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Povecanje signala nihanja kotalnih lezajev z uporabo
prilagodljive krmilne zanke za zmanjSevanje Suma

Enhancing the Vibration Signal from Rolling Contact Bearing Using an Adaptive
Closed-Loop Feedback Control for Wavelet De-Noising

Jorge P. Arenas

Predstavljenih je bilo Ze vec metod s podrocij casa in frekvence za nadzorovanje razmer in ugotavljanje
napak na opremi oz. postopkih. Nadzorovanje in ugotavljanje izvajamo z analizami in tolmacenjem signalov,
pridobljenih z zaznavali in pretvorniki. Vendar pa vsako notranje nihanje, ki se prenasa preko sosednjih
teles, v ozadju povzroci nihanje, v katerem se signal, ki ga potrebujemo za analize, pogosto izgubi, Se
posebej v zgodnejsi fazi nastanka napake. Ce je Sumnost nihanja v ozadju prevelika oz. je signal nihanja
lezajev premajhen, so lahko obicajne metode, kot npr. analiza zmanjsevanja Suma valovanja, neucinkovite
pri iznicenju Suma takih signalov.

V prispevku smo predstavili kombinacijo povecanja prilagodljivega signala in spremembo valovanja
za zmanjSanje Suma signala nihanja, izmerjenega na kotalnih leZajih. Kot postopek prilagodljivega uteznega
krmiljenja smo uporabili algoritma normaliziranega najmanjsega srednjega kvadrata in rekurzivnih
najmanjsih kvadratov. Koncni namen prilagodljivega filtra je bil zmanjsanje srednje kvadraticne vrednosti
signala napake, kar pomeni povecanje razmerja izstopnega signala in Suma sistema. Rezultati so pokazali,
da povecanje prilagodljivega signala nihanja in sprememba valovanja povzrocita najboljse razmerje signala
in Suma. Kar pomeni, da lahko rezultat odkrije skrite sestave signala, ki so povezane neposredno z notranjimi
okvarami v lezajih.
© 2005 Strojniski vestnik. Vse pravice pridrzane.

(Klju¢ne besede: lezaji kotalni, signali nihanja, analize Suma, zanke krmilne)

Several techniques in both the time and frequency domains have been reported for the condition
monitoring and fault diagnosis of equipment and processes. The monitoring and diagnosis is accomplished
through the analysis and interpretation of signals acquired from sensors and transducers. However, any
structure-borne vibration propagated through the neighbouring structures will produce a background
vibration in which the required vibration signals for the diagnosis are often submerged, in particular
during the early stage of failure development. If the background-noise level is too high or when the bearing
vibration signature level is too low, traditional techniques such as wavelet de-noising analysis can be
ineffective in cancelling the noise of such signals.

In this paper the combination of an adaptive signal enhancement and the wavelet transform for de-
noising a vibration signal measured on a rolling contact bearing is presented. The normalized least mean-
square and recursive least-square algorithms were used as the adaptive weight-control mechanism. The
final aim of the adaptive filter was to minimize the mean-square value of the error signal, which implies the
maximization of the output signal-to-noise ratio of the system. The results showed that a combination of the
adaptive vibration signal enhancement and the wavelet transform yielded the best signal-to-noise ratio.
This means that the result can reveal hidden signal structures that are directly associated with a bearings
internal defect.
© 2005 Journal of Mechanical Engineering. All rights reserved.
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O0INTRODUCTION

The condition monitoring and fault diag-
nosis of equipment and processes are of great prac-
tical concern. Several techniques in both the time
and frequency domains have been reported for this
purpose [ 1]. Mechanical condition monitoring is con-
cerned with the evaluation of the operating condi-
tions of a machinery system or its components. The
main purpose of the condition monitoring is to de-
tect the presence of faults and damage in machinery
during operation. It encompasses both diagnosis
and prognosis in order to determine the remaining
safe operating life of a machine before a breakdown
or failure occurs [2].

Any operation of machinery involves the
generation of forces that produce vibrations. Even a
machine in good running order produces its own
characteristic vibration, caused by the various dy-
namic forces associated with its operation.

Some of the most important components in
rotating machinery are the bearings, of which the
rolling-contact type are the most commonly used.
Rolling element bearings have some unique con-
cerns, which are not found in journal bearings. They
are a result of the rolling elements being contained
between the inner and outer raceways. The rolling
elements are normally kept from touching each other
by a cage. Because of the metal-to-metal contact,
this bearing provides very little vibration damping.
Therefore, rolling element bearings, as a result of
their design and installation, provide a very good
signal transmission path from the vibration source
to the outer bearing housing. Although these bear-
ings are very precisely machined parts some defects
reduce their service life severely and can cause the
breakdown of rotating machinery. Each component
of the bearing will generate specific frequencies as
the defects initiate and become more prevalent.

Bearing-element rotations generate vibra-
tional excitation at a series of discrete frequencies
that are a function of the bearing geometry — roller
diameter, pitch diameter of the bearing, contact an-
gle between the rolling element and the raceway,
number of rolling elements — and the shaft’s rota-
tional speed. In addition to these discrete frequen-
cies their harmonics will also be excited. However,
there are three major frequencies that are commonly
identified and associated with defective bearings: 1)
the rolling-element pass frequency on the outer race,
which is associated with an outer race defect, 2) the

rolling-element pass frequency on the inner race,
which is associated with inner-race defects, and 3)
the rolling-element spin frequency, which is associ-
ated with ball or ball-cage defects. Given the geom-
etry of the bearing, the values for the discrete fre-
quencies have been summarized by Shahan and
Kamperman [3].

Localized defects such as a surface crack
are a typical failure form in rolling-element bearings.
The vibration generated in a normal bearing is usu-
ally dominated by the components caused by shaft
rotation, stiffness variation, load fluctuation, etc.
When a localized defect is induced, repeated impacts
will be generated due to the passing of the rolling
elements over the defect.

The condition monitoring and fault diag-
nosis in the machinery is accomplished through
the analysis and interpretation of the signals ac-
quired from sensors and transducers. The impacts
have a wide-band energy that often sets off some
modes of resonance with the bearing elements. This
process adds additional impulsive components to
the vibration and results in vibration signals of a
non-stationary nature. Wavelet analysis has been
shown to be a promising tool to overcome this prob-
lem. Several wavelet-based techniques have been
presented for the feature enhancement and feature
extraction of transient signals [4]. These techniques
are much more effective than traditional techniques
and have been successfully used in the condition
monitoring and fault diagnosis of mechanical sys-
tems [5].

However, any structure-borne vibration
propagated through neighbouring structures will
produce a background vibration in which the re-
quired vibration components for diagnosis are of-
ten submerged, in particular during the early stage
of failure development. If the background noise level
is too high or when the bearing vibration signature
level is too low, traditional techniques such as wave-
let de-noising analysis are often ineffective in can-
celling the noise of such signals. Therefore, enhanc-
ing the signals before de-noising to extract the fre-
quency components is a very important task in de-
tecting the defect.

Moreover, for model-based identification
methods in the frequency domain it has been estab-
lished that its performance can be affected by errors
and the results might not be accurate. Recently, Vania
and Pennacchi [6] have mentioned the random/bias
errors in the vibration data as a source of inaccu-
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racy. This means that a source of error for the iden-
tification methods can be the presence of noise in
the vibration signals or errors in the order analysis.
In this work, an adaptive closed-loop feedback con-
trol was applied to a bearing vibration signal buried
in a background vibration noise in order to enhance
this signal before applying a wavelet de-noising
method to identify the frequency components of the
rolling contact bearing.

1 THEORY OF ADAPTIVE FILTERING

If accurate information about the signals to
be processed is available, the designer can easily
choose the most appropriate algorithm to process the
signal. When dealing with signals whose statistical
properties are unknown, fixed algorithms do not proc-
ess these signals efficiently. The solution is to use an
adaptive filter that automatically changes its charac-
teristics by optimising the internal parameters. These
adaptive filtering algorithms are essential in many sta-
tistical signal-processing applications. The complete
specification of an adaptive system consists of three
items [7]: 1) the application, defined by the choice of
the signals acquired from the environment to be the
input and desired output signals, 2) the adaptive filter
structure (FIR, IIR), and 3) the algorithm.

The most widely used adaptive FIR filter
structure is the transversal filter, also called the
tapped delay line, that implements an all-zero trans-
fer function. For this realization, the output of the
filter y[n] is a linear combination of the filter coeffi-
cients, which yields a quadratic mean error
(MSE=E{|e[n]]*}, where E{} denotes the statistical
expectation operator) function with a unique opti-
mal solution.

Typical impulse responses of ideal filters
approach amplitudes of zero exponentially over time.
Approximate realizations are thus possible with fi-
nite-length FIR filters. Of course, non-causal filters
are not physically realizable in real-time systems.
However, in many cases they can be realized ap-
proximately in delayed form, providing an accept-
able, delayed real-time response. In practical circum-
stances, excellent performance can be obtained with
two-sided filter impulse responses, even when they
are truncated in time to the left and right. Using the
delay, the truncated response can be made causal
and physically realizable [8].

The usual method of estimating a signal
corrupted by additive noise is to pass the compos-

ite signal through a filter that tends to suppress the
noise, while leaving the signal relatively unchanged.
The design of such filters is the domain of optimal
filtering, which originated with the pioneering work
of Wiener [9].

Noise cancelling is a variation of optimal
filtering that is highly advantageous in many appli-
cations. It uses an auxiliary or reference input de-
rived from one or more sensors located at points in
the noise field where the signal is weak or
undetectable. This input is filtered and subtracted
from a primary input containing both signal and
noise. As a result, the primary noise is attenuated or
eliminated by cancellation.

If filtering and subtraction are controlled
by an appropriate adaptive process, noise reduction
can, in many cases, be accomplished with little risk
of distorting the signal or increasing the output noise
level. In circumstances where adaptive noise
cancelling is applicable, it is often possible to achieve
a degree of noise rejection that would be difficult or
impossible to achieve by direct filtering [10].

In the signal-enhancement application the
reference signal consists of a desired signal x[#] that
is corrupted by an additive noise N,[n]. The input
signal of the adaptive filter is a noise signal N,[n]
that is correlated with the interference signal N, [n],
but uncorrelated with x[n].

1.1 Normalized Least-Mean-Square

The least-mean-square (LMS) algorithm is
a search algorithm in which a simplification of the
gradient-vector computation is made possible by ap-
propriately modifying the objective function. This
algorithm is widely used in various applications due
to its computational simplicity. The convergence
characteristics of the LMS can be shown for a sta-
tionary environment and the convergence speed is
dependent on the eigenvalue spread of the input-
signal correlation matrix [11]. Other features of the
LMS are an unbiased convergence in the mean to
the Wiener solution and stable behaviour when im-
plemented with finite-precision arithmetic.

The normalized least-mean-square (NLMS)
algorithm uses a variable convergence factor that
minimizes the instantaneous error. Such a conver-
gence factor usually reduces the convergence time
but increases the misadjustment. The NLMS algo-
rithm usually converges faster than the LMS algo-
rithm, due to the variable convergence. It is interest-
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ing to note that the faster convergence of the NLMS
algorithm has been noticed by many researchers in
computer simulations, but never theoretically
proven. It appears that Bitmead and Anderson [12]
coined the name of the NLMS algorithm in 1980. The
NLMS algorithm can be summarized by the follow-
ing two equations:

eln]=d[n]-w"[n]ulr] (1
and

wln+1]=wln]+—L——u[n]e'[n] @),
a +|| u[n] "

where n=1, 2, ..., e[n] is the error, d[n] is the desired
signal, w[n] is the vector of the filter coefficients
(taps), u[n] is the vector of the input signal, rand u
are positive constants, the superscript H denotes
the Hermitian transposition, the asterisk denotes a
complex conjugation, and the norm in Eq. (2) corre-
sponds to the Euclidean norm. It is clear that the
NLMS algorithm alters the magnitude of the correc-
tion term without a change in its direction. Accord-
ingly, it bypasses the problem of noise amplification
that is experienced in the LMS algorithm when u[#]
is large. However, in so doing it introduces a prob-
lem of its own, which is experienced for small u[#].
This problem is overcome by using the positive con-
stant a. Also, a sufficient condition for the NLMS
algorithm to be convergent in mean square is that
0 < u <2 [13]. If no previous information for the
values of w is available, then it is usual to initialise
the algorithm with w[0]=0.

1.2 Recursive Least-Squares

Least-squares algorithms aim at the mini-
mization of the sum of the squares of the difference
between the desired signal and the model filter out-
put. When new samples of the incoming signals are
received at every iteration, the solution for the least-
squares problem can be computed in recursive form
resulting in the recursive least-squares (RLS) algo-
rithm. The RLS algorithm is known to pursue a fast
convergence, even when the eigenvalue spread of
the input-signal correlation matrix is large. Of course,
this algorithm has excellent performance when work-
ing in time-varying environments. All these advan-
tages come at the cost of increased computational
complexity and some stability problems, which are
not as critical in the LMS-based algorithms. Some

references mention that although the RLS does not
attempt to minimize the mean-square error (in the
ensemble-averaged sense), nevertheless, the mean-
square value of the true estimation error converges
within less than 2M iterations, where M is the number
of taps coefficients in the tapped-delay-line filter [13].
The RLS algorithm, for n=1,2,.. ., can be summarized
by the following equations:

Kln)=7 +u5[[';]_ ;%u b 1]]u[n] &)
Elnl= ] w" - 1]uli] @
wln]=wln—1]+K[n]"[1] )

P[] 2 (©),

- P[n —1]—K[n]u” [n] P[n - 1]

where A is a constant, called the forgetting factor,
which is close to but less than 1 and & [#] is called
the a posteriori error. The initialisation for the algo-
rithm is w[0]=0 and for the matrix P[0]=5"1, where L is
the identity matrix and 6<<1.

1.3 Wavelet de-noising

In several research fields, a common prob-
lem consists of recovering a true signal from incom-
plete, indirect or noisy data. The development of
fast computers has allowed the practical implemen-
tation of wavelets that help in solving this problem,
through a technique called wavelet shrinkage and
thresholding methods [14]. The theory of wavelets
can be found in several modern textbooks (for exam-
ple, see [15]).

Decomposing a data set using a discrete
wavelet transform (DWT) is analogous to using fil-
ters that act as averaging filters and others that pro-
duce details. Some details in the data set correspond
to the resulting wavelet coefficients. These coeffi-
cients can be used later in an inverse wavelet trans-
formation to reconstruct the data set. If the details in
the data set are small, they can be omitted without
substantially affecting the main features of the data
set. Therefore, thresholding means to set to zero all
the coefficients that are less than a particular thresh-
old. This process generally gives a low-pass and
smoother version of the original noisy signal. The
objective of wavelet de-noising is to suppress the
additive noise N [n] from a signal s[n], where
s[n]=x[n]+N,[n]. The signal s[n] is first decomposed
into the L-level of the wavelet transform. Then, for
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noise suppression, the thresholding of the resultant

wavelet coefficients is performed. The thresholding

is based on a value ¢ that is used to compare with all
the detailed coefficients. Two types of thresholding
are more popular:

I)Hard thresholding, which is the usual process of
setting to zero the coefficients whose absolute
values are lower than the threshold,

2)Soft thresholding, which is an extension of hard
thresholding by first setting to zero the coeffi-
cients whose absolute values are lower than the
threshold and then shrinking the non-zero coeffi-
cients toward zero.

Then, in summary, the technique of wave-
let de-noising consists of transforming, thresholding
and inverse-transforming the signal. This technique
has been very useful in handling noisy data because
the de-noising is carried out without smoothing out
the sharp structures. The result is a cleaned-up sig-
nal that still shows important details [16].

2RESULTS

An experiment was conducted to acquire
real signals for testing an adaptive rolling-contact-
bearing vibration-signal enhancement system. The
experimental scheme is shown in Fig. 1, where some
of the blocks indicate the filtering process. The ball

Accelerometers ———,

bearing used for the test was a single-row radial
ball bearing having 20 balls of 6 mm diameter, 45
mm bore diameter, and 57 mm pitch diameter of the
ball races. The isolation of the rolling bearing to be
analysed and the isolation of other parts of the
machine were removed in order to increase the ef-
fect of the structure-borne noise vibration, which
contaminated the signal of the bearing. The vibra-
tion produced by the bearing was sensed by means
of an ICP accelerometer mounted on the bearing
cover. A second ICP accelerometer was attached to
a selected point on the test-rig base in order to
measure the vibration reference signal. This point
was located 40 cm from the bearing and 10 cm from
the motor. Therefore, the accelerometer in the bear-
ing sensed the real signal x[n] plus the contaminat-
ing noise N [n], and the second accelerometer
sensed a reference signal N,[n]. Both signals were
digitally recorded simultaneously, using a sampling
frequency of 1,024 Hz during 10 seconds, so the
number of samples collected for each channel was
10,024. A multi-channel digital data-acquisition sys-
tem was used for this purpose. To avoid aliasing,
the signals were processed through low-pass fil-
ters with a cut-off frequency of 500 Hz. The signals
were then saved as data files in order to be proc-
essed later in a workstation lab. The nominal rota-
tional speed of the axis was 780 rpm (13 Hz).

b
TN | Low-pass filters |\
- k.
ADC ADC
x[#] + Ni[#]
Ny[n] 7L
d[n]

3 v[#] -l-/l\ Wavelet
FIR Filter _@ > denoising
= =
Algorithm [+

eln] FFT
spectrum

Fig. 1. Experimental set up
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As can be seen from Fig. 1, the error signal
for this application is given by

eln]= ol M) sl = il Va3V, k]
“ (N,

where M is the number of filter coefficients (taps).
Then, the resulting MSE (quadratic mean error for
real values), is

MSE = E{e2 [n]}z E{x2 [n]}-i— E{(N] [n]-y[n)y }(8),

where it has been assumed that x[n] is uncorrelated
with N [n] and N,[r]. Equation (8) shows that if the
adaptive filter, having N,[n] as the input signal, is
able to perfectly predict the signal N,[#n], then the
minimum value of MSE is given by

Monin = E {xz [n]}

where the error signal, in this situation, is the de-
sired signal. The effectiveness of the signal enhance-
ment scheme will depend on the correlation between
N, [n] and N,[n]. From Fig. 1 it can be seen that a
delay Z* is applied to the input. In some applica-
tions it is recommended to include this delay of L
samples in the reference signal or in the input signal,
such that their relative delay yields a maximum cross-

),

correlation between y[n] and N, [n], reducing the
MSE [7]. This delay provides a kind of synchroniza-
tion between the signals involved.

The NLMS and RLS algorithms presented
in Egs. (1)-(6) were implemented in a Matlab compu-
ter code to test the performance with the real data.

The following results were obtained with a
10-tap implementation of the adaptive FIR filter
shown in Fig. 1. The NLMS and RLS algorithms were
used as the adaptive weight-control mechanism.

Figure 2 shows the results of the time sig-
natures at the input and at the output of the FIR
filter using both NLMS and RLS adaptive algorithms.

For making a direct graphical comparison be-
tween the performance of the RLS and NLMS algo-
rithms, the quadratic mean error (MSE) results are
shown in Fig. 3. The optimal results for the NLMS
algorithm were obtained using £/=0.09 and a delay L=5.
For the RLS algorithm the optimal results were achieved
using 4=0.999 and a delay of L=5. It was impossible to
find proper parameters in order to achieve the conver-
gence at the output of the filter without using a delay at
the input. From Fig. 3 it is observed that the MSE curves
start at zero, rise to a peak, and then decay toward a
steady-state value. In addition, it can be observed that
the MSE curve for the RLS algorithm has the same
general shape as that for the NLMS algorithm.
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Fig. 2. Time signals at the input and at the output of the FIR filter using the NLMS and RLS adaptive al-
gorithms
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Fig. 3. Results of the quadratic mean error (MSE) for the RLS and NLMS algorithms

It is clear that the RLS algorithm shows
faster convergence than the NLMS algorithm, which
is usual for stationary signals [13]. However, other
authors have reported the opposite when dealing
with transient signals [17]. From the theory, how-
ever, a faster convergence was expected for both
algorithms. This fact can be explained because there
could be some small degree of correlation between
the signal measured at the bearing and the reference
signal, which could result in misadjustment.

In addition, walevet transforms were used
for de-noising the data. The data was transformed
into an orthogonal wavelet basis. Thresholding was
applied to shrink the noisy wavelet coefficients and
then the modified wavelet coefficients were used to
reconstruct the signal by the inverse wavelet trans-
form. Several de-noising schemes were applied, us-
ing several wavelets and thresholding methods. For
the de-noising process, the best results were ob-
tained from the combination of the db4 (Daubechies

025

02

WT output dencised

01 02 03 0.4

o \/ Wi S f\.\/”’lk/‘-»/’ K

1

0.5

Time, s

0.6 0.7 0.8 09 1

Fig. 4. Time signal obtained after using the adaptive filtering with the RLS algorithm and then de-
noised by means of the wavelet transform (WT)
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4) wavelet [ 18] and hard thresholding with an inter-
val-dependent threshold setting.

Figure 4 shows the time signal obtained
after using the adaptive filtering with the RLS algo-
rithm and then de-noised by means of the wavelet
transform (WT). It can be observed that the periodic
details of the signal are now revealed, allowing a
time waveform analysis.

InFig. 5 the results of the fast Fourier transfom
(FFT) spectra are presented. Figure 5(A) shows the
results without using any kind of noise cancellation.
Figure 5(B) shows the results using a wavelet transform
for de-noising the measured signal without using the
adaptive FIR filtering. Finally, Fig. 5(C) presents the
results when wavelet de-noising is applied after the
signal has been enhanced using the adaptive FIR filter.
Clearly, the best results are achieved when both
adaptive filtering and wavelet de-noising techniques
are applied, so the signal-to-noise ratio for all frequency
regions is increased significantly. The upper end of the
high-frequency range remained relatively clean due to
the low levels of extraneous signal components in this
region. Fig. 5(C) clearly shows the presence of a spike
in the very-low-frequency region, which corresponds
to the shaft’s rotational speed (modulation frequency).
Also, a spectral peak around 150 Hz and side-bands
with a spacing of approximately 8 Hz are observed.

From the geometry of the bearing the ball pass
frequency inner race (BPFI) is calculated to be
approximately 144 Hz [3]. This means that the spectral
peak might be indicating some inner race-bearing defect.
The sidebands might be related to the cage frequency.
One way to study this effect would be to change the
rotational velocity of the shaft. Certainly, the resonances
should disappear and only the forcing frequencies
would remain.

3 CONCLUSIONS

The proposed technique constitutes a suc-
cessful application of adaptive filtering combined with
wavelet thresholding for vibration-signal enhance-
ment when the useful vibration signatures become
submerged within the noise and interference from ex-
ternal signals. For this particular application it can be
concluded that the rate of convergence of the RLS
algorithm is faster than that of the NLMS algorithm,
but this is achieved at the expense of a large increase
in computational complexity. In addition, the correct
selection of the analysing wavelet with different prop-
erties is of critical importance for enhancing the fault
features in the wavelet analysis.

When just using wavelet de-noising, sig-
nificant gains in the signal-to-noise ratio are evident
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Fig. 5. Results of the FFT spectra: (4) without noise cancellation; (B) with wavelet de-noising; (C)

Frequency, Hz

with wavelet de-noising combined with adaptive FIR filter
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compared to the direct FFT analysis of the noisy
measured signal. However, more modest improve-
ments are achieved when compared to the applica-
tion of a previous adaptive signal enhancement of
the measured signal. Used in conjunction with a
wavelet de-noising analysis, the technique provides
promising, enhanced diagnostic capabilities. The

extracted signal also provides a sensitive and accu-
rate basis from which the severity of localised roll-
ing-element bearing faults can be analysed.
Further research will investigate the
improvement of the adaptive signal enhancement
system by using several vibration reference sensors
that will be mounted at various locations on the machine.
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