
ELEKTROTEHNIŠKI VESTNIK 78(4): 223–228, 2011
ENGLISH EDITION

SimpleFSM - a domain-specific language for SIP
communication systems - Part I: Language description

Edin Pjanić, Amer Hasanović
Faculty of Electrical Engineering, University of Tuzla,
Franjevačka 2, Tuzla 75000, Bosnia and Herzegovina
E-mail: {edin.pjanic, amer.hasanovic}@untz.ba

Abstract. This two-part paper demonstrates an application of metaprogramming techniques to the development
of domain specific languages (DSL) using the Ruby programming language and its application to SIP
communication systems. Part I proposes the SimpleFSM, a DSL for finite-state machines (FSM), together
with simple application examples. Part II proposes an approach to the SIP application development using the
developed DSL in order to speed up and simplify the development process.

Keywords: Domain-specific languages, Session-Initiation Protocol, finite-state machine, metaprogramming,
Ruby, telecom applications.

1 INTRODUCTION

Communication applications involving different devices
(computers, personal digital assistants, mobile phones)
and exchanging voice, video and data are becoming
increasingly popular. Skype, Google Talk, Google Wave
and Microsoft Live are all examples of such services.
These services utilize various communication protocols,
either standard or proprietary. The most widely used
communication protocol, especially in the telecom in-
dustry, is the Session Initiation Protocol (SIP) protocol.

SIP is a text protocol standardized in RFC 3261 [1]
with a syntax similar to the Hypertext Transfer Proto-
col (HTTP) developed and used for establishing and
managing multimedia IP sessions. To support the SIP
application development, Java Community Process re-
leased the SIP Servlet API specified in JSR116 [2] and
JSR289 [3]. The SIP servlets are typically deployed
to Java enterprise application servers (JEE), such as
SailFin [4] or Mobicents [5].

The SIP Servlet API specification is modeled to
mimic the HTTP Servlet API. This offers an easy
transition to the SIP application development for a large
community of web application developers already famil-
iar with the HTTP servlet model. However, HTTP and
SIP protocols are different in essence. While HTTP is a
stateless protocol based on the request/response model,
SIP is a stateful protocol that can involve multiple call
flows between different call parties originating from SIP
and web clients. Utilizing only the SIP Servlet API to
handle such call flows could become cumbersome.

In order to speed up and simplify the SIP application

Received October 5, 2011
Accepted October 24, 2011

development, various approaches have been proposed.
One such approach is based on combining the SIP
Servlet API and ECharts [6], an open-source domain-
specific language (DSL) [7] for modeling finite-state
machines (FSM).

ECharts uses a textual syntax, supports hierarchical
concurrent state machines, machine reuse and multiple
transition priority levels. ECharts is a hosted language,
which means that ECharts relies on the host language
statements embedded in the machine definition. The
ECharts code therefore has to be translated to Java in
order to be compiled and deployed to a Java EE server.
ECharts solves many of the problems related to handling
of complex SIP state machines. However, the fact that it
has to be compiled twice, first to get the corresponding
Java code then to get the bytecode, makes it difficult to
use it within short and rapid development cycles found
in modern software development practices. Furthermore,
a new language has to be adopted in order to develop
SIP applications based on this programming model.

The web development community has recently
adopted several DSLs based on dynamic program-
ming languages. Examples of such DSLs are Ruby on
Rails [8] based on Ruby, and Django [9] based on
Python. These DSLs have been proven effective in short
and rapid application development cycles [10]. In order
to speed up and simplify the development process of
telecom applications, it would be beneficial to design
a DSL for SIP communication systems based on a
dynamic programming language. The concepts of this
aproach were proposed in [11].

This two-part paper proposes a domain specific lan-
guage for FSM using the Ruby programming language
and its application to SIP communication systems. The

224 EDIN PJANIĆ, AMER HASANOVIĆ

developed DSL, called SimpleFSM, is implemented as
an internal DSL using an embedded implementation
pattern [12], [13], [14] and is primarily designed for SIP
communication systems, but can be used for modeling
an FSM for any domain. It can be combined with SIP
servlets to produce SIP applications entirely in the Ruby
programming language.

Part I of this two-part paper focuses on the devel-
opment techniques used to design and implement the
SimpleFSM DSL. Section 2 gives a brief overview of
some important features found in the Ruby programming
language and its Java implementation, i.e. JRuby. The
most important metaprogramming features of Ruby are
discussed in Section 3. Section 4 describes SimpleFSM,
a simple but complete Ruby DSL for FSM and gives
some application examples. The techniques used to
implement the FSM DSL are described in Section 5.

Part II [15] presents the application of the SimpleFSM
DSL to SIP communication systems by combining it
with SIP servlets. By utilyzing the SimpleFSM in our
demo application we show that this DSL can be effec-
tively used to simplify development of a SIP application
with complex call flows.

2 RUBY AND JRUBY

Ruby is a dynamic language usually grouped with
scripting languages, such as Smalltalk and Python. It
has some powerful features, missing in C++ and Java,
such as:

• full object orientation, since everything in Ruby is
an object,

• dynamic typing, dynamic classes and objects that
can change during runtime,

• native support for regular expressions and contain-
ers, and

• support for metaprogramming in order to develop
DSLs.

The reference implementation of Ruby, written by
Yukihiro Matz Matsumoto, is an open-source software
developed in C and is currently in version 1.9. An-
other open-source implementation is called JRuby. It is
fully compatible with the reference implementation and
implemented in Java on top of Java Virtual Machine
(JVM). Compared to the C implementation of Ruby,
JRuby has the following advantages:

• better performance on standard Ruby benchmarks,
• kernel threading support via Java threads,
• native Unicode support,
• integration with Java libraries, since any Java class

inside JRuby is a valid Ruby class, and
• easier path to getting Ruby in the enterprise.
Furthermore, JRuby fully supports the Ruby’s

metaprogramming model. Hence, the existing DSLs
developed with that programming model, such as Ruby

on Rails and Sinatra web DSLs, Active Record and
DataMapper database DSLs and others, are automati-
cally available in JRuby.

3 DSL SUPPORT IN RUBY

Ruby is a dynamically typed programming lan-
guage [16]. In the context of creating DSLs, this feature
is very important considering that classes and objects
can be dynamically created and modified during runtime
with custom methods and members depending on the
context of invocation. Ruby methods can accept and
return any number and type of arguments.

Furthermore, Ruby supports sending code blocks to
methods as arguments. A block is similar to an anony-
mous function or a chunk of code. The method can
execute the received block of code when required, but
in the context where the block was created. This is often
referred to as a closure. Ruby also supports procs and
lambdas, which are similar to code blocks, but can be
manipulated as objects.

Finally, special methods, such as eval,
class_eval, instance_eval, send etc.,
are very important for metaprogramming support in
Ruby. The following section gives an overview of how
these concepts can be utilized to develop a DSL for
FSM in Ruby.

4 SIMPLEFSM - A DSL FOR MODELLING
FINITE-STATE MACHINES

Traditionally, in programming languages, such as C,
C++ or Java, FSMs are implemented using switch state-
ments or complex object structures. Metaprogramming
techniques can be utilized to develop a descriptive,
powerful, clear and simple DSL to support FSM pro-
gramming concepts. In this section one such DSL is
described. The entire implementation is less than 300
lines of code. However, only the most important parts
are analyzed in this section.

The developed DSL can be used to model an FSM for
any domain, including complex communication applica-
tions based on the SIP protocol. The DSL was developed
in order to support the following requirements:

• unlimited number of states can be used,
• unlimited number of transitions can be specified,
• state transition can be conditional,
• an action can be invoked on entering a state and/or

exiting a state,
• an action can be executed on an event, and
• events can receive an arbitrary number of argu-

ments which are sent to all related actions during
the event processing.

FSM actions are modeled using Ruby methods. This
makes the FSM model compact and clear. The en-

SIMPLEFSM - A DOMAIN SPECIFIC LANGUAGE FOR SIP COMMUNICATION SYSTEMS - PART I 225

tire DSL is implemented in a Ruby module called
SimpleFSM.

To utilize the DSL in a new class, the DSL module
should be included into the class. The state machine,
that is implemented in the class, is defined within the
block of code after the fsm keyword, as shown in the
example code given in Listing 1.

Listing 1 Example of a Worker FSM model
class Worker

include SimpleFSM
fsm do
state :resting
state :working,

:enter => :ckeck_in,
:exit => :check_out

transitions_for :resting do
event :work, :new => :working

end
transitions_for :working do

event :rest, :new => :resting
end

end

private
def check_in(args)
#- further code omitted -#

end

def check_out(args)
#-further code omitted-#

end
end

Listing 1 defines a class named Worker whose state
diagram is depicted in Fig. 1. Inside the block named
fsm a custom language is used to define the FSM. Two
states, :resting and :working, are defined using
the state statement. The statement accepts optional
parameters, :enter and :exit. These parameters
can be used to specify actions that are executed when
entering or leaving the state that is being defined.
Hence, for the Worker class, methods check_in and
check_out are executed respectively, every time the
state :working is entered or left.

working

enter: check_in
exit: check_out

resting

workrest

Figure 1. Worker state diagram

FSM state transitions are defined within the
transitions_for statement. The arbitrary number
of transitions for any state can be specified using the
event statement. For the Worker class, the two
transitions were defined. When the class is in the
:resting state, event :work triggers a transition to
the :working state. Similarly, event :rest fires a

transition from :working to the :resting state. The
FSM remains idle when an event is received which is not
specified in the transition_for statement related to
the current state.

The following is the full list of parameters
that the event specification accepts inside the
transition_for statement:

• :new specifies the destination state for the transi-
tion. The parameter is mandatory. If :new is nil,
event is triggered but the transition is not performed
and the FSM remains in the same state.

• :guard specifies the Boolean function for check-
ing the transition’s condition. The parameter is
optional. The event is triggered and transition is
performed only if this method returns true.

• :do specifies the method to be called when
the event is fired. This parameter is optional. If
:guard is specified, then the :do method is called
only if the :guard method returns true.

Since Ruby programmers are acustomed to differ-
ent styles of code writing, two aditional versions of
transitions_for specification are supported, both
without using the do-end block. The transitions from
Listing 1 can be written in the following forms:

transitions_for :resting,
event(:work, :new => :working)

transitions_for :working,
event(:rest, :new => :resting)

or
transitions_for :resting,
{event => :work, :new => :working}

transitions_for :working,
{event => :rest, :new => :resting}

States specified as :new in any
transitions_for statement are created if they
are not explicitly defined using the state statement.
However, if :exit and :enter actions for the state
are required the state statement must be used. States
specified in the fsm block will become available in
the objects that are instances of the class with the fsm
specification. For every event in the fsm block, an
object will get a method with the same name, which
can be used to generate the event. The following code
is used to demonstrate these features.
foo=Worker.new
foo.run
foo.work
foo.rest

After the object foo is created, the transition to the
initial state is triggered by invoking the run method.
The initial state is the first state defined in the fsm block.
After that, the FSM within the object is ready to accept
events. By calling the methods work and rest on the
object foo, events :work and :rest are generated
and the incorporated FSM is manipulated accordingly.

226 EDIN PJANIĆ, AMER HASANOVIĆ

4.1 Example - Vending machine
In order to demonstrate the more advanced features

of the DSL, a vending machine model is used. The
vending machine accepts coins and serves several types
of beverages. For any beverage, a price can be set. When
a user inserts a coin into the machine, the information
about the credit amount and available beverages is
shown. The user can select a beverage based on the
inserted amount of money, or press the cancel button
to retrieve the remaining credit.

The described behavior can be modeled by an FSM
with three states and four events, which is shown in
Fig. 2.

The state diagram from Fig. 2 is implemented in the
Vending class. The code segment of this class that
implements the FSM is shown in the Fig. 2 listing
and two selected private methods of the class that are
invoked during FSM transitions are shown in Listing 2.
Beverage prices and valid coins are specified in instance
variables @prices and @valid_coins.

The Vending class can be utilized in any scenario a
typical vending machine would be used. The following
code demonstrates one such use case:
machine = Vending.new
machine.run
machine.coin 1
machine.coin ’strange coin’
machine.coin 1, 2, 0.5
machine.select :cappuccino
machine.cancel

In the above code, a vending machine object is instan-
tiated, started and finally, the five events are generated
in a sequence.

Events defined in the fsm block can receive an
arbitrary number of arguments. In this example, the
coin event method receives the inserted coin values
and the select event method receives a parameter
that specifies the selected beverage type. The same
arguments used to call these methods are passed to the
related :guard, :do, :exit and :enter methods,
as specified in transition_for statements. These
arguments are always packed in a single array.

The first event in the use case is invoked by call-
ing the coin method of the machine object with
1 as an argument. The FSM facility evaluates transi-
tions in lines 15 and 16 of the Fig. 2 listing. The
:guard method of the first transition, coin_valid?,
is called with a single element array as an argument.
As shown in Listing 2, for every element of args
array, coin_valid? method checks if it matches any
element of the @valid_coins array. The value true
is returned only if all elements are matched. Otherwise,
false is returned. The :guard method of the second
transition, coin_not_valid?, checks if there are
invalid coins in the argument array. Since 1 is evaluated
as a valid coin by the :guard method coin_valid?,
the transition condition specified in line 15 of the Fig. 2

listing is satisfied and this transition is performed. The
:do method update_credit associated with this
transition is also executed with the same argument.
For each element of the received args array, method
update_credit increments the credit amount if the
element is either of a Fixnum or a Float type, as
shown in Listing 2. After that, the actual transition to
the state :credit is performed. Upon entering the state
:credit, the msg_menu :enter method is executed
as defined in the :credit state definition.

The second event in the sequence will trigger the
transition specified in line 23, because the inserted
’strange coin’ is not a valid coin according to
the coin_not_valid? guard condition. In this case
the FSM remains in the same state without invoking
:enter and :exit methods.

The third coin event is invoked with three values.
This simulates successive insertion of three coins. Since
the coins are valid, the appropriate transition in this case
is the one specified in line 22 of the Fig. 2 listing.
The method update_credit is called again and the
credit is incremented to 4.5 . This time the FSM reenters
the same state and executes the specified :exit and
:enter methods.

Next, invoking the select event method, with
:cappuccino as an argument, triggers the transition
in line 25. During the transition to the destination
state :serving, the :do method prepare_drink
is invoked. The :enter method of the :serving
state, serve_drink, decrements the credit amount for
the beverage price by calling the update_credit
method, prints a message and generates the :served
event by calling the served method, as shown in
Listing 2. After that, the new transition to the state
:credit is performed.

Finally, the cancel event is invoked, the :do
method return_credit is called and the FSM tran-

Listing 2 Selected private methods of the Vending class
def update_credit args

if args
args.each do |v|
if v.is_a?(Fixnum) or v.is_a?(Float)
@credit += v

end
end

end
msg_credit args

end

def coin_valid? args
if args
args.all? do |coin|
@valid_coins.any?{|v| v == coin}

end
else
false

end
end

SIMPLEFSM - A DOMAIN SPECIFIC LANGUAGE FOR SIP COMMUNICATION SYSTEMS - PART I 227

 1 class Vending
 2 include SimpleFSM
 3 def initialize
 4 @credit ||= 0
 5 @prices = { :coffee => 1, :tea => 1, :cappuccino => 2}
 6 @valid_coins = [0.5, 1, 2, 5]
 7 end
 8
 9 fsm do
10 state :idle
11 state :credit, :enter => :msg_menu
12 state :serving, :enter => :serve_drink
13
14 transitions_for :idle do
15 event :coin, :new => :credit, :guard => :coin_valid?, :do => :update_credit
16 event :coin, :new => nil, :guard => :coin_not_valid?, :do => :return_coin
17 event :select, :new => nil, :do => :msg_not_enough
18 end
19
20 transitions_for :credit do
21 event :cancel, :new => :idle, :do => :return_credit
22 event :coin, :new => :credit, :guard => :coin_valid?, :do => :update_credit
23 event :coin, :new => nil, :guard => :coin_not_valid?, :do => :return_coin
24 event :select, :new => nil, :guard => :not_enough_credit?, :do => :msg_not_enough
25 event :select, :new => :serving, :guard => :enough_credit?, :do => :prepare_drink
26 end
27
28 transitions_for :serving do
29 event :served, :new => :credit, :guard => :has_credit?
30 event :served, :new => :idle, :guard => :no_credit?
31 end
32
33 end
34
35 private
36 #-further code omitted-#
37 end

select

[not_enough_credit?]
/ msg_not_enough

credit

enter: msg_credit

idle

select
/ msg_not_enough

serving

enter: serve_drink

cancel / return_credit

served [has_credit?]

coin [coin_not_valid?] / return_coin

coin [coin_valid?] / update_coin

coin [coin_valid?] / update_coin

coin [coin_not_valid?] / return_coin

select [enough_credit?] / prepare_drink

served [no_credit?]

Figure 2. The vending machine class implemented using the developed DSL and its state diagram

sitions to the :idle state.
In this section we have presented the basic principles

of FSM modeling and implementation in Ruby using
the SimpleFSM DSL. In Part II of this two part paper,
we apply the described principles to SIP communication
system and give a more complex example, where we
combine SimpleFSM DSL with Java SIP Servlets, in
order to develop a practical click to call application.

5 DSL IMPLEMENTATION DETAILS

The developed DSL uses the pure Ruby syntax. Fur-
thermore, it does not require compilation or specialized
parsers. When a class includes the SimpleFSM module,
Ruby injects into the class: class variables, instance
methods and class methods that are used to model
the FSM. The injected class methods can be called
against the class, while the instance methods can be
invoked on class objects. The most important injected
class method is the fsm method. This method is usually
invoked inside the targeting class after inclusion of
the SimpleFSM module. The fsm method expects to
receive a code block which is used to describe the
FSM. The statements of the FSM language inside the
fsm code block, such as: state, transitions_for
and event, in reality are class methods which, when
invoked, manipulate the injected class variables of the
targeting class.

When a class includes the SimpleFSM module that
is specified in Listing 3, the included method of the
module is executed with the target class being passed as
the klass parameter. By invoking the class_eval
method on the klass object, two important tasks are

performed. First, the variables: @@states, @@events
and @@transitions, used to store the model data
about the states, events and transitions, are injected
as class variables into the class. Second, the meth-

Listing 3 Part of code of the SimpleFSM module
module SimpleFSM

def self.included klass
klass.class_eval do
@@states ||= []
@@events ||= []
@@transitions ||= {}

def self.fsm (&block)
instance_eval(&block)

Event-methods definition
@@events.each do |ev|

Kernel.send :define_method,
ev do |*args|

#-further code omitted-#
end

end
end

def self.state(sname, *data)
#-further code omitted-#

end
def self.transitions_for(sname, *trans)
#-further code omitted-#

end
def self.event(ev, args)
#-further code omitted-#

end
#-further code omitted-#

end
end
#-further code omitted-#

end

228 EDIN PJANIĆ, AMER HASANOVIĆ

ods: fsm, state, transition_for and event are
constructed and injected into the target class as class
methods. After this operation is performed, the class
recognizes the keywords of the FSM meta-language,
most importantly the fsm keyword.

When the fsm keyword is encountered inside the
class, the fsm class method gets invoked. The method
receives a code block that describes the desired FSM be-
havior. Listing 3 shows that the fsm method first passes
the received code block to instance_eval, which
then executes the received block within the context of the
class. When this happens, the class methods, that were
previously injected during the SimpleFSM module
inclusion, are invoked in order to setup the injected
class variables according to the model definition. Finally,
by utilizing the Kernel.send method, one instance
method is dynamicaly created for every event definition
in the model. Event names were previously stored in
the @@events class variable of the Array type. The
constructed event methods can receive arbitrary number
of arguments that are mapped to the args Array pa-
rameter inside the event method. Event methods hold the
required logic, so that when invoked on an instance of
the class, they check and perform transitions according
to the statements specified in the transitions_for
definitions. There are other supporting class methods and
instance methods that are also injected into the class, but
are not shown in Listing 3 for simplicity.

6 CONCLUSION

This paper demonstrates a metaprogramming approach
for domain specific language development within the
Ruby programming language and its application to SIP
communication systems.

The described approach is used to develop a DSL for
FSM, which is convenient for modeling FSMs for any
domain, including complex communication applications
based on the SIP protocol.

The DSL has simple syntax for modeling FSMs. The
FSM is modeled by defining states and transitions that
can be conditional and can be performed on certain
events. The DSL supports definition of actions that can
be executed during transitions or on entering and exiting
states. These actions are modeled as methods inside the
class the FSM model is embedded in.

The DSL has a pure Ruby syntax and does not require
parser or other facility in order to be used in Ruby
applications. Moreover, the DSL is developed as an
internal DSL, which means that it becomes an integral
part of the language.

In Part II of this two-part paper, we demonstrate an
approach to development of SIP applications using the
SimpleFSM DSL.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley and E. Schooler. SIP: Session
Initiation Protocol, RFC 3261 (Proposed Standard), IETF, up-
dated by RFCs 3265, 3853, 4320, 4916, 5393, 5621

[2] A. Kristensen. SIP Servlet API, JSR 116
[3] Y. Cosmadopoulos and M. Kulkarni. SIP Servlet v1.1, JSR 289
[4] SailFin Project Website, https://sailfin.dev.java.net (1.9.2011)
[5] Mobicents Website, http://www.mobicents.org (1.9.2011)
[6] T. M. Smith and G. W. Bond. ECharts for SIP Servlets: a

statemachine programming environment for VoIP applications,
In: Proc. IPTComm International Conference on Principles,
Systems and Applications of IP Telecomunications (IPTComm
07), pp. 89-98, 2007.

[7] A. van Deursen, P. Klint, and J. Visser. Domain-specific lan-
guages: an annotated bibliography, ACM SIGPLAN Notices, Vol.
35, pp. 26-36, 2000.

[8] M. Bachle and P. Kirchberg, Ruby on Rails, IEEE Software, Vol.
24, pp. 105-108, 2007.

[9] The Django framework Website, http://www.djangoproject.com
(1.9.2011)

[10] V. Viswanathan. Rapid Web Application Development: A Ruby
on Rails Tutorial, IEEE Software, Vol. 25, no. 6, pp. 98-106,
2008.

[11] E. Pjanić, A. Hasanović, N. Suljanović, A. Mujčić and M. Zajc.
Metaprogramming approaches to finite state machine modeling
for SIP applications, In: Proc. MELECON 2010 - 15th IEEE
Mediterranean Electrotechnical Conference, pp. 592-596, 2010.

[12] M. Mernik, J. Heering and A. M. Sloane. When and how to
develop domain-specific languages, ACM Comput. Surv., Vol. 37,
no. 4, pp. 316-344, 2005.

[13] J. Cuadrado and J. Molina. A model-based approach to families
of embedded domain-specific languages, IEEE Transactions on
Software Engineering, Vol. 35, no. 6, pp. 825-840, 2009.

[14] S. Gunther, M. Haupt and M. Splieth. Agile engineering of
internal domain-specific languages with dynamic programming
languages, In: Proc. 2010 Fifth International Conference on
Software Engineering Advances (ICSEA), pp. 162 -168, 2010.

[15] E. Pjanić and Hasanović. SimpleFSM - a domain specific lan-
guage for SIP communication systems - Part II: Application to
SIP Servlets, Elektrotehnički vestnik, (submited for publication).

[16] L. Tratt. Dynamically Typed Languages, Advances in Computers,
Vol. 77, pp. 149-184., 2009.

Edin Pjanić received the M.Sc. degree from the University of Tuzla,
Bosnia and Herzegovina, in 2005. He is currently working toward
the Ph.D. degree at the same university. He is a teaching assistant at
the University of Tuzla. His research interests include rapid web and
telecom applications development, dynamic programming languages
and domain specific languages.

Amer Hasanović was born in Bosnia and Herzegovina. He received
the Diplomirani Inženjer Elektrotehnike degree from the University
of Tuzla, Bosnia and Herzegovina, in 1999, and MS (2001) and PhD
(2004) from West Virginia University, Morgantown, USA. He joined
faculty of Electrical Engineering, University of Tuzla in September
2004 where he is now an Associate Professor. He has been working
in the field of robust decentralized control and component oriented
software design for large scale systems simulations. His current
research interest is in the field of telecom and web applications
development based on dynamic programming languages.

