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Predicting of tool wear for hot metal forging - an overview
and suggested new approach
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Abstract: The process of tool wear is a very complex phenomenon and as experience has
shown, it is not easy to describe it mathematically either by phenomenological models
or by empirical models, using classical statistical tools. Due to the complexity of the
problem, predicting tool wear even today presents a great challenge. Better wear predic-
tion would also mean lower production costs, since unexpected tool breakdowns (fail-
ures) can increase costs by up to 30 % per forging unit. An overview of wear models for
predicting of tool wear in hot forging are presented in the paper and applications of the
recently introduced new approach of tool wear prediction on industrial tools are given.
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1. INTRODUCTION

Due to their outstanding mechanical proper-
ties and a relatively low production cost, the
forged products are still gaining in impor-
tance. They are used for products, which are
exposed to high mechanical or/and thermal
loads. A wish to reduce costs leads us to make
use of all the resources, which may raise the
production effectiveness. In the case of forg-
ing technologies, the latter is achieved by the
tool life. However the major influence on the
tool life (nearly 70 %) is attributed to its wear.
Still today, wear prediction of the forging tool
represents a major problem to tool design-
ers and technologists in manufacturing, since
the process of wear is a very complex one,
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and, as experience has shown, it is not easy
to assess it mathematically. A better wear
prediction would dramatically reduce pro-
duction costs, since it would help us to avoid
unexpected loss of tool during forging!-!.

2. INFLUENTIAL PARAMETERS ON
TOOL WEAR

The parameters, which influence the tool
wear the most (Figure 1) are surface hard-
ness and toughness at elevated temperature
(carbide-forming elements), workpiece de-
formation (contact surface traction), contact
pressures, sliding lengths, sliding velocity,
contact time, workpiece temperature, basic
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tool temperature, presence of the third par-
ticles in the interface (scale), lubrication (fric-
tion), method of tool surface cooling, etc.
Their influence on wear is very complex and
the relationship between wear and these pa-
rameters is highly non-linear and spatially
very disordered %371,

Luic "' systematized the influential sets of
parameters, and within these, he recorded
some parameters influencing the wear of the
forging tools. BoBkE ! presented vectors of
influence of these parameters for three dif-
ferent stress states: a predominantly normal
stress state, a predominantly shear stress
state, and for the stress state, which exists
(prevails) on the radii of curvature in the forg-

ing tools engravery of tools. It is evident that
the influence of individual factors on wear,
depending on the stress state, change drasti-
cally and that there are no linear, mutually
independent parameters. There are different
opinions regarding the most important tool
parameter. Thus, e.g., HanseNn Bl claims that
sliding lengths are the parameter most
strongly influencing the wear. On the other
hand, DoEGE ET AL. PJ claim that the tempera-
ture on the mass surface of the tool which
causes a reducing of microhardness of its
surface layer is the parameter which prob-
ably most strongly influences the wear dur-
ing the hot die forging of steel. Thus, a higher
temperature of the workpiece, a longer con-
tact time, longer sliding distance and a higher
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contact stress are increasing the temperature
on the surface layer of the tool, while a
thicker contact interface layer and better lu-
bricant qualities are reducing it. Higher con-
tact pressures influence the size of the con-
tact surface and thus the transfer of heat from
the workpiece to the tool. It is therefore nec-
essary that the prediction models are also
based on the system approach B4+36 401,

Friction between the workpiece and tool in-
fluences the flow of the deformed material
and thus directly influences the tool wear.
Modelling of the friction process in the in-
terface layer between the tool and the
workpiece is essential for the analysis of the
hot die forging process ['*!!-25281 For deter-
mining friction, the conventional FEM pro-
grams have an installed model - either the
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Coulomb friction model or the model of a
constant friction factor. As proved by some
most recent research %, in order to describe
the friction conditions in the interface layer
between the tool and the workpiece, it is rea-
sonable, due to the complexity of the phe-
nomena in this layer, to calculate with an
adaptive friction factor as the function of
material, roughness, a normal contact pres-
sure, yield stress, a relative sliding velocity
and the temperature. Due to the relationship
and co-influence of all these parameters the
authors have used the method of neural net-
work to calculate the adaptive friction factor
with which they simulated the material flow
very precisely.

Figure 2 shows qualitatively the influence
of various parameters on the tool life in the
industrial process of hot forging. It can be
realized that the phenomenon is highly non-
linear and very complex.

3. MODELS USED FOR PREDICTION
OF TOOL WEAR

The surface layer on the hot die forging tool
is due to simultaneous activity of mechani-
cal, thermal, tribological and chemical loads
and their complex interactive effects, very
non-homogeneously structured and cannot
be described mathematically with the pres-
ently available number of data from experi-
ments or applications [,

Wear prediction is based on identification
and quantification of the phenomena which
control this process. Due to the mentioned
complexity of the tribological system and the

simultaneous presence of different mecha-
nisms subject to wear, the phenomenologi-
cal approaches for prediction are still imper-
fect and too slow for a practical use. Model
approaches have proved to be more useful.
If we ignore purely empirical approaches,
several semi-empirical approaches may very
soon come into practice. These, as well, are
relatively highly simplified, since some wear
influence parameters, which are intermingled
or have joint effects, are difficult to assess
quantitatively 1671,

The basis for model prediction is the deter-
mination of influence parameters by labora-
tory physical simulations - their analysis,
which may be numerically supported. The
results of the analysis are then incorporated
into equations by adequate statistical tools,
which make the prediction possible. The
basis for prediction is the experimentally
verified database with data on the influence
of wear-causing variables. In case of the labo-
ratory study of wear, the simulation of tool
wear has to be done at limiting conditions
like the ones that exist in the applied tech-
nology - in our case it means in the tool op-
eration during forging. It is therefore neces-
sary to reproduce the same mechanical, ther-
mal, tribological and chemical conditions as
those existing in the intermediate layer be-
tween the tool and the workpiece !,

RMZ-M&G 2003, 50
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Starting from the mechanical loads of wear surfaces, we have often used the Archard’s
model or its modifications, like FELDER AND ManioUB !*! (Equation 1):

Gy -Au H

Ah = K, K, -

Termomechanicalhistory

Where:
O, contact pressure,
A relative sliding velocity,

H,' (microstructure(0®,),0,)

'f(HV)'df M

va

K, constant dependent on interface (tool - workpiece),
K, constant dependent on chemical composition of applied tool,

H_ microhardness,

H , microhardness of presented oxides,

©, temperature on tool surface,

Ah wear.

Equation (1) is suggested by the authors for
the calculation of wear on entire arbores of
nitrided tools with greater radius.

Similar equations can also be found in
STOHLBERG ET AL. ['3), PAINTER ET AL. ['%], KANG
ET AL. [?1, BoBKE 1, HANSEN P, etc. Various
models are gradually including a number of
influential parameters, and for their charac-
terization they use FEM (e.g. sliding
lengths).

VARDAN ET aL. ' (Equation 2) take into ac-
count only the velocity of relative sliding,
the temperature on the tool surface, and the
contact pressure.

RMZ-M&G 2003, 50
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Where:

a, B, and A exponents obtained by regres-
sion analysis,

v = relative sliding velocity,

© = temperature on tool surface,

q = contact pressure,

Z = wear.

Many outstanding papers are found in the
published references, e.g. (¢, for parameters
controlling the wear procedure. The same is
true for their mathematical linkage for the
purpose of wear prediction. Main restrictions
that occur here are the number of the included
influence or variables, their weight, and the
consideration of their mutual space interac-
tions. The model of DoEGE ET AL. 5¢1 (Equa-
tion 3) takes into account eight influential
sets of parameters (the maximum number
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found in the available references), obtained using standard statistics, that enables calcula-

tion of the maximum wear.

Hi(x) - f(Rm) L0sx £ (dT) 110 x f(Fp)O,% x f(Lw)

0.66

x fR)"10 x (1) f(Ai)0.63 < f(x)* (3)

= factor dependent on average temperature difference between workpiece

Where:
H,(x) = wear at point x in dependence of number of strokes,
f(R ) = factor dependent on tensile strength
£ (dT)
and tool,
f(Fp) = factor dependent on forging force,
f(L,) = factor dependent on chemical composition of applied tool,

f(R /R)) = factor dependent on tool macrogeometry (R= tool arbor radius),

(D) = factor dependent on sliding length,
F(A) = factor dependent on tool laded surface,
f(x) = factor dependent on number of strokes.

The authors claim that compatibility between
the experimental and the calculated values
is extremely high. The equation they used
enabled calculation of wear on the points of
tool arbor radii where maximum values of
wear occur. All the factors and their expo-
nents are obtained by the standard statistics.

Some other authors !'"! also stress the impor-
tance of variable influential parameters (con-
tact pressure, sliding lengths, etc.) along the
sliding deformed material on the tool curva-
ture (arbor radius). Consequently, non-uni-
form wear and deposition of materials can
occur, especially on small tool radii % °]. In
such cases, primarily, the above-mentioned
models are not always reliable in predicting
wear on the entire arbor radius. Neural net-
works have been efficiently applied for wear
prediction on cutting tools 2%, and on
samples in laboratory wear testing B!-32,
There have also been some attempts to ap-
ply neural networks to forming tools 33361,

NamM ET AL. B3 used this approach for pre-
diction of tool wear in cold extrusion, while
TERCELJ ET AL. B+ used a similar approach
on hot forging tools. Czer ET aL. ') combined
expert know-how and data from numerical
simulations, for better tool life prediction.
FaLk AND ENGEL ! proposed a combined ap-
plication of numerical simulations and neu-
ral networks for solving similar problems.
Cases, where back-propagation neural net-
works (BP NN) were used to predict tool wear
in various laboratory tribological applications,
are presented in references '3,

Recent research describes micro-mechanical
models for prediction of friction and wear
on tool surfaces. The authors agree that the
models are still purely theoretical ones 2241,
Sapowski developed a thermodynamical
model for prediction of wear in tribological
system. This approach is also purely theo-
retical '8,
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4. NEW TRENDS IN PREDICTING OF
TOOL WEAR

4.1 Basic characteristics of the new ap-
proach for tool wear prediction

A combination of two methods, i.e., the fi-
nite element method (FEM) and the neural
network by conditional average estimator
(CAE NN), to predict non-linear wear on the
tool arbor radius has been applied recently
135361 Such an approach enables the whole
observed tool arbor radius to be treated as
an entity and also allows an increased num-
ber of influential parameters to be taken into
account. Note that establishing a large data-
base of tool wear is a time consuming pro-
cess. This, however, is far beyond the scope
of the present paper and is not a prerequisite
for using the proposed method. The main
contribution of the paper is, therefore, the
application of FEM and CAE NN to model-
ling tool wear.

For the purpose of a model prediction for
practical use, it is not necessary to know the
entire physical background of the wear; it is
enough to follow, with regard to a selected
tool-workpiece pair, the time sequence of
parameters of mechanical and thermal char-
acter on the tool surface at synchronous re-
cording the wear-geometry changes in its
contour. These facts have inspired us to use
the CAE neural network method for wear
prediction, since it is capable of taking into
account, and processing a complex space
dependence of influential parameters of any
physical phenomena. The database for pre-
diction was established by the FEM analy-
sis of tribomechanical and tribothermical
load states on the tool surface layer during

RMZ-M&G 2003, 50

the test simulation of hot die forging and a
simultaneous measurement of wear on the
replica. From the long-term point of view,
the analysis of similar cases extends the da-
tabase and increases the reliability of pre-
diction.

Large amount of data on tool wear and in-
fluential parameters enables us to take into
account (4) the majority of essential param-
eters and (5) their inter-dependence. The
CAE NN method is one of the possible ap-
proaches for doing this. The basis of the new
approach (CAE and FEM) for wear predic-
tion has already been presented in 43¢, A
detailed description of CAE NN can be found
in®%41; hence in this paper only the basic
principles are given. Note, however, that
CAE NN is not a typical neural network.

In a general approach of CAE NN, each of
the output variables corresponding to the
vector under consideration X (i.e., a vector
with known input variables p, and output
variables £, to be predicted)

A A A \T
x:(pl,...,pi,...,pL,rl,...,rk,...) 4
can be estimated by the formula
N
=2.C, 1, 5)
n=1
where:
Cl’l
C,=~
Se ©
j=1
and
Z (. —p. )
c, =exp| —=——5—

2w? (7
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Here F,_is the k-th output variable to be pre-
dicted (corresponding to the vector X; in our
case tool wear), r_ is the same output vari-
able corresponding to the n-th vector in the
database, p . is the i-th input variable of (pa-
rameters that influence tool wear), p, is the
i-th input variable of X, N is the number of
model vectors in the database, w is the
smoothness parameter, and L is the number
of input variables.

In general, the relevant processes regarding
tool wear can be investigated at several lev-
els, 1.e., the nano-, micro- and macro-level,
as well as at the external (visible) level. The
higher the level, the more difficult it seems
to be to obtain the data concerning the rel-
evant processes during the wear process.
These problems still occur at the micro level,
whereas FEM analysis, the precision of
which has advanced greatly in the recent
years, can bring more reliable data at the
macro level. However, the temperature cal-
culated on the surface layer of the tool, is
still an exception. This is the reason why only

the measured temperature of the workpiece
is taken into consideration. The database is
thus formed by following the essential pa-
rameters (mechanical and thermal loads) at
the macro level (the FEM analysis), which
indirectly affect the processes at other lev-
els. For each point determined on the ob-
served tool curvature (arbor radius, Figure
3) the temporal course of the influential pa-
rameters must be calculated. This includes
normal and tangential pressures, sliding ve-
locity, sliding length, the temperature on the
tool surface, their relative values along the
contour in the direction of sliding, etc. The
temporal course of sliding lengths on the
mentioned arbor radius computed in this way
(FEM) is shown on Figure 4. It can be clearly
seen that sliding lengths increase in the first
part of the arbor radius and rapidly decrease
in the second part, which means that there is
a low value of relative sliding between the
tool and the deformed material. The FEM
analysis of contact pressures also indicates
that in the first part relatively high pressures
occur, whereas they decrease in the second

Radius of die
curvature

Workpiece

iy

235

Position of origin
of coordinates
Forged
pieca

Figure 3. Applied tool with arbor radius and origin of coordinate system defined 5-¢!.
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Figure 4. Temporal course of sliding lengths on the arbor radius.

Table 1. Variables - components of model vectors for description of wear.

ONGLi) Normal pressure at time ¢ and on point i

Ly Sliding length at time ¢ and on point i

Vi) Relative velocity of slip at time t and on
point i

N, Number of strokes

Wns,i) Wear at Ns on point i

ONmax/ONG) Ratio of max. pressure on the whole die
curvature to max. pressure on point i

[~ — Ratio of max. sliding length on the
whole die curvature to max. sliding
length on point i

Vina/ Vinas(i) Ratio of max. sliding velocity on the
whole die curvature to max. sliding
velocity on point i

2ongpdt Sum of products of normal pressure and
time

0 Temperature of forgings

i Position of point on the curvature

t Time

oy Tensile strength

Dau Austenitising temperature

0, Tempering temperature
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part. Both cases explain why, on the one
hand, the removal (wear) of material occurs
in the first part of the arbor radius and, on
the other hand, why deposition of material
can be noticed on the second part (Figure 4).
The database is furthermore formed by the
physical properties of the tool materials

(chemical composition, hardness, tensile
strength, etc.), the expert knowledge, as well
as wear data on the entire arbor radius at
various number of strokes. In Table 1 all the
applied influential parameters are given, ex-
cept for parameters describing the chemical
composition, which are given in Table 2.

Table 2. Allowed deviations (%) of chemical composition of tool steels used.

C Si Mn Cr Mo \Y Ni Co T
W.Nr. 0.37 0.90 0.30 4.80 1.20 0.90 - - -
12344 043 1.20 0.50 5.50 1.50 1.10 - - -
W.Nr. 0.28 0.10 0.15 2.70 2.60 0.40 - - -
1.2365 0.35 0.40 045 3.20 3.00 0.700 - - -
W.Nr. 0.50 0.10 0.65 1.00 0.45 0.07 1.50 - -
1.2714 0.60 0.40 0.95 1.20 0.55 0.12 1.80 - -
W.Nr. 0.01 - - - 7.80 - 11.80 7.85 045
1.2799 0.05 - - - 8.30 - 12.20 825 0.55

The scattering of tool wear data can be
caused by a variation of chemical composi-
tion (above all of the carbide-forming ele-
ments) of tools, though still within the al-
lowed limits, by heat treatment of tool steels
(a different temperature of austenitising and
of tempering, etc.), by varying composition
of the lubricant, and so on. Small variations
in the chemical composition cannot simply
be expressed in terms of other hardness data
(tensile strength, etc.), but additionally by
forming eight new vectors (parameters) for
chemical composition. The number of pa-
rameters in such models can vary from 15 to
62, depending on the type of model.

4.2 Results of wear prediction by CAE
NN

In the case of a small database a reasonable
approach seems to be taking the wear data at
a lower number of strokes. These data al-
ready indicate the direction of scattering of

end wear data (above or below the average).
This method of intermediate control of tool
wear is regularly used in forges; usually, just
the data on the point of maximum wear suf-
fices. The accordance between the measured
and CAE predicted wear values are estimated
by the coefficient of determination (B):

Z(fk _rk)z
Sy ®

f, in equation 5 represents the mean value of
r,, and M is the number of model vectors
tested.

B=1-

4.3 Prediction of tool wear for other
chemical compositions

In order to be able to predict tool wear by
CAE NN, a minimal database had to be con-
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Figure 5. Comparison between measured and CAE predicted wear at 1000 strokes, W.Nr.
1.2799; tensile strength 1500 MPa, intermediate tool wear at 500 strokes is known, example

1.

structed. It was formed by means of FEM
analysis of the forging process (temporal
course of parameters), as well as by data
characterizing the material properties (ten-
sile strength, chemical composition, etc.).
The database also includes the data on the
tool wear of arbor radii at various number of
strokes (100 and/or 200, 500 and 1000). The
tools with tensile strength 1500 MPa were
made of W.Nr. 1.2344, W.Nr. 1.2365 and W.
Nr. 1.2714, having the same dimensions
and austenitized at the same temperature
(1100 °C). The workpieces (heated to
1100 °C) were made of C 45, their dimen-
sions were ®=30x40 mm, contact time

0.020 s, time of one cycle 13 s, the lubricant
delta 31 (friction factor m=0.2), etc.[*>% The
fourth tool (W.Nr. 1.2799) also had the same
shape and dimensions (Figure 3), and know-
ing the intermediate data on tool wear (e.g.,
at 500 strokes), enabled us to predict (ex-
trapolate) the tool wear of this fourth tool at
a higher number of strokes, e.g., at 1000
strokes. The predicted CAE wear results for
the fourth tool are shown in Figure 5 (Ex-
ample 1).

It can be clearly seen that even a small data-
base (wear data for only three tools) enables
a relatively good estimate to be made of the

Table 3. Values of coefficients of determination B at smoothness parameter w=2.

Example | Example | Example | Example
1 2 3 4
W.Nr. 1.2799 1.2365 1.2344 | 1.2714
Given data 0.862 0.941 0.945 0.994
Extrapolation 0.709 0.567 0.862 0.959
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temporal course of wear on the entire arbor
radius (B=0.709). In Table 3 the values of B
for CAE predicted wear at 1000 strokes are
given (Example 2-4) also for the other three
tools (the same procedure as in Example 1).
The B values for the given data set up (in-
cluding the last measured wear data) can also
be found in Table 3.

4.4 Prediction of the wear of a tool with
different mechanical properties

By using different temperature for temper-
ing the tool material, a different tensile
strength can be achieved, which influences
its wear resistance. Figure 6 shows the mea-
sured and CAE predicted values of wear
obtained by interpolation from to the exist-
ing database and for the case of known wear
data at 500 strokes (extrapolation). The da-
tabase originally contains only wear data on
the steel W.Nr. 1.2799, W.Nr. 1.2344, W.Nr.

1.2365 and W. Nr. 1.2714 with a tensile
strength of 1500 Mpa. If data about the wear
of tool steel material with tensile strengths
of 1300 and 2000 MPa were added to the
database, a CAE wear prediction at 1000
strokes for tool steel (1400 MPa) could be
carried out (Example 5, interpolation). A
coefficient of determination B=0.697 was
obtained. If wear of a tool with a tensile
strength of 1400 MPa at 1000 strokes was
predicted by known wear data at 500 strokes,
the value of B obtained was 0.649 (Example
6, extrapolation). It should be noted that the
results for Example 5 were obtained using
w=0.15 and for Example 6 using w=2. The
different values applied for the smoothness
parameter w were the consequence of the
larger size of the databases and of the math-
ematical description of the model. In Ex-
ample 5 the database was relatively exten-
sive (approximately 500 model vectors), but
in Example 6 only five model vectors were
used.

I~

2

150
— Example 6
100 - — measured
- Example 5
£ 50
=
= 0 \
2 I
N N4
= -100 —_—
-150
-200

Position [mm]

Figure 6. Comparison between measured and CAE predicted wear at 1000 strokes, W.Nr
1.2365, tensile strength 1400 MPa (Example 5, interpolation; Example 6, extrapolation, known

wear at 500 strokes).
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4.5 Wear prediction of a tool austenitized
at a different temperature

The temperature of austenitising has great
influence on the dissolution of carbides and
consequently on the wear resistance of tool
steels. The Figure 7 shows the measured and
CAE predicted values at 1000 strokes of a
tool austenitized at 1050 °C. Example 7
shows the CAE predicted wear obtained by

interpolation (known wear data at 1100 °C
and 1000 °C). Example 8 again shows the
predicted value, considering the known wear
data at 500 strokes (extrapolation). In Ex-
ample 7 the value of B is 0.657, while in
Example 8 the value of B is 0.924, indicat-
ing good agreement, as is also shown in Fig-
ure 7. In this case, there is also an agreement
between the measured and predicted values.

200
| |=——-example 8
150 —— measured
100 || ===example 7
£
= 50
ot
By 0 \
a 1
§ -50
= 100 M
—
-150
-200

Position [mm]

Figure 7. Comparison between measured and CAE predicted wear at 1000 strokes, W.Nr.
1.2365, temperature of austenitising (1050 °C); Example 7, interpolation; Example 8, ex-

trapolation.

4.4 Wear prediction of a tool at a differ-
ent forging temperature

If the temperature of the workpiece is
changed, the mechanical and thermal loads
are also changed (at lower temperature
the contact pressures are increased and the
temperature on the tool surface decreases,
and vice versa). As known from the litera-
ture 3% 37 lower thermal loads on the tool
surface also mean lower wear values, since
the temperature is the most influential wear

RMZ-M&G 2003, 50

parameter. Mechanical loads increase at
lower workpiece temperatures.

From an existent database on the temporal
course of the influential parameters and wear
data on all the mentioned types of materials
at a workpiece temperature of 1100 °C, the
wear on W.Nr. 1.2365 at a workpiece tem-
perature of 900 °C was predicted.

An FEM analysis was again carried out. It is
worth mentioning that in this case there were
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no known wear data for any of the materials
in the existing database at lower tempera-
ture. Again, the method of input of a single
wear data at 500 strokes was applied. B ob-
tained in this case was 0.789 (Figure 8, Ex-
ample 9). By increasing the number of the
wear data at lower temperature, interpola-
tion in the problem space can be used. If the

wear data are known at lower temperature
(900 °C) for at least one of the above men-
tioned tool materials (W.Nr. 1.2714), the
wear data of W.Nr. 1.2365 can be predicted
much more reliably (Example 10, interpola-
tion). The value B in this case is even higher
than in the previous example where it
amounts to B = 0.864, (w=0.075).

100
— Example 9
—— measured
= Example 10
E 50
=
g
z
g o ‘
1
-50

Position [mm]

Figure 8. Comparison between measured and CAE predicted wear at 1000 strokes, W.Nr.
1.2365, temperature 900 °C, (Example 9, extrapolation; Example 10, interpolation).

A similar approach was used for predicting
tool wear when using other lubricants; the
results met our expectations.

The values for the coefficient of determina-
tion (B) in particular cases show that by in-
creasing the size of the database the CAE
predicted wear results improve, too. This can
be observed for both models and also for both
predicting modes (interpolation and extrapo-
lation). Namely, increasing the amounts of
data (model vectors) fills the vectors of prob-
lem space, which, due to the complexity of
the wear process, is very extensive. Having
a large enough database, the CAE NN ap-
proach will represent only an interpolation
in the problem space. In this case it can be

expected with a high degree of certainty that
the description even of such a non-linear
problem as wear is going to be very precise.

5. CoONCLUSIONS

Accurrate predicting of tool wear in hot forg-
ing is a very important economical factor and
today still represents a great challenge for
technologists in the industry. Due to com-
plexity of the phenomenon, it is not easy to
describe mathematically, thus a new ap-
proach for a better solution of this problem
is desired. An overview of the models for
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tool wear predicting and application of the
recently introduced approach are given in the

paper.

In this paper a procedure is described for
systematically enlarging the database (a time
consuming process) and how to utilize this
limited data for predicting wear. The ex-
amples presented in this paper are adapted
to the actual conditions in forges. Though
most forges possess extensive databases,
obtained in the many years of forging pro-
grams, this data could not be used to the best
effect due to the use of rigid mathematical
tools, i.e., prediction of tool wear on the ba-
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Napovedovanje obrabe na orodjih za toplo kovanje
- pregled in predlagan nov pristop

Povzetek: Proces obrabe na orodjih za toplo kovanje je zelo kompleksen fenomen. Kot
kazejo dosedanje izkus$nje process obrabe zelo tezko opiSemo matemati¢no tako z
fenomenoloskimi kot tudi z empiriénimi modeli pri ¢emer pri slednjem uporabljamo
klasi¢na statisti¢na orodja. Napovedovanje obrabe zaradi omenjene kompleksnosti
problema tako $e danes predstavlja velik izziv tako za raziskovalce v akademski sferi
kot tudi za tehnologe v industriji. Boljsa napoved obrabe bi znatno znizala proizvodne
stroske (tudi do 30 % na enoto proizvoda), ki nastanejo kot posledica nepricakovanih
izpadov orodja iz proizvodnje, in zato so Zelje po izboljSavah na tem podrocju z
ekonomskega vidika zelo tehtne. V prispevku so podani dosedanji najpomembnejsi modeli
za napovedovanje obrabe orodij pri tolem kovanju ter aplikacija novega pristopa, ki je
bil predlagan pred kratkim. S pomocjo umetne inteligence (CAE Neural Networks) lahko
na osnovi znane obrabe majhnega §tevila orodij napovedujemo obrabo na obravnavanem
orodju in sicer na osnovi metode extrapolacije (znan podatek o obrabi pri nizjem $tevilu
udarcev) ter na osnovi extrapolacije (znani podatki o obrabi orodij s podobnimi
mehanskimi lastnostmi kot obravnavano). Ujemanja med izmerjenimi in napovedovanimi
rezultati o obrabi je zelo visoko, ki pa se z ve¢anjem baze podatkov Se povecuje.
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