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0  INTRODUCTION

Mobile robots are receiving more and more attention 
because of their ability to move around in a real-
world environment and to perform various tasks. 
These two characteristics make mobile robots 
suitable for use in numerous industrial and domestic 
applications (e.g., personal assistance, guidance, 
surveillance, transportation, cleaning). Furthermore, 
they can operate in environments that are hostile or 
even inaccessible to humans. Human-oriented mobile 
robots are becoming increasingly important since 
the need for health-based assistance is increasing for 
the growing number of elderly and/or chronically 
ill people. Mobile robots could offer assistance and 
reliable health monitoring and therefore improve 
people’s quality of life. These robots could also be 
used in telemedicine, which would not only reduce 
the costs needed to travel to outpatient-based doctors 
and the number of missed working days, but also save 
patients’ time [1]. On the other hand, even the mere 
presence of a mobile robot can have a positive effect 
on people’s well being [1]. 

In general, robotic applications in healthcare and 
social care can be classified into two main groups [2]: 
traditional robots intended for (telerobotic) surgery 
and rehabilitation and robots supporting “softer” 
human-robot interaction tasks such as logistics, 
telepresence, companionship, education of children 

with special needs and motivational coaching. 
Mobile examples include HelpMate [3] used in the 
transportation of supplies to healthcare staff and PR7 
[4] used for telecommunication. More recent mobile-
robot applications are dealing with the assistance 
of elderly people [5], support for autism diagnosis 
and intervention [6] and assessments of people’s 
physiological state [7]. However, the challenges 
remain. One of the most important is human-robot 
interaction (HRI). In order to make it as natural as 
possible and to ensure reliable execution of the mobile 
robots’ tasks these systems should be autonomous, 
robust, fast, non-contact and, most importantly, safe. 
These characteristics are needed for unbiased, real-
time measurements in different situations (occlusions, 
varying illumination, etc.). Moreover, it is necessary 
for the mobile robots to provide only the tasks for 
which they were built and not to keep people under 
surveillance and/or disturb their privacy [8]. Mobile 
robots’ functions in general include 1) reaching the 
goal and 2) performing certain tasks. In order to 
reach the goal, quickly acquired, low-resolution data 
about the mobile robot’s environment is needed, 
while for the task execution, more detailed data is 
required [9]. For mobile robots to be efficient during 
their interactions with humans, the implementation 
of machine vision is essential. Additionally, visual 
systems have an important role in medicine for 
diagnosing [10], screening and monitoring [11]. This 
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allows mobile robots to not only recognize humans 
and avoid obstacles but also to perform certain 
healthcare tasks. 

In order to assess the feasibility of implementation 
with respect to different visual systems for assessments 
of human physiology on mobile robots it is of great 
importance to review the proposed vision-based, 
human-recognition solutions in human-oriented 
mobile robots. In the first section, each step of the 
human recognition in mobile robots is addressed. In 
the second section an overview of the applied sensor 
modalities that offer human recognition are presented. 
This section is divided into two parts: the first one 
presents vision-only-based solutions, while the second 
one presents multimodal solutions. The third section 
presents the proposed applications of human-oriented 
mobile robots. The fourth section includes a short 
discussion, with the authors’ views on the challenges 
and available solutions regarding the implementation 
of mobile robots in any real-world environment, with 
an emphasis on performing health-care tasks.

1  HUMAN RECOGNITION

The crucial characteristic of mobile robots needing 
to work in a human environment is the ability to 
recognise people. This is important for safety reasons, 
the successful performance of the mobile robots’ tasks 
and a natural HRI. Human recognition consists of 3 
basic steps [12]: detection, tracking (localisation) and 
identification. 

Humans can be detected with vision-based, 
invisible-band, sensor-based and sensor fusion-based 
approaches [13]. It can involve image-background 
subtraction in cases when the mobile robot (together 
with the camera(s) mounted on it) is not moving 
[14], but most commonly it employs colour-based 
feature detection, shape- or model-based approaches 
and machine-learning-based approaches. Colour-
based approaches use the predefined colour models 
of human skin and fit the pixels to these models. 
These approaches are fast, but are at the same time 
susceptible to illumination variation and changes to a 
person’s position relative to the mobile robot’s vision 
system [15]. Additionally, they provide false-positive 
detections due to skin-coloured, static background 
regions or objects [16]. In order to differentiate 
between real skin and a skin-like coloured object, the 
size of the detected object and the object’s width-to-
height ratio can be used [14]. Model-based approaches 
use various parameters that describe the shape and/or 
motion of the target. They are usually computationally 
more demanding and require constraining the 

dynamics of the system, but provide additional 
pieces of information regarding the tracked object’s 
position and the correspondence of specific parts of 
the tracked objects with the actual image. The speed 
and accuracy of these approaches are affected by 
the initial conditions and any feature variances [15]. 
Additionally, the detection of facial features strongly 
depends on the size of the entire face blob [17]. When 
it comes to face detection algorithms, interested 
reader can refer to the article written by Zafeiriou 
et al. [18]. It offers a thorough description of face 
detection algorithms together with their comparison, 
it presents benchmarks and evaluation metrics and it 
also discusses future challenges in the field. Machine-
learning-based approaches require a predefined set of 
images and their computational cost increases with 
increasing image/video resolution [15].

Various approaches can be used for the tracking: 
mean-shift and its variant the continuously adaptive 
mean-shift algorithm (CamShift), optical flow (e.g., 
Lucas-Kanade method), particle filters, Kalman 
filters, multiple hypothesis tracking, etc. The 
performance of tracking approaches depends on the 
environment. For example, CamShift can provide 
false tracking if the background colour is similar to 
the target’s colour [19] or when the illumination is 
too intense [20]. The Lucas-Kanade approach has 
difficulties in cases where there is a lot of movement 
near the target or when the target moves too far from 
its initial position [20]. Additionally, if the mobile 
robot is not moving there are no cues for optical flow 
computation. This disadvantage can be overcome 
using a motion-dependent approach [21] in which 
background subtraction is performed when the robot 
is not moving, with an optical-flow-based approach 
being used otherwise (the switching is based on the 
processing load and the mobile robot’s movement). A 
particle filter might offer the best results in comparison 
to the Lucas-Kanade and CamShift approaches due to 
its non-parametricity and robustness to background 
colour distribution and movements in the background 
[20]. In the case of multiple humans a set of 
independent particle filters can be used (each human 
appearing in the scene for the first time is detected, 
while previously detected ones continue to be tracked) 
[22]. An important characteristic of independent 
tracking filters is their computational efficiency, 
which allows real-time tracking, but their performance 
deteriorates if the tracked objects are too close to 
each other [22]. The cost effectiveness of the Kalman 
filter can be increased by applying the filter only to 
the region of interest (ROI) and not over the entire 
image [23]. Kalman filters are constrained by linear or 
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Gaussian assumptions, whereas particle filters are not. 
However they are, in general, computationally more 
demanding [24]. The ground truth for tracking can 
be obtained by using ceiling-mounted cameras ([24] 
and [25]) or by manual annotation [26]. The tracking 
is more successful if the motion of the moving target 
is predicted [27]; the state-estimation problem can be 
solved in a 2D image plane [28]. Classic approaches 
to human recognition deal separately with detection 
and tracking, which results in the potential loss of 
information as well as in an increased computational 
load [29]. The other approaches, known as track-
before-detect or unified tracking [30], deal with 
detection and tracking simultaneously.

In general, human identification can be most 
successfully achieved using biometrics, which 
is based on measurements of physiological and 
behavioural characteristics [31]. Human identification 
by mobile robots is, however, based mostly on colour 
features [12], texture features or combinations of 
both [32]. The latter offers high human-recognition 
rates as well as real-time performance in crowded 
environments; a combination of features offers better 
results than feature used on its own [32]. An example 
of the colour-feature approach is a comparison of the 
colour histograms of people’s clothes [24]. However, 
this approach does not work in environments in 
which human apparel is identical (e.g., in industrial 
and healthcare environments) and it does not offer an 

instant daily identification of a single person, since 
human apparel is usually changing daily. On the other 
hand, this approach can be useful for emergency 
personnel following applications [16].

Human recognition in real-world applications 
is very challenging due to varying illumination, 
varying appearances, directions and behaviours of 
humans, background variations, limited time for 
computation [13] and vibrations of the mobile robot 
[33], which are due to uneven floors or mobile-robot 
construction deficiencies. In the outdoor environment, 
there are additional challenges, such as weather and 
terrain diversity [34]. Often, the robust solutions for 
the aforementioned challenges are not applicable to 
mobile robots. For example, occlusions can be easily 
solved by implementing a camera mounted above 
the observed environment [35] or by using multiple 
cameras [36], which is not always possible and/
or desirable. The effect of occlusions on the correct 
tracking rate in mobile robots is therefore handled 
by applying kinematic models to each tracked object 
(implicit solution) [37] or by predicting human 
behaviour in detected occlusions (explicit solution) 
[22]. In order to achieve the best human recognition 
possible it is important to choose an appropriate 
number of features, while at the same time achieving 
real-time execution of the algorithms programmed in 
the mobile robots.

Table 1.  Reviewed literature

Rese-
arch

Hardware Studied environment Applied algorithms Algorithms’ performance

Bö
hm

e 
et

 a
l. 

[1
4]

Extended B21 RW1, 
IS Robotics with IR 
layer, 2 sonar sensors, 
omnidirectional camera, 
two frontally aligned colour 
cameras, binaural auditory 
system

fsystem = 0.5 Hz

indoor environment 
(home store)

• updated motion-based foreground-background 
segmentation [37]

• binaural sound localization based on inter-aural 
time differences and spikes [38] and [39]

• upper body contour modelling
• skin colour (dichromatic r-g) detection [40]
• CCNNW-based face detection [41] using public 

data set [42]
• dynamic neural field for final selection
• tracking: condensation algorithm [43]

no quantitative evaluation

Fr
its

ch
 e

t a
l. 

[4
4]

Bielefeld robot companion – 
BIRON (based on ActiveMedia 
Pioneer PeopleBot) with Sony 
EVI-D31 PT camera, two AKG 
far-field microphones and a 
SICK LRF

fsystem = 5 Hz
fmicrophone = 5.5 Hz
fLRF = 4.7 Hz

indoor environment 
(office); robot is 
tracking a target 
human, who at one 
point is turned away 
from the robot, is not 
speaking and his legs 
are occluded

• face detection (Viola Jones) [45]
• mixture of Gaussians-based colour (LUV) 

representation for torso recognition
• Cross-Power Spectrum Phase Analysis based 

sound source localization [46]
• leg detection [47]
• custom simple cue fusion
• multi-modal anchoring for data fusion extended by 

supervising module [47] 
• attention system for focusing the mobile robot on 

target human [48]

tracking: SR ≈ 80 %
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Ci
el

ni
ak

 a
nd

 D
uc

ke
tt 

[1
2]

Pan-tilt colour camera Canon 
VC-C4R, IR camera NEC 
Thermal Tracer TS7302

fcamera = 5 Hz

indoor environment 
(office corridor); 
mobile robot was 
following the corridor 
with 10 walking 
humans;

• thresholding and connectivity- plus size-based 
segmentation for human detection (thermal 
images)

• temperature and colour (HSV) statistics (first two 
moments)

• human identification: k-NN classifier, Bayes’ 
classifier and dynamic identification

classification (dynamic 
version of Bayes’ classifier):
SRthermal = 69.84 %
SRcolour = 89.42 %
SRcombination = 94.04 %

W
ilh

el
m

 e
t a

l. 
[4

9]

mobile robot B21 RWI, IS 
Robotics with omnidirectional 
camera Sony DWW VL500, 
24 sonar sensors in 2 layers, 
two frontal cameras on PT 
unit

indoor environment 
(home store)

• skin colour (dichromatic r-g) detection using look 
up table with manually classified colour pixels [50]

• automatic white-balance algorithm for colour 
calibration

• sonar-based distance measurements
• face detection (Viola-Jones) [45]
• tracking: condensation algorithm [43]

no quantitative evaluation

Tr
ep

to
w

 e
t a

l. 
[5

1]

ActivMedia PeopleBot mobile 
robot with NEC Thermal 
Tracer TS730

fcamera = 15 Hz

indoor environment 
(unconstrained 
corridor and 
laboratory room) with 
18 different humans; 
1) person following;  
2) corridor following;  
3) stationary robot

• elliptic contour model for human detection similar 
to [43]

• integral image features model based on Viola-
Jones approach [45]

• cascaded model evaluation for combining both 
models

• tracking: set of independent particle filters 
(multiple humans)

tracking (single human):
ACCobject count ≈ 92 %
ACCobject area ≈ 78 %

tracking (multiple humans):
ACCobject count ≈ 84 %
ACCobject area ≈ 64 %

All results are for the 
combination of contour and 
feature-based model

M
ar

tin
 e

t a
l. 

[2
5]

Home Robot System – 
HOROS with fish-eye 
omnidirectional camera, SICK 
LRF and 16 sonar sensors

Pentium M 1.6 GHz

fsonar = 10 Hz
fLRF = 10 Hz
fcamera = 7 Hz

indoor environment 
(hallway); people 
walking past the 
mobile robot 
performing survey 
task

• heuristic method for detection of leg-pairs using 
LRF scans [47]

• distance measurements on sonar scans of leg 
profiles

• skin-colour (dichromatic r–g) detection [49]
• tracking: condensation algorithm [43]

tracking:
SR = 93 %
FPR = 25 %

CPU load =  
=(40 to 50) % 

Ki
m

 a
nd

 S
ug

a 
[3

3]

wheelchair mobile robot with 
omnidirectional camera

fcamera = 15 fps

indoor environment 
(undefined place with 
undefined moving 
object and humans)

• expansion of grayscale omnidirectional image into 
panoramic

• Lucas-Kanade optical flow method [52]
• estimation of FOE and FOC
• detection of moving objects using the evaluation 

value

tracking:
ERROF min = 2.15 % 
(rotation)
ERROF max = 3.86 % (right 
turn)

Ch
an

g 
et

 a
l. 

[5
3]

Kondo KHR-1 with webcam

fcamera = 3 fps

indoor environment 
(office?);  
4 individual humans

• skin-colour (dichromatic r-g) detection
• hand-shape recognition (Hu moment invariants 

[54])
• tracking: active contour model with mean-shift, 

active contour model only

hand shape recognition:
SR = 96.8 % 

Va
da

kk
ep

at
 e

t 
al

. [
55

]

Magellan Pro with Sony 
EVI-D30 pan-tilt camera, 16 
sonar and tactile sensors

Pentium II

indoor environment 
(office?);  
6 individual humans

• skin-colour (YCbCr and YUV) features and 
geometry features for face detection

• tracking: CamShift [56] (HSV colour space)

tracking:
SR = 84.2 %  
(YCbCr colour space)
SR = 89.8 %  
(UV colour space)

Be
llo

tto
 a

nd
 H

u 
[2

4]

Pioneer mobile robot with PTZ 
colour camera and SICK LRF

Pentium III 800 MHz, 128 
MB RAM

fLRF = 5 Hz
fcamera = 10 Hz
fsystem = 5 Hz

indoor environment 
(laboratory, corridor, 
office); 1) human 
following through 
different rooms,  
2) 3 humans walking 
in front of the mobile 
robot or hiding

• leg detection based on the recognition of their 
typical patterns

• Viola-Jones’ face detection [57]
• state prediction model [58] based on CV model
• tracking: unscented Kalman filter [59]
• human identification: comparison of colour 

histograms of human clothes [60] and NN data 
(multiple humans)

no quantitative evaluation
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Fe
rn

an
de

z-
Ca

ba
lle

ro
 e

t a
l. 

[2
1]

MoviRobotics mSecurit 
mobile robot with thermal IR 
camera, PTZ dome camera, 
ultrasound sensors

Intel Celeron M 600 MHz,  
1 GB RAM

fIR camera = (5 to 6) fps
fsystem = 6 Hz

indoor (undefined) 
and outdoor (?) 
environment plus 
chosen images from 
OTCBVS data set [61]

• normalization and thresholding for human 
candidates’ blob detection

• image subtraction or Lucas-Kanade optical flow 
method [52] (depending on mobile robot’s motion)

human detection (image 
subtraction approach):
TPR = (83.09 to 90.94) %;
PR = (98.62 to 100) % 
(robot acquired images)
TPR = (72.52 to 82.54) %;
PR = (98.62 to 100) % 
(OTCBVS data set)

human detection (optical 
flow approach): 
TPR = (79.62 to 98.57) %;
PR = (94.59 to 100) % 
(robot acquired images)

Ci
el

ni
ak

 e
t a

l. 
[2

2]

ActivMedia PeopleBot mobile 
robot with PTZ camera Canon 
VC-C4R, NEC Thermal Tracer 
TS7302

0.85 GHz (robot); 
2.00 GHz (PC)

fcamera = 15 Hz (both cameras)

indoor environment 
(a corridor and a 
laboratory room);  
1) humans walking in 
front of the  
1.1) non-moving 
robot and  
2.1) moving robot

• elliptic contour model adaptive colour (RGB) 
model based on the first three moments of colour 
distribution [62]

• classification algorithm occlusion handling: 
combination of thermal and colour features 
determined by AdaBoost [63]

• (used in occlusion handling)
• tracking: particle filter/set of independent particle 

filters

occlusion classification:
SRthermal = (76.4±4.5) %
SRcolour = (69.0±1.9) %
SRcombination = (89.4±2.5) %

tp_robot = 68.8 ms
tp_PC = 25.9 ms
(for 1000 samples using 
colour representation using 
first three moments)

Ka
ng

 e
t a

l. 
[1

3]

Dasa Robot Tetra-DS with 
Point Grey LadyBug2 camera

Intel Core2 Quad Q9400 
2.66 GHz, 4 GB RAM, Nvidia 
GTX460

fcamera = 30 fps
fsystem = (9.3 to 12.8) fps

outdoor environment; 
moving and non-
moving humans 
(occlusions, different 
positions relative to 
the robot), cars and 
other objects

• combined local-global optical flow method (based 
on global Horn’s approach [64] and Lucas-Kanade 
approach [52]) computed on GPU

• detection of ROIs using parallax flow
• shape-based human detection (based on parallax 

flow estimation, Chamfer distance and HOG-based 
SVM classifier)

human detection:
TPRmid range = 69.14 %
TPRnear range = 98.36 %

tp = (78 to 108) ms

Al
va

re
z-

Sa
nt

os
 

[3
2]

Pioneer P3DX mobile robot, 
SICK-LMS200 laser scanner, 
PointGrey Chameleon CMLN-
1352C with Fujinon Fujifilm 
Vari-focal CCTV lens

Intel Core2 Duo P8600 (2.4 
GHz), 4 GB RAM

indoor environment 
(office); 1) varying 
lightning conditions 
(20-400 lx, shadows, 
reflections),  
2) walking humans 
trying to distract the 
mobile robot system;
indoor environment 
(museum): crowded, 
various light sources, 
reflective and uneven 
floor

• human detector based on HOG [65]
• torso detection based on the extensive initial 

pool of colour (H1L1S1, L2AB, YCbCr, H2S2V, 
greyscale) and texture features (local binary 
patterns: classic [66], census [67], centre-
symmetric [68] and semantic [69], edge density 
based on Canny edge detector [70], HOG [65], 
MPEG-7 edge histogram inspired descriptor [71])

• leg detection using laser scanner
• sensor fusion at the tracker stage

Fmax = 0.987 (combinations 
of 8 features)
tp = 20 ms

Ba
ltz

ak
is

 e
t a

l. 
[1

5]

no information

2.8 GHz, 4 GB RAM

fsystem = 16 Hz  
(maximum value)

indoor environment 
(office); 1) a single 
human and 2) 
multiple humans; 
indoor environment 
(exhibition centre): 
human and 
tour-guide robot 
interaction scenario

• background subtraction (28) and skin-colour 
(YUV) detection (face, hand) based on [72] and 
[73]

• tracking: propagated pixel hypotheses algorithm 
[74] extended by an incremental probabilistic 
classifier

• Viola-Jones’ boosted cascade detector [57] (facial 
features) with anthropometric constraints

• tracking: feature-based;(eyes, mouth) using 
normalized cross-correlation as similarity measure

tracking:
TPRmax = 95.09 %;  
FPR = 0.22 % (mouth)
TPRmax = 95.58 %; 
FPR = 0 % (left eye)
TPRmax = 93.30 %; 
FPR = 0.22 % (righty eye)
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Fo
tia

di
s 

et
 a

l. 
[3

4]
Robotnik Summit XL with a 
pan-tilt zoom camera Point 
Grey Firefly MV (60 Hz) and a 
LRF Hokuyo UTM-30LX-EW

fLRF = 40 Hz
fcamera = 60 fps
fsystem = 8 Hz

indoor environment 
(gymnasium); 1) one 
human passed by 
non-moving mobile 
robot 2) random 
number of humans 
passed by moving 
mobile robot;
outdoor environment: 
humans walking 
in front of moving 
mobile robot

• jumping distance segmentation, novel feature set 
for feature extraction and real AdaBoost classifier 
(LRF data)

• HOG descriptor [65] with SVM classifier [75] 
(visual data)

indoor:
ACCmax = 99.88 %
TPRmax = 95.20 %
TNRmax = 99.76 %
(all Bayesian/mean fusion + 
adaptive projection)

outdoor:
ACCmax = 99.63 % 
(Bayesian/mean fusion + 
fixed-size projection)
TPRmax = 93.01 % 
(maximum fusion; adaptive 
projection)
TNRmax = 99.99 % 
(Bayesian/mean fusion + 
fixed-size projection)

Zh
an

g 
et

 a
l. 

[2
6]

Pioneer 3-DX mobile robot 
with ASUS Xtion Pro Live 
RGB-D camera

Intel Core i7 2.0 GHz (quad 
core) and 4 GB RAM (DDR3)

fsystem = (7 to 15) fps

indoor environment 
(laboratory); 1) 
humans walking with 
simple trajectories, 
2) humans lifting 
humanoid robots and 
putting them away, 3) 
humans picking up 
objects, exchanging 
them and delivering 
them to other rooms

• separation of candidate point clusters using 
RANSAC [76] guided with prior-knowledge

• candidate detection based on DOI
• cascade of detectors [77] using height-, size-, 

surface- and HOG-based detector
• DAG-based framework (human object 

classification [78], data association, matching, 
tracking: extended Kalman filter [79])

multiple object tracking:
ACCmax = 95.39 %
FNRmin = 2.77 % 
FPRmin = 1.10 %

Su
sp

er
re

gi
 e

t a
l. 

[1
6]

RMP Segway mobile platform 
with Kinect (4 Hz), Heimann 
HTPA thermal sensor and 
Hokuyo UTM-30LX laser

fKinect = 30 fps
fsystem = 4 Hz

indoor environment 
(museum); various 
lightning conditions, 
people naturally 
walking in front of the 
camera

• leg detection [80]
• colour-based (RGB) vest detection
• temperature-based human detection (thermal 

vision)
• tracking: SIR particle filter [81]

ERRestimation min =  
(17.44 ± 22.54)°
ERRestimation min = 
(0.10 ± 0.31) m
(both results are obtained 
with following weighted 
combination of sensory 
data: 0.15× leg detection, 
0.7× vest detection, 
0.15× thermal detection)

Su
sp

er
re

gi
 e

t a
l. 

[8
2]

RMP Segway mobile platform 
with Kinect, Heimann HTPA 
thermal sensor and Hokuyo 
UTM-30LX laser

fKinect = 30 fps
fsystem = 1 Hz

indoor environment 
(manufacturing shop 
floor and museum); 
varying illumination 
conditions and 
human-like objects

• 23 different image transformations
• 5 supervised machine-learning approaches (IB1 

[83], Naïve-Bayes [84], Bayesian network [85], 
C4.5 [86], SVM) with hierarchical classifier [87]

human detection:
ACC = 96.74 %
FPR = 4.64 %
FNR = 1.88 %
PR= 95.36 %
TPR = 98.07 %

Pe
tro

vi
ć 

et
 a

l. 
[2

3]

unknown mobile robot with 
Point Grey Bumblebee XB3

fcamera = 12 Hz
fsystem = 4 Hz

indoor (office) and 
outdoor (meadow) 
environment; a single 
human walking in 
front of the robot

• disparity map segmentation (connected pixel 
labelling [88])

• feature-based (2D - Hu moment invariants 
[54], 3D – object’s height and width) object 
classification

• tracking: modified Kalman filter

no quantitative data
tp = 81 ms
tlat = 100 ms
(both results for case of 
sequential processing + 
distributed computing)

M
eh

di
 e

t a
l. 

[8
]

Autonomous Robot for 
Transport and Service - 
ARTOS, with LRF range finder, 
RFID reader, PTZ camera, 
sonar and tactile sensors

simulated indoor 
environment 
(apartment); a single 
human

• MDP-based human search similar to [89] and [90]
• face detection using Haar cascade classifier [91] 

standing posture detection based on HOG [65])

no relevant quantitative data

Ći
rič

 e
t a

l. 
[9

2]

DaNi mobile robot with FLIR 
E50 thermal camera

400 MHz, 128 MB RAM 
(embedded operation) + 256 
MB RAM (storage)

fcamera = 60 Hz

indoor environment 
(an unconstrained 
corridor and a hall); 
humans walking in 
front of the robot 
during  
1) corridor following, 
2) person following, 
3) non-moving robot

• thermal image threshold segmentation optimized 
with genetic algorithm

• feature detection (Hu moment invariants [54])
• SVM classification [75]

classification:
SR = 97.3 %
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Hu
 e

t a
l. 

[9
3]

Pioneer3DX mobile robot 
with RGB-D camera, LRF and 
sonar sensor

fcamera = 30 fps

indoor environment 
(T-shaped corridor); 
8 different humans 
leading the robot 
from starting to the 
end position

• human leg tracking using adaptive breakpoint 
detector [94]

• estimation of human walk model
• tracking: modified mean-shift [95] with depth 

information

anticipative front following:
t = (54.2 ± 19.6) s
drobot = 16.94 ± 3.80 m
dhuman = (21.29 ± 6.83) m

passive front following:
t = (49.1 ± 26.0) s
drobot = (16.41 ± 3.81) m
dhuman = (19.49 ± 5.71) m

combined strategy:
t = (33.7 ± 4.5) s
drobot = (15.06 ± 1.51) m
dhuman = (17.40 ± 0.80) m

(no significant differences 
between anticipative and 
passive back and side 
following)

Al
i e

t a
l. 

[2
0]

Pioneer 3AT mobile robot with 
stereo camera and 16 sonar 
sensors

Intel Core i3 2.4GHz, 4 GB 
RAM

indoor (laboratory) 
and outdoor 
environment 
(corridor, natural 
environment); 
multiple humans

• Haar-based human upper-body and face detection 
[91]

• manual selection of target person
• tracking: CamShift [56], Lucas-Kanade [52], 

particle filter [96]
• Kalman-filter-based estimation and correction
• stereo correspondence and linear triangulation (for 

target positioning)

tp_meanshift = 0.02649 s
tp_LK = 0.02712 s
tp_PT = 0.02891 s

Ba
yr

am
 e

t a
l. 

[1
9]

modified Turtlebot II mobile 
robot with two Kinect 
modules, microphone array

2 netbooks with Intel Celeron 
1.5GHz (dual core), 4 GB 
RAM

fKinect = 10 fps
fmicrophone = 100 Hz

indoor environment 
(laboratory);
1) moving humans 
with changing face 
direction towards the 
mobile robot; various 
lightning conditions 
and background 
variation (vision 
only) 2) one human, 
moving and speaking 
simultaneously
2) two humans 
speaking 2.1) with 
each other and 2.2) 
independently (vision 
and audio)
3) speaking human 
not present in robot’s 
eye-sight (audio only)

• GEVD-MUSIC [97]
• face detection
• eyes detection based on Haar cascade classifier
• skin-color (YCbCr) detection [98]
• particle-filter based sensor fusion
• tracking: CamShift [99]

face detection:
PR = 98 %
TPR = 94 %

audio-visual human tracking:
ERRlocalization = 1.86°  
(one human)
ERRlocalization = 1.40°  
(two humans) 

Legend: ACC – accuracy [%], ACCmax – maximum accuracy [%], ACCobject area – accuracy of object area [%], ACCobject count – accuracy of object 
count [%], AdaBoost – adaptive boosting, CCNNW – cascade-correlation neural network, CPU – central processing unit, CV – constant velocity, DAG 
– directed acyclic graph, DOI – depth of interest, dhuman – total human displacement [m], drobot – total robot displacement [m], ERRlocalization – target 
localization error, ERROF max – maximum error percentage (ratio of true and detected optical flow), ERROF min – minimum error percentage (ratio of 
true and detected optical flow), fcamera – camera frame rate, fKinect – sampling rate Kinect sensor(s), fLRF – sampling rate of LRFs, Fmax – maximum F 
measure, fmicrophone – sampling rate of microphone(s), FNR – false negative rate [%], FNRmin – minimum false negative rate [%], FPR – false positive 
rate [%], FPRmin – minimum false positive rate [%], fsonar – sampling rate of sonar sensor(s), fsystem – frequency of the entire system, GPU – graphics 
processing unit, HOG – histogram of oriented gradients, IB1 – instance based algorithm 1, IR – infrared, k-NN – k-nearest neighbour; LRF – laser 
range finder, MDP – Markov decision process, NN – nearest neighbour, OTCBVS – Object tracking and classification beyond the visible spectrum, PR 
– precision [%], PT – pan-tilt, PTZ – pan-tilt-zoom, RANSAC - random sample consensus, RFID - radio frequency identification, SN – sensitivity [%], 
SR – success rate [%], SRcolour – success rate using colour features [%], SRcombination – success rate using combination of thermal and colour features 
[%], SRthermal – success rate using thermal features [%], SVM – support vector machine, t – time [s], tlat – latency [ms], TNRmax – maximum true 
negative rate [%], tp – processing time [ms], tp_LK – processing time for Lucas-Kanade algorithm [ms], tp_meanshift – processing time for mean-shift 
algorithm [ms], tp_PC – processing time on personal computer [ms], tp_PT – processing time for particle filter algorithm [ms], tp_robot – processing time 
on mobile robot computer [ms], TPR – true positive rate [%], TPRmax – maximum true positive rate [%]
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2  SENSOR MODALITIES IN HUMAN-ORIENTED MOBILE 
ROBOTS

Machine-vision-based, human-oriented mobile robots 
can be either vision-only or multimodal. Table 1 offers 
information about the hardware and software solutions 
of these systems together with their performance and 
environmental settings.

2.1  Vision-Only-Based Systems

Vision-only-based mobile-robot systems are composed 
of colour vision, thermal vision or a combination 
of the two. In colour-vision systems, the following 
approaches have been implemented: conventional 2D 
vision, stereo vision and omnidirectional vision. 

Colour vision offers robustness to geometric 
distortions [12], but it is susceptible to lighting 
variations [12] and resolution [32]. Solutions for 
reducing the sensitivity to illumination variations 
include the application of alternative colour spaces: 
HSV, dichromatic r-g, YUV, YCbCr and LUV. 
In general, any colour space that offers separate 
brightness and colour information can be used [49]. 
However, the employment of an alternative colour 
space may still not guarantee successful human 
detection. Therefore, Baltzakis et al. [15] applied 

prior-probability-based skin-colour detection [73], 
which adapts to the illumination changes. On the 
other hand, Wilhelm et al. [49] dealt with varying 
illumination by applying an automatic white-balance 
algorithm to the captured images in YUV colour 
space (a coated aluminium ring was used as a white 
reference). Additionally, the mean Y value was used 
for maintaining a brightness value of about 80 % of 
the maximum by controlling the camera’s iris.

Conventional 2D vision lacks information about 
the object’s location and/or its size. On the other hand, 
stereo systems offer additional depth information, 
which, however, raises the computational load due 
to the need for an accurate stereo correspondence. 
Stereo systems are less susceptible to different 
positions of people relative to the cameras and work 
even in short occlusions [100]. Depth information 
also offers smoother tracking by adjusting the mobile 
robot’s speed to keep the distance to the target fixed 
[23]. Omnidirectional vision can be performed using 
various lenses, which define the characteristics of the 
acquired images. For example, images acquired using 
an optical system with a fish-eye lens have poorer 
resolution in the peripheral region when compared 
to the centre region and a perspective image [9]. 
Images taken with omnidirectional cameras also do 
not provide accurate distances between the target 

visual features

thermal features

audio features

sonar features

laser features

...

classifi cation

classifi cation

classifi cation

classifi cation

classifi cation

classifi cation

classifi cationhuman 
detection

human 
detection

Fig. 1.  A block diagram representing basic difference between vision-only-based system (double-thin-lined shape) and multimodal systems 
(wavy and dotted shapes correspond to two different kinds of fusion level) shown on the example of human detection task
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objects and the mobile robot, but only the angle 
of detection [25]. Furthermore, the optical flow 
pattern in omnidirectional images differs from the 
pattern in perspective images. This can be solved 
by transforming an omnidirectional image into a 
panoramic image [33]. An important advantage of 
omnidirectional vision is its ability to visualize a 
broader field of view for the mobile robot.

Thermal vision is based on thermal infrared 
(IR) video cameras, which detect emitted thermal 
energy in IR spectrum. Therefore, the pixels in 
the thermal images correspond to the temperature 
values. Due to the distinctive thermal profile of 
humans, their detection is simplified (no need for 
environment mapping and/or creating background 
models [12]). Additionally, temperature features are 
not susceptible to lighting variations, which offers 
visualization even in darkness and robustness to the 
direction of the human relative to the mobile robot. 
Important drawbacks include phantom detections, 
hard differentiation between humans, varying thermal 
characteristics of the airflow and the dependency of 
multiple-person tracking on their mutual position [51]. 
Human detection in thermal images can be performed 
by simple thresholding [21], whether by using a single 
threshold value or defining the optimal value using 
a genetic algorithm as in [101]. Treptow et al. [51] 
improved thermal-vision-based human detection by 
proposing an elliptical contour model (one ellipse for 
body position and one for head position).

Vision systems can also be mounted on the ceiling 
and not on the mobile robots. This approach can be 
used in the vision-only-based control of mobile robots 
[102], when obtaining the ground truth for tracking (as 
mentioned in Section 1) or in numerous Intelligent 
Space (iSpace) applications. iSpace is a term that 
refers to a space equipped with sensors and actuators, 
which provide an understanding of people’s behaviour 
as well as providing them with information [103]. 
iSpace additionally controls electrically connected 
systems and robots in order to provide a particular 
service for people [103]. It also enables mobile robots 
to perform human-oriented operations, without 
having their own sensors and intelligence. Research 
regarding mobile robots in iSpace is not discussed in 
this manuscript.

2.2 Multimodal Systems

A single-sensor system cannot usually offer robust 
human tracking. It has been suggested that the most 
complete system for human recognition should be 
multimodal [22], since the integration of multiple 

sensory channels can improve a mobile robot’s 
performance [19]. This is mostly achieved by 
overcoming the limitations of each individual sensor. 
For example, in leg detection using laser range 
finders (LRF) false positives due to leg-like-shaped 
objects (e.g., table or chair legs) often occur. On the 
other hand, false negatives appear if a human stands 
sideways relative to the robot’s position, is wearing 
clothes that hide their legs [25] or his/her legs are 
occluded. Sonar sensors are usually noisy, inaccurate 
and unreliable (highly dependent on the distance 
between the mobile robot and the target human) 
[25]. However, in sudden illumination changes sonar 
sensors might be able to detect a human, in contrast to 
the colour-vision-based approaches. They can also aid 
colour vision in differentiating between human faces 
and potential skin-coloured objects positioned behind 
the human faces (data from sonar sensors is used to 
modify the weights of the skin-colour detector) [49]. 
Auditory modality is very susceptible to noise [19], 
which can disturb the detection and localization of 
sound sources of interest, but in combination with 
visual information human identification can be 
improved (if the person is not in the mobile robot’s 
field of view [19]). The presence of an additional 
camera in an omnidirectional-based system offers 
verification of whether the detected object in the 
image obtained with the omnidirectional camera is 
really a human [49]. Fig. 1 shows basic difference 
between vision-only-based and general multimodal 
systems.

Since multimodality can improve a mobile robot’s 
performance, the majority of the reviewed literature 
proposed multimodal systems (see Table 1). They 
include different combinations of visual systems, 
LRF, sonar sensors and/or microphones. Some of the 
research even used Kinect (Microsoft Corporation, 
USA), since it consists of multiple sensing devices. 
These include RGB cameras, 3D depth sensors (IR 
laser and monochrome CMOS sensor) and multi-
array microphones, all mounted on a motorized 
tilt. Kinect has some limitations when it comes to 
its implementation on mobile robots. For a valid 
depth the mapping distance between the device and 
the object has to be more than 0.8 m, whereas from 
the resolution and noise points of view this distance 
should be even larger [104]. Besides that the sunlight 
influences the measurements with an embedded IR 
camera [105] and Kinect’s software is adopted to 
images captured with a static camera. Multimodal 
systems are also associated with some other problems. 
The common ones include the computational load and 
the increased costs of a mobile robot. An example of a 
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particular technical challenge includes the occurrence 
of misalignments due to a vertical projection from 
the laser to the image plane. Therefore, Fotiadis et 
al. [34] developed an adaptive ROI technique that 
compensates for these misalignments and offers a 
greater detection range.

The sensory data can be integrated using 
sequential integration (one data type is used for 
human detection and a reduction of the search space 
for other data, which is used for the verification). 
The outcome of this approach greatly depends on the 
human-detection phase. If it fails, the entire approach 
fails. A solution to this problem is the concurrent/
parallel processing of sensory data and the integration 
(the entire space is tracked and the data is fused) [34]. 
An example of parallel processing is the generation 
of a Gaussian probability-based hypothesis for each 
data type and a combination of all the distributions by 
covariance intersection [25]. Jin et al. [106] proposed 
a fusion technique that also takes the temporal 
information of the measured data into account 
(previously acquired sensor data is used for a better 
measurement accuracy).

An example of a multimodal system was proposed 
by Fritsch et al. [44], who used auditory, vision and 
LRF channels. In the situations in which the target 
human is not facing the robot (which prevents face 
detection), is not speaking and the LRF fails to detect 
the legs the authors used colour-based torso detection 
(by applying a mixture of Gaussians). This approach, 
however, requires that each human wears different, 
uniformly coloured clothes. Another interesting 
multimodal approach was proposed by Wilhelm et al. 
[49], who used a two-component system for human 
detection. The first one helps positioning the potential 
human target by means of skin-colour detection and 
sonar data, while the second uses face detection on 
a high-resolution image. This component is used for 
verification and also offers the potential for extracting 
useful information about the state of a human in order 
for a robot to adapt to it.

3 PROPOSED APPLICATIONS  
OF HUMAN-ORIENTED MOBILE ROBOTS

Some of the proposed applications for the reviewed 
robot systems include: tracking a pre-registered 
person [13], an autonomous search for a single elderly 
person in an unstructured indoor environment [8], 
support for emergency personnel [16], additional 
support for autonomous guidance of humans in 
museums [15], visual guidance of mobile robots [53] 
and [107], providing information for staff and visitors 

of a specific public building [24], survey tasks [25], 
interactive shopping assistance [14], surveillance 
of large outdoor infrastructures [34], human-robot 
cooperation in transportation and investigations of 
hazardous environments [23]. Please note that all the 
above-mentioned proposed application have not yet 
been realised.

Another useful characteristic of mobile robots is 
human following, which is important in applications 
in which a proper interaction of a mobile robot with 
a walking human is essential (e.g., in rehabilitation 
[108]). Human following can be passive or 
anticipative. In the former, the mobile robot’s motion 
is defined only by the position of the target human. 
This is useful in situations in which a person wants 
to control the movement of the mobile robot. On 
the other hand, an anticipative approach is based 
on predicting a person’s trajectory by observing his 
or her walking mode. This is useful in front human 
following (useful in leading people through healthcare 
facilities). However, it has been reported that only 
using an anticipative approach in front following is 
not successful, because people change their behaviour 
unintentionally in the presence of a mobile robot and 
try to lead it [93]. A short overview of recent human-
following robot applications was published in [93].

4  FUTURE CHALLENGES IN THE FIELD  
OF HUMAN-ORIENTED MOBILE ROBOTS

In this section we provide our view of the challenges 
that need to be considered when implementing mobile 
robots in real-world environments.

4.1 HRI and Perception of Mobile Robots by the Elderly 
People and Chronically Ill People

Human-oriented mobile robots with healthcare tasks 
should be modelled as social robots. This means that 
they should be able to interact with humans in various 
situations [109]. For a social interaction, people need 
to treat the robots as social beings [109]. In order to 
achieve as successful HRI as possible it is important 
to understand the perception of mobile robots by the 
elderly and chronically ill people.

It is hard to generalize this perception, since the 
age is not the only factor influencing it. In order to 
accept any robot, its user needs to be motivated for 
using the robot, which 1) has to be easy to use and 
2) has to allow its user to feel comfortable (physical-, 
cognitive- and emotional-wise) [110]. There are 
numerous factors influencing the aforementioned 
criteria, namely individual and robot factors. Besides 
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the age, the former include needs, gender, experience 
with technology, cognitive ability, education, culture, 
anxiety and attitudes towards robots [110]. Robot 
factors include appearance (humanness, size, facial 
expression, gender), personality and adaptability 
[110].

In general, with increasing age the willingness 
of the people to use robots decreases. However, there 
are reports that elderly are more likely to accept 
robots in order to gain back independence in handling 
everyday tasks upon losing it [111]. Furthermore, 
lack of familiarity with technology, which is often 
present in the elderly people, can result in uncertainty 
toward the robots [112]. Additionally, due to various 
attitudes toward aging in different cultures the cross-
cultural differences exist [113]. When it comes to the 
robot factors, the elderly people do not want to be 
accompanied by the robots, which would make them 
look weak or dependent [114]. Additionally, they 
prefer smaller sized robots [115]. One of the most 
important characteristics is also robots’ ability to 
adapt to the particular elderly user, since the elderly 
differ between each other in e.g. eyesight, movement 
abilities and hearing capability [110]. When it comes 
to chronically ill patients, the same factors need to be 
considered. Another important characteristic, which 
influences HRI in chronically ill and/or elderly people 
is the fact that interaction between this people is not 
short-termed or even single-termed, so the long-
term interaction studies are highly important [116]. 
Unfortunately robots’ appearance and behaviour 
cannot be adopted entirely to human expectations, 
so it has been suggested that human expectations can 
be modified in order to achieve better perception of 
robots [110]. More advanced view on this topic is out 
of scope of this article. The interested reader can refer 
to the following review articles: [110], [116] and [117].

4.2 Human Identification Challenges

In general, human identification can be performed 
using hard biometrics (iris, fingerprint and face). 
These trails are unique to the individuals, but the 
identification accuracy strongly depends on the data 
quality [118]. Distance from the sensor to the target, 
noise and user’s willingness to cooperate are some of 
the factors that influence this quality [118]. Multimodal 
hard biometrics systems can offer improved 
performance, but can be time consuming and require 
even more human cooperation. As an alternative 
approach, one can use soft biometrics. These are 
composed of global (age, gender, skin colour, etc.) 
and local traits (eyes, eyebrows, nose, mouth, etc.) 

[118]. They are not unique to the individuals but can 
as a whole enhance the identification performance 
of hard biometrics and can be extracted even from 
lower quality data or from semantic descriptions [119]. 
Another popular way to identify humans (mainly 
in surveillance applications) is gait analysis [120], 
but this approach lacks applicability in healthcare, 
mobile-robot applications (bed bound patients, gait 
disorders, etc.). Lastly, human identification should 
be as pleasant as possible. The user should not be 
agitated in any way, since that could influence user’s 
(patho)physiological state. 

4.3 Possible Extensions of Multimodal Systems

Besides vision and auditory sense, there are three 
additional senses: touch, olfaction (airborne chemical 
sensing) and taste. Tactile sensors in mobile robotics 
are useful in applications in which physical contact 
with humans is required. Examples include lifting up a 
dummy human [121] and assisting elderly or disabled 
people by moving heavy objects instead of them [122]. 
In the latter case, its user is guiding the robot by the 
means of tactile communication. In these applications 
stability of the mobile robots [123] needs to be 
carefully addressed. In contrast to visual, auditory 
and tactile signals, which are based on single physical 
quantities, taste and olfaction only have a meaning 
when humans interpret them, since taste and odour 
are not properties of chemical substances [124]. This 
makes the implementation of olfaction and taste in 
any real mobile robotic applications very challenging. 

Olfaction has been however already implemented 
in mobile robots for the purpose of gas distribution 
mapping, trail guidance and gas source localization 
[125]. On contrary, sense of taste has been 
implemented in the form of electronic tongues, which 
have their potential in use in food and pharmaceutical 
industries for objective and reproducible assessment 
of taste of foods and drugs [124].

Since healthcare mobile robots are mainly 
used in indoor environments, the airborne chemical 
sensing would be very useful in carbon monoxide 
detection and in prevention of sick building syndrome 
[126]. Furthermore, some medical conditions have 
characteristic odours [127] and therefore e.g., 
the analysis of exhaled breath could be used as a 
supportive diagnostic tool [128]). On the other hand 
different odour sensations can also cause symptoms 
in humans (e.g., headache, nausea, cough, stress) 
[129]. Identification of these odours could therefore 
be helpful in preventing mistakes by attributing 
symptoms to the wrong causes.
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4.4 Other Challenges

In order to implement mobile robots in many 
uncontrolled environments (useful in outdoor 
healthcare tasks) it is also necessary to ensure the 
continuous mobility of these mobile robots. In [130], 
an approach capable of detecting failure at any wheel 
and optimizing traction is proposed. Additionally, this 
solution does not increase the hardware complexity 
of the mobile robot, nor the control system. The next 
desired characteristic of mobile robots with human-
oriented tasks is real-time performance with as little 
energy consumption as possible. For example, the 
ideal system would be smooth, rapid, accurate and 
energy efficient. This can be achieved by mimicking 
animal-like coordination of the head, neck and eyes. 
For example, in [131], an approach using chameleon-
inspired binocular vision for a swift search of a mobile 
robot’s surroundings and a two-step aim at the target 
(rough and accurate) is proposed.

When it comes to real-time performance, it 
is suggested to first define this term. In human-
oriented mobile robots the real-time performance 
can be defined on the basis of a person’s reaction 
time (RT) [26]. The RT for the detection of a visual 
stimulus is (180 to 200) ms [132] (which is longer than 
for tactile and auditory RT). This means that frame 
rates higher than 5 fps offer real-time performance. 
Similar criterion was proposed in [26]. The real-
time performance can be achieved using distributed 
computing [23] or by using computationally more 
demanding solutions only when needed [26].

Next, mobile robots implemented in public 
spaces are likely to attract people, which can result in 
the narrowing of passageways due to a large number 
of people surrounding the robot. The former can make 
it difficult for humans to avoid the crowd, while the 
latter can aggravate the performance of the mobile 
robot. Both situations are highly undesirable, e.g., in 
emergency situations. One of the proposed solutions 
(based on pedestrian-behaviour simulation) is to 
anticipate the crowding and try to avoid congestion, 
while at the same time respecting the surrounding 
humans’ walking comfort and the performance of 
tasks, for which the mobile robot was built [133]. 
In cases of people gathering around the robot, an 
obstacle-avoiding behaviour based on a human-
behaviour model can be applied [134]. For an even 
more successful implementation of mobile robots 
into public places, a long-term study in terms of their 
usage [135] would most likely be highly beneficial.

Other challenges include the secure transmission 
and collection of the measured personal data [136], 
which needs to be collected ethically.

4.5 A Possible Role of Vision-Based Mobile Robots in 
Healthcare Measurements

From the perspective of measuring clinically 
relevant parameters using vision systems we see 
the following implementations. Mobile robots with 
thermal vision could be used in fever screening [137], 
but, in general, also in thermoregulation studies, 
the detection of breast cancer, diagnosing diabetic 
neuropathy and vascular disorders, dermatology, etc. 
[10]. Many of these fields could significantly improve 
the patient’s well being by regular home monitoring 
of a disease, which could reduce its burden (e.g., 
by monitoring diabetic patients with thermo vision 
it could be possible to prevent diabetic foot ulcers 
[138]). Colour-vision-based mobile robots could 
provide some physiological data by means of remote 
photoplethysmography (remote PPG) measurements, 
whether in reflection [11] or transmittance mode [139]. 
It can also be used in telemedicine in the form of 
simple online consultations or as a tool for diagnosing/
monitoring diseases (teledermatology) [140]. In the 
near future, we aim to develop a human-oriented, 
colour-vision-based mobile robot performing certain 
healthcare tasks.

4.6 Techonological Trends

Current trends in robotics are focused on soft robotics. 
This term primarily covers implementation of soft 
materials, actuators and sensors in different machine 
application. Soft robots are expected to offer softness 
and safety (by the means of more natural physical 
HRI), which are highly desirable characteristics 
for the use in healthcare applications (lifting of 
the patients, minimally invasive surgeries, various 
wearable and implantable devices) [141]. From the 
perspective of elderly people these robots could be 
used as an adaptive exercisers for cognition and daily 
activities [141].

5  CONLCUSIONS

The reviewed literature reveals that there is no 
universal solution for a human-oriented mobile robot. 
Different hardware and software solutions have their 
pros and cons in different environmental settings and 
situations, which makes us believe that mobile robots 
with multiple sensor modalities will be the most studied 
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in the near future. An interesting solution for indoor 
environments, such as households or clinics, is iSpace, 
which could offer the implementation of mobile robots 
with different tasks in the same environment. From 
the perspective of human recognition, the human-
identification step seems to be the most challenging. 
We believe that a lot of effort will be put into it, since 
correct identification is crucial in healthcare, where 
misidentification could result in the wrong treatment, 
having potentially fatal consequences. Because vision 
systems are already being widely used in medicine, 
the use of thermal vision and colour vision in mobile 
robots for diagnostic/screening purposes is promising. 
In the future, to implement mobile robots in as many 
healthcare applications as possible, the focus will need 
to be put on HRI, human identification, robustness 
of the mobile robots’ task performance and quality, 
together with security of the measured data.

6  ACKNOWLEDGEMENT

The presented research of the Young Researcher Miha 
Finžgar was supported by the Slovenian Research 
Agency (ARRS).

7  REFERENCES

[1] Wada, K., Shibata, T. (2007). Living with seal robots - its 
sociopsychological and physiological influences on the elderly 
at a care house. IEEE Transactions on Robotics, vol. 23, no. 
5, p. 972-980, DOI:10.1109/Tro.2007.906261.

[2] Dahl, T., Boulos, M. (2014). Robots in health and social 
care: A complementary technology to home care and 
telehealthcare? Robotics, vol. 3, no. 1, p. 1-21, DOI:10.3390/
robotics3010001.

[3] Evans, J.M. (1994). Helpmate: An autonomous mobile 
robot courier for hospitals. Proceedings of the IEEE/RSJ/GI 
International Conference on Intelligent Robots and Systems, 
p. 1695-1700, DOI:10.1109/iros.1994.407629.

[4] Sucher, J.F., Todd, S.R., Jones, S.L., Throckmorton, T., Turner, 
K.L., Moore, F.A. (2011). Robotic telepresence: A helpful 
adjunct that is viewed favorably by critically ill surgical 
patients. The American Journal of Surgery, vol. 202, no. 6, p. 
843-847, DOI:10.1016/j.amjsurg.2011.08.001.

[5] Pripfl, J., Körtner, T., Batko-Klein, D., Hebesberger, D., 
Weninger, M., Gisinger, C., Frennert, S., Eftring, H., Antona, 
M., Adami, I., Weiss, A., Bajones, M., Vincze, M. (2016). 
Results of a real world trial with a mobile social service robot 
for older adults. 11th ACM/IEEE International Conference 
on Human-Robot Interaction, p. 497-498, DOI:10.1109/
hri.2016.7451824.

[6] Galán-Mena, J., Ávila, G., Pauta-Pintado, J., Lima-Juma, D., 
Robles-Bykbaev, V., Quisi-Peralta, D. (2016). An intelligent 
system based on ontologies and ICT tools to support the 
diagnosis and intervention of children with autism. IEEE 

Biennial Congress of Argentina, p. 1-5, DOI:10.1109/
ARGENCON.2016.7585361.

[7] Ma, Y., Xiao, D., Li, R., Ruan, H., Shan, Z., Junlong, Z., Zhang, 
Y. (2015). Android-based intelligent mobile robot for indoor 
healthcare. 17th International Conference on E-health 
Networking, Application & Services (HealthCom), p. 472-474, 
DOI:10.1109/HealthCom.2015.7454548.

[8] Mehdi, S.A., Berns, K. (2014). Behavior-based search of 
human by an autonomous indoor mobile robot in simulation. 
Universal Access in the Information Society, vol. 13, no. 1, p. 
45-58, DOI:10.1007/s10209-013-0301-8.

[9] Yagi, Y. (1999). Omnidirectional sensing and its applications. 
IEICE Transactions on Information and Systems, vol. 82, no. 
3, p. 568-579.

[10] Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J. 
(2012). Medical applications of infrared thermography: A 
review. Infrared Physics & Technology, vol. 55, no. 4, p. 221-
235, DOI:10.1016/j.infrared.2012.03.007.

[11] Aarts, L.A., Jeanne, V., Cleary, J.P., Lieber, C., Nelson, J.S., 
Bambang Oetomo, S., Verkruysse, W. (2013). Non-contact 
heart rate monitoring utilizing camera photoplethysmography 
in the neonatal intensive care unit - a pilot study. Early Human 
Development, vol. 89, no. 12, p. 943-948, DOI:10.1016/j.
earlhumdev.2013.09.016.

[12] Cielniak, G., Duckett, T. (2004). People recognition by mobile 
robots. Journal of Intelligent & Fuzzy Systems, vol. 15, no. 1, 
p. 21-27.

[13] Kang, S., Roh, A., Nam, B., Hong, H. (2011). People detection 
method using graphics processing units for a mobile robot 
with an omnidirectional camera. Optical Engineering, vol. 50, 
no. 12, p. 1-8, DOI:10.1117/1.3660573.

[14] Böhme, H.-J., Wilhelm, T., Key, J., Schauer, C., Schröter, C., 
Groß, H.-M., Hempel, T. (2003). An approach to multi-modal 
human–machine interaction for intelligent service robots. 
Robotics and Autonomous Systems, vol. 44, no. 1, p. 83-96, 
DOI:10.1016/S0921-8890(03)00012-5.

[15] Baltzakis, H., Pateraki, M., Trahanias, P. (2012). Visual 
tracking of hands, faces and facial features of multiple 
persons. Machine Vision and Applications, vol. 23, no. 6, p. 
1141-1157, DOI:10.1007/s00138-012-0409-5.

[16] Susperregi, L., Martinez-Otzeta, J.M., Ansuategui, A., 
Ibarguren, A., Sierra, B. (2013). RGB-D, laser and thermal 
sensor fusion for people following in a mobile robot. 
International Journal of Advanced Robotic Systems, vol. 10, 
p. 1-9, DOI:10.5772/56123.

[17] Ying-li, T. (2004). Evaluation of face resolution for 
expression analysis. Conference on Computer Vision and 
Pattern Recognition Workshop, p. 82-82, DOI:10.1109/
cvpr.2004.334.

[18] Zafeiriou, S., Zhang, C., Zhang, Z. (2015). A survey on face 
detection in the wild: Past, present and future. Computer 
Vision and Image Understanding, vol. 138, p. 1-24, 
DOI:10.1016/j.cviu.2015.03.015.

[19] Bayram, B., Ince, G. (2015). Audio-visual multi-person 
tracking for active robot perception. IEEE/SICE International 
Symposium on System Integration, p. 575-580, DOI:10.1109/
sii.2015.7405043.

https://doi.org/10.1109/TRO.2007.906261
https://doi.org/10.3390/robotics3010001
https://doi.org/10.3390/robotics3010001
https://doi.org/10.1109/iros.1994.407629
https://doi.org/10.1016/j.amjsurg.2011.08.001
https://doi.org/10.1109/hri.2016.7451824
https://doi.org/10.1109/hri.2016.7451824
https://doi.org/10.1109/ARGENCON.2016.7585361
https://doi.org/10.1109/ARGENCON.2016.7585361
https://doi.org/10.1109/HealthCom.2015.7454548
https://doi.org/10.1007/s10209-013-0301-8
https://doi.org/10.1016/j.infrared.2012.03.007
https://doi.org/10.1016/j.earlhumdev.2013.09.016
https://doi.org/10.1016/j.earlhumdev.2013.09.016
https://doi.org/10.1117/1.3660573
https://doi.org/10.1016/S0921-8890(03)00012-5
https://doi.org/10.1007/s00138-012-0409-5
https://doi.org/10.5772/56123
https://doi.org/10.1109/cvpr.2004.334
https://doi.org/10.1109/cvpr.2004.334
https://doi.org/10.1016/j.cviu.2015.03.015
https://doi.org/10.1109/sii.2015.7405043
https://doi.org/10.1109/sii.2015.7405043


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)5, 331-348

344 Finžgar, M. – Podržaj, P.

[20] Ali, B., Ayaz, Y., Jamil, M., Gilani, S.O., Muhammad, N. (2015). 
Improved method for stereo vision-based human detection 
for a mobile robot following a target person. South African 
Journal of Industrial Engineering, vol. 26, no. 1, p. 102-119, 
DOI:10.7166/26-1-891.

[21] Fernandez-Caballero, A., Castillo, J.C., Martinez-Cantos, J., 
Martinez-Tomas, R. (2010). Optical flow or image subtraction 
in human detection from infrared camera on mobile robot. 
Robotics and Autonomous Systems, vol. 58, no. 12, p. 1273-
1281, DOI:10.1016/j.robot.2010.06.002.

[22] Cielniak, G., Duckett, T., Lilienthal, A.J. (2010). Data 
association and occlusion handling for vision-based people 
tracking by mobile robots. Robotics and Autonomous 
Systems, vol. 58, no. 5, p. 435-443, DOI:10.1016/j.
robot.2010.02.004.

[23] Petrović, E., Leu, A., Ristić-Durrant, D., Nikolić, V. (2013). 
Stereo vision-based human tracking for robotic follower. 
International Journal of Advanced Robotic Systems, vol. 10, 
no. 5, DOI:10.5772/56124.

[24] Bellotto, N., Hu, H. (2008). Multimodal people tracking 
and identification for service robots. International Journal 
of Information Acquisition, vol. 5, no. 3, p. 209-221, 
DOI:10.1142/S0219878908001612.

[25] Martin, C., Schaffernicht, E., Scheidig, A., Gross, H.M. (2006). 
Multi-modal sensor fusion using a probabilistic aggregation 
scheme for people detection and tracking. Robotics 
and Autonomous Systems, vol. 54, no. 9, p. 721-728, 
DOI:10.1016/j.robot.2006.04.012.

[26] Zhang, H., Reardon, C., Parker, L.E. (2013). Real-time multiple 
human perception with color-depth cameras on a mobile 
robot. IEEE Transactions on Cybernetics, vol. 43, no. 5, p. 
1429-1441, DOI:10.1109/TCYB.2013.2275291.

[27] Xu, L.-Q., C. Hogg, D. (1997). Neural networks in human 
motion tracking — an experimental study. Image and Vision 
Computing, vol. 15, no. 8, p. 607-615, DOI:10.1016/S0262-
8856(97)00007-3.

[28] Tsai, C.-Y., Song, K.-T. (2009). Dynamic visual tracking control 
of a mobile robot with image noise and occlusion robustness. 
Image and Vision Computing, vol. 27, no. 8, p. 1007-1022, 
DOI:10.1016/j.imavis.2008.08.011.

[29] Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G. 
(2004). A boosted particle filter: Multitarget detection and 
tracking. Pajdla, T., Matas, J. (eds.), Computer Vision - ECCV, 
Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, p. 28-
39, DOI:10.1007/978-3-540-24670-1_3.

[30] Stone, L.D., Streit, R.L., Corwin, T.L., Bell, K.L. (2013). 
Bayesian multiple target tracking. Artech House, Norwood, 
MA.

[31] Ahmad, S.M.S., Ali, B.M., Adnan, W.A.W. (2012). Technical 
issues and challenges of biometric applications as access 
control tools of information security. International Journal of 
Innovative Computing Information and Control, vol. 8, no. 11, 
p. 7983-7999.

[32] Alvarez-Santos, V., Pardo, X.M., Iglesias, R., Canedo-
Rodriguez, A., Regueiro, C.V. (2012). Feature analysis for 
human recognition and discrimination: Application to a 
person-following behaviour in a mobile robot. Robotics 

and Autonomous Systems, vol. 60, no. 8, p. 1021-1036, 
DOI:10.1016/j.robot.2012.05.014.

[33] Kim, J., Suga, Y. (2007). An omnidirectional vision-based 
moving obstacle detection in mobile robot. International 
Journal of Control Automation and Systems, vol. 5, no. 6, p. 
663-673.

[34] Fotiadis, E.P., Garzon, M., Barrientos, A. (2013). Human 
detection from a mobile robot using fusion of laser and vision 
information. Sensors (Basel), vol. 13, no. 9, p. 11603-11635, 
DOI:10.3390/s130911603.

[35] Intille, S.S., Davis, J.W., Bobick, A.F. (1997). Real-time closed-
world tracking. Proceedings of IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, p. 
697-703, DOI:10.1109/CVPR.1997.609402.

[36] Mittal, A., Davis, L.S. (2003). M2tracker: A multi-view 
approach to segmenting and tracking people in a cluttered 
scene. International Journal of Computer Vision, vol. 51, no. 
3, p. 189-203, DOI:10.1023/A:1021849801764.

[37] Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P. 
(1997). Pfinder: Real-time tracking of the human body. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
vol. 19, no. 7, p. 780-785, DOI:10.1109/AFGR.1996.557243.

[38] Schauer, C., Zahn, T., Paschke, P., Gross, H.-M. (2000). 
Binaural sound localization in an artificial neural network. 
Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Processing, p. 865-868, 
DOI:10.1109/icassp.2000.859097.

[39] Schauer, C., Paschke, P. (1999). A spike-based model 
of binaural sound localization. International Journal of 
Neural Systems, vol. 9, no. 05, p. 447-452, DOI:10.1142/
S0129065799000460.

[40] Yang, J., Lu, W., Waibel, A. (1998). Skin-color modeling and 
adaptation. Asian Conference on Computer Vision, p. 687-
694.

[41] Fahlman, S.E., Lebiere, C. (1990). The cascade-correlation 
learning architecture. Touretzky, D.S. (ed.), Advances in 
neural information processing systems 2. Morgan Kaufmann 
Publishers, San Francisco, p. 524-532.

[42] AT&T Laboratories Cambridge. The database of faces, 
from http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html, accessed on 2016-12-16.

[43] Isard, M., Blake, A. (1998). Condensation—conditional 
density propagation for visual tracking. International 
Journal of Computer Vision, vol. 29, no. 1, p. 5-28, 
DOI:10.1023/A:1008078328650.

[44] Fritsch, J., Kleinehagenbrock, M., Lang, S., Fink, G.A., 
Sagerer, G. (2004). Audiovisual person tracking with a mobile 
robot. Proceedings of International Conference on Intelligent 
Autonomous Systems, p. 898-906.

[45] Viola, P., Jones, M. (2001). Robust real-time object detection. 
International Journal of Computer Vision, vol. 4, p. 34-47.

[46] Giuliani, D., Omologo, M., Svaizer, P. (1994). Talker 
localization and speech recognition using a microphone array 
and a cross-powerspectrum phase analysis. International 
Conference on Spoken Language Processing.

[47] Fritsch, J., Kleinehagenbrock, M., Lang, S., Plötz, T., Fink, G.A., 
Sagerer, G. (2003). Multi-modal anchoring for human–robot 

https://doi.org/10.7166/26-1-891
https://doi.org/10.1016/j.robot.2010.06.002
https://doi.org/10.1016/j.robot.2010.02.004
https://doi.org/10.1016/j.robot.2010.02.004
https://doi.org/10.5772/56124
https://doi.org/10.1142/S0219878908001612
https://doi.org/10.1016/j.robot.2006.04.012
https://doi.org/10.1109/TCYB.2013.2275291
https://doi.org/10.1016/S0262-8856(97)00007-3
https://doi.org/10.1016/S0262-8856(97)00007-3
https://doi.org/10.1016/j.imavis.2008.08.011
https://doi.org/10.1007/978-3-540-24670-1_3
https://doi.org/10.1016/j.robot.2012.05.014
https://doi.org/10.3390/s130911603
https://doi.org/10.1109/CVPR.1997.609402
https://doi.org/10.1023/A:1021849801764
https://doi.org/10.1109/AFGR.1996.557243
https://doi.org/10.1109/icassp.2000.859097
https://doi.org/10.1142/S0129065799000460
https://doi.org/10.1142/S0129065799000460
https://doi.org/10.1023/A:1008078328650


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)5, 331-348

345Machine-vision-based human-oriented mobile robots: A review

interaction. Robotics and Autonomous Systems, vol. 43, no. 
2, p. 133-147, DOI:10.1016/S0921-8890(02)00355-X.

[48] Lang, S., Kleinehagenbrock, M., Hohenner, S., Fritsch, 
J., Fink, G.A., Sagerer, G. (2003). Providing the basis for 
human-robot-interaction: A multi-modal attention system 
for a mobile robot. Proceedings of the 5th International 
Conference on Multimodal Interfaces, p. 28-35, 
DOI:10.1145/958432.958441.

[49] Wilhelm, T., Bohme, H., Gross, H.M. (2004). A multi-modal 
system for tracking and analyzing faces on a mobile robot. 
Robotics and Autonomous Systems, vol. 48, no. 1, p. 31-40, 
DOI:10.1016/j.robot.2004.05.004.

[50] Feyrer, S., Zell, A. (1999). Detection, tracking, and pursuit of 
humans with an autonomous mobile robot. Proceedings of 
the IEEE/RSJ International Conference on Intelligent Robots 
and Systems, p. 864-869, DOI:10.1109/iros.1999.812788.

[51] Treptow, A., Cielniak, G., Duckett, T. (2006). Real-time people 
tracking for mobile robots using thermal vision. Robotics 
and Autonomous Systems, vol. 54, no. 9, p. 729-739, 
DOI:10.1016/j.robot.2006.04.013.

[52] Lucas, B.D., Kanade, T. (1981). An iterative image registration 
technique with an application to stereo vision. International 
Joint Conference on Artificial Intelligence, p. 674-679.

[53] Chang, J.S., Kim, E.Y., Kim, H.J. (2008). Mobile robot control 
using hand-shape recognition. Transactions of the Institute 
of Measurement and Control, vol. 30, no. 2, p. 143-152, 
DOI:10.1177/0142331207080144.

[54] Hu, M.-K. (1962). Visual pattern recognition by moment 
invariants. IRE Transactions on Information Theory, vol. 8, no. 
2, p. 179-187, DOI:10.1109/TIT.1962.1057692.

[55] Vadakkepat, P., Lim, P., De Silva, L.C., Jing, L., Ling, L.L. 
(2008). Multimodal approach to human-face detection and 
tracking. IEEE Transactions on Industrial Electronics, vol. 55, 
no. 3, p. 1385-1393, DOI:10.1109/Tie.2007.903993.

[56] Bradski, G.R. (1998). Computer vision face tracking for use 
in a perceptual user interface. Intel Technology Journal Q2, 
p. 1-15.

[57] Viola, P., Jones, M.J. (2004). Robust real-time face detection. 
International Journal of Computer Vision, vol. 57, no. 2, p. 
137-154, DOI:10.1023/B:VISI.0000013087.49260.fb.

[58] Bellotto, N., Hu, H. (2006). Vision and laser data fusion for 
tracking people with a mobile robot. IEEE International 
Conference on Robotics and Biomimetics, p. 7-12, 
DOI:10.1109/ROBIO.2006.340251.

[59] Julier, S.J., Uhlmann, J.K. (2004). Unscented filtering and 
nonlinear estimation. Proceedings of the IEEE, vol. 92, no. 3, 
p. 401-422, DOI:10.1109/jproc.2003.823141.

[60] Comaniciu, D., Ramesh, V., Meer, P. (2000). Real-time 
tracking of non-rigid objects using mean shift. Proceedings 
of the IEEE Conference on Computer Vision and Pattern 
Recognition, p. 142-149, DOI:10.1109/cvpr.2000.854761.

[61] Oklahoma State University. OTCBVS benchmark dataset 
collection, from http://vcipl-okstate.org/pbvs/bench/, 
accessed on 2016-12-16.

[62] Stricker, M.A., Orengo, M. (1995). Similarity of color images. 
IS&T/SPIE’s Symposium on Electronic Imaging: Science & 
Technology, p. 381-392.

[63] Freund, Y., Schapire, R.E. (1995). A desicion-theoretic 
generalization of on-line learning and an application to 
boosting. European Conference on Computational Learning 
Theory, p. 23-37, DOI:10.1007/3-540-59119-2_166.

[64] Horn, B.K., Schunck, B.G. (1981). Determining optical 
flow. Artificial Intelligence, vol. 17, no. 1-3, p. 185-203, 
DOI:10.1016/0004-3702(81)90024-2.

[65] Dalal, N., Triggs, B. (2005). Histograms of oriented gradients 
for human detection. IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition, p. 886-893, 
DOI:10.1109/cvpr.2005.177.

[66] Ojala, T., Pietikäinen, M., Harwood, D. (1996). A comparative 
study of texture measures with classification based on 
featured distributions. Pattern Recognition, vol. 29, no. 1, p. 
51-59, DOI:10.1016/0031-3203(95)00067-4.

[67] Zabih, R., Woodfill, J. (1994). Non-parametric local transforms 
for computing visual correspondence. European Conference 
on Computer Vision, p. 151-158, DOI:10.1007/bfb0028345.

[68] Heikkilä, M., Pietikäinen, M., Schmid, C. (2006). Description 
of interest regions with center-symmetric local binary 
patterns. Kalra, P.K., Peleg, S. (eds.), Computer Vision, 
Graphics and Image Processing. Lecture Notes in Computer 
Science, Springer, p. 58-69, DOI:10.1007/11949619_6.

[69] Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B. (2008). 
Discriminative local binary patterns for human detection in 
personal album. IEEE Conference on Computer Vision and 
Pattern Recognition, p. 1-8.

[70] Canny, J. (1986). A computational approach to edge 
detection. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, no. 6, p. 679-698, DOI:10.1109/
TPAMI.1986.4767851.

[71] Won, C.S., Park, D.K., Park, S.-J. (2002). Efficient use of 
MPEG-7 edge histogram descriptor. Etri Journal, vol. 24, no. 
1, p. 23-30, DOI:10.4218/etrij.02.0102.0103.

[72] Baltzakis, H., Argyros, A., Lourakis, M., Trahanias, P. (2008). 
Tracking of human hands and faces through probabilistic 
fusion of multiple visual cues. International Conference on 
Computer Vision Systems, p. 33-42, DOI:10.1007/978-3-540-
79547-6_4.

[73] Argyros, A.A., Lourakis, M.I. (2004). Real-time tracking of 
multiple skin-colored objects with a possibly moving camera. 
European Conference on Computer Vision, p. 368-379, 
DOI:10.1007/978-3-540-24672-5_29.

[74] Baltzakis, H., Argyros, A.A. (2009). Propagation of pixel 
hypotheses for multiple objects tracking. International 
Symposium on Visual Computing, p. 140-149, 
DOI:10.1007/978-3-642-10520-3_13.

[75] Cortes, C., Vapnik, V. (1995). Support-vector networks. 
Machine Learning, vol. 20, no. 3, p. 273-297, DOI:10.1007/
BF00994018.

[76] Fischler, M.A., Bolles, R.C. (1981). Random sample 
consensus: A paradigm for model fitting with applications 
to image analysis and automated cartography. 
Communications of the ACM, vol. 24, no. 6, p. 381-395, 
DOI:10.1145/358669.358692.

[77] Viola, P., Jones, M.J., Snow, D. (2005). Detecting pedestrians 
using patterns of motion and appearance. International 

https://doi.org/10.1016/S0921-8890(02)00355-X
https://doi.org/10.1145/958432.958441
https://doi.org/10.1016/j.robot.2004.05.004
https://doi.org/10.1109/iros.1999.812788
https://doi.org/10.1016/j.robot.2006.04.013
https://doi.org/10.1177/0142331207080144
https://doi.org/10.1109/TIT.1962.1057692
https://doi.org/10.1109/TIE.2007.903993
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1109/ROBIO.2006.340251
https://doi.org/10.1109/jproc.2003.823141
https://doi.org/10.1109/cvpr.2000.854761
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1109/cvpr.2005.177
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1007/bfb0028345
https://doi.org/10.1007/11949619_6

https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.4218/etrij.02.0102.0103
https://doi.org/10.1007/978-3-540-79547-6_4
https://doi.org/10.1007/978-3-540-79547-6_4
https://doi.org/10.1007/978-3-540-24672-5_29
https://doi.org/10.1007/978-3-642-10520-3_13
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/358669.358692


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)5, 331-348

346 Finžgar, M. – Podržaj, P.

Journal of Computer Vision, vol. 63, no. 2, p. 153-161, 
DOI:10.1007/s11263-005-6644-8.

[78] Bourdev, L., Malik, J. (2009). Poselets: Body part detectors 
trained using 3D human pose annotations. IEEE 12th 
International Conference on Computer Vision, p. 1365-1372, 
DOI:10.1109/iccv.2009.5459303.

[79] Einicke, G.A., White, L.B. (1999). Robust extended kalman 
filtering. IEEE Transactions on Signal Processing, vol. 47, no. 
9, p. 2596-2599, DOI:10.1109/78.782219.

[80] Martínez-Otzeta, J.M., Ibarguren, A., Ansuategi, A., 
Susperregi, L. (2009). Laser based people following 
behaviour in an emergency environment. International 
Conference on Intelligent Robotics and Applications, p. 33-
42, DOI:10.1007/978-3-642-10817-4_4.

[81] Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T. (2002). 
A tutorial on particle filters for online nonlinear/non-Gaussian 
Bayesian tracking. IEEE Transactions on Signal Processing, 
vol. 50, no. 2, p. 174-188, DOI:10.1109/78.978374.

[82] Susperregi, L., Sierra, B., Castrillon, M., Lorenzo, J., Martinez-
Otzeta, J.M., Lazkano, E. (2013). On the use of a low-cost 
thermal sensor to improve Kinect people detection in a 
mobile robot. Sensors (Basel), vol. 13, no. 11, p. 14687-
14713, DOI:10.3390/s131114687.

[83] Aha, D.W., Kibler, D., Albert, M.K. (1991). Instance-based 
learning algorithms. Machine Learning, vol. 6, no. 1, p. 37-
66, DOI:10.1007/BF00153759.

[84] Cestnik, B. (1990). Estimating probabilities: A crucial task 
in machine learning. Proceedings of the 9th European 
Conference on Artificial Intelligence, p. 147-149.

[85] Sierra, B., Lazkano, E., Jauregi, E., Irigoien, I. (2009). 
Histogram distance-based Bayesian network structure 
learning: A supervised classification specific approach. 
Decision Support Systems, vol. 48, no. 1, p. 180-190, 
DOI:10.1016/j.dss.2009.07.010.

[86] Quinlan, J.R. (2014). C4. 5: Programs for Machine Learning. 
Elsevier.

[87] Martínez-Otzeta, J.M., Sierra, B., Lazkano, E., Astigarraga, 
A. (2006). Classifier hierarchy learning by means of genetic 
algorithms. Pattern Recognition Letters, vol. 27, no. 16, p. 
1998-2004, DOI:10.1016/j.patrec.2006.06.001.

[88] Natarajan, S.K., Ristic-Durrant, D., Leu, A., Gräser, A. (2011). 
Robust stereo-vision based 3D modelling of real-world objects 
for assistive robotic applications. IEEE/RSJ International 
Conference on Intelligent Robots and Systems, p. 786-792, 
DOI:10.1109/iros.2011.6094716.

[89] Beetz, M., Arbuckle, T., Belker, T., Cremers, A.B., Schulz, D., 
Bennewitz, M., Burgard, W., Hahnel, D., Fox, D., Grosskreutz, 
H. (2001). Integrated, plan-based control of autonomous 
robots in human environments. IEEE Intelligent Systems, vol. 
16, no. 5, p. 56-65, DOI:10.1109/mis.2001.956082.

[90] Foka, A.F., Trahanias, P.E. (2010). Probabilistic autonomous 
robot navigation in dynamic environments with human motion 
prediction. International Journal of Social Robotics, vol. 2, no. 
1, p. 79-94, DOI:10.1007/s12369-009-0037-z.

[91] Viola, P., Jones, M. (2001). Rapid object detection using a 
boosted cascade of simple features. Proceedings of the 2001 
IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition, p. I-511-I-518 vol. 511, DOI:10.1109/
cvpr.2001.990517.

[92] Ciric, I., Cojbasic, Z., Nikolic, V., Antic, D. (2013). 
Computationally intelligent system for thermal vision 
people detection and tracking in robotic applications. 11th 

International Conference on Telecommunication in Modern 
Satellite, Cable and Broadcasting Services, p. 587-590., 
DOI:10.1109/telsks.2013.6704447.

[93] Hu, J.S., Wang, J.J., Ho, D.M. (2014). Design of sensing 
system and anticipative behavior for human following of 
mobile robots. IEEE Transactions on Industrial Electronics, 
vol. 61, no. 4, p. 1916-1927, DOI:10.1109/Tie.2013.2262758.

[94] Borges, G.A., Aldon, M.-J. (2004). Line extraction in 2D 
range images for mobile robotics. Journal of Intelligent and 
Robotic Systems, vol. 40, no. 3, p. 267-297, DOI:10.1023/
B:JINT.0000038945.55712.65.

[95] Comaniciu, D., Ramesh, V., Meer, P. (2003). Kernel-based 
object tracking. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 25, no. 5, p. 564-577, 
DOI:10.1109/TPAMI.2003.1195991.

[96] Li, P., Zhang, T., Pece, A.E. (2003). Visual contour tracking 
based on particle filters. Image and Vision Computing, vol. 
21, no. 1, p. 111-123, DOI:10.1016/S0262-8856(02)00133-
6.

[97] Nakamura, K., Nakadai, K., Asano, F., Ince, G. (2011). 
Intelligent sound source localization and its application to 
multimodal human tracking. Proceedings of the IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 
p. 143-148, DOI:10.1109/iros.2011.6094558.

[98] Singh, S.K., Chauhan, D., Vatsa, M., Singh, R. (2003). A 
robust skin color based face detection algorithm. Tamkang 
Journal of Science and Engineering, vol. 6, no. 4, p. 227-234.

[99] Bradski, G.R. (1998). Real time face and object tracking as 
a component of a perceptual user interface. Proceedings of 
the 4th IEEE Workshop on Applications of Computer Vision, p. 
214-219, DOI:10.1109/acv.1998.732882.

[100] Ess, A., Leibe, B., Schindler, K., Gool, L.V. (2008). A mobile 
vision system for robust multi-person tracking. IEEE 
Conference on Computer Vision and Pattern Recognition, p. 
1-8, DOI:10.1109/cvpr.2008.4587581.

[101] Ciric, I.T., Cojbasic, Z.M., Nikolic, V.D., Igic, T.S., Tursnek, B.A.J. 
(2014). Intelligent optimal control of thermal vision-based 
person-following robot platform. Thermal Science, vol. 18, no. 
3, p. 957-966, DOI:10.2298/Tsci1403957c.

[102] Simončič, S., Podržaj, P. (2014). Vision-based control of a line-
tracing mobile robot. Computer Applications in Engineering 
Education, vol. 22, no. 3, p. 474-480, DOI:10.1002/
cae.20573.

[103] Lee, J.-H., Hashimoto, H. (2002). Intelligent space—concept 
and contents. Advanced Robotics, vol. 16, no. 3, p. 265-280, 
DOI:10.1163/156855302760121936.

[104] Khoshelham, K., Elberink, S.O. (2012). Accuracy and 
resolution of Kinect depth data for indoor mapping 
applications. Sensors (Basel), vol. 12, no. 2, p. 1437-1454, 
DOI:10.3390/s120201437.

[105] Suarez, J., Murphy, R.R. (2012). Using the Kinect for search 
and rescue robotics. IEEE International Symposium on 

https://doi.org/10.1007/s11263-005-6644-8
https://doi.org/10.1109/iccv.2009.5459303
https://doi.org/10.1109/78.782219
https://doi.org/10.1007/978-3-642-10817-4_4
https://doi.org/10.1109/78.978374
https://doi.org/10.3390/s131114687
https://doi.org/10.1007/BF00153759
https://doi.org/10.1016/j.dss.2009.07.010
https://doi.org/10.1016/j.patrec.2006.06.001
https://doi.org/10.1109/iros.2011.6094716
https://doi.org/10.1109/mis.2001.956082
https://doi.org/10.1007/s12369-009-0037-z
https://doi.org/10.1109/cvpr.2001.990517
https://doi.org/10.1109/cvpr.2001.990517
https://doi.org/10.1109/telsks.2013.6704447
https://doi.org/10.1109/TIE.2013.2262758
https://doi.org/10.1023/B:JINT.0000038945.55712.65
https://doi.org/10.1023/B:JINT.0000038945.55712.65
https://doi.org/10.1109/TPAMI.2003.1195991
https://doi.org/10.1016/S0262-8856(02)00133-6
https://doi.org/10.1016/S0262-8856(02)00133-6
https://doi.org/10.1109/iros.2011.6094558
https://doi.org/10.1109/acv.1998.732882
https://doi.org/10.1109/cvpr.2008.4587581
https://doi.org/10.2298/TSCI1403957C
https://doi.org/10.1002/cae.20573
https://doi.org/10.1002/cae.20573
https://doi.org/10.1163/156855302760121936
https://doi.org/10.3390/s120201437


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)5, 331-348

347Machine-vision-based human-oriented mobile robots: A review

Safety, Security, and Rescue Robotics, p. 1-2, DOI:10.1109/
ssrr.2012.6523918.

[106] Jin, T.-S., Lee, J.M., Tso, S. (2004). A new approach using 
sensor data fusion for mobile robot navigation. Robotica, vol. 
22, no. 01, p. 51-59, DOI:10.1017/S0263574703005381.

[107] Huang, S.J., Liu, S., Wu, C.H. (2015). Intelligent humanoid 
mobile robot with embedded control and stereo visual 
feedback. Journal of Mechanical Science and Technology, 
vol. 29, no. 9, p. 3919-3931, DOI:10.1007/s12206-015-
0838-y.

[108] Gross, H.-M., Scheidig, A., Debes, K., Einhorn, E., Eisenbach, 
M., Mueller, S., Schmiedel, T., Trinh, T.Q., Weinrich, C., 
Wengefeld, T., Bley, A., Martin, C. (2016). ROREAS: Robot 
coach for walking and orientation training in clinical post-
stroke rehabilitation—prototype implementation and 
evaluation in field trials. Autonomous Robots, p. 1-20, 
DOI:10.1007/s10514-016-9552-6.

[109] Breazeal, C., Scassellati, B. (1999). How to build robots 
that make friends and influence people. Proceedings of the 
IEEE/RSJ International Conference on Intelligent Robots and 
Systems, p. 858-863, DOI:10.1109/iros.1999.812787.

[110] Broadbent, E., Stafford, R., MacDonald, B. (2009). 
Acceptance of healthcare robots for the older population: 
Review and future directions. International Journal of Social 
Robotics, vol. 1, no. 4, p. 319-330, DOI:10.1007/s12369-009-
0030-6.

[111] Arras, K.O., Cerqui, D. (2005). Do we want to share our lives 
and bodies with robots? A 2000 people survey. ETH-Zürich, 
Zürich.

[112] Dijkers, M.P., deBear, P.C., Erlandson, R.F., Kristy, K., Geer, 
D.M., Nichols, A. (1991). Patient and staff acceptance of 
robotic technology in occupational therapy: A pilot study. 
Journal of Rehabilitation Research & Development, vol. 28, 
no. 2, p. 33-44, DOI:10.1682/JRRD.1991.04.0033.

[113] Shibata, T., Wada, K., Ikeda, Y., Sabanovic, S. (2009). 
Cross-cultural studies on subjective evaluation of a seal 
robot. Advanced Robotics, vol. 23, no. 4, p. 443-458, 
DOI:10.1163/156855309X408826.

[114] Hirsch, T., Forlizzi, J., Hyder, E., Goetz, J., Kurtz, C., Stroback, 
J. (2000). The ELDer project: Social, emotional, and 
environmental factors in the design of eldercare technologies. 
Proceedings on the Conference on Universal Usability, p. 72-
79, DOI:10.1145/355460.355476.

[115] Giuliani, M.V., Scopelliti, M., Fornara, F. (2005). Elderly 
people at home: Technological help in everyday activities. 
IEEE International Workshop on Robot and Human 
Interactive Communication, p. 365-370, DOI:10.1109/
roman.2005.1513806.

[116] Leite, I., Martinho, C., Paiva, A. (2013). Social robots for long-
term interaction: A survey. International Journal of Social 
Robotics, vol. 5, no. 2, p. 291-308, DOI:10.1007/s12369-013-
0178-y.

[117] Broekens, J., Heerink, M., Rosendal, H. (2009). Assistive 
social robots in elderly care: A review. Gerontechnology, vol. 
8, no. 2, p. 94-103, DOI:10.4017/gt.2009.08.02.002.00.

[118] Reid, D., Samangooei, S., Chen, C., Nixon, M., Ross, A. 
(2013). Soft biometrics for surveillance: An overview. Rao, 
C.R., Govindaraju, V. (eds.), Handbook of statistics: Machine 

learning: Theory and applications, Elsevier, p. 327-352, 
DOI:10.1016/B978-0-444-53859-8.00013-8.

[119] Almudhahka, N.Y., Nixon, M.S., Hare, J.S. (2016). 
Unconstrained human identification using comparative facial 
soft biometrics. IEEE International Conference on Biometrics 
Theory, Applications and Systems, p. 1-6, DOI:10.1109/
btas.2016.7791206.

[120] Lee, T.K.M., Belkhatir, M., Sanei, S. (2014). A comprehensive 
review of past and present vision-based techniques for gait 
recognition. Multimedia Tools and Applications, vol. 72, no. 3, 
p. 2833-2869, DOI:10.1007/s11042-013-1574-x.

[121] Mukai, T., Onishi, M., Odashima, T., Hirano, S., Luo, Z. (2008). 
Development of the tactile sensor system of a human-
interactive robot. IEEE Transactions on Robotics, vol. 24, no. 
2, p. 505-512, DOI:10.1109/TRO.2008.917006.

[122] Wang, H., Liu, X.P. (2011). Haptic interaction for mobile 
assistive robots. IEEE Transactions on Instrumentation and 
Measurement, vol. 60, no. 11, p. 3501-3509, DOI:10.1109/
TIM.2011.2161141.

[123] Moosavian, S.A.A., Alipour, K. (2007). On the dynamic tip-
over stability of wheeled mobile manipulators. International 
Journal of Robotics & Automation, vol. 22, no. 4, p. 322, 
DOI:10.2316/Journal.206.2007.4.206-3036.

[124] Toko, K., Tahara, Y., Habara, M., Kobayashi, Y., Ikezaki, H. 
(2016). Taste sensor: Electronic tongue with global selectivity. 
Nakamoto, T. (ed.), Essentials of Machine Olfaction and 
Taste, p. 87-174, DOI:10.1002/9781118768495.ch4.

[125] Lilienthal, A.J., Loutfi, A., Duckett, T. (2006). Airborne 
chemical sensing with mobile robots. Sensors, vol. 6, no. 11, 
p. 1616-1678, DOI:10.3390/s6111616.

[126] Redlich, C.A., Sparer, J., Cullen, M.R. (1997). Sick-building 
syndrome. The Lancet, vol. 349, no. 9057, p. 1013-1016, 
DOI:10.1016/S0140-6736(96)07220-0.

[127] Liddell, K. (1976). Smell as a diagnostic marker. Postgraduate 
Medical Journal, vol. 52, no. 605, p. 136-138, DOI:10.1136/
pgmj.52.605.136.

[128] Whittle, C.L., Fakharzadeh, S., Eades, J., Preti, G. (2007). 
Human breath odors and their use in diagnosis. Annals of 
the New York Academy of Sciences, vol. 1098, p. 252-266, 
DOI:10.1196/annals.1384.011.

[129] Schiffman, S.S., Williams, C.M. (2005). Science of odor as a 
potential health issue. Journal of Environmental Quality, vol. 
34, no. 1, p. 129-138.

[130] Xu, H., Gao, X.Z., Xu, Y., Wang, K., Yu, H., Li, Z., Alipour, K., 
Ani, O.A. (2016). Continuous mobility of mobile robots with a 
special ability for overcoming driving failure on rough terrain. 
Robotica, p. 1-21, DOI:10.1017/S0263574716000606.

[131] Xu, H., Xu, Y., Fu, H., Gao, X.Z., Alipour, K. (2014). Coordinated 
movement of biomimetic dual PTZ visual system and wheeled 
mobile robot. Industrial Robot: An International Journal, vol. 
41, no. 6, p. 557-566, DOI:10.1108/ir-05-2014-0345.

[132] Thompson, P., Colebatch, J., Brown, P., Rothwell, J., Day, B., 
Obeso, J., Marsden, C. (1992). Voluntary stimulus-sensitive 
jerks and jumps mimicking myoclonus or pathological startle 
syndromes. Movement Disorders, vol. 7, no. 3, p. 257-262, 
DOI:10.1002/mds.870070312.

[133] Kidokoro, H., Kanda, T., Brščić, D., Shiomi, M. (2015). 
Simulation-based behavior planning to prevent congestion 

https://doi.org/10.1109/ssrr.2012.6523918
https://doi.org/10.1109/ssrr.2012.6523918
https://doi.org/10.1017/S0263574703005381
https://doi.org/10.1007/s12206-015-0838-y
https://doi.org/10.1007/s12206-015-0838-y
https://doi.org/10.1007/s10514-016-9552-6
https://doi.org/10.1109/iros.1999.812787
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1007/s12369-009-0030-6
https://doi.org/10.1682/JRRD.1991.04.0033
https://doi.org/10.1163/156855309X408826
https://doi.org/10.1145/355460.355476
https://doi.org/10.1109/roman.2005.1513806
https://doi.org/10.1109/roman.2005.1513806
https://doi.org/10.1007/s12369-013-0178-y
https://doi.org/10.1007/s12369-013-0178-y
https://doi.org/10.4017/gt.2009.08.02.002.00
https://doi.org/10.1016/B978-0-444-53859-8.00013-8
https://doi.org/10.1109/btas.2016.7791206
https://doi.org/10.1109/btas.2016.7791206
https://doi.org/10.1007/s11042-013-1574-x
https://doi.org/10.1109/TRO.2008.917006
https://doi.org/10.1109/TIM.2011.2161141
https://doi.org/10.1109/TIM.2011.2161141
https://doi.org/10.2316/Journal.206.2007.4.206-3036
https://doi.org/10.1002/9781118768495.ch4
https://doi.org/10.3390/s6111616
https://doi.org/10.1016/S0140-6736(96)07220-0
https://doi.org/10.1136/pgmj.52.605.136
https://doi.org/10.1136/pgmj.52.605.136
https://doi.org/10.1196/annals.1384.011
https://doi.org/10.1017/S0263574716000606
https://doi.org/10.1108/IR-05-2014-0345
https://doi.org/10.1002/mds.870070312


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)5, 331-348

348 Finžgar, M. – Podržaj, P.

of pedestrians around a robot. IEEE Transactions on 
Robotics, vol. 31, no. 6, p. 1419-1431, DOI:10.1109/
TRO.2015.2492862.

[134] Szemes, P.T., Hashimoto, H., Korondi, P. (2005). Pedestrian-
behavior-based mobile agent control in intelligent space. IEEE 
Transactions on Instrumentation and Measurement, vol. 54, 
no. 6, p. 2250-2257, DOI:10.1109/TIM.2005.858824.

[135] Brščić, D., Kanda, T. (2015). Changes in usage of an indoor 
public space: Analysis of one year of person tracking. IEEE 
Transactions on Human-Machine Systems, vol. 45, no. 2, p. 
228-237, DOI:10.1109/THMS.2014.2374172.

[136] Wu, P., Yi, W.J., Saniie, J. (2016). Security assessment for 
personal health data management system. IEEE International 
Conference on Electro Information Technology, p. 0422-
0427, DOI:10.1109/eit.2016.7535277.

[137] Ng, E.Y.K., Kawb, G.J.L., Chang, W.M. (2004). Analysis of IR 
thermal imager for mass blind fever screening. Microvascular 
Research, vol. 68, no. 2, p. 104-109, DOI:10.1016/j.
mvr.2004.05.003.

[138] Sousa, P., Felizardo, V., Oliveira, D., Couto, R., Garcia, N.M. 
(2015). A review of thermal methods and technologies for 
diabetic foot assessment. Expert Review of Medical Devices, 
vol. 12, no. 4, p. 439-448, DOI:10.1586/17434440.2015.10
32251.

[139] Amelard, R., Scharfenberger, C., Kazemzadeh, F., Pfisterer, 
K.J., Lin, B.S., Clausi, D.A., Wong, A. (2015). Feasibility of 
long-distance heart rate monitoring using transmittance 
photoplethysmographic imaging (PPGI). Scientific Reports, 
vol. 5, p. 1-11, DOI:10.1038/srep14637.

[140] Sharma, P., Kovarik, C.L., Lipoff, J.B. (2016). Teledermatology 
as a means to improve access to inpatient dermatology care. 
Journal of Telemedicine and Telecare, vol. 22, no. 5, p. 304-
310, DOI:10.1177/1357633X15603298.

[141] Rossiter, J., Hauser, H. (2016). Soft robotics - the next 
industrial revolution? [industrial activities]. IEEE Robotics & 
Automation Magazine, vol. 23, no. 3, p. 17-20, DOI:10.1109/
MRA.2016.2588018.

https://doi.org/10.1109/TRO.2015.2492862
https://doi.org/10.1109/TRO.2015.2492862
https://doi.org/10.1109/TIM.2005.858824
https://doi.org/10.1109/THMS.2014.2374172
https://doi.org/10.1109/eit.2016.7535277
https://doi.org/10.1016/j.mvr.2004.05.003
https://doi.org/10.1016/j.mvr.2004.05.003
https://doi.org/10.1586/17434440.2015.1032251
https://doi.org/10.1586/17434440.2015.1032251
https://doi.org/10.1038/srep14637
https://doi.org/10.1177/1357633X15603298
https://doi.org/10.1109/MRA.2016.2588018
https://doi.org/10.1109/MRA.2016.2588018

