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Abstract

A gcd-graph is a Cayley graph over a finite abelian group defined by greatest common
divisors. Such graphs are known to have integral spectrum. A non-complete extended p-
sum, or NEPS in short, is well-known general graph product. We show that the class of
gcd-graphs and the class of NEPS of complete graphs coincide. Thus, a relation between
the algebraically defined Cayley graphs and the combinatorially defined NEPS of complete
graphs is established. We use this link to show that gcd-graphs have a particularly simple
eigenspace structure, to be precise, that every eigenspace of the adjacency matrix of a ged-
graph has a basis with entries —1, 0, 1 only.

Keywords: Integral graphs, Cayley graphs, graph products.
Math. Subj. Class.: 05C25, 05C50

1 Introduction

Given a set B C {0,1}"™ and graphs G4, ...,G,, the NEPS (non-complete extended p-
sum) of these graphs with respect to basis B, G = NEPS(G1, . .., G,; B), has as its vertex
set the Cartesian product of the vertex sets of the individual graphs, V(G) = V(G1) X - - - x
V(G,). Distinct vertices ¢ = (21,...,2Zn), ¥ = (Y1,..-,yn) € V(G) are adjacent in G,
if and only if there exists some n-tuple (531,...,3,) € B such that z; = y;, whenever
B; = 0, and z;, y; are distinct and adjacent in G;, whenever 3; = 1. In particular,
NEPS(G1;{(1)}) = G; and NEPS(G1;0) = NEPS(G1;{(0)}) is the graph without
edges on the vertices of G.

The NEPS operation generalizes a number of known graph products, all of which have
in common that the vertex set of the resulting graph is the Cartesian product of the input
vertex sets. For example, NEPS(Gq,...,G,;{(1,1,....,1)}) = G1 ® ... ® G, is the
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product of G1,...,Gy, (cf. [10], “direct product” in [15]). As can be seen, unfortunately,
the naming of graph products is not standardized at all. The “Cartesian product” of graphs
in [15] is even known as the “sum” of graphs in [10]. With respect to this seemingly ar-
bitrary mixing of sum and product terminology, let us point out that here the term “sum”
(and also the “p-sum” contained in the NEPS acronym) indicates that the adjacency matrix
of the constructed product graph arises from a certain sum of matrices (involving the adja-
cency matrices of the input graphs). Refer to [10] or [11] for the history of the notion of
NEPS. We remark that the NEPS operation can be generalized even further, see e.g. [12]
and [21].

Next, we consider the important class of Cayley graphs [13]. These graphs have been
and still are studied intensively because of their symmetry properties and their connections
to communication networks, quantum physics and other areas [8], [13]. Let I' be a finite,
additive group. A subset S C T is called a symbol (also: connection set, shift set) of I if
—S={-s: s€ 8} =25,0¢ S. The undirected Cayley graph over T with symbol S,
denoted by Cay(T, S), has vertex set I'; two vertices a, b € I are adjacent if and only if
a—beS.

Let us now construct the class of gcd-graphs. The greatest common divisor of non-
negative integers ¢ and b is denoted by gcd(a,b), ged(0,b) = ged(b,0) = b. If z =
(x1,...,2,) and m = (my, ..., m,) are tuples of nonnegative integers, then we set

ged(z,m) = (dy,...,d,) =d, d; =ged(x;,m;) fori=1,...,7

For an integer n > 1 we denote by Z,, the additive group of integers modulo n, the ring of
integers modulo n, or simply the set {0, 1,...,n — 1}. The particular choice will be clear
from the context. Let I" be an (additive) finite abelian group represented as a direct sum of
cyclic groups,

'=Z,,¢...¢%Z,,.,m;>1fori=1,...,7.

Suppose that d; is a divisor of m;, 1 < d; < my, fori = 1,...,r. For the divisor tuple
d=(dy,...,d,)of m = (mq,...,m,) we define

Sr(d) = {z = (x1,...,z,) €T : ged(x,m) = d}.

Let D = {d),...,d®} be a set of distinct divisor tuples of m and define
k .
Sr(D) = | Sr(@?).
j=1

Observe that the union is actually disjoint. The sets S (D) shall be called ged-sets of T'. We
define the class of gcd-graphs as the Cayley graphs Cay (T, S) over a finite abelian group
I" with symbol S a gcd-set of I'. The most prominent members of this class are perhaps
the unitary Cayley graphs X,, = Cay(Z,,, U, ), where U,, = Sz (1) is the multiplicative
group of units of Z,, (cf. [16], [17], [22]).

The main goal of this paper is to show in Section 2 that every gcd-graph is isomorphic
to a NEPS of complete graphs. Conversely, every NEPS of complete graphs is isomorphic
to a gcd-graph over some abelian group. This relation is remarkable since it allows us to
define gcd-graphs either algebraically (via Cayley graphs) or purely combinatorially (via
NEPS). The characterization of gcd-graphs as NEPS of complete graphs reveals some new
access to structural properties of gcd-graphs. As a first application, we show in Section
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3 that every gcd-graph has simply structured eigenspace bases for all of its eigenvalues.
This means that for every eigenspace a basis can be found whose vectors only have entries
from the set {0,1, —1}. It is known that other graph classes exhibit a similar eigenspace
structure, although not necessarily for all of their eigenspaces [9], [20], [25]. Finally, we
present some open problems in Section 4.

2 Isomorphisms between NEPS of complete graphs and ged-graphs

We are going to show in several steps that gcd-graphs and NEPS of complete graphs are
the same.

Lemma?2.l. LetI' =2, ® - ® Z,,,. and d = (ds, . ..,d,) a tuple of positive divisors
ofm= (ma,...,m;). Define b = (b;) € {0,1}" by

b — 1 lfdZ < my;,
e 0 lfdz = m;.

Then we have
Cay(L', Sr(d)) = NEPS(Cay(Zn, , Sz, (d1)), ..., Cay(Zn,, Sz,, (d)); {b}).

Proof. Both Cay(T", Sr(d)) and the above NEPS have the same vertex set I'. It remains to
show that they have the same edge set.

Letz, y € I'withx = (x1,...,2,), y = (y1,...,Yy,) and suppose that z # y. Now z
and y are adjacent in Cay (I, Sp(d)) if and only if ged(x; — y;,m;) = d; fori=1,...,r.
The latter condition means that in case d; < m; the vertices x; and y; are adjacent in
G; = Cay(Z,,, SZmi (d;)), and in case d; = m; we have x; = y;. But this is exactly the
condition for adjacency of x and y in NEPS(GYy, ..., G,; {b}). O

The following lemma allows us to break down the Cayley graphs that form the factors
of the NEPS mentioned in Lemma 2.1. Each factor can be transformed into a gcd-graph
over a product of cyclic groups of prime power order. Using Lemma 2.1 once again, we
obtain a representation of the original graph as a NEPS of NEPS of gcd-graphs over cyclic
groups of prime power order.

Lemma 2.2. Let the integer m > 2 and a proper divisor d > 1 of m be given as products
of powers of distinct primes,

T
m = Il m;, m; =p;t, a; >0fori=1,...,r,
i=1

r
dZH di, di:p?i,OfﬁigaifOF’i:l,...,T.
i=1

Ifwesetl' =Z,,, @+ ® Zy,, and d= (di,...,d,), then there exists an isomorphism

Cay(Zm, Sz, (d)) ~ Cay(T, Sr(d)).
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Proof. By the Chinese remainder theorem [23] we know that every z € Z,, is uniquely
determined by the congruences

z=z modmy, 2; € Ly, fori=1,... 7.

This gives rise to a bijection Z,,, — T by virtue of z — (21,...,2.) =: 2. We show that
this bijection induces an isomorphism between Cay (Z,,, Sz,, (d)) and Cay (T, Sp(d)).
Let 2,y € Zm, x # y. Note that Z and § are vertices of Cay (T, Sp(d)). The vertices z
and y are adjacent in Cay(Z,,, Sz,, (d)) if and only if gcd(z—y, m) = d. This is equivalent
to ged(z; — yi, m;) = d; forevery i = 1,...,r. Now this means ged(Z — g, m) = d, with
m = (mi, ..., m,), which is the condition for adjacency of # and §j in Cay(L, Sp(d)). O
Next we shall prove a lemma that helps us consolidate the nesting of NEPS operations
into a single NEPS operation. As a result, we then know that every single-divisor tuple
gcd-graph is isomorphic to a NEPS of ged-graphs over cyclic groups of prime power order.

Lemma 2.3. Let
H =NEPS(HW,... HY;B) (2.1

be a NEPS of graphs H'9) with respect to basis B such that each graph H'9) is itself a
NEPS of graphs GEJ ) with respect to basis BY),

HD =NEPS(GY,...,GY:BY) forj =1,... . (2.2)
Then there exists a set B C {0,1}", r = ry + ... 4 r4, such that

H~NEPS(G,...,aW,....c\",....cW,; B). 2.3)

T

Proof. We show that in (2.1) the graph H® can be replaced by Ggl), cee Gﬁ). More
precisely, we construct a set B such that

H~NEPS(G",...,aD H® . HY;B), BC{0, 1}, (24

An analogous procedure can be repeated for H), ... H® until we end up with the rep-
resentation (2.3) of H.
In the original representation (2.1) every vertex x of the vertex set V' (H) has the form

T = (a:(l), . ,x(t)), 2 e V(H(j)) forj=1,...,t. (2.5)
By (2.2) each coordinate 2) is itself an r;j-tuple, in particular

2D = (a:(ll), )y, xz(-l) € V(G(-l)) fort=1,...,7m1.

1 ry 7
Expansion of (1) in (2.5) yields
5::(xgl),...,ajg_i),x@),...,x(t)), 26)
xl(»l) € V(GZ(-I)) fori=1,...,r, 2V e V(HD)forj=2, ...t .

This is the representation of vertices for (2.4).



W. Klotz and T. Sander : GCD-Graphs and NEPS of Complete Graphs 293

Now we adapt the basis set B to the new representation of vertices of H such that
adjacencies remain unchanged. Let the distinct vertices z and y of H be given in their
original representation according to (2.5) and in their new representation , ¢ according to
(2.6).

x:(x(i),...,a:(i)), y=@W, ... y"), 1 1
:i:(xg),...,xgl),x(z),...@(t)), g:(yi),...,yﬁl),y(z),...,y(t)).

For each b = (b1,...,b;) € B we define a set B(b) C {0,1}"1+*~1 such that
x, y adjacent with respect to b < Z, § adjacent with respect to B(b). 2.7

Case 1: by = 0.

For z and y to be adjacent with respect to b we must have (1) = y(1)_ If this is satisfied,
then z and y are adjacent, if and only if (z(?,...,z(®) and (y®, ..., y®) are adjacent
with respect to (ba, ..., b:). We achieve (2.7) by setting b= (0,...,0,ba,...,b) (first rq

entries equal to zero) and B(b) = {b}.

Case 2: by = 1.

Now x and y are adjacent with respect to b, if and only if (") and y(*) are adjacent in
H® and 2@ ... 2® and y®, ..., 4® are equal or adjacent with respect to by, ..., by,
respectively. By (2.2) vertices (") and y(*) of H() are adjacent, if and only if they are
adjacent with respect to some b(!) = (bgl)7 . ,bg)) € BMW . In this case we satisfy (2.7)
by setting

B(b) = {(",....60) 6@ 50y p® e BOY,

Finally, we collect the new basis tuples in B = U{B(b) : b € B} and thus achieve
(2.4). O

The next step towards our goal is to show that a single-divisor gcd-graph over a cyclic
group of prime power order is actually isomorphic to a NEPS of complete graphs.

We denote the complete graph on n vertices by K,,. For our purposes, we assume that
the vertex set of K, is Z,, = {0,1,...,n — 1}.

Lemma 2.4. Let m = p® be a prime power, d = p® a divisor of m, 0 < B < «. Then the
ged-graph over Z,, with respect to d is isomorphic to a NEPS of « copies of the complete
graph K, i.e.

Cay(Zm, Sz, (d)) ~ NEPS(K,, ..., Kp; B) for some B C {0,1}.

Proof. In case 8 = « we have Cay(Z,,, Sz, (m)) ~ NEPS(K,,...,K,;{(0,...,0)}).
So we may now assume [ < a.

Let us denote G = Cay(Z,,Sz,,(d)) and H = NEPS(K,, ..., Kp; B) (where the
basis B is not yet fixed). For every x € Z,, let (zo,...,zn—1) be defined by the p-adic
representation of x,

a—1
.I‘ZZ zipt, 0<ax; <pfori=0,...,a—1.
i=0



294 Ars Math. Contemp. 6 (2013) 289-299

We shall assume that the vertex set of K, is Z,,. Define the bijection ¢ : Z,, — Z,®---®
Zy = Zy by o(x) = (20, - -, Ta—1). We now construct a basis set B C {0, 1} such that
0 induces an isomorphism between GG and H. Observe that for every z € Z,,,

ged(z,m) =d < z; = 0forevery i < S and zg # 0.
This leads to the definition of B as follows:
B ={(bo,-. ba—1) €{0,1}*: b; =0foreveryi < 8, bg = 1}.

Let T,y € Zm’ x 7& Y, 50(1') = (.’E07 cee 7mo¢71)’ @(y) = (yOa s 7yo¢71)' Now z and Yy are
adjacent in G if and only if ged(z — y, m) = d, which means z; — y; = 0 for every i <
and 3 — yg # 0. Thanks to our choice of B, this is exactly the condition for ¢(z) and
©(y) being adjacent in H. O

Theorem 2.5. Let G be an arbitrary gcd-graph, G = Cay(I', Sp(D)), I' = Z,,,, -+ &
Zm,, D ={dM, ... d®)Y a set of divisor tuples of m = (ma,...,m,). Ifn =py---p
is the prime factorization of n = my - - - m,., then

G ~NEPS(K,,,...,K,,; B) = H for some B C {0,1}".

Proof. Each divisor tuple in D gives rise to a graph GU) = Cay(T, Sp(dV))), j =
1,..., k. By application of the preceding lemmas of this section we know that

GY) ~ NEPS(K,,,...,K,,; BY) = HY for some BY C {0,1}*.

The graphs GY) constitute an edge disjoint decomposition of G. Now, for every divisor
tuple dV, ..., d*®) € D, we perform the decomposition process outlined by the lemmas in
exactly the same way, in the sense that the vertex numberings of the resulting graphs H )
are coherent. Then the graphs HY) also constitute an edge disjoint decomposition of G:

k k
E@) = |J B(@Y), BH) = | EHY)

The binary sets B\/), 1 < j < k, are also pairwise disjoint. The disjoint union of the edge
sets E(HW), 1 < j <k, is generated in the NEPS of K,,,, ..., K, by

k
B = |J BY.
j=1
With this choice of B the isomorphisms between the subgraphs G\) and HU), 1 < j < k,
extend to an isomorphism between G and H. [

Theorem 2.6. Let G be a NEPS of complete graphs, G = NEPS(K,,,,...,Kn,; B).
Then G is isomorphic to a gcd-graph overl' = Z,, @ -+ ® Zy,,..

Proof. The vertex set of G can be represented by I' = Z,,,, & --- ® Z,,,. Edges of G are
generated by the binary r-tuples b = (b;) of the basis set B. Vertices = (x1,...,2,) #
y = (y1,...,y,) are adjacent in G with respect to b, if x; = y;, whenever b, = 0, and
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x; # yi, whenever b; = 1. Let the set D(b) consist of all positive divisor tuples d =
(di,...,d) of m = (mq,...,m,) such that d; = m;, whenever b, = 0, and d; a proper
divisor of m;, whenever b; = 1. Then x and y are adjacent with respect to b, if and only
if ged(z — y,m) € D(b). If we define D = U{D(b) : b € B}, then the ged-graph
Cay(T', Sp(D)) is isomorphic to G. O

Theorems 2.5 and 2.6 imply the following corollary.

Corollary 2.7. Let n = py - - - py be the prime factorization of the integer n > 2. Every
ged-graph with n vertices is isomorphic to a gcd-graph overI' = Z,,, @ --- @© Zp,.

We conclude this section with some examples.

Example 2.8. We generalize the definition of a Hamming graph given in [15]. The Ham-
ming graph G = Ham(my, ..., m,; D) has vertex set V(G) = Z,,,, ®...® Z,,.. Distinct
vertices are adjacent in G, if their Hamming distance is in D. It can be easily shown that
G is a NEPS of the complete graphs K,,,, ..., K, .

Example 2.9. Sudoku graphs arise from the popular game of Sudoku. The Sudoku graph
Sud(n) models the number restrictions imposed when filling out an n?®n? Sudoku puzzle.
Each vertex represents a cell of the Sudoku puzzle. Two vertices are adjacent if the two
corresponding cells are required to contain different numbers (which is the case when they
lie in the same row, column or block of the puzzle). It has been shown that Sudoku graphs
are NEPS of complete graphs [25].

Example 2.10. This is an example that demonstrates the application of Theorem 2.5.
LetT = Zy @ Z1s and D = {(1,6),(4,2),(2,9)}. We want to represent the graph
Cay(T", Sr(D)) as a NEPS of complete graphs. To start with, let us consider the graph
Cay(T', Sr((1,6))). Application of Lemma 2.1, Lemma 2.2, once again Lemma 2.1, then
Lemma 2.3, Lemma 2.4, and finally once again Lemma 2.3 gives us:

Cay(Z1® Z1s,5((1,6)))
~ NEPS(Cay(Z4, 5(1)), Cay(Z1s,5(6)); {(1,1)})
~ NEPS(Cay(Zs, S(1)), Cay(Zs ® Zo, 5((2,3))); {(1, 1) })
~ NEPS(Cay(Z4, S(1)), NEPS(Cay(Z2, 5(2)), Cay(Zo, S(3)); {(0,1)}): {(1,1)})
~ NEPS(Cay(Zy, S(1)), Cay(Z2, 5(2)), Cay(Zo, 5(3)); {(1,0,1)})
~ NEPS(NEPS(K>, K»;{(1,0),(1,1)}), NEPS(K>2; {(0)}),
NEPS(K3, K3;{(0,1)});:{(1,0,1)})
~ NEPS(K>, Ko, K, K3, K3;{(1,0,0,0,1), (1,1,0,0,1)}).

Note that for the sake of simplicity we have dropped the subscripts of the symbol sets since
the respective groups are clear from the context. Regarding the application of Lemma 2.3
note that, trivially, G ~ NEPS(G; {(1)}).

Cay(Z4 ® Z18,5((4,2))) ~ NEPS(Ky, Ky, K3, K3, Ks;
{(070707 1a 0)7 (O7Oa Oa 1) 1)})7
Cay(Z4EBZ18,S((2,9))) =~ NEPS(KQ,KQ,K27K3,K3;{(0,171,0,0)}).

2
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The graph Cay (I, Sp(D)) is the disjoint union of the graphs Cay(T', Sr(d)) with d €
D which we have considered above, so we arrive at:

Cay(F,SF(D)) >~ NEPS(K27K27K2,K3,K3;
{(1,0,0,0,1),(1,1,0,0,1),(0,0,0,1,0),
(0,0,0,1,1),(0,1,1,0,0)}).

3 Eigenspace bases of gcd-graphs

The eigenvalues and eigenspaces of an undirected graph G are the eigenvalues and eigen-
spaces, respectively, of any adjacency matrix of G. The multiset of all eigenvalues of a
graph is called its spectrum. According to HARARY and SCHWENK [14], a graph G is de-
fined to be integral if all of its eigenvalues are integers. Integral graphs have been a focus
of research for some time; see [4] for a survey.

In particular, many notable results on integrality of Cayley graphs have been obtained.
Integral cubic and quartic Cayley graphs on abelian groups have been characterized in [ 1]
and [2], respectively. Circulant graphs are the Cayley graphs over Z,, n > 1. SO [26]
showed that the integral circulant graphs with n vertices are exactly the gcd-graphs over
Z,,. This result was extended in [18] to groups of the form Zo & ... & Zo & Z,,n > 2. A
complete characterization of integral Cayley graphs over abelian groups has recently been
achieved by ALPERIN and PETERSON [3].

The eigenvalues of G = NEPS(G1,...,G,; B) are certain sums of products of the
eigenvalues of the GG, cf. [10]:

Theorem 3.1. Let G1,...,G, be graphs with ny,...,n, vertices, respectively. Further,
Jori=1,...,rlet \j1,..., A\in, be the eigenvalues of G;. Then, the spectrum of the graph
G = NEPS(GYy, . . ., Gy; B) with respect to basis B consist of all possible values

Hivein = D Nyt AL
(B1y.-sBn)EB

withl < i < ngforl <k <n.

A first consequence is that every NEPS of integral graphs is integral. It is easily checked
that the complete graph K, on n > 2 vertices has the simple eigenvalue n — 1 and the
eigenvalue —1 with multiplicity n — 1. Hence NEPS of complete graphs are integral.
Using Theorem 2.5, we now readily confirm the following result of [18]:

Proposition 3.2. Every gcd-graph is integral.

An interesting property of a graph is the ability to choose an eigenspace basis such that
its vectors have entries from a very small set only. This may be possible only for certain
or for all of its eigenvalues. For example, in [9] a construction is given for a basis of the
eigenspace of eigenvalue —2 of a generalized line graph whose vectors contain only entries
from {0, £1, +2}.

Imposing an even greater restriction on the admissible entries, we call an eigenspace
basis simply structured if it consists of vectors containing only entries from {0,1,—1}.
Accordingly, an eigenspace is considered as simply structured if it has a simply structured
basis. Observe that the eigenvalue belonging to a simply structured eigenspace is necessar-
ily integral.
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For a trivial example of a simply structured eigenspace basis, consider a connected r-
regular graph. Here the all ones vector constitutes a basis of the eigenspace corresponding
to the eigenvalue r. Moreover, for several graph classes, the eigenspaces corresponding to
the eigenvalues 0 or —1 are simply structured, cf. [5],[20],[24].

It is somewhat remarkable if all of the eigenspaces of a graph are simply structured. In
[25] is has been shown that Sudoku graphs are NEPS of complete graphs (recall Example
2.9) and admit simply structured eigenspace bases for all eigenvalues. As we shall see, this
is true for any NEPS of complete graphs. For this we require the following theorem [11]:

Theorem 3.3. If X and Y are graphs of orders n and m with linearly independent eigen-
vectors V| ... (") and y(V) | ... y(™), respectively, then the nm tensor products

2 @ ) (i=1,...,n;5=1,...,m)

form a set of linearly independent eigenvectors of any NEPS of X and Y. This fact readily
extends to NEPS with more factors.

Corollary 3.4. Any NEPS of graphs for which all eigenspaces are simply structured inher-
its that very property.

Proof. Using the notation of the previous theorem, it is obvious that ) @ y(j ) has only
entries from {0, 1, —1} if the same holds for 2 and y9). This remains true for an arbitrary
number of factors. O

We can now prove the following result:
Proposition 3.5. All eigenspaces of a gcd-graph are simply structured.

Proof. Consider the complete graph K,,, n > 2. The all-ones vector (1, 1,...,1) forms a
basis of the eigenspace of eigenvalue n — 1. A basis of the eigenspace of eigenvalue —1 is
formed by the vectors
zM =(-1,1,0,0,...,0,0
z(® =(-1,0,1,0,...,0,0

=1 =(-1,0,0,0,...,0,1).
Thus the result follows from Corollary 3.4 and Theorem 2.5. 0

4 Open problems

Let us conclude with a number of open problems we think are worth investigating in the
future:

1. Does every integral Cayley graph over a finite abelian group have a simply structured
eigenspace basis for every eigenvalue?

2. Find a small class of integral graphs such that every integral Cayley graph over an
abelian group is a NEPS of some graphs of this class.

3. It has been shown by SO [26] that integral Cayley graphs over Z,«, p prime, are
uniquely determined by their spectrum. Find more groups I' such that cospectral
integral Cayley graphs Cay (T, S1), Cay(T', S2) are necessarily isomorphic.
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4. Try to determine or estimate the number o(n) of nonisomorphic gcd-graphs on n

vertices. In [ 18] we showed that for a prime p > 5 we have g(p?) = 6. Observe that
0(2%) is the number of nonisomorphic cubelike graphs on 2% vertices, cf. [19].

5. Determine graph invariants for gcd-graphs such as connectivity, clique number, and

chromatic number, cf. [6], [7].
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