to the x,y posi-
tion (move(x,y)), is given below. The caller
from the C program will leave x and y coor-
dinates, as parameters, on the stack. It was
assumed that C program will run on a PC XT/AT
in the small model {("Microsoft” restriction to
64K byte), hence near procedure type.

_text segment byte public 'code'
assume cs:_text

; definitions as regquired by Microsoft C
public _move

_move proc near
push bp
mov bp,sp
push di,
mov di,[bp+4]
; get x from stack
mov bp, (bp+6]
; get y from stack
mowv ah,48h
; it is function "move"
int 1@h
; call function
poOP di
pop bp
ret
_move endp
_text ends
end

CONCLUSIONS AND REMARKS

We have studied string parsing tech-
niques, applied to the simple mathematical
equations. The syntax of these strings can be
described by an elementary context free gram-~
mar. Nevertheless, the same principles apply
to a broad range of languages described by
context free grammars.

To illustrate the parsing, evaluating
and plotting operations of the working
program, we have presented the graph of the
equation (1) in Fig.2. The function is plotted
over a domain range (-4,+4). The scale of
ordinate wvalues is appropriately chosen to
display points between -5 and +15. The program
prompts for the scale before it plots the
function. By changing the coordinate scale one
can easily zoom, scroll and pan the graph,
sustaining the same resolution.

It is worth noting that the program
embeds implicit precedence rules (multiplica-
tion and A division before addition and
subtraction), and enforced precedence by
parentheses, according to the given grammar
rules.

; : Lo \
Yoink-4 \ i v oo . 3
\

Yoar:1%
/ .I'. o f'; .‘z & : R :' ' .‘; ll|
L O e O
t
!
{

Yuinz-$

Fig.2 The graph of equation (1).

REFERENCES:

1. E.Charniak, D.McDermott, Introduction to
Artificial Intelligence, Addison-Wesley,
Reading, Mass., 1985.

2. J.L.Flanagan, Speech Analysis, Synthes:is,
and Perceptions, Springer Ferlag, New
York, 1972.

3. S.E.Levinson, L.R.Rabiner, M.M.Sondhi, An
Introduction to the Application of the
Theory of Probabilistic Functions of a
Markov Process to Automatic Speech
Recognition, Bell Syst. Tech. J., Vol. 62,
No. 4, 1982.

4. N.Chomsky, Syntactic Structures, Mouton,
The Hague, 1957,

5. A.V.Aho, J.D.Ullman, The Theory of Parsing,
Translation and Compiling, Prentice-Hall,
Englewood Cliffs, N.J., 1972.

6. J.Amsterdam, Context-free parsing of
Arithmetic Expressions, Byte, Vol. 10,
No. 8, August 1985,

7. B.W.Kernighan, D.M.Ritchie, The C Program-
ming Language, Prentice-Hall, Englewood
Cliffs, N.J., 1978B.

B. GRAPHX V1.1 Manual, Hercules Computer

Technologies, 2550 Ninth Street, Berkeley,
CA 94710, USA. .

