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Abstract

The Green’s function in surface displacement plays an 
important role in soil structure interaction. In evaluating 
the Green’s function, several difficulties occur because 
it is formulated in the infinite integral form. This paper 
outlines a method of analyzing the steady-state dynamic 
response of an elastic layer subjected to general point 
load excitation. It is assumed that the load is applied at 
the surface. The application Hankel integral transform, 
to the governing differential equations and boundary 
conditions yields the response displacements at the surface 
in integral representation. It will be shown that these semi-
infinite integrals can be reduced to the integral with the 
finite range of integration, which can be efficiently taken 
numerically. The numerical results are presented, which 
show the efficiency of the developed procedure.
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1 INTRODUCTION

The fundamental dynamic solutions for homogeneous 
half-space as well as for a layered one are studied in 

depth and known in the literature. They are given in two 
fundamentally different mathematical forms. On one 
hand, there are approximate solutions, e.g. the ingenu-
ous thin layer method introduced by Kausel [1], and on 
the other hand analytical methods leading to the solu-
tions in form of integrals with infinite or semi-infinite 
path of integration, e.g. Vostroukhov [2], Jin and Liu [3], 
and others. The sufficiently accurate evaluation of these 
integrals, as needed in practical engineering problems 
primarily in dynamic soil-structure interaction, is time 
consuming if not tedious. Kobayashi [4] made a step 
forward showing that in the case of a homogeneous 
half-space the integrals of semi-infinite extension 
representing displacements could be transformed to 
the integrals with the finite path of integration. The 
numerical evaluation of these integrals is then easy and 
straightforward. The drawback of these techniques is 
that it applies to homogeneous half-space only. In order 
to extend the Kobayashi [4] method also to the layered 
half-spaces, the authors first show that the Kobayashi [4] 
method can be applied to a homogeneous layer, where it 
is understood that a homogeneous half-space is a special 
example of such a layer only, i.e. a layer of semi-infinite 
depth. This is the topic of this paper. In the forthcoming 
papers, the solutions for the layers will be combined 
leading to a solution for a layered half-space expressed 
in the form of integrals with the finite integration path.

2 METHOD OF ANALYSIS

Let us consider an elastic layer subjected to general 
point load excitation, which can be represented by two 
components, the vertical and the horizontal one (Fig.1).

The model is analyzed under the following assumptions:

• The load varies in time harmonically.
• A general point load is applied at the surface of the 

medium.
• The material constants of an elastic layer are the 

shear modulus µ , Poisson’s ratio ν , the mass 
density ρ  and the damping coefficient �µ .

• Material damping in the elastic layer is introduced in 
accordance with Voigt's rheological model.
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With these assumptions in mind the problem at hand 
has a steady-state solution, which varies in time in the 
same manner as the load, namely as ei t⋅ ⋅ω .

The equation of motion [5]:

µ λ µ ρ ρ⋅∇ + +( )⋅∇⋅ ∇•( )+ ⋅ − ⋅ =2 0
� � � � � �

U U F U
..

,     (1)

which is well known as Navier equation of motion, 
serves as the starting point.

The system of equations (1) presents a disadvantageous 
feature as it couples three displacement components. 
Of course, we can uncouple this system of equations 
by eliminating two of three displacement components 
through two of three equations, but this results in partial 
differential equations of the sixth order. A far more 
convenient approach is to express the components of the 
displacement vector in terms of derivatives of potentials. 
These potentials satisfy uncoupled wave equations.

So, to formulate the problem mathematically we employ 
the displacement potentials by means of which the 
displacement vector 

�
U  of the homogeneous half-space 

may be decomposed as [6]:

� � � �
U = ∇⋅ +∇×ϕ ψ .     (2)

The above equation has in the cylindrical coordinate 
system r, ϑ  and z the following form:

u
r r zr

r z=
∂
∂

+ ⋅
∂
∂

−
∂
∂

ϕ ψ
ϑ

ψϑ1
.      

(3)

u
r z r

r z
ϑ

ϑϕ
ϑ

ψ ψ
= ⋅

∂
∂

+
∂
∂

−
∂
∂

1
.      

(4)

u
z r

r
r rz

z r=
∂
∂

+ ⋅
∂ ⋅( )

∂
− ⋅

∂
∂

ϕ ψ ψ
ϑ

ϑ1 1 ,     (5)

with ϕ  and 
�
ψ ψ ψ ψϑ= ( , , )r z , i.e. the scalar and the 

vector Helmholtz potentials that satisfy the following 
wave equations in the absence of body forces:

Figure 1. An elastic layer subjected to the surface with a general harmonic point load.
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∇ = ⋅
∂
∂

2
2

2

2

1
ϕ

ϕ
c tL

,     (6)

∇ − − ⋅
∂
∂

= ⋅
∂
∂

2
2 2 2

2

2

2 1
ψ

ψ ψ
θ

ψθ
r

r

T

r

r r c t      
(7)

∇ − + ⋅
∂
∂

= ⋅
∂
∂

2
2 2 2

2

2

2 1
ψ

ψ ψ
θ

ψ
θ

θ θ

r r c t
r

T      
(8)

∇ = ⋅
∂
∂

2
2

2

2

1
ψ

ψ
z

T

z

c t
,     (9)

where the Laplacian ∇2  is defined as

∇ =
∂
∂

+ ⋅
∂
∂

+ ⋅
∂
∂

+
∂
∂

2
2

2 2

2

2

2

2

1 1
r r r r zθ

.
     

(10)

and:

c
kL

L

= =
+ ⋅ω λ µ

ρ
2

     
(11)

c
kT

T

= =
ω µ

ρ      
(12)

are the velocity of the dilatational (P-waves) and the 
velocity of the shear waves (S-waves).

It should be noted that Eq. (2) relates the three compo-
nents of the displacement vector to four other functions, 
i.e. the scalar potential and the three components of the 
vector potential. This indicates that ϕ  and the 

�
ψ  should 

be subjected to an additional constraint condition. 

Generally the components of 
�
ψ  are taken to be related 

in some way. Usually, but not always, the relation:

� �
∇⋅ =ψ 0      (13)

is taken as an additional constraint condition. This 
relation has the advantage that it is consistent with the 
Helmholtz decomposition of a vector.

In the case of the vertical point load, the corresponding 
elastodynamic problem is axi-symmetrical. Displace-
ment components are independent of coordinate ϑ  and 
are given by:

�u
u r t

u r t

r z

z

r

z

r

r

=

( )

( )

⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

=

∂
∂

−
∂
∂

∂
∂

,

,
0 0

ϕ ψ

ϕ

ϑ

++ ⋅
∂ ⋅( )

∂

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪

1
r

r
r
ψϑ

      . (14)

The two scalar wave potentials have to satisfy the partial 
differential equations (6) and (8), the boundary condi-
tions at the top of the layer:     

σ
δ

πz
P H t r

r
= −

⋅ ( )⋅ ( )

⋅ ⋅2
      (15)

τzr = 0  ,     (16)

and any axi-symmetric conditions on z h= .

After application of the Hankel transform r → ξ  to the 
above stated problem and the solution of the resulting 
ordinary differential equation we obtain:

w r P k k
D

J r d

k
k

T L

T

, ,
( )

( )0
2

2

2 2 2

0
0

2
2

ω
π µ

ξ ξ
ξ

ξ ξ

ξ ξ

( )= −
⋅

⋅ ⋅
⋅ −

⋅ ⋅

− ⋅ ⋅
⋅ −

∞

∫

TT L

T
L T

k
D

C J r d

k
k k

2 2 2

0
1 0

2
2 2 2 2 2

4

( )⋅ −
⋅ ⋅ ⋅

− ⋅ ⋅
⋅ − ⋅ −

∞

∫
ξ

ξ
ξ ξ ξ

ξ ξ ξ

( )
( ) ( )

DD
C J r d

( )
( ) ( )

ξ
ξ ξ ξ

0
3 0

∞

∫ ⋅ ⋅ ⋅

      (17a)

u r P k k k

D
J

T L T
, ,

( )
(0

2

2 22 2 2 2 2 2 2

0
1ω

π µ

ξ ξ ξ ξ

ξ
ξ( )= −

⋅ ⋅
⋅

⋅ ⋅ − − ⋅ − ⋅ −( )
⋅

∞

∫ rr d

k
k k

D
C J r d

k

T
L T

T

)

( )
( ) ( )

⋅

− ⋅ ⋅
⋅ − ⋅ −

⋅ ⋅ ⋅

− ⋅

∞

∫

ξ

ξ ξ ξ
ξ

ξ ξ ξ4

2

2
2 2 2 2 2

0
1 1

2 ⋅⋅
⋅ −( )⋅ −

⋅ ⋅ ⋅
∞

∫
ξ ξ ξ

ξ
ξ ξ ξ

2 2 2 2

0
3 1

k k
D

C J r dT L

( )
( ) ( )

      (18a)
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where D η( )  is defined as:

D k k kT L T( )ξ ξ ξ ξ ξ= ⋅ −( ) − ⋅ − ⋅ −2 42 2 2 2 2 2 2 2

 .    (19)

For a half-space, which is understood as a layer of semi-
infinite depth, the undetermined constants C1  and C3  
in (17a) and (18a) can be set to be equal zero. This gives:

w r P k k
D

J r dT L, ,
( )

( )0
2

2 2 2

0
0ω

π µ
ξ ξ

ξ
ξ ξ( )= −

⋅
⋅ ⋅

⋅ −
⋅ ⋅

∞

∫
     

(17)

u r P k k k

D
J

T L T
, ,

( )
(0

2

2 22 2 2 2 2 2 2

0
1ω

π µ

ξ ξ ξ ξ

ξ
ξ( )= −

⋅ ⋅
⋅

⋅ ⋅ − − ⋅ − ⋅ −( )
⋅

∞

∫ rr d)⋅ ξ

      (18)

The above solutions are analogous to these given by 
Achenbach [5] for the Laplace domain.

The integrals of semi-infinite integration range in equa-
tions (17) and (18), which are to be reduced to the finite 
integration range, can be clearly identified.

Now we turn our attention to a layer loaded on its 
upper surface with a concentrated horizontal point load 
Without loss of generality, we can assume that it acts on 
positive x-axis direction.

The relevant stress-displacement relations for an elastic 
layer may be written as:

σ λ
θ

µϑ
z

r r z zu
r

u
r r

u u
z

u
z

= ⋅
∂
∂

+ + ⋅
∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ⋅ ⋅

∂
∂

1 2
    

(20)

σ µ
θϑ

ϑ
z

z

r
u u

z
= ⋅ ⋅

∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1     (21)

σ µzr
r zu

z
u
r

= ⋅
∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.    (22)

For the problem at hand we again assume the harmonic 
time dependence:

a r z t a r z ei t, , , , , ,ϑ ϑ ω ω( )= ( )⋅ ⋅ ⋅

     (23)

thus we obtain:

u
r r zr

r z=
∂
∂

+ ⋅
∂
∂

−
∂
∂

ϕ ψ
ϑ

ψϑ1

     
(24)

u
r z r

r z
ϑ

ϑϕ
ϑ

ψ ψ
= ⋅

∂
∂

+
∂
∂

−
∂
∂

1

     
(25)

u
z r

r

r rz
z r=

∂
∂

+ ⋅
∂ ⋅( )

∂
− ⋅

∂
∂

ϕ ψ ψ
ϑ

ϑ1 1 ,     (26)

σ λ
θ

µϑ
z

r r z zu
r

u
r r

u u
z

u
z

= ⋅
∂
∂

+ + ⋅
∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ⋅ ⋅

∂
∂

1 2
    

(27)

σ µ
θϑ

ϑ
z

z

r
u u

z
= ⋅ ⋅

∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

    
(28)

σ µzr
r zu

z
u
r

= ⋅
∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥      

(29)

∇ = − ⋅2
2

2ϕ
ω

ϕ
cL

,     (30)

∇ − − ⋅
∂
∂

= − ⋅2
2 2

2

2

2
ψ

ψ ψ
θ

ω
ψθ

r
r

T
rr r c      

(31)

∇ − + ⋅
∂
∂

= − ⋅2
2 2

2

2

2
ψ

ψ ψ
θ

ω
ψθ

θ
θr r c

r

T      
(32)

∇ = − ⋅2
2

2ψ
ω

ψz
T

zc
,     (33)

∂ ⋅( )
∂

+
∂
∂

+ ⋅
∂
∂

=
ψ ψ

θ
ψθr z

r

r
r

z
0 .     (34)

The loading conditions in Cartesian coordinate system 
are given by:

F Q
r

rx =
( )

⋅ ⋅
⋅ ( )

ω
π

δ
2      

(35)

Their transformation to the cylindrical coordinates 
yields:

F Fr x= ⋅ ( )cos ϑ      (36)

F Fxϑ ϑ= − ⋅ ( )sin      (37)

Fz = 0 .     (38)

Using the above results, the boundary conditions on the 
surface z=0 of an elastic layer can be written as:

σ ϑ ω
ω δ

π
ϑrz r Q r

r
, , , cos0

2
( )= −

( )⋅ ( )

⋅ ⋅
⋅ ( )

     
(39)

σ ϑ ω
ω δ

π
ϑϑz r Q r

r
, , , sin0

2
( )=

( )⋅ ( )

⋅ ⋅
⋅ ( )      (40)

σ ϑ ωzz r, , ,0 0( )=      (41)

and they complete the statement of the problem.
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The ϑ -dependence of the loading as given by equations 
(36) to (38) and equations (39) to (41) respectively and 
the geometry, which is axi-symmetric permit us to seek 
the solution to the problem in the following form

ϕ ϑ ω ϕ ω ϑr z r z, , , , , cos( )= ( )⋅ ( )       (42)

ψ ϑ ω ψ ω ϑr rr z r z, , , , , sin( )= ( )⋅ ( )      (43)

 ψ ϑ ω ψ ω ϑϑ ϑr z r z, , , , , cos( )= ( )⋅ ( )      (44)

ψ ϑ ω ψ ω ϑz zr z r z, , , , , sin( )= ( )⋅ ( ) ,     (45)

which correspond for the following ϑ -dependencies of 
the displacements and stresses:

u r z u r zr r, , , , , cosϑ ω ω ϑ( )= ( )⋅ ( )      (46)

u r z u r zϑ ϑϑ ω ω ϑ, , , , , sin( )= ( )⋅ ( )      (47)

u r z u r zz z, , , , , cosϑ ω ω ϑ( )= ( )⋅ ( )      (48)

σ ϑ ω σ ω ϑrz rzr z r z, , , , , cos( )= ( )⋅ ( )      (49)

σ ϑ ω σ ω ϑϑ ϑz zr z r z, , , , , sin( )= ( )⋅ ( )      (50)

σ ϑ ω σ ω ϑzz zzr z r z, , , , , cos( )= ( )⋅ ( ) .     (51)

The substitution of Eqs. (42)-(45) into wave Eqs.
(30)-(33) and Eq. (34) yields:

∂
∂

+ ⋅
∂
∂

− ⋅ +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ + ⋅ =

2

2 2

2

2
21 1 0ϕ ϕ

ϕ
ϕ

ϕ
r r r r z

kL

     
(52)

∂
∂

+ ⋅
∂
∂

− +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ + ⋅ =

2

2 2

2

2 2
21 2 2 0

r r r r z r
kr T rψ ψ ψϑ

   
(53)

∂
∂

+ ⋅
∂
∂

− +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ + ⋅ =

2

2 2

2

2 2
21 2 2 0

r r r r z r
kr Tψ ψ ψθ θ

   
(54)

∂
∂

+ ⋅
∂
∂

− +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ =

2

2 2

2

2
21 1 0

r r r r z
kz T zψ ψ

    
(55)

ψ ψ
ψ ψ

θr
r zr

r z
− + ⋅

∂
∂

+
∂
∂

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 0 ,    (56)

where:

c
kL

L

=
ω

     
(57)

c
kT

T

=
ω .     (58)

Eqs. (53) and (54) are coupled. To decouple these equa-
tions, it is customary to introduce the new potentials χ  
and κ :

χ ψ ψϑ= +r           κ ψ ψϑ= −r      (59)

ψ χ κr = ⋅ +( )1
2

       ψ χ κϑ = ⋅ −( )1
2

.    (60)

In terms of these newly introduced potentials wave 
equations (52)-(55), Eq. (56) and displacements, Eqs. 
(24)-(26), can be rewritten as:

∂
∂

+ ⋅
∂
∂

− +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ =

2

2 2

2

2
21 1 0

r r r r z
kLϕ ϕ

     
(61)

∂
∂

+ ⋅
∂
∂

+
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ =

2

2

2

2
21 0

r r r z
kTχ χ

     
(62)

∂
∂

+ ⋅
∂
∂

− +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ =

2

2 2

2

2
21 4 0

r r r r z
kTκ κ

     
(63)

∂
∂

+ ⋅
∂
∂

− +
∂
∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ + ⋅ =

2

2 2

2

2
21 1 0

r r r r z
kz T zψ ψ

    
(64)

κ
χ κ ψ

+ ⋅ ⋅
∂ +( )

∂
+

∂
∂

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=r

r z
z1

2
0 .     (65)

u
r r zr z=

∂
∂

+ ⋅ − ⋅
∂ −( )

∂
ϕ

ψ
χ κ1 1

2      
(66)

u
r z r

z
ϑ ϕ

χ κ ψ
= − ⋅ + ⋅

∂ +( )
∂

−
∂
∂

1 1
2      

(67)

u
z r rz =

∂
∂

− ⋅ + ⋅
∂ −( )

∂
ϕ

κ
χ κ1 1

2
.     (68)

The general solutions of wave equations (61)-(64) is 
found by applying the Hankel transform method with 
respect to the radial coordinate. This transform is 
defined as in [8]:
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f r f r J r drH
n

n ξ ξ( )= ⋅ ( )⋅ ( )⋅
∞

∫
0      

(69)

f r f J r dH
n

n( )= ⋅ ( )⋅ ( )⋅
∞

∫ ξ ξ ξ ξ
0

,     (70)

where n is the order of the transform and J rn ξ( )  is the 
ordinary Bessel function of order n.

For Eqs. (61) and (64) the order of the transform should 
be equal to 1, for Eq. (62) to 0 and for Eq. (63) to 2. 
Applying these transform to Eqs. (61)-(64) one obtains:

d
z

H
H

2

2
2

1

1 0
˘

˘ϕ ξ
α ϕ ξ

( )
∂

− ⋅ ( )=
     

(71)

d
z

H
H

2

2
2

0

0 0
˘

˘χ ξ
β χ ξ

( )
∂

− ⋅ ( )=
    

(72)

d
z

H
H

2

2
2

2

2 0
˘

˘κ ξ
β κ ξ

( )
∂

− ⋅ ( )=
    

(73)

d
z

z
H

z
H

2

2
2

1

1 0
˘

˘ψ ξ
β ψ ξ

( )
∂

− ⋅ ( )= ,    (74)

with:

α ξ
ω

ξ= − = −2
2

2
2 2

c
k

L
L

     
(75)

β ξ
ω

ξ= − = −2
2

2
2 2

c
k

T
T .     (76)

The general solutions of Eqs. (71)-(74) can be found 
easily as:

ϕ̆ α αH z zC e C e1
1 2= ⋅ + ⋅⋅ − ⋅

     (77)

χ̆ β βH z zC e C e0
3 4= ⋅ + ⋅⋅ − ⋅

     (78)

κ̆ β βH z zC e C e2
5 6= ⋅ + ⋅⋅ − ⋅

    (79)

˘
ψ β β

z
H z zC e C e1

7 8= ⋅ + ⋅⋅ − ⋅ .    (80)

We continue the analysis by expressing the relationship 
given Eq. (65) through the transformed potentials. They 
are defined of as the Hankel transforms, expression for 
of  ϕ , χ , κ  and ψz

 and are given as:

ϕ ω ξ ϕ ξ ω ξ ξr z z J r dH, , ˘ , ,( )= ⋅ ( )⋅ ( )⋅
∞

∫
0

1
1      (81)

χ ω ξ χ ξ ω ξ ξr z z J r dH, , ˘ , ,( )= ⋅ ( )⋅ ( )⋅
∞

∫
0

0
0

     
(82)

κ ω ξ κ ξ ω ξ ξr z z J r dH, , ˘ , ,( )= ⋅ ( )⋅ ( )⋅
∞

∫
0

2
2

     
(83)

ψ ω ξ ψ ξ ω ξ ξz z
Hr z z J r d, ,

˘
, ,( )= ⋅ ( )⋅ ( )⋅

∞

∫
0

1
1

    
(84)

The substitution of these expressions into Eq. (65) yields:

ξ κ ξ ω ξ χ ξ ω
ψ ξ ω

⋅ ( )− ⋅ ( )+ ⋅
∂ ( )

∂
=˘ , , ˘ , ,

˘
, ,H H z

H

z z
z

z
2 0

1

2 0 (85)

which establishes r-independent relationship between 
the transformed components of the vector-potential.

Having taken into account relationship (85) and using 
recurrent relation between the Bessel functions [8], the 
substitution of expressions (81)-(84) into transformed 
displacements (66)-(68) yields:
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u r z z zr
H

z
H, , ˘ , ,

˘
, ,ω ξ ξ ϕ ξ ω ξ ψ ξ ω( )= ⋅ ⋅ ⎡

⎣ ⋅
⎧
⎨
⎪⎪
⎩⎪⎪

( )+ ⋅ ( )+

−
∂

∞

∫
1
2

0

1 1

˘̆ , ,
˘

, ,
( )

˘ ,

κ ξ ω
ξ

ψ ξ ω
ξ

ξ ϕ ξ

H
z

H

H

z
z

z
z

J r
2 1

1

2 2

2 0
( )
∂

− ⋅
∂ ( )

∂

⎤

⎦

⎥
⎥
⎥
⎥
⋅

+ − ⋅ zz z
z

z
J rz

H
H

,
˘

, ,
˘ , ,

ω ξ ψ ξ ω
κ ξ ω

ξ( )+ ⋅ ( )+
∂ ( )

∂

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅ ( )

⎫
⎬
⎪⎪⎪1

2

2

⎭⎭
⎪⎪⎪

⋅dξ

       

(86)
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u r z z
z

z
H

H

ϑ ω ξ ξ ϕ ξ ω
κ ξ ω

, , ˘ , ,
˘ , ,

( )= ⋅ ⋅ − ⋅ ( )−
∂ ( )

∂

⎡

⎣

⎢
⎢
⎢

⎧
⎨
⎪⎪⎪

⎩

∞

∫
1
2

0

1

2

⎪⎪⎪⎪
− ⋅

∂ ( )
∂

+

+ ⋅ ( )
⎤

⎦
⎥
⎥
⋅ ( )+

+ − ⋅

2 2

2

0

1

1

ξ

ψ ξ ω

ξ ψ ξ ω ξ

ξ

˘
, ,

˘
, ,

˘

z
H

z
H

z
z

z J r

ϕϕ ξ ω
κ ξ ω

ξ ψ ξ ω ξH
H

z
Hz

z
z

z J r1

2

1
2, ,

˘ , , ˘
, ,( )+

∂ ( )
∂

+ ⋅ ( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅ ( )

⎫⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

⋅dξ

         

(87)

u r z
z

z
z

z
zz

H
z

H
H, ,

˘ , ,
˘

, , ˘ , ,ω ξ
ϕ ξ ω ψ ξ ω

ξ κ ξ ω( )= ⋅
∂ ( )

∂
−

∂ ( )
∂

− ⋅ (
∞

∫
0

1 1

2 ))
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⋅ ( )⋅J r d1 ξ ξ

         

(88)

where we can see, that the displacements in Eqs. (86)-(88) are written only with three of four potentials. Substituting the 
expressions for transformed displacements into expressions for stresses (27)-(29) yields:

           (89)

           (90)

σ ω
µ

ξ ξ
ϕ

ξ ω
ξ

ψ
rz

H
zr z

z
z, ,

˘
, ,

˘
( )= ⋅ ⋅ ⋅

⎡
⎣
⎢⎢{ ⋅

⎧
⎨
⎪⎪

⎩⎪⎪

∂
∂

( )− ⋅
∂∞

∫2
2 2

0

31 HH

H
H

z
z

z
z

z J r

1

2

2

3

2

2
2

0

ξ ω

κ ξ ω
ξ κ ξ ω ξ

, ,

˘ , , ˘ , , ( )

( )
∂

+

−
∂ ( )

∂
− ⋅ ( )

⎤

⎦

⎥
⎥
⎥
⋅ ++

+ − ⋅ ⋅
∂ ( )

∂

⎡

⎣

⎢
⎢
⎢

+ ⋅ ⋅
∂ ( )

∂
+

+
∂

2 2
1 1

22

ξ
ϕ ξ ω

ξ
ψ ξ ω

κ ξ

˘ , ,
˘

, ,

˘ ,

H
z

H

H

z
z

z
z

z,, ˘ , ,
ω

ξ κ ξ ω ξ ξ
( )

∂
+ ⋅ ( )

⎤

⎦

⎥
⎥
⎥
⋅ ( )

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

⋅
⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

z
z J r dH

2
2

2
2

σ ω
µ

ξ ξ
ϕ ξ ω

ϑz

H

r z
z

z
, ,

˘ , ,
( )= ⋅ ⋅

⎧
⎨
⎪⎪

⎩⎪⎪
− ⋅ ⋅

∂ ( )
∂

⎡

⎣

⎢
⎢
⎢

⎧
⎨
⎪⎪⎪

⎩
⎪⎪

∞

∫2
2

0

1

⎪⎪
+ ⋅ ( )+

+ ⋅
∂ ( )

∂
+

∂ ( )
∂

⎤

⎦

ξ κ ξ ω

ξ

ψ ξ ω κ ξ ω

2

3

3

2

2

2

1 22

˘ , ,

˘
, , ˘ , ,

H

z
H H

z

z
z

z
z

⎥⎥
⎥
⎥
⎥
⋅ ( )+

+ − ⋅ ⋅
∂
∂

⎡

⎣
⎢
⎢

( )+
∂ ( )

∂
+

+ ⋅

J r

z
z

z
z

H
H

0

2

22

2

1

2

ξ

ξ ϕ ξ ω
κ ξ ω˘ , ,
˘ , ,

ξξ
ψ ξ ω

ξ κ ξ ω ξ⋅
∂ ( )

∂
+ ⋅ ( )

⎤

⎦

⎥
⎥
⎥
⎥
⋅ ( )

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⋅
˘

, , ˘ , ,z
H

Hz
z

z J r
1

22
2 ddξ

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪
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σ ω µ ξ
λ µ

µ
ϕ ξ ω

zz

H

r z
z

, ,
˘ , ,

( )= ⋅ ⋅
+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪

⎩⎪⎪
⋅

∂ ( )
∂

∞

∫
0

22 1

zz
z

z
z

H

H H

2
2

2

1

1 22 2

− ⋅ ( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ ⋅ ⋅ ( )− ⋅ ⋅
∂
∂

ξ ϕ ξ ω

ξ ϕ ξ ω ξ κ ξ

˘ , ,

˘ , , ˘ ,, ,

˘
, ,

z

z
z

J r dz
H

ω

ψ ξ ω
ξ ξ

( )+

− ⋅
∂ ( )

∂

⎫

⎬
⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⋅ ( )⋅2
2

2 1

1

       

(91)

As an example of a homogeneous layer a homogeneous 
half space will be considered from here onwards. To 
satisfy the radiation conditions at h → ∞  we introduce 
branch cuts in such a way that α  and β  in Eqs. (77)-
(80) are positive for all values of ξ , which further 
implies that constant C1 , C3 , C5 , and C7  must be equal 
to zero:

ϕ̆ αH zC e1
2= ⋅ − ⋅

     (92)

χ̆ βH zC e0
4= ⋅ − ⋅

     (93)

κ̆ βH zC e2
6= ⋅ − ⋅

     (94)
˘
ψ β

z
H zC e1

8= ⋅ − ⋅

     (95)

Boundary conditions on the surface of the half-space 
can be stated as:

σ ω
ω δ

πrz z
r z Q r

r
, ,( ) = −

( )⋅ ( )

⋅ ⋅=0 2       
(96)

σ ω
ω δ

πϑz z
r z Q r

r
, ,( ) =

( )⋅ ( )

⋅ ⋅=0 2       
(97)

σ ωzz z
r z, ,( ) =

=0
0

       
(98)

Introducing expressions (92)-(95) into the boundary 
conditions (96)-(98) and taking into account Eqs. 
(89)-(91) yields:
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σ ω
µ

ξ ξ
ϕ ξ ω

ξrz

H

r
z

, ,
˘ , ,

˘
0

2
2

0 2

0

31

( )= ⋅ ⋅ − − ⋅
⎡
⎣
⎢⎢{ ⋅

⎧
⎨
⎪⎪

⎩⎪⎪

∂ ( )
∂

+ ⋅
∂∞

∫
ψψ ξ ω

κ ξ ω
ξ κ ξ ω ξ

z
H

H
H

z

z
J

1

2

2

0

0
0

3

2

2
2

0

, ,

˘ , , ˘ , , (

( )
∂

+

+
∂ ( )

∂
+ ⋅ ( )

⎤

⎦

⎥
⎥
⎥
⋅ rr

z z

H
z

H

H

)

˘ , ,
˘

, ,

˘

+

+ − ⋅ ⋅
∂ ( )

∂

⎡

⎣

⎢
⎢
⎢

+ ⋅ ⋅
∂ ( )

∂
+

+
∂

2
0

2
01 1

22

ξ
ϕ ξ ω

ξ
ψ ξ ω

κ ξ,, , ˘ , ,
0

02
2

2
2

ω
ξ κ ξ ω ξ ξ

( )
∂

+ ⋅ ( )
⎤

⎦

⎥
⎥
⎥
⋅ ( )

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

⋅
⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

z
J r dH == −

( )⋅ ( )

⋅ ⋅
Q r

r
ω δ

π2

     (99)

σ ω
µ

ξ ξ
ϕ ξ ω

ϑz

H

r
z

, ,
˘ , ,

0
2

2
0

0

1

( )= ⋅ ⋅
⎧
⎨
⎪⎪

⎩⎪⎪
− ⋅ ⋅

∂ ( )
∂

⎡

⎣

⎢
⎢
⎢

⎧
⎨
⎪⎪⎪

⎩
⎪⎪

∞

∫
⎪⎪

+ ⋅ ( )+

+ ⋅
∂ ( )

∂
+

∂ ( )
∂

⎤

⎦

ξ κ ξ ω

ξ

ψ ξ ω κ ξ ω

2

3

3

2

2

2

1 2

0

2 0 0

˘ , ,

˘
, , ˘ , ,

H

z
H H

z z
⎥⎥
⎥
⎥
⎥
⋅ ( )+

+ − ⋅ ⋅
∂
∂

⎡

⎣
⎢
⎢

( )+
∂ ( )

∂
+

+ ⋅

J r

z z
H

H

0

2

22 0
0

2

1

2

ξ

ξ ϕ ξ ω
κ ξ ω˘ , ,
˘ , ,

ξξ
ψ ξ ω

ξ κ ξ ω ξ⋅
∂ ( )

∂
+ ⋅ ( )

⎤

⎦

⎥
⎥
⎥
⎥
⋅ ( )

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⋅
˘

, , ˘ , ,z
H

H

z
J r

1

2
0

02
2 dd Q r

r
ξ

ω δ
π

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

=
( )⋅ ( )

⋅ ⋅2

     

(100)
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σ ω µ ξ
λ µ

µ
ϕ ξ ω

zz

H

r, ,
˘ , ,

0 2 0

0

2 1

( )= ⋅ ⋅
+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎧
⎨
⎪⎪

⎩⎪⎪
⋅

∂ ( )
∂

∞

∫ zz

z

H

H H

2
2

2

1

1 2

0

2 0 2

− ⋅ ( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ ⋅ ⋅ ( )− ⋅ ⋅
∂
∂

ξ ϕ ξ ω

ξ ϕ ξ ω ξ κ ξ

˘ , ,

˘ , , ˘ ,, ,

˘
, ,

0

2
0

0
2

2 1

1

ω

ψ ξ ω
ξ ξ

( )+

− ⋅
∂ ( )

∂

⎫

⎬
⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

⋅ ( )⋅ =z
H

z
J r d

      

(101)

It ca be shown that Eqs. (99)-(101) can be written in the following form using just three of four potentials  ϕ̆H1 , κ̆ H2  

and ˘
ψz

H1 :

− ⋅ ⋅
∂ ( )

∂
+ ⋅

∂ ( )
∂

+
∂ ( )

∂
+2

0 2 0 01 1 23

3

2

2ξ
ϕ ξ ω

ξ

ψ ξ ω κ ξ ω˘ , ,
˘

, , ˘ , ,H
z

H H

z z z
ξξ κ ξ ω

ω
π µ

2 2 0⋅ ( )=
( )

⋅
˘ , ,H Q

     
(102)

− ⋅ ⋅
∂ ( )

∂
+ ⋅ ⋅

∂ ( )
∂

+
∂ ( )

∂
+2

0
2

0 01 1 22

2ξ
ϕ ξ ω

ξ
ψ ξ ω κ ξ ω

ξ
˘ , ,

˘
, , ˘ , ,H

z
H H

z z z
22 2 0 0⋅ ( )=˘ , ,κ ξ ωH

     
(103)

1
2

2 0
0

2

2
2

1

1⋅
+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⋅

∂ ( )
∂

− ⋅ ( )
⎡

⎣

⎢
⎢
⎢

λ µ
µ

ϕ ξ ω
ξ ϕ ξ ω

˘ , , ˘ , ,
H

H

z

⎤⎤

⎦

⎥
⎥
⎥
+

+ ⋅ ( )−
∂ ( )

∂
− ⋅

∂
∂

( )=ξ ϕ ξ ω
ψ ξ ω

ξ κ ξ ω2
2

2
1

1

20
0

0˘ , ,
˘

, , ˘ , ,H z
H

H

z z
00

       (104)

The substitution of general solutions for wave potentials Eqs. (92)-(95) evaluated at z=0 into Eqs. (102)-(104) yields:

C C C Q
2 6

2 2
8

32 2
⋅ ⋅ ⋅[ ]+ ⋅ +⎡⎣ ⎤⎦ − ⋅ ⋅

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ =

( )

⋅
ξ α ξ β

ξ
β

ω
π µ      

(105)

C C C2 6
2 2

82 2 0⋅ ⋅ ⋅[ ]+ ⋅ +⎡⎣ ⎤⎦ − ⋅ ⋅ ⋅[ ] =ξ α ξ β ξ β      (106)

C2

2 2
2

2
2

2
2

⋅ ⋅
+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟− ⋅

+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+

⎡

⎣
⎢
⎢

⎤

⎦
⎥α λ µ

µ
ξ λ µ

µ
ξ ⎥⎥ + ⋅ ⋅⎡

⎣
⎤
⎦ − ⋅ ⎡

⎣
⎤
⎦ =C C6 8

2 0β ξ β
     

(107)

The above equations for constants C2 , C6  and C8  can be presented in a matrix form as:

2 2

2 2

2
2

2

2 2 3

2 2

2 2

⋅ ⋅ + − ⋅

⋅ ⋅ + − ⋅ ⋅

⋅
+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟−

ξ α ξ β
ξ

β

ξ α ξ β ξ β

α λ µ
µ

ξ
⋅⋅

+ ⋅⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟+ ⋅ −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

λ µ
µ

ξ β ξ β
2 2 2

2

6

8

C
C
C

⎧⎧

⎨

⎪⎪⎪⎪

⎩
⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪

⎭
⎪⎪⎪⎪

=

( )

⋅

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪Q ω
π µ

0

0

⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪

          

(108)
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Upon the solution of system (108) we can write the final form of solution for Eqs. (71)-(74):

ϕ̆
ω

π µ
η η

η
αH

T

zQ
k F

e1

2

2

1
= −

( )

⋅
⋅

⋅ −
⋅ ( )

⋅ − ⋅

       
(109)

χ̆ βH ze0 0 0= ⋅ =− ⋅       (110)

κ̆
ω

π µ

η

η
βH

T

zQ E
k F

e2
2=

( )

⋅
⋅

( )
⋅ ( )

⋅ − ⋅      (111)

˘
ψ

ω
π µ

η

η

β
z
H

T

zQ

k
e1

2 12 2
=

( )

⋅
⋅

⋅ ⋅ −( )
⋅ − ⋅

  

,    (112)

where:

F η η η η η γ( )= ⋅ −( ) − ⋅ ⋅ − ⋅ −2 1 4 12 2 2 2 2 2       (113)

E η η η η η γ( )= ⋅ ⋅ −( )− ⋅ − ⋅ −⎡
⎣⎢

⎤
⎦⎥

2 2 2 2 22 1 2 1  .     (114)

Displacements on the surface can be derived from Eqs. (86)-(88) in the following form:

u r u r u rr r r, , , , , ,0 0 01 2ω ω ω( )= ( )+ ( )       (115)

u r u r u rϑ ϑ ϑω ω ω, , , , , ,0 0 01 2( )= ( )+ ( )      (116)
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Transformation of our results from cylindrical to Carte-
sian coordinates reconfirms Kobayashi’s [4] findings.

Finally, evaluating the integrals in Eqs. (115)-(117) one 
can obtain the solution surface Green’s function in the 
frequency domain. The strait forward evaluation of In 
evaluating the inverse Hankel transform integrals in the 
above mentioned equations can be very problematic. 
Due to their complex structure they cannot be evaluated 
analytically. Their numeric evaluation through a FFT like 
scheme, as proposed for a similar problem by Vostrukov 

[2], is some how problematic. At a numerical evaluation 
one has to reduce the semi-infinite integration range to 
a finite one, therefore neglecting the contributions to 
the integral value coming at large values of integration 
variable and one is faced with the problems coming from 
integration through or nearby a singularity of integrand. 
The closer inspection of Eqs. (115)-(117) shows that 
the inversion integrals in these equations have the same 
basic mathematical structure as the semi-infinite inte-
grals Kobayashi [4] succeeded to transform to the ones 
with the finite range of integration. For the evaluation of 
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integrals in Eqs. (115)-(117), despite the differences in 
detail, we adopt the concept, which has been forwarded 
by Kobayashi showing hereby that his approach to deal 
with homogeneous half-space can be generalized and 
extended to a homogeneous layer.

3 NUMERICAL EXAMPLE

A numerical example is given for homogeneous half-
space as a special example of a layer, subjected to a 
general point load.

3.1 INTEGRAND

The surfaces shown in Figs. (3)-(10) represent integrands 
drawn for ν =1 3 . In Fig. (3)-(6) the discontinuities 
at η γ=  can be clearly seen. Borders between meshed 
and unmeshed areas show curves for a=10. As shapes of 
integrands are very smooth, a numerical integration can 
be performed without difficulties.

T. PLIBERŠEK ET AL.: GREEN'S FUNCTION FOR AN ELASTIC LAYER LOADED HARMONICALLY ON ITS SURFACE

Figure 3. Real part of the integrand of the horizontal
fundamental function of axi-symmetric componet

Figure 4. Imaginary part of the integrand of the horizontal
fundamental function of axi-symmetric component
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Figure 5. Real part of the integrand of the horizontal
fundamental function of anti-symmetric component

Figure 6. Imaginary part of the integrand of
the horizontalfundamental function
of anti-symmetric component

Figure 7. Real part of the integrand of
the horizontal fundamental function

of axi-symmetric component
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Figure 8. Imaginary part of the integrand of
the horizontal fundamental function

of axi-symmetric component

Figure 9. Real part of the integrand of 
the horizontal fundamental function
of anti-symmetric component

Figure 10. Imaginary part of the integrand of
the horizontal fundamental function

of anti-symmetric componen
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3.2 FUNDAMENTAL FUNCTION

The horizontal Green’s function is represented as:

u r Q
r

f i f f i fx H H H H, , cos0
4

1 2
0 0 2 2

1 2 3 4ω
ω

π µ
ϑ( )=

( )

⋅ ⋅
⋅ ⋅ + ⋅ + + ⋅⎡

⎣⎢
⎤
⎦⎥ ⋅ (( ){ }       

(129)

where, f fH H0 0

1 2,  are the horizontal fundamental function 
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of the axi-symmetric component, and f fH H2 2

3 4,  are the 
horizontal fundamental function of the anti-symmetric 
component. These fundamental functions are defined by 
two variables, i.e. Poisson’s ratio ν  and non-dimensional 
frequency a. The blue curve in Figs. (11)-(12) shows the 
real part and the red one the imaginary part of the hori-
zontal fundamental function of axi and anti-symmetric 
component.

Figure 11. Horizontal fundamental function of axi-symmetric component

Figure 12. Horizontal fundamental function of anti-symmetric component
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4 CONCLUSIONS

The integral representations of the surface displacements 
for an elastic layer due to a harmonic point load are 
presented. The form of these expressions permits us to 
consider the homogeneous, elastic half-space as a layer 
of infinite depth. They are expressed by integrals of 
semi-infinite range. These integrals are usually evaluated 
by numerical integration. It has been demonstrated in 
this paper that  they can be reduced to the integrals of 
finite range along the branch cuts of their  integrands 
and the residues at the poles of the integrands. This 
method yields accurate expressions for singularities of 
the Green’s functions and considerably better results 
for distances where contributions at large values of 
integration variable are significant. Numerical results for 
a homogeneous half-space are presented, which are in 
agreement with the findings of other researchers derived 
by a different approach.

Our results for a homogeneous layer, which are believed 
to be original, allows us to extend our method through 
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The numerical solution for vertical Green’s function 
is obtained through the similar process and is shown 
in Fig. (13). The blue curve in Fig. (13) shows the real 
part and the red one the imaginary part of the vertical 
Green’s function.

Figure 13. The vertical Green’s function

superposition of layers to the case of a layered half-
space. Our findings in dealing with this problem will be 
reported in the forthcoming papers.
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