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Abstract
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1 Introduction
A social network comprises a set of participants and the relations among them. Such a
network is naturally modelled by a graph structure, where each participant in the network
is assigned to a vertex and relations are represented by edges connecting pairs of vertices.

Analysis of social network graph data [15, 17], and evolution [9] is a source of valuable
information for numerous research areas, including sociology, psychology, economics and
epidemiology, to mention but a few. The results of such research have shed light on wide
range of problems, from the dynamics of happiness [5], obesity [4] and smoking [12] to
crime investigation [6]. Notwithstanding the benefits that such studies offer in various
areas of life, they also introduce threats to individuals’ privacy. Social networks contain
sensitive personal data whose publication or exchange would compromise their members’
privacy. As an example, consider a graph in which nodes are e-mail addresses and the
edges represent ‘message exchange’ relations. The list of people a person communicates
with is an example of very sensitive data. In order to alleviate privacy risks, it is generally
accepted that access to social network data for scientific research requires a pre-processing
phase to reduce the opportunities for inferring information about individuals. This should
be done in such a way so as to maintain a high quality of the transformed data so that the
analysis can be performed with acceptable accuracy.

Privacy in social networks considers two basic aspects:

• Vertex anonymity: It should not be possible to infer the identity of vertices in the
published anonymized network.

• Edge anonymity: Given two social network participants, it should not be possible to
infer whether an edge exists between their corresponding vertices, i.e., whether they
are related.

Naive anonymization provided by the removal of individuals’ identifiers has been
proven insufficient since background knowledge such as the vertex degree or the
neighborhood subgraph of some participants often permits the identification of many of
the vertices. Therefore, additional privacy measures must be applied. These measures can
be classified into:

• Generalization based techniques: Nodes and edges are first clustered and then
collapsed into supervertices and superedges [2, 8].

• Perturbation based techniques: The original social network is modified by adding
and/or removing vertices and/or edges [3, 10, 19, 20, 21].

Privacy of any anonymization technique depends on the previous knowledge the
attacker is assumed to have. In [10] the attacker is assumed to know the degrees of all
the vertices in the network, and thus the original network is modified by edge additions
and/or deletions until the degree sequence is k-anonymous [14]. A similar approach is
given in [21], which provides k-anonymity even when the attacker has prior knowledge
about the neighborhood subgraph of target vertices.

Recently, information-theoretic models have been proposed, which seek to achieve
robustness against any background structural knowledge of the attacker. The k-
Symmetry [19] and k-Automorphism [20] models aim to protect against “identity
disclosure” (vertex anonymity) by adding vertices and edges until, for each vertex of the
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graph, there exist at least k − 1 other vertices that are structurally equivalent to it. The k-
Isomorphism [3] model also considers edge privacy and generates an anonymous graph
that consists of k disjoint isomorphic subgraphs. Such models impose hard structural
requirements on anonymized graphs that require extensive modifications to the original
graph. From the computational point of view, implementing these security models depends
on the capability to cope with some known NP-hard problems on graphs.

In [16], n-confusion is proposed as a privacy model that generalizes k-anonymity. This
model requires that the set of nodes from the released graph that can correspond to any
given identity has a size larger or equal to n. In this paper, the privacy is analyzed from that
point of view.

1.1 Our approach

Information-theoretic models achieving k-anonymity against any structural knowlege [3,
19, 20] are hard to put into practice and require extensive perturbation of the original graph.
We claim adequate privacy can be achieved by means of simpler random noise techniques.

Structural background knowledge may be of diverse nature. We focus our attention on
two specific parameters: vertex degree and the number of triangles passing through a given
vertex. In [19] it is shown that their combined knowledge provides a high re-identification
power in a trivially anonymized graph. Both parameters are implicit parts of other structural
properties. For instance, knowledge of the neighbourhood subgraph of a vertex implies
knowing its degree and all triangles passing through the vertex. Any anonymization
procedure that perturbs both parameters also impairs re-identification methods based on
more complex structural knowledge implicitly involving the parameters. An additional
important aspect is that both parameters are easy to measure so that they can be part of
computationally efficient anonymization techniques.

We propose a method that first removes the triangles of the graph (by deleting at least
one edge of each triangle) and next randomly adds edges to the resulting graph so as to
create approximately as many triangles as there were in the original graph. This triangle
randomization process makes the information about triangles passing through a vertex less
reliable for matching purposes, while it also perturbs the degree of the vertices in the graph.
At the same time, the global structure of the graph remains very similar to the original one.
It is easy to see that this procedure preserves the connected components since removing
one edge from a triangle can never disconnect the graph and new edges are only added
between vertices that are connected by a path of length 2. Experimental results show that
other graph structure parameters are preserved to a high extent.

1.2 Main contributions

In this paper we propose a novel perturbation technique for preserving privacy in social
networks, based on randomization of the locations of triangles in the graph. Our technique
(1) is simple and can be efficiently implemented on large graphs; (2) provides high level
of privacy, as supported by our experiments; (3) provides a high degree of data utility, as
supported by experimental evidence.

The organisation of the paper is as follows. In the next section we present the
anonymization algorithm and give bounds on the number of triangles in the perturbed
graph. In Section 3 we analyse the privacy of our technique by providing the bounds
for the degree and a number of triangles passing through each vertex of the perturbed
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graph, and using these bounds to measure degree-triangle anonymity. Section 4 presents
our experimental results on real and synthetic data sets, both in terms of utility and privacy.
In Section 5 we give some concluding remarks and directions for future research.

2 Anonymization procedure
We model a social network as an undirected graph G = (V,E), where V and E are the
sets of vertices and edges, respectively. If u, v, w ∈ V and uv, vw,wu ∈ E, then (u, v, w)
is said to be a triangle of G.

Our proposal is a perturbation-based technique consisting of two rounds, where
anonymization is achieved by means of edge removal and addition. Its description is given
in Algorithm 1.

Input: Original graph G = (V,E)
Output: Masked graph G

1 T = NumTriangles(G);
2 while NumTriangles(G) > 0 do
3 (vi, vj , vk) = TakeTriangleAtRandom(G);
4 b = TakeAtRandomFrom({0, 1, 2});
5 if b=0 then
6 RemoveEdge(G, (vj , vk))
7 else if b=1 then
8 RemoveEdge(G, (vi, vk))
9 else

10 RemoveEdge(G, (vi, vj))
11 end
12 end
13 while NumTriangles(G) < T do
14 (vi, vj) = TakeEdgeAtRandom(G);
15 b = TakeAtRandomFrom({0, 1});
16 if b=0 then
17 vk = TakeNeighborAtRandom(G, vi);
18 if vk 6= vj and (vk, vj) /∈ E then
19 AddEdge(G, (vk, vj))
20 end
21 else
22 vk = TakeNeighborAtRandom(G, vj);
23 if vk 6= vi and (vk, vi) /∈ E then
24 AddEdge(G, (vk, vi))
25 end
26 end
27 end
28 return (G)

Algorithm 1: Triangle randomization algorithm
The first round (steps 1-12) is a procedure that randomly selects a triangle of G, then

randomly selects one of its edges and removes it; this is repeated until there are no more
triangles left. Note that the removal of a single edge may cause the deletion of several
triangles. The second round (steps 13-27) adds edges that create one or more triangles
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each.
Note that the number of triangles after the algorithm has finished, T ′, may not equal

the original number T . Since Algorithm 1 terminates when the addition of a single edge
gives a graph with the total number of triangles T ′ ≥ T , it is very likely that this results
in T ′ ≈ T . This fact introduces some additional uncertainty that further obstructs possible
matching attempts.

We next provide a bound on the number of triangles T ′ in the perturbed graph G′.

Proposition 2.1. Let G be a graph that has been perturbed into G′ using Algorithm 1,
and let T ≥ 1 and T ′ be the number of triangles in G and G′, respectively. Then
T ′ < T + ∆′ − 1, where ∆′ is the maximum degree in G′.

Proof. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′), V ′′ = V ′ and E′′ = E′ \ {uv}, where
uv is the very last edge added by the Algorithm 1 (informally, G′′ is the graph obtained
by Algorithm 1 just before the very last edge, say uv, is added), and let T ′′ be the number
of triangles in G′′. Then T ′ = T ′′ + Tuv , where Tuv is the number triangles created by
addition of the edge uv. Then we have Tuv = |N ′′(u) ∩N ′′(v)| ≤ |N ′′(u)| < ∆′, where
N ′′(u) is the neighbourhood of u in G′′. Since T ′′ ≤ T −1 we have T ′ < T +∆′−1.

The previous proposition states that T ′ is at most T + ∆′ − 2. From the proof, this
extremal situation is given when T ′′ = T − 1 and Tuv = |N ′′(u) ∩N ′′(v)| = |N ′′(u)| =
∆′ − 1. We pose the following open problem.

Problem 2.2. Is there a family of graphs G with arbitrarily large values of T that can be
perturbed to graphs G′ such that T ′ = T + ∆′ − 2?

3 Data privacy
In this section, we analyse the privacy of our proposal assuming that the attacker’s
background knowledge comprises the degree and the number of triangles passing through
some vertices. The objective of the proposed method is to disrupt any attempt to obtain
knowledge about the identity of the nodes in the published anonymized network. So
as to evaluate the extent to which this objective is achieved, we need some methods for
measuring it. These are the privacy metrics.

3.1 Degree-triangle variation

Let us consider a vertex u ∈ G, and let us denote its degree, that is, the number of vertices
adjacent to u, as du. The number of triangles passing through u is denoted by tu. For each
vertex u, we consider the pair (du, tu).

When Algorithm 1 is applied to a particular graph G, given a vertex u, its degree-
triangles pair (du, tu) is transformed to another pair (d′u, t

′
u). Next proposition defines the

destiny region of a pair (du, tu), that is, the subset of Z × Z where the pair (d′u, t
′
u) may

take its value.

Proposition 3.1. Let G be a graph that has been perturbed into G′ using Algorithm 1.
Let (du, tu) be the degree-triangles pair of u in G where du ≥ 1, and let (d′u, t

′
u) be the

corresponding pair in G′. Denoting by T and T ′ the number of triangles of G and G′,



466 Ars Math. Contemp. 7 (2014) 461–477

respectively, the following inequalities hold:

max{1, du − tu} ≤ d′u ≤ du + T ;

max{0, d′u − du} ≤ t′u ≤ min

{
T ′,

d′u(d′u − 1)

2

}
.

Proof. In the first round of Algorithm 1, edges of triangles are randomly removed until no
triangles are left in G. For each edge removed from a triangle, the degree of its vertices
is decreased by at most one. Hence, at the end of the first round, (du, tu) is transformed
to (x, 0), where x is an integer that ranges between max{1, du − tu} and du (the edge
adjacent to a vertex of degree one will not be removed since it cannot be part of any
triangle). Since the degree of a vertex cannot decrease during the second round, we obtain
max{1, du − tu} ≤ d′u.

After that, the second round of Algorithm 1 adds edges that create triangles. Each edge
addition to the graph increases the degree of a vertex by at most one. Since the second
round iterates at most T times, we get the degree of u cannot be more than du + T . At
the end, the number of triangles passing through a vertex may be at most T ′. Taking into
account that a vertex of degree d cannot be part of more than d(d−1)

2 triangles, we get

t′u ≤ min
{
T ′, d

′
u(d

′
u−1)
2

}
.

A vertex u with d′u > du implies that its degree has increased during the triangle
addition phase. In this phase, each time u receives a new edge, the number of triangles
passing through it also increases by at least one. This implies that d′u − du ≤ t′u. Since t′u
cannot take a negative value, we obtain max{0, d′u − du} ≤ t′u.

(du, tu)

t = d(d−1)
2

t = d− du

T
T ′

triangles (t)

du − tu du du + T

degree (d)

Figure 1: Destiny region Du of (du, tu) whose bounds are given in Proposition 3.1.

There are some special cases where the destiny region of a vertex can be better
estimated. For instance, Algorithm 1 does not perturb isolated vertices (du = 0) nor
connected components with just two vertices. Such simple structures are very common
in social network graphs, and classical k-anonymity is directly provided on them when
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such isomorphic structures appear k times. In general, given a pair (du, tu) from a graph
containing T triangles, we can compute the bounds of its destiny region Du. The size of
this region depends on T and T ′. Our experiments have shown that in practice T ≈ T ′ so
that its size is O(T 2). The shape of Du is illustrated in Figure 1.

Not every point in Du corresponds to a vertex u with (du, tu), as illustrated by the
following example.

Example:

Let G = (V,E) be a graph with V = {a, b, c, d, e} and E = {ab, ae, bc, be, cd, de} (see
Figure 2). G contains one triangle (a, b, e). Regarding vertex a, we have (da, ta) = (2, 1).

a(2,1)

b(3,1)

c(2,0)

d(2,0)

e(3,1)

a′(1,0)

b′(2,1)

c′(3,2)

d′(2,1)

e′(4,2)

Figure 2: Graph G (left) and its anonymized graph G′ (right) generated by Algorithm 1. In
this case T = 1 and T ′ = 2. Numbers in brackets indicate the degree-triangles pairs.

From Proposition 3.1 we have Da = {(1, 0), (2, 0), (2, 1), (3, 1), (3, 2)}. Algorithm 1
will first eliminate the triangle by randomly removing one of its edges. It will result in
(da, ta) = (1, 0) with probability 2

3 (either ab or ae are removed) and (da, ta) = (2, 0)
(edge be is removed) with probability 1

3 . Next, one edge will be added so as to create a new
triangle. It can be seen that at the end (da, ta) becomes (2, 1) with probability 2

5 ; (1, 0)
with probability 1

3 ; and (3, 1) or (2, 0) with probability 2
15 . Moreover, T ′ may become 2

in some cases (this is the case in G′), but the tuple (3, 2) ∈ Da is not possible for vertex a
starting from its original value (2, 1).

3.2 Measuring degree-triangle confusion

Let us consider an adversary whose goal is to re-identify a vertex u in an anonymized graph
G′ assuming her knowledge on u is given by the pair (du, tu), that is, the adversary knows
the number of relationships of u and the number of ‘three party friends’ that u belongs to.

Confusion is provided as long as the adversary has some level of uncertainty about the
vertices of G′ that may correspond to u. The set of candidate vertices is given by the set of
vertices in G′ that belong to the destiny region of u, namely Du. The adversary does not
know the value of T (number of triangles in the original graph G), but a good estimate is
given by T ≈ T ′. If just one vertex ofG′ falls inDu, then uwill be re-identified resulting in
the corresponding privacy compromise. The desirable situation is that in which the destiny
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region contains a large number of vertices, thus ensuring a high level of confusion. Let us
define

MG,G′(u) = |{v ∈ V | (d′v, t′v) ∈ Du}|,

as a local measure of confusion on u once G′ has been released. Although not all vertices
in Du have the same probability of corresponding to u (as shown in the previous example),
identifying u is not an easy task for an adversary with a limited knowledge of the original
graph G. Hence, we propose the following confusion measure.

Definition 3.2 (Degree-triangle confusion). Let G = (V,E) and G′ = (V,E′) be two
graphs with a common set of vertices V . We say that (G,G′) is a k-degree-triangle
confusing pair of graphs if MG,G′(u) ≥ k for every u ∈ V . That is, every vertex in
G has at least k matching candidate vertices in G′.

Note that the largest k satisfying MG,G′(u) ≥ k for each u ∈ V corresponds
to minu∈V {MG,G′(u)}. In the example of Figure 2, MG,G′(b) = 4 since vertices
{b′, c′, d′, e′} fall in the destiny region of b (see Figure 3). For the rest of the vertices,
we have MG,G′(a) = 4, MG,G′(c) = MG,G′(d) = 3 and MG,G′(e) = 4. Hence,
(G,G′) is 3-degree-triangle confusing.

Since k = minu∈V {MG,G′(u)}, it usually happens that the destiny region of most
vertices contains more than k vertices. In order to provide more information about
degree-triangle confusion, we will also analyze the median and the maximum values in
{MG,G′(u) | u ∈ V }. The median value will provide the number of matching candidates
for a “typical” vertex, meanwhile the maximum one corresponds to the worst case for an
attacker.

1

T ′ = 2

triangles (t)

1 2 3 4

degree (d)

Figure 3: Destiny region of vertex b. Vertices of G′ are represented by little circles (tuple
(2, 1) appears twice since it corresponds to vertices b′ and d′). Vertex a′, (1, 0), is out of
Db.
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4 Experimental results
The proposed anonymization procedure has been implemented in Python1 using the
Networkx2 v1.7 graph library and tested over real and synthetic social network data.

4.1 Graph data sets

The following real data sets and synthetic graph generators have been employed in our
experiments:

• The Coauthors graph is generated from bibliographic data available at the collection
of Computer Science Bibliographies3, where each author is assigned a vertex and
edges are built from co-authorship relations. In our experiments, a graph with 11510
vertices and 11135 edges has been built. Data sets constructed in the same way have
been previously used in [10, 20].

• The Condmat graph represents the collaboration network of scientists posting
preprints on the condensed matter archive at www.arxiv.org. This version is
based on preprints posted between January 1, 1995 and June 30, 2003. This graph
is composed of 31163 vertices and 120029 edges. It has been used by several
authors as a test-bed for community-finding algorithms for large networks (see, for
example,[13]).

• The Holme-Kim model produces scale-free synthetic graphs in which the probability
P (k) that a vertex interacts with k other vertices follows a power law distribution,
that is, P (k) ∼ C ·k−γ . Many real world graphs have a power law degree distribution
with 2 ≤ γ ≤ 4, as noted in [1]. The graphs generated by this model have γ ≈ 2.9
which is considered a good approximation to many real world graphs. This model
extends the well known Barabasi-Albert model (see [1]) including an extra step
referred to as triangle formation step. In the Barabasi-Albert model, an empty graph
with m vertices is first generated. After that, the construction algorithm iterates by
adding a degree m vertex v at each step. Each edge of v is attached to an existing
vertex with a probability proportional to its degree (this is the preferential attachment
(PA) step). The Holme-Kim model incorporates an additional phase: for each edge
between v and w added in the PA step, add one more edge from v to a randomly
chosen neighbor of w with a given probability p. As a consequence, Holme-Kim
graphs range between low-clustered graphs for p = 0 (Barabasi-Albert graphs) and
highly-clustered ones for p = 1 (see [7]).

• The Watts-Strogatz model was inspired by the small-world phenomenon which is
based on the notion that every person in the world is connected to anyone else
through a chain of six mutual acquaintances at most (also known as “six degrees of
separation”). Starting from a ring lattice on n vertices, where vertices have degree k,
this model takes each edge and rewires it with probability p. This model interpolates
between regularity (p = 0) and total disorder (p = 1). For 0 < p < 1 we obtain
highly clustered graphs having a small diameter, as it happens in many real world
graphs (see [18]).

1http://python.org
2http://networkx.lanl.gov
3http://liinwww.ira.uka.de/bibliography
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4.2 Graph utility measures

The method proposed in this paper introduces some changes to a graph prior to its release.
In order to quantify the extent to which the original graph has been modified, we compute
some statistical network measures and see how they are affected as a result of masking.
These are the utility metrics.

The following utility measures have been considered:

• Number of links (size),

• Number of triangles,

• Average clustering coefficient,

• Average shortest path length (Av. SPL),

• Minimum, median and maximum vertex degree.

The (local) clustering coefficient cu of a vertex u measures how close the neighbors of
u are to being a clique, that is, cu = 2tu

du(du−1) when du ≥ 2, and cu = 0 otherwise. Given
an order n graph G = (V,E), the average clustering coefficient is,

1

n

∑
u∈V

cu.

Besides, the average shortest path length is,

1

n(n− 1)

∑
u,v∈V

dist(u, v),

where dist(u, v) is the distance (length of a shortest path) between u and v. The other
parameters are self-explanatory.

4.3 Experiments on real data sets

Algorithm 1 has been run ten times over the Coauthors and Condmat graphs. The median
computation time has been 2.03 and 4.19 minutes, respectively.

Utility measures

Utility measures of the original graphs and their anonymized versions are shown in Table 1.
As can be seen, the metrics of a graph and its perturbed versions exhibit a high correlation.
After masking, the size is slightly increased while the median number of triangles is
preserved although in some experiments it resulted in a slightly larger value (no more than
four additional triangles were created in all the experiments). Degree parameters are well
preserved in both graphs too. The average clustering and average SPL have been the most
affected parameters in the Condmat graph. Figure 4 shows the distribution of (du, tu)
pairs for both graphs. Focusing our attention on the Condmat graph, it can be seen that
vertices with high degree have less trianges after anonymization. As a consequence, the
Av. clustering is reduced.
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Coauthors Condmat
Original Anonymized Original Anonymized

(median) (median)
Size 11135 12040 120029 179244

Triangles 6395 6395 232994 232994
Av. Clustering 0.4591 0.4206 0.6488 0.47217

Av. SPL 3.3543 3.207 5.2995 4.2047
Min. Degree 0 0 0 0

Median Degree 2 2 25 27.5
Max. Degree 73 74 202 211

Table 1: Metrics of Coauthors and Condmat graphs before and after anonymization.
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Figure 4: Degree-triangles distribution for coauthors and condmat graphs before (symbol
×) and after (symbol ◦) anonymization.

Degree-triangle privacy

The value of MG,G′(u) has been measured individually for every vertex u after each
experiment.

The Coauthors graph has 11510 vertices: 2574 of them are isolated vertices and 1982
are located in connected components with two vertices. These vertices are not affected
by Algorithm 1 but they are indistinguishable in terms of re-identification. The remaining
6954 vertices are masked by Algorithm 1. Table 2 summarizes the results. As can be seen,
the minimum value forMG,G′(u) is 20, that is, (G,G′) is a 20-degree-triangle confusing
pair of graphs. Nevertheless, a ‘typical’ vertex has an elevated amount of vertices (6947)
in its destiny region (more than 60% of vertices).

The Condmat graph contains 703 isolated vertices and 830 vertices belonging to
connected components with two vertices. The remaining 29630 vertices have been masked
by Algorithm 1. The destiny region of a ‘typical’ vertex contains 29630 vertices (95.1% of
vertices). The smallest destiny region for any node includes 7198 vertices, that is, 24.3% of
vertices (see Table 2). In this example, the degree-triangle confusion parameter is k = 703
which comes from isolated vertices.
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Values in {MG,G′(u) | u ∈ V }
vertices u such that Coauthors Condmat

(du, tu) satisfies (11510 vertices) (31163 vertices)
Min. Med. Max. Min. Med. Max.

du = 0 2574 2574 2574 703 703 703
du = 1 1982 1982 1982 830 830 830

du > 1 or tu > 1 20 6947 6954 7198 29630 29630

Table 2: Minimum, median and maximum values of {MG,G′(u) | u ∈ V } for Coauthors
and Condmat graphs. The degree-triangle confusion measure for each graph is the
minimum value in the table.

4.4 Experiments over synthetic graphs

Experiments on synthetic graphs have been performed over graphs with 105 vertices. For
each model, we have generated ten random graphs with parameter p taking the following
values: 0, 0.2, 0.4, 0.6, 0.8, 1. Regarding Watts-Strogatz graphs, they have been generated
from cubic graphs so that the resulting graphs have a minimum degree equal to three, except
for p = 0, where the resulting graph is regular of degree 6. In all the cases, the generator
provided by the Networkx library has been employed. Each graph from the test set has
been masked ten times and the utility and privacy metrics have been computed (average
values are analyzed).

Utility measures

The computation time of Algorithm 1 on both models is depicted in the left graphic of
Figure 5. It can be seen that the computation time is strongly correlated with the number
of triangles of the graph (right graphic of Figure 5). For a Watts-Strogatz (WS) graph of
order 105 containing 300000 triangles, Algorithm 1 takes a little bit more than 11 hours.
When p = 0.5, both models generate graphs with a close number of triangles (50000) and
a similar computation time (around 4 hours) is required for both models. The number of
triangles in the anonymized graphs almost equals the amount of triangles of the original
ones, as it can be seen from the overlapping lines in the right graphic of Figure 5. More
specifically, the maximum difference of T ′ − T has been 6, which is a negligible quantity
for graphs containing 300000 triangles.

The number of edges of the generated Watts-Strogatz (WS) graphs has been 3 · 105

in all the cases. The amount of edges after anonymization has been increased in all the
cases, except for p = 0, where the anonymized graph contains 299591 edges (a 0.001%
difference). The maximum difference appears for p = 0.2, where the corresponding
anonymized graph has 322052 edges. Nevertheless, the maximum difference is about
7.35% of edges. Regarding Holme-Kim (HK) graphs, their size is close to 2 · 105. The
HK anonymized graphs contain more edges than the corresponding value for the original
ones, but again the maximum relative difference (for p = 0.6) is 2.07% (See Figure 6).

Degree parameters variation appears in Figure 7. It can be seen that the maximum
difference of WS graphs appears for p = 0.2, where the maximum degree has been doubled
(from 12 to 24), the median degree increases from 5.5 to 7.5 and the minimum degree
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Figure 5: Computation time (left) and number of triangles for Watts-Strogatz (WS) and
Holme-Kim (HK) graphs with 105 vertices, as a function of parameter p, before and after
anonymization (right).

decreases from 3 to 1. Regarding HK graphs, degree parameters have been less affected.

The clustering coefficients in both models have been preserved to a high extent (see
Figure 8). In WS graphs, the difference tends to zero as p → 1. Besides, we observe the
reverse behaviour in the HK model where the maximum difference appears at p = 1 where
anonymized HK graphs are less clustered.

Degree-Triangle privacy

The minimum, median and maximum values of the degree-triangle confusion measure have
been computed in both models. The results are shown in Figure 9 and Table 3. For
Holme-Kim graphs, the privacy has been compromised for p = 0, 0.4 and 0.6, where
min{MG,G′(u) | u ∈ V } = 1, that is, there is at least one re-identifiable vertex in
these cases. Holme-Kim graphs have a few vertices with high degree containing a small
number of triangles. These vertices are difficult to mask, specially when the number of
triangles T of the whole graph is also low. Masking data sets with outliers is known to
be a thorny issue [11]. Prior to releasing a masked graph containing such nodes, some
additional measures such as removing them or adding some additional noise should be
taken. Nevertheless, a ‘typical’ (median) vertex contains an acceptable number of vertices
in its destiny region, as Table 3 shows.

Regarding the Watts-Strogatz graphs, we have min{MG,G′(u) | u ∈ V } = 1 just for
p = 1. WS graphs have a low number of triangles (only 20 in our experiment) for p = 1.
As a consequence, Algorithm 1 produces an insignificant modification to WS graphs so that
vertices with a high degree are probably not affected and become easily re-identificable in
the masked graph. Nevertheless, a ‘typical’ vertex contains a high number of vertices into
its destiny region (7276), as Table 3 and the dashed line in left graphic of Figure 9 shows.
As could be expected, these examples show the presented algorithm is not adequate for
graphs having a reduced amount of triangles.
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Figure 6: Number of edges for Watts-Strogatz (WS) (left) and Holme-Kim (HK) (right)
graphs with 105 vertices, as a function of parameter p, before and after anonymization.

Values in {MG,G′(u) | u ∈ V }
Parameter p Watts-Strogatz Holme-Kim

Min. Med. Max. Min. Med. Max.
0 105 105 105 1 13 70087

0.2 12368 90486 105 2 320 91885
0.4 271 59702 99990 1 968 95642
0.6 43 36453 98897 1 2278 99163
0.8 6 19392 87726 23 6489 99906
1.0 1 7276 44654 86101 99999 105

Table 3: Minimum, median and maximum values in {MG,G′(u) | u ∈ V } for Watts-
Strogatz (WS) and Holme-Kim (HK) graphs.

5 Conclusion and future work
In this paper a new anonymization method for social network graph data has been
presented. The method is composed of two differentiated phases. The first phase iterates
by randomly removing one edge of a randomly selected triangle in the graph until no
triangles are left. In the second phase, the removed triangles are randomly reallocated
in the graph. Due to its simplicity and low cost of the required operations, the method
can be efficiently implemented in an algorithm whose running time grows linearly with the
amount of triangles.

Empirical experiments have shown the method provides a high privacy level. Regarding
data quality, experiments have shown structural parameters are better preserved in graphs
with a larger homogeneity among vertices.

Some open issues that will be addressed in future research are:

• Quantify the probability distribution of the degree-triangles pair in the destiny region.

• Find techniques to increase structural parameters preservation in non-homogeneous
graphs.
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Figure 7: Maximum, median and minimum degree for Watts-Strogatz (WS) and Holme-
Kim (HK) graphs with 105 vertices, as a function of parameter p, before and after
anonymization.
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