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Abstract

This paper presents a novel approach to the determination 
of the critical distribution and limit values of three-
dimensional passive soil pressures acting on flexible walls 
following the upper-bound method within the framework 
of the limit-analysis theory. The method of limit analysis 
with a set of three-dimensional kinematically admissible 
hyperbolic translational failure mechanisms is used to 
determine the critical distribution of the passive pressures 
along the retaining structure’s height. The intensity of 
the passive pressures is gradually determined with the 
mentioned translational failure mechanisms in the top-
down direction. Thus, the critical distribution, the trust 
point and the resultant of the passive pressures that can be 
activated at the limit state for the chosen kinematic model 
are obtained. The results of the analyses show that the total 
sum of passive pressures, considering the critical distribu-
tion, is lower than the comparable values published in 
the literature. Furthermore, the trust point of the passive 
pressure resultant is independent of the friction between 
the retaining structures and the soil.
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1 INTRODUCTION

In geotechnical practice, the results of three-dimensional 
analyses of passive earth pressures are used to design 
some anchor systems, to ensure the stability of the foun-
dations of arching and bridging structures, to design 
embedded caissons and other retaining structures with 
spaced out vertical supporting elements, etc.

It is only logical that research into passive earth pres-
sures is frequently presented in the literature. The major 
part of the research deals with 2D stability analyses, 
while much less attention is paid to 3D analyses. The 
magnitudes of the earth pressures for the active and 
passive limit states can be determined by different 
methods: the limit-equilibrium method (Terzaghi 1943), 
the slip-line method (Sokolovski 1965) and the limit-
analysis method (Chen 1975). In the limit-equilibrium 
and slip-line methods the static equilibrium and failure 
conditions are considered, while the expected move-
ments of the retaining structures are not directly consid-
ered in the analysis. Generally, a limit analysis serves for 
determining the upper  and lower bounds of the true 
collapse load by taking into account the supposed move-
ments. The results of the analyses can differ essentially, 
because they depend on the chosen failure mechanism 
or the kinematic model of the limit state. Irrespective of 
the chosen procedure and the method used, the consid-
ered static or kinematic model should be in equilibrium 
when the limit state is reached.

Researchers have used many different methods to 
determine earth pressures, among them Coulomb 
(1776), Brinch Hansen (1953), Janbu (1957), Lee and 
Herington (1972), Shields and Tolunay (1973), Kérisel 
and Absi (1990), Kumar and Subba Rao (1997), Soubra 
and Regenass (2000), Soubra (2000), Škrabl and Macuh 
(2005) and Vrecl-Kojc and Škrabl (2007).

The above-cited, published research mainly considers 
the 2D problem of passive earth pressures. The results of 
3D analyses have been presented only by Blum (1932), 
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and to a restricted extent. Extensive 3D analyses were 
treated by Ovesen (1964), who presented the procedure 
for determining the bearing capacity of different anchor 
plates based on 2D solutions of passive earth pressures 
and the results of several experimental studies in 3D 
conditions.

Soubra and Regenass (2000) published the results of an 
analysis for determining the 3D passive pressure accord-
ing to the limit-state analysis using the upper-bound 
theorem for the translational kinematic admissible 
multi-block failure mechanism. Duncan and Mokwa 
(2001) treated the procedures for determining the bear-
ing capacities for anchor plates and presented the results 
of several experimental studies. Škrabl and Macuh 
(2005) presented the procedure for a spatial passive pres-
sure analysis based on the hyperbolic kinematic admis-
sible failure mechanism and the upper-bound theorem.

The authors of all the above-mentioned works consid-
ered the presumed distribution of passive pressure along 
the retaining wall height (a triangular distribution for 
the determination of the self-weight contribution, γ , 
and a rectangular distribution for the determination of 
the surcharge contribution, q). 

This paper considers the distribution of passive earth 
pressures along the retaining structure height. The 
passive pressures distribution is determined numerically 
with simultaneous analyses of twenty different kinemati-
cally admissible translational spatial failure mechanisms.

The results of the analyses show that the resultants of the 
passive pressures obtained by the presented, proposed 
procedure give values, lower than those published in the 
literature for almost all cases; only for the case when
δ = 0° and ϕ ≤ 30° are the differences minimal, where the 
values are a little lower or equal to the values presented 
by Soubra and Regenass (2000), and Škrabl and Macuh 
(2005).

The application of the upper-bound theorem ensures 
that the actual values of the passive soil pressures cannot 
be higher than the values presented in the continuation 
of this paper.

2 ASSUMPTIONS AND LIMITATIONS

It is a characteristic of passive earth pressures under 3D 
conditions that they increase as the width of the wall 
decreases. The value depends on the ground properties 
and the height/width relationship of the wall. It can be 
several times higher than the value for 2D cases. The 

presented geomechanical analysis is based on the follow-
ing suppositions and limitations:

- the structure discussed is a vertical, flexible wall with 
an area of b·h (b = width; h = height) and a horizon-
tal backfill,

- the distribution of the passive pressures (pp) along 
the wall height is defined by:

         p e y y e q e cp p pq pc= ⋅ ⋅ −( )+ ⋅ + ⋅γ γ 0          (1)

 where factors epγ , epq and epc define the distribution 
of the passive pressures along the height of the verti-
cal wall, and y and y0 are the coordinates (see Fig. 1),

- the resulting value of the passive earth pressure is 
defined by:

   P K h b K c h b K q h bp p pc pq= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅γ γ* * *
2

2
        (2)

 where K pγ
* , K pc

*  and K pq
*  are comparative coef-

ficients of the passive earth pressure due to the 
soil-weight influence, the cohesion influence, and 
the surcharge influence, respectively, for a standard, 
assumed passive pressure distribution,

- the value of the factor epγ  at the top of the wall 
(y=y0) is equal to 0, its appurtenant values epq and
 epc are determined with a two-dimensional model 
(b/h = ∞) considering the boundary condition for 
the 3D kinematic admissible failure mechanism,

- the discussed translational failure mechanism is 
bounded by the log spiral in the region of the retai-
ning wall, and by the hyperbolic surfaces defined by 
the envelope of the connected hyperbolic half-cones 
at the lateral sides,

- the lateral surfaces coincide with the margins of the 
considered retaining wall,

- the backfill is homogenous, the soil is isotropic and 
considered as a Coulomb material with the associa-
tive flow rule obeying Hill’s maximal work principle. 

3 THE UPPER- AND LOWER-BOUND 
THEOREMS

The upper-bound theorem ensures that the rate of 
the work due to the external forces of the kinematic 
systems in equilibrium is smaller than, or equal to, the 
rate of dissipated internal energy for all kinematically 
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admissible velocity fields. The kinematically admissible 
velocity fields obey strain-velocity compatibility condi-
tions and velocity boundary conditions, as well as the 
flow rule of the considered materials. The lower-bound 
theorem for rigid-plastic material using the associative 
flow rule enables an evaluation of the lower-bound theo-
rem of the true passive earth pressures for each statically 
admissible stress field that satisfies the equilibrium and 
stress boundary conditions, and does not violate the 
yield criteria anywhere. The true value of the failure load 
is bracketed between both limit values with the expected 
deviations, which are usually acceptable in geotechnical 
design.

The presented research considers only the upper-bound 
theorem of the limit analysis to determine the 3D 
passive earth pressures using the kinematically admis-
sible velocity field. The solution of the 3D passive earth 
pressure problem according to the kinematic approach 
is equivalent to the solution of the limit-equilibrium 
approach (Mroz and Drescher 1969; Michalowski 1989; 
Salençon 1990; Drescher and Detournary 1993). The aim 
of the presented research is to improve on the known 
lowest values of the upper-bound solutions presented 
in the literature (Soubra and Regenass 2000, Škrabl and 
Macuh 2005) using a more exacting passive pressure 
distribution.

Figure 1. Cross-section of the failure mechanism.

4 TRANSLATIONAL 3D FAILURE 
MECHANISM

The applied 3D translational failure mechanism repre-
sents an extension of the plane slip surface in the shape 
of a log spiral (see Fig. 1). A very similar ‘friction cone’ 
mechanism in the upper-bound analysis of a 3D bear-
ing-capacity problem was used by Michalowski (2001). 

Every point along the retaining wall height (1-0, see Fig. 
1) is given an exactly defined and kinematically admis-
sible hyperbolic friction cone. The flexionally curved 
axis and the cross-section of the shaft surface with the 
plane r-ϑ  (see Fig. 1) are:

r ro
∗ ∗ ∗= ⋅ −cosh(( )tan )ϑ ϑ φ         (3)

r r ed
∗ ∗

−= ⋅ ∗( ) tanϑ ϑ φ         (4)

r r eu
∗ ∗

− −= ⋅ ( ) tan*ϑ ϑ φ         (5).

The radius and the centre of the arbitrary half cone in 
the r-z plane are:

R r* * *sinh ( )tan= ⋅ −[ ]ϑ ϑ φ         (6)

where R* , r* and ϑ* denote the cone diameter in the 
cross-section of the plane ϑ-z, and the polar coordinates 
of the apex of the hyperbolic half-cone.
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All hyperbolic half-cones whose infinite set represents 
the lateral surface of the failure mechanism are also 
kinematically admissible when the additional geometry 
condition is satisfied:

ϑ π φ0 2≤ −[ ]/         (7)

which ensures that there exists no half-cone with its apex 
on the vertical wall (1-0, see Fig. 2) that could intersect 
the vertical wall under point ( r0 0,ϑ ).

Since all the hyperbolic half-cones are kinematically 
admissible, then using the additional condition (7) the 
lateral surface, which is the envelope of the infinite set of 
all half-cones defined by expressions (8), (9) and (10), is 
also kinematically admissible.

r r rε ϑ ϑ φ ϑ ϑ φ ε
* * * * * *cosh ( )tan sinh ( )tan sin( )= −[ ]− −[ ]    (8),

z rε ϑ ϑ φ ε
* * * *sinh ( )tan cos( )= −[ ]        (9),

ε
ϑ ϑ φ φ ϑ

ϑ* *
* *arcsin( / ) arcsin

tanh ( )tan tan tan
tanh (

= =
−[ ]+

+
dR dr

1 −−[ ]

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪ϑ φ φ ϑ* *)tan tan tan
(10).

Considering  r r* = 1  and ϑ ϑ* = 1  , expressions (8), (9) 
and (10) define the coordinates of the envelope on the 
leading half-cone. 

The coordinate zf  of the lateral failure surface can be 
expressed:

Figure 2. The scheme of the spatial failure mechanism.

                                 ∀ ≥ ∧ ≤r
x

r r0
1sin
;

ϑ ε
  

= = −[ ]z z rf sinh ( )tan cos( )* * * *ϑ ϑ φ εε

                            
∀ ≥ ∧ ≤ −r r r r eε

ϑ ϑ φ
1

1
1

( ) tan ;
  

        
= = −[ ]− −z z r rr r rf ϑ ϑ ϑ φ1 1

22( , ) cosh ( )tan 11
2

5 WORK EQUATION

The considered failure mechanism on the width b is 
limited on the left by a vertical wall, on the right by a 
curved surface in the shape of a log spiral, and above by 
an even surface on which the surcharge can act. Both 
lateral surfaces are defined by the curved surfaces of 
the leading half-cone and the envelope of all the other 
hyperbolic half-cones (see Fig. 2).

At each point on the so-formed failure surface the 
normal vector of the surface encloses with the plane 
r-z shear angle ϕ and also defines the direction of the 
normal stress to the surface (see Fig. 3).

dN dA dT dN dQ dN dT= = = +σ φφ φ φ, tan , 2 2
  (13) 

where σ and A denote the normal stress and the area of 
the lateral surface, and N and Tϕ denote the resultant 

(11)

(12)
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values of the normal and the shear-stress components on 
the spatially formed failure surface.

The shear cones on the failure surface define all the 
real or admissible directions of the forces dTϕ and dQϕ 
(see Fig. 3). According to the upper-bound theorem 
the analyses should consider those directions of shear-
strength activation that are kinematically admissible and 
ensure the highest possible value of the passive pressure 
for the chosen failure mechanism. 

The considered spatially formed failure body is certainly 
symmetrical in the symmetry plane r-ϑ that runs 
through the centre of the rectangular wall surface, and 
should be in equilibrium, considering all the forces that 
act on it.

Certainly, all the forces dQϕ act in the plane r-z, and so 
they do not cause any momentum around the z axis, 

Figure 3. The forces on the failure surface.

which runs through the coordinate system’s origin.

Like in the 2D analyses, the equilibrium condition of all 
the momentums around the z axis is chosen for the work 
equation. From Fig. 3 it is evident that the maximum 
possible passive pressures arise when the shear force dTϕ 
acts at each point of the failure surface in a direction 
that is defined by the cross-section of the normal plane 
through the centre of the hyperbolic half-cone and the 
tangent plane to the failure plane through the considered 
point.

The coefficients of the individual parts of the passive 
pressure epγ and epq (let us call them the coefficients of 
passive pressure distribution) in the 3D problem are not 
constant along the wall height h. Certainly, they increase 
non-linearly with increased ratios of b/h. If γ ≠ 0, ϕ ≠ 0, 
δ ≠ 0 and q = c = 0 the work equation can be given in the 
following integral form:

e
x x

dpγ

ϑ

ϑ

ϑ ϑ
δ ϑ

ϑ
δ
ϑ

ϑ(
tan tan

)(cos cos
sin

sin
sin

) (0
3

0
3

0
3 2

1

0

1 2∫ − − − + zz b r drd

z b r

f
x

r e

f

/ )sin

( / )sin

/sin

( )tan

ϑ ϑ

ϑ

ϑϑ

ϑ ϑ ϑ φ

2

2

0

1
1

1

0

1 2

−

+

−

∫∫

ddrd
y

r e

ϑ
ϑϑ

ϑ ϑ ϑ φ

=

−

∫∫ 0
0

1
1

0

2

/ cos

( )tan (14)
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And when γ = 0, ϕ ≠ 0, δ ≠ 0, q ≠ 0, and c = 0 it can be 
given in the following integral form: 

e x d z b ypq f0
2

3 2 0
2

1

0

1 2
ϑ

ϑ
δ ϑ

ϑ
δ
ϑ

ϑ
ϑ

∫ − − +(cos cos
sin

sin
sin

) ( / ) sin
cos33

0

2

0
ϑ

ϑ
ϑ

ϑ

∫ =d   (15) 

The unknown functions epγ = epγ (ϕ, δ, b/h) and 
epq = epq (ϕ, δ, b/h), which are the minimal possible solu-
tions of the integral expressions (14) and (15) for all real 
ratios b/h, define the distribution of the passive pressures 
along the wall height.

The minimum values of epγ and epq can be determined 
numerically for an individual in advance for known 
ratios of b/h. The geometry model (height h = 1, unit 
weight γ = 1 and ratio b/h) and the soil characteristics 
(shear angle ϕ and the friction between the soil and the 
wall δ) were used in our analysis.

6 NUMERICAL ANALYSIS AND 
RESULTS

The numerical resolving of the integral equations (14) 
and (15) is performed by dividing the analysed region in 
the x-y plane into an arbitrary number of triangular and 
rectangular finite elements. These are suitable for Gauss’s 
numerical integration as well as for the calculation of 
the integral over the area of the plane y = y0 , where one-
dimensional Gauss’s numerical integration elements (see 
Fig. 4) are used. 

At point y = y0 and when b/h = ∞, the factor of the 
passive pressure distribution is epγ = 0, and the appurte-
nant value of the factor of the passive pressure distribu-
tion epq is determined with a 2D model considering the 
geometry condition (7).

The values of the passive pressure distribution factors 
epγ and epq are determined gradually from the top of the 
wall downwards for different ratios of b/h (b/h = ∞, 100, 
75, 50, 25, 20, 16 down to 0.25), as can be seen in Fig. 4. 
It is assumed in the analysis that the passive pressures 
increase linearly between the individual calculation 
points upwards of the wall height. For each calculating 
point along the wall height there is an exactly deter-
mined spatial failure surface, which ensures the smallest 
possible value of the factors of the passive pressure 
distribution, epγ and epq , for the chosen ratio b/h.

In step m of the passive pressure determination, the 
minimum values of the factors epγ

0  to ep
m

γ
−1  and epq

0  to epq
m−1   

are known from the preceding steps. The appurtenant 
known momentums can be determined with the expres-
sions:

f e y y
y y y y y

xp
m

p
i

i
i i

i

m
i i i

γ γ δ− + −

=

−
− += −

− + +
−∑1

0
1 1

1

1
1 1

2 3
( )

( )
cos

( )
00 sinδ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (16),

f e
y y y y

x

e
y

pq
m

pq

pq
i i

−

+

=
− +

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

−

1 0 1 0 1 0
0

1

2
2

3
( ) cos

( )
sin

(

δ δ

yy y y y
xi

i

m
i i i−

=

−
− +∑
+ +

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

1

1
1 1

02 3
)

cos
( )

sinδ δ
  (17),

Figure 4. Passive pressure distribution and the scheme of the numerical integration.
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f
y y y y

xp
m m m m m
γ δ δ=

− +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −( )
cos

( )
sin1 1

02
2

3
        (18),

f
y y y y

xpq
m m m m m=

− +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− −( )
cos

( )
sin1 1

02
2

3
δ δ         (19),

where f p
m
γ
−1  and f pq

m−1  define the momentums of the 
already known values of the passive pressures, and 
f p

m
γ  and f pq

m , the momentums of the passive pressures 
for ep

m
γ =1   and epq

m =1 , according to the origin of the 
coordinate system x-y-z. The appurtenant momentum of 
the unit weight of the ground (γ = 1) and the surcharge 
(q = 1), above the failure surface are determined using 
expressions (20) and (21).

g A w z b rp xy
j

k

o

j

n

jk f
jk

jk jkγ ϑ=− +
==
∑∑

11

1 2( / ) sin         (20)

where Axy
j   denotes the area of the triangular or rect-

angular element j in the plane x-y (see Fig. 4), w jk  is 

the weight coefficient for Gauss’s integration point k, 
z f

jk  is the coordinate z on the envelope of the hyperbolic 
half-cones, rjk  is the radius of the integration point k on 
element j in the plane x-y, and ϑjk  is the appurtenant 
angle of the radius rjk . In the numerical integration of 
the considered problem in plane x-y, 514 rectangular 
and 42 triangular elements with 9 and 6 Gauss’s integra-
tion points were used (see Fig. 4). 

g L w z b rpq xy
l

k

r

l

p

lk f
lk

lk lk=− +
==
∑∑

11

1 2( / ) sinϑ         (21),

where Lxy
l  denotes the length of a one-dimensional 

integration element l  on the ground surface y = y0 in 
the plane x-y (see Fig. 4), wlk  is the weight coefficient 
for Gauss’s integration point k, z f

lk  is the coordinate z of 
the integration point on the envelope of the hyperbolic 
half-cones in the plane y = y0 , rlk  is the radius of the 
integration point k on element l in the plane x-y, and ϑlk  

Figure 5. Set of spatial failure surfaces.
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is the appurtenant angle of the radius rlk . In the numeri-
cal integration of the considered problem in the plane, 
42 one-dimensional integration elements with 3 Gauss’s 
integration points were used.

The unknown values of the passive pressure distribution 
factors are determined using:

e
g f

f
e

g f
fp

m p p
m

p
m pq

m pq pq
m

pq
mγ

γ γ

γ

=
−

=
−− −1 1

;         (22),

In the numerical procedure determining the minimal 
value of the passive pressure distribution factors ep

m
γ  and 

epq
m  , the starting failure surface in the optimization 

procedure is determined with the initial values of the 
parameters ϑ1  and ϑ2 , which should satisfy the follow-
ing boundary conditions:

x y0 0 00 0 2≥ ≥ ≥ −, , ( / )ϑ π φ         (23).

Mathematical optimization was used to determine the 
unknown parameters ϑ1  and ϑ2 of the critical failure 
surface, which defines, in the considered calculation 
step, the minimal value of the unknown factor of the 
passive pressure distribution, ep

m
γ  and epq

m , at the toe of 
the wall.

The Solver Optimization Tool (Microsoft Excel) with the 
generalized-reduced-gradient method was used in the 
minimization process.

The result of the gradual determination of the passive 
pressure distribution factors from the top of the wall 
downwards are the numerical values of the factors 
epγ and epq , and a set of spatial failure surfaces that are 
presented in Fig. 5 for the case when ϕ = 40° and δ/ϕ = 1.

The values of the factors of the passive pressure distribu-
tion, epγ and epq , for different values of ϕ , δ/ϕ  and  b/h 
are presented in Figs. 6 and 7. 

The values of the comparative passive pressure coeffi-
cients, K pγ

*  and K pq
* , and the distances of the handling 

points of the resultants, aγ , and aq , from the surface of 
the backfill soil are presented in Tables 1 and 2.

The values of the handling points are given for individ-
ual shear angles and given ratios b/h, where the numeri-
cally obtained results for different shear ratios δ/ϕ do not 
deviate by more than 0.5% from their average value.

The appurtenant values of the substitutive coefficient and 
the distances of the resultants from the surface of the back-
fill soil are determined with the expressions (24) to (27).

Figure 6. The factors of passive pressure distribution epγ for different values of  ϕ , δ/ϕ and b/h.
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In the analyses of the spatial stability problems the 
theorem of corresponding states (Caquot and Kérisel 
1948, Soubra and Regenass 2000) is still valid. The 
comparative coefficient of the passive earth pressure 
due to cohesion ( K pc

* ) can be determined by using the 
comparative coefficient of passive earth pressure due to 
the surcharge ( K pq

* ).

Figure 7. The factors of passive pressure distribution epq for different values of  ϕ , δ/ϕ and b/h.

K e y y y y e y y y yp p
i

i i i
i

m

p
m

m m mγ γ γ
* ( ( )( ) ( )( )= − − + − −+ −

=

−

−∑ 0 1 1
1

1

0 1         (24)

a e y y y y y y y y

e

p
i

i i i
i

m
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p

γ γ

γ

= − − + + − ++ −
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−

− +∑( ( )( )( )/ )0 1 1
1

1

1 1 03 3
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m m m m my y y y y y y( )( )( )/− − + −− −0 1 1 02 3 3

        (25)

K e y y e y y e y ypq pq pq
i

i i
i

m

pq
m

m m
* ( )/ ( ( )/ ( )= − + − + −+ −

=

−

−∑0
1 0 1 1
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1

12 2 //2         (26)

a e y y y y e y y y y yq pq pq
i

i i
i

m

i i i= − − + − + ++ −
=

−

−∑0
1 0 1 0 1 1

1

1

16( )( )/ ( ( )( ++

− −

− +

− + −

1 0

1 1 0

3 6

2 3 6

y

e y y y y ypq
m

m m m m

)/ )

( )( )/
        (27)

K
K

pc
pq*
* /cos( )

tan( )
=

−1 δφ

φ
        (28)

The values of K*pc for the purely cohesive soil (c > 0 and 
ϕ = 0) with different ratios of ca/c and with a centre of 
gravity of epc the pressures measured from the top of the 
wall are given in Table 3.
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Table 1. Values of K*pγ for different values of the parameters ϕ, δ and b/h with 
the centre of gravity of the epγ pressures measured from the top of the wall

b/h
ϕ

(deg)
δ/ϕ center of 

gravity0 1/3 1/2 1/3 1

0.25

15 3.6279 4.1527 4.3864 4.6365 5.1458 0.712
20 5.3933 6.4350 7.0004 7.5984 8.8877 0.712
25 7.9261 10.0117 11.2456 12.6106 15.7108 0.725
30 11.8711 15.9410 18.5946 21.7237 29.5912 0.730
35 20.0486 27.6728 33.3372 40.5337 60.4985 0.734
40 43.0671 57.3693 69.2222 85.9233 139.1175 0.738
45 116.4677 149.3839 177.6761 220.0038 375.5334 0.741

0.5

15 2.6711 3.0260 3.2012 3.3775 3.7313 0.699
20 3.7238 4.4311 4.8126 5.2130 6.0592 0.706
25 5.2089 6.5721 7.3711 8.2474 10.2079 0.712
30 7.4363 9.9335 11.6437 13.5710 18.3323 0.718
35 11.9863 16.5711 19.9663 24.2567 36.0095 0.724
40 24.6495 32.8951 39.7426 49.3782 79.7705 0.729
45 64.2513 82.5392 98.8063 121.9540 208.4111 0.734

1

15 2.1892 2.4647 2.6014 2.7383 3.0092 0.687
20 2.8862 3.4211 3.7071 4.0047 4.6270 0.693
25 3.8439 4.8396 5.4156 6.0425 7.4308 0.698
30 5.8439 7.0201 8.1663 9.4902 12.6793 0.704
35 7.9191 11.0232 13.2817 16.1123 23.6998 0.710
40 15.4367 20.6573 25.0023 31.1047 50.0679 0.716
45 38.1335 49.1298 58.6535 72.9298 124.8263 0.723

2

15 1.8479 2.1801 2.2961 2.4114 2.6380 0.678
20 2.4651 2.9099 3.1455 3.3890 3.8937 0.683
25 3.1579 3.9637 4.4240 4.9214 6.0131 0.687
30 4.1095 5.5370 6.4305 7.4462 9.8331 0.691
35 5.9395 8.2498 9.9397 12.0356 17.5319 0.696
40 10.8269 14.5378 17.6323 21.9686 35.1861 0.702
45 25.0634 32.4150 38.8084 48.4179 83.0027 0.707

5

15 1.7980 2.0064 2.1091 2.2105 2.4084 0.672
20 2.2106 2.5986 2.8021 3.0112 3.4411 0.674
25 2.7423 3.4307 3.8182 4.2341 5.1395 0.676
30 3.4441 4.6399 5.3717 6.1970 8.1113 0.679
35 4.7302 6.5872 7.9347 9.5873 13.8072 0.682
40 8.0584 10.8652 13.2127 16.4877 26.2246 0.686
45 17.2046 22.3721 26.8925 33.7108 57.8700 0.691

10

15 1.7483 1.9478 2.0456 2.1422 2.3290 0.670
20 2.1253 2.4935 2.6857 2.8827 3.2865 0.671
25 2.6034 3.2508 3.6129 4.0005 4.8411 0.672
30 3.2223 4.3370 5.0128 5.7721 7.5262 0.673
35 4.3270 6.0335 7.2664 8.7689 12.5571 0.675
40 7.1344 9.6407 11.7401 14.6610 23.2244 0.677
45 14.5765 19.0171 22.9160 28.8085 49.4740 0.681

2D

15 1.6984 1.8886 1.9817 2.0736 2.2518 0.667
20 2.0396 2.3876 2.5686 2.7541 3.1334 0.667
25 2.4644 3.0696 3.4067 3.7670 4.5479 0.667
30 3.0000 4.0321 4.6525 5.3492 6.9591 0.667
35 3.6901 5.4448 6.5993 7.9724 11.3870 0.667
40 4.5989 7.6224 9.8346 12.6613 20.3076 0.667
45 5.8284 11.1974 15.6822 21.9144 40.6109 0.667
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Table 2. Values of K*pq for different values of the parameters ϕ, δ and b/h with 
the centre of gravity of the epq pressures measured from the top of the wall

b/h
ϕ

(deg)
δ/ϕ center of 

gravity0 1/3 1/2 2/3 1

0.25

15 4.5768 5.2900 5.6081 5.9280 6.5309 0.609
20 7.0283 8.4840 9.2341 9.9907 11.5050 0.621
25 10.7112 13.5556 15.1308 16.8518 20.5128 0.630
30 16.2767 21.6076 25.0415 28.8780 37.6802 0.637
35 26.9519 36.2461 42.7186 51.2493 72.8142 0.642
40 52.6835 68.3932 81.3285 98.5627 151.3097 0.646
45 116.5809 149.1632 176.9264 217.2506 349.3207 0.650

0.5

15 3.1488 3.5825 3.8054 4.0025 4.4002 0.582
20 4.5447 5.4631 5.9108 6.3815 7.3299 0.596
25 6.5956 8.3312 9.2904 10.3297 12.5242 0.608
30 9.6385 12.8412 14.8706 17.1286 22.2471 0.618
35 15.4244 20.8022 24.6109 29.5968 41.8059 0.625
40 29.1399 37.9850 45.2969 55.1065 84.9392 0.632
45 62.8494 88.6238 95.8063 118.0501 191.9431 0.638

1

15 2.4316 2.7450 2.9041 3.0424 3.3246 0.555
20 3.3004 3.9297 4.2434 4.5715 5.2181 0.569
25 4.5344 5.7128 6.3552 7.0497 8.4886 0.581
30 6.3194 8.4512 9.7630 11.2191 14.4578 0.592
35 9.6528 13.0803 15.5514 18.7062 26.1839 0.601
40 17.3562 22.7883 27.2809 33.3902 51.4902 0.610
45 35.9646 46.3732 55.2288 68.4366 112.5270 0.619

2

15 2.0703 2.3184 2.4440 2.5563 2.7758 0.534
20 2.6753 3.1633 3.4047 3.6552 4.1404 0.545
25 3.5038 4.3975 4.8749 5.3812 6.4281 0.555
30 4.6598 6.2408 7.1807 8.2196 10.4893 0.565
35 6.7730 9.2194 11.0219 13.1920 18.2517 0.575
40 11.4902 15.1828 18.2730 22.5430 34.4973 0.585
45 22.5171 29.1956 34.9820 43.6475 72.5151 0.598

5

15 1.8513 2.0600 2.1639 2.2564 2.4323 0.516
20 2.2974 2.6965 2.8917 3.0896 3.4692 0.522
25 2.8854 3.5970 3.9688 4.3579 5.1504 0.529
30 3.6641 4.9014 5.6070 6.3809 8.0320 0.536
35 5.0419 6.9032 8.2543 9.7985 13.3404 0.543
40 7.9825 10.6136 12.8683 16.0172 23.9640 0.551
45 14.4186 18.8594 22.8019 28.7468 47.8074 0.560

10

15 1.7775 1.9726 2.0678 2.1531 2.3132 0.509
20 2.1705 2.5382 2.7169 2.8958 3.2362 0.512
25 2.6793 3.3254 3.6605 4.0075 4.7070 0.516
30 3.3322 4.4441 5.0746 5.7474 7.1781 0.521
35 4.4630 3.1341 7.3062 8.6307 11.6245 0.526
40 6.7878 9.0886 11.0668 13.7561 20.3108 0.531
45 11.7060 15.4077 18.7082 23.7798 39.2151 0.538

2D

15 1.6984 1.8836 1.9685 2.0050 2.1969 0.500
20 2.0369 2.3770 2.5400 2.7022 3.0107 0.500
25 2.4644 3.0468 3.3495 3.6573 4.2786 0.500
30 3.0000 3.9871 4.5357 5.1180 6.3569 0.500
35 3.6903 5.3540 6.3516 7.4707 9.9784 0.500
40 4.5990 7.4305 9.3077 11.5115 16.7775 0.500
45 5.8284 10.7914 14.4498 19.0443 30.7851 0.500
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Table 3. Values of K*pc for  ϕ = 0° and different values b/h and ca/c with center of 
gravity of epc pressures measured from the top of the wall.

b/h
K*pc center of 

gravityca/c = 0 ca/c = 1/3 ca/c = 1/2 ca/c = 1/3 ca/c = 1
0.25 6.9282 7.4720 7.7231 7.9631 8.4156 0.6051
0.50 4.5691 5.0257 5.2356 5.4287 5.7541 0.5854
1.00 3.3302 3.7248 3.8942 4.0439 4.2737 0.5611
2.00 2.6822 3.0314 3.1760 3.3024 3.4925 0.5391
5.00 2.2783 2.5938 2.7217 2.8321 2.9997 0.5192

10.00 2.1402 2.4427 2.5646 2.6693 2.8249 0.5104

Table 4. Comparison of K*pγ and K*pq with Kpγ and Kpq for different values ϕ, δ/ϕ and b/h.

ϕ (˚) δ/ϕ
Kpγ  (Soubra and Regenass 2000) Kpγ  (Škrabl and Macuh 2005) K*pγ (proposed)

b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0

20
0.5 5.04 3.85 2.75 4.92 3.76 2.69 4.81 3.71 2.69
1.0 6.99 5.14 3.35 6.35 4.77 3.30 6.06 4.63 3.29

40
0.5 53.74 31.22 14.75 41.55 25.92 11.85 39.74 25.00 11.74
1.0 131.75 77.02 26.42 90.36 55.48 23.93 79.77 50.07 23.22

ϕ (˚) δ/ϕ
Kpq  (Soubra and Regenass 2000) Kpq  (Škrabl and Macuh 2005) K*pq (proposed)

b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0 b/h=0.5 b/h=1.0 b/h=10.0

20
0.5 6.22 4.45 2.75 6.10 4.35 2.73 5.91 4.24 2.72
1.0 8.06 5.54 3.17 7.79 5.44 3.27 7.33 5.22 3.24

40
0.5 74.26 43.48 12.82 49.68 29.50 11.33 45.30 27.28 11.07
1.0 130.19 73.35 21.22 104.80 61.07 21.36 84.94 51.49 20.31

7 COMPARISON WITH EXISTING 
SOLUTIONS

In the literature only 2D analyses of the soil-pressure-
limit values using different approaches are presented, 
while the research results for 3D cases are very limited. 
The research results of 3D passive pressure analyses 
according to the theorem of the upper-bound value have 
been presented in Soubra and Regenass (2000), and 
Škrabl and Macuh (2005).

A comparison of the results for the coefficients K*pγ  and 
K*pq for δ/ϕ = 0.5 and 1, ϕ = 20° and 40°, b/h = 0.5, 1, 10 
is presented in Table 4.

A comparison of the results indicates that, particularly 
at greater shear angles and greater ratios of δ/ϕ, the 
differences between the values of passive-earth-pressure 
coefficients for the compared failure mechanisms are 
the greatest. The coefficient Kpγ  for the proposed trans-
lational failure mechanism is up to 11.72% smaller than 
the same coefficient for the failure mechanism (Škrabl 

and Macuh, 2005) when b/h = 0.5, while the coefficient 
Kpq is up to 18.95% smaller for the same b/h = 0.5. For 
higher ratios of b/h the difference gradually decreases, 
and when b/h > 20 the solutions are almost equal.

8 CONCLUSIONS

This paper presents a procedure for determining 3D 
passive earth pressures according to the kinematic 
method of limit analysis. The set of three-dimensional 
kinematically admissible hyperbolic translational 
failure mechanisms with lateral surfaces bounded by 
the envelope of the hyperbolic half-cones is used to 
determine the critical distribution of passive pressure 
along a flexible retaining structure’s height. The intensity 
of the passive pressures is gradually determined with the 
previously mentioned translational failure mechanisms 
from above, downwards. Thus, the critical distribution, 
the trust point and the resultant of the passive pressures 
that can be activated at the limit state for the chosen 
kinematic model are obtained.
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Using the diagrams presented in Figs. 6 and 7 it is 
possible to determine the actual critical distribution of 
the passive pressure limit values for any arbitrary practi-
cal case (within the frame of given assumptions) that is 
applicable in geotechnical design.

The results of the numerical analyses indicate that, when 
considering the upper-bound theorem and the set of 
three-dimensional kinematically admissible hyperbolic 
translational failure mechanisms, the passive-earth-
pressure coefficients are lower than in the case of the 
hyperbolic translational failure mechanism and the 
translational mechanisms published in the literature for 
b/h < 10. The upper-bound values of the comparative 
passive-earth-pressure coefficients with a calculated 
pressure distribution are lower than the existing solu-
tions with an assumed pressure distribution obtained 
using the upper-bound method within the framework 
of the limit analysis. This means that the classically 
presumed passive-earth-pressure distribution in 3D 
analyses is not acceptable, because it can actually not 
be activated. Furthermore, the trust point of the passive 
pressures resultant is independent of the friction 
between the retaining structures and the soil. Therefore, 
the presented results are applicable in geotechnical 
practice.

LIST OF SYMBOLS

area of triangular or rectangular element j in plane 
x-y;

b width of the retaining wall;
c cohesion;
ca adhesion along the soil-structure interface;

epc
factor of passive earth pressure distribution of the 
cohesion influence;

epγ
factor of passive earth pressure distribution of the 
soil weight influence;

epq
factor of passive earth pressure distribution of the 
surcharge influence;

momentums of passive pressures for 
momentums of passive pressures for 

gγ momentums due to unit weight of the ground;

gq
momentums due to surcharge loading on the back-
fill surface;

h height of the retaining structure;

comparative coefficient of passive earth pressure of 
the cohesion influence;

comparative coefficients of passive earth pressure of 
the soil weight influence;

comparative coefficient of passive earth pressure of 
the surcharge influence;

length of one dimensional integration element l on 
the ground surface;

N resultant value of normal stress component on spa-
tial formed failure surface;

Qϕ resultant value of stress on spatial formed failure 
surface;

R* cone diameter;
r polar co-ordinate;
r* polar co-ordinate of the apex of the curved cone;

rε*
co-ordinate appurtenant to gradient angle of the 
envelope;

Tϕ
resultant value of shear stress component on spatial 
formed failure surface;
weight coefficients for Gauss’s integration point k;

zε*
co-ordinate appurtenant to gradient angle of the 
envelope;

zε1
co-ordinate of the section of the envelope and the 
leading cone shaft in plane r-ϑ;

γ unit weight of the soil;
δ friction angle at the soil-structure interface;

ε1 gradient of the envelope in point rε1 which is defined 
in an arbitrary plane r-z;

ϕ angle of internal friction of the soil;
ϑ polar co-ordinate;
ϑ* polar co-ordinate of the apex of the curved cone.
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m
γ ep

m
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