

Proceedings of the 2021 7th Student Computer Science
Research Conference (StuCoSReC)

Editors
Iztok Fister

Andrej Brodnik
Janez Brest

Iztok Fister Jr.
Matjaž Krnc
Niko Zimic

Maribor, September 2021

Title Proceedings of the 2021 7th Student Computer Science Research Conference
(StuCoSReC)

Editors Iztok Fister

(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Andrej Brodnik
(University of Ljubljana, Faculty of Computer and Information Science)

Janez Brest
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Iztok Fister Jr.
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Matjaž Krnc
(University of Primorska, Faculty of Mathematics, Natural Sciences and Information
Technology)

Niko Zimic
(University of Ljubljana, Faculty of Computer and Information Science)

Language editing Shelagh Hedges

Technical editors Iztok Fister

(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Jan Perša
(University of Maribor, University Press)

Cover graphics Network, author: geralt (Pixabay.com CC0)

Graphics material Authors, Editors

Conference 7th Student Computer Science Research Conference (StuCoSReC)

Location & date 14th September 2021, Maribor, Slovenia

Program

committee
Klemen Berkovič (University of Maribor, Slovenia), Zoran Bosnić (University of
Ljubljana, Slovenia), Borko Bošković (University of Maribor, Slovenia), Janez Brest
(University of Maribor, Slovenia), Lucija Brezočnik (University of Maribor, Slovenia),
Andrej Brodnik (University of Primorska and University of Ljubljana, Slovenia),
Patricio Bulić (University of Ljubljana, Slovenia), Mojca Ciglarič (University of
Ljubljana, Slovenia), Jani Dugonik (University of Maribor, Slovenia), Iztok Fister
(University of Maribor, Slovenia), Iztok Fister Jr. (University of Maribor, Slovenia),
Matjaž Gams (Jozef Stefan Institute, Slovenia), Mario Gorenjak (University of Maribor,
Slovenia), Aleš Holobar (University of Maribor, Slovenia), Andres Iglesias
(Universidad de Cantabria, Spain), Sašo Karakatič (University of Maribor, Slovenia),
Branko Kavšek (University of Primorska, Slovenia), Domen Kavran (University of
Maribor, Slovenia), Štefan Kohek (University of Maribor, Slovenia), Matjaž Krnc
(University of Primorska, Slovenia), Miklos Kresz (University of Szeged, Hungary),
Niko Lukač (University of Maribor, Slovenia), Marjan Mernik (University of Maribor,
Slovenia), Uroš Mlakar (University of Maribor, Slovenia), Eneko Osaba (University of
Deusto, Spain), Vili Podgorelec (University of Maribor, Slovenia), Jan Popič
(University of Maribor, Slovenia), Miha Ravber (University of Maribor, Slovenia), Peter
Rogelj (University of Primorska, Slovenia), Martin Šavc (University of Maribor,
Slovenia), Alexandros Tzanetos (University of Aegean), Damjan Vavpotič (University
of Ljubljana, Slovenia), Grega Vrbančič (University of Maribor, Slovenia), Nikolaj

Zimic (University of Ljubljana, Slovenia), Gilbert Lim Yong San (Singapore Eye
Research Institute) & Borut Žalik (University of Maribor, Slovenia).

Local

organizing
committee:

Janez Brest (University of Maribor, Slovenia), Iztok Fister (University of Maribor,
Slovenia) & Aleš Holobar (University of Maribor, Slovenia).

Published by

Založnik
University of Maribor
University Press
Slomškov trg 15, 2000 Maribor, Slovenia
https://press.um.si, zalozba@um.si

Co-published by

Izdajatelj

University of Maribor
Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, 2000 Maribor, Slovenia
http://www.feri.um.si, feri@um.si

Co-published by

Soizdajatelj

University of Ljubljana
Faculty of Computer and Information Science
Večna pot 113, 1000 Ljubljana, Slovenia
https://fri.uni-lj.si/en, dekanat@fri.uni-lj.si

Co-published by

Soizdajatelj

University of Primorska
Faculty of Mathematics, Natural Sciences and Information Technologies
Glagoljaška 8, 6000 Koper, Slovenia
https://www.famnit.upr.si/en; info@upr.si

Edition 1st

Publication type E-book

Published Maribor, September 2021

Availabe at https://press.um.si/index.php/ump/catalog/book/611

© University of Maribor, University Press
/Univerza v Mariboru, Univerzitetna založba

Text © Authors & Editors, 2021

This book is published under a Creative Commons 4.0 International licence (CC BY 4.0). This license allows
reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution
is given to the creator. The license allows for commercial use.

Any third-party material in this book is published under the book’s Creative Commons licence unless indicated
otherwise in the credit line to the material. If you would like to reuse any third-party material not covered by the
book’s Creative Commons licence, you will need to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

CIP - Kataložni zapis o publikaciji
Univerzitetna knjižnica Maribor

004(082)(0.034.2)

STUDENT Computer Science Research Conference (7 ; 2021 ; Maribor)
 Proceedings of the 2021 7th Student Computer Science Research Conference
(StuCoSReC) [Elektronski vir] / [editors Iztok Fister ... et al.]. - 1st ed. -
E-zbornik. - Maribor : University of Maribor, University Press : Faculty of
Electrical Engineering and Computer Science ; Ljubljana : Faculty of Computer
and Information Science ; Koper : Faculty of Mathematics, Natural Sciences and
Information Technologies, 2021

Način dostopa (URL): https://press.um.si/index.php/ump/catalog/book/611
ISBN 978-961-286-516-0 (pdf)
doi: 10.18690/978-961-286-516-0
COBISS.SI-ID 76158723

ISBN 978-961-286-516-0 (pdf)

DOI https://doi.org/10.18690/978-961-286-516-0

Price Free copy

For publisher prof. dr. Zdravko Kačič, rector of University of Maribor

Citiranje
Attribution

Fister, I., Brodnik, A., Brest, J., Fister, I. Jr., Krnc, M. & Zimic, N. (eds.) (2021).
Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC).
Maribor: University Press. doi: 10.18690/978-961-286-516-0

PROCEEDINGS OF THE 2021 7TH STUDENT COMPUTER SCIENCE RESEARCH
CONFERENCE (STUCOSREC)
I. Fister, A. Brodnik, J. Brest, I. Fister Jr., M. Krnc & N. Zimic (eds.)

Table of Contents

Preface
Janez Brest 1

On Artefact Elimination in High Density Electromyograms by Independent
Component Analysis
Aljaž Frančič, Aleš Holobar & Milan Zorman

3

Zero-Knowledge Authentication
Jakob Povšič & Andrej Brodnik 7

Graphs where Search Methods are Indistinguishable
Matjaž Krnc & Nevena Pivač 11

System for Remote Collaborative Embedded Development
Martin Domajnko, Nikola Glavina & Aljaž Žel 15

Leaf Segmentation of Rosette Plants using Rough K-Means in CIELab Color
Space
Arunita Das, Daipayan Ghosal & Krishna Gopal Dhal

19

Adversarial Image Perturbation with a Genetic Algorithm
Rok Kukovec, Špela Pečnik, Iztok Fister Jr. & Sašo Karakatič 25

Fast Recognition of Some Parametric Graph Families
Nina Klobas & Matjaž Krnc 31

Interactive Evolutionary Computation Approach to Permutation Flow Shop
Scheduling Problem
Vid Keršič

35

Towards Representative Web Performance Measurements with Google
Lighthouse
Tjaša Heričko, Boštjan Šumak & Saša Brdnik

39

Transformer-based Sarcasm Detection in English and Slovene Language
Matic Rašl, Mitja Žalik & Vid Keršič 43

Extraction and Analysis of Sport Activity Data Inside Certain Area
Luka Lukač 47

Methodology for the Assessment of the Text Similarity of Documents in the
CORE Open Access Data Set of Scholarly Documents
Ivan Kovačič, David Bajs & Milan Ojsteršek

51

ii TABLE OF CONTENTS.

Embedding Non-planar Graphs: Storage and Representation
Ðorđe Klisura 57

Analiza ritmičnosti števnih podatkov z uporabo modela cosinor
Nina Velikajne & Miha Moškon 61

Analiza sentimenta komentarjev hotelov z uporabo slovarjev in metode Naivni
Bayes
Nina Murks, Anže Omerzu & Borko Boškovic

65

Časovni razporejevalniki in brezstrežniško okolje
Uroš Zagoranski 71

PROCEEDINGS OF THE 2021 7TH STUDENT COMPUTER SCIENCE RESEARCH
CONFERENCE (STUCOSREC)
I. Fister, A. Brodnik, J. Brest, I. Fister Jr., M. Krnc & N. Zimic (eds.)

Preface

JANEZ BREST

Computer science is one of the fastest growing fields. We live in a digital age where
computers, smart phones and many other devices are connected worldwide. To meet all
the requirements of the growing digital world; knowledge, skills and abilities are needed,
which can be found in young people, especially in brilliant students.

The Student Computer Science Research Conference (StuCoSRec) is organized by the
collaboration of the departments and institutes of three public universities in Slovenia with
computer science study programmes. We are very proud that over the past years, these
StuCoSRec student conferences have been held every year from 2014 at different
institutions in Slovenia. Unfortunately, in 2020, which had been marked by the Covid-19
pandemic, the organization of the StuCosRec conference was not possible. This year we
want to hold the conference despite the stormy conditions of the Covid-19. The
StuCoSReC conference is intended for computer science students to present their research
work and achievements, exchange the ideas, socialize and connect among themselves.

This proceeding contains the papers of the seventh Student Computer Science Research
Conference 2021 (StuCoSRec'21) that is planned to be held in Maribor. The University of
Maribor – Faculty of Electrical Engineering and Computer Science is proud to host the
conference this year. We received seventeen submissions, covering several topics of the

2 7TH STUDENT COMPUTER SCIENCE RESEARCH CONFERENCE (STUCOSREC).

computer science. Three submissions are in Slovene and the others are in English. The
submissions were reviewed by two reviewers. One submission was rejected. The talks are
scheduled to be held during the conference. The organizing committee would like to
thank the reviewers for the well performed job.

The conference is dedicated to graduate and undergraduate students of computer science,
and therefore it is free of charge. We gratefully acknowledge the support of the Faculty of
Electrical Engineering and Computer Science (University of Maribor), especially the
Institute of Computer Science.

On Artefact Elimination in High Density Electromyograms by
Independent Component Analysis

Aljaž Frančič
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

aljaz.francic@um.si

Aleš Holobar
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

ales.holobar@um.si

Milan Zorman
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

milan.zorman@um.si

Abstract
We propose a novel approach to artefact detection
and elimination in high density electromyograms
by using previously introduced Activity Index and
Independent Component Analysis (ICA). 28 elec-
tromyographic recordings of the biceps brachii
muscle were analysed for the presence of artefacts.
Using the technique presented in this study, we
eliminated an average of 1.07 ± 1.18 artefacts per
HDEMG recording. The mean number of elimi-
nated artefacs per recording with at least one de-
tected artefact was 1.88 ± 0.96. In the HDEMGs
used in our study, each artefact was found in a
separate ICA component.

Keywords biomedical signal processing, electromyog-
raphy, blind source separation, independent component
analysis, activity index, artefact

1 Introduction

In humans, movement and locomotion is regulated by
muscles. An electrical signal travels from the central ner-
vous system towards muscles, where it is electrically am-
plified. By using non-invasive surface electromyography,
it is possible to detect the subtle changes in the volt-
age on the surface of the skin that originate from the
muscles, even through the skin and the subcutaneous fat
layers. Such recordings are called surface electromyo-
grams (SEMG). When an array of tens of electrodes is
used, we call the resulting recordings high density elec-
tromyograms (HDEMGs). Due to many factors involved
in recording of HDEMGs that are often impossible to
control for, the resulting recordings are prone to con-
tain artefacts from various sources, such as power line
interference, inadequate electrode-skin contact, electrode
drift, subpar quality of the equipment, movement arte-
facts, etc.
A motor unit (MU) is made up of a motor neuron and the
skeletal muscle fibers innervated by that motor neuron’s

axonal terminals. Groups of motor units often work to-
gether to coordinate the contractions of a single muscle.
We can think of the signal that travels from the motor
neuron to the skeletal muscle fiber as a time series of ze-
roes, which represent no firing, and ones, which represent
the firing of a muscle fiber and, thus, the MU. Because of
the refractory period, the spikes are few and far between,
making the resulting signal sparse in time. This signal is
called the MU spike train.
MUs fire asynchronously and their contributions are su-
perimposed into HDEMG, forming a highly complex sig-
nals that are difficult to interpret. By using computer-
aided methods, such as Convolution Kernel Compensa-
tion (CKC) [2], it is possible to decompose the HDEMGs
into contributions of individual MUs and, therefore, iden-
tify the firing times of MUs. This gives us insight into
the status of the motor system in humans.
However, due to the reasons mentioned in the initial
paragraph of this section, HDEMGs often contain various
artifacts. These artefacts hinder the ability of CKC to
decompose the HDEMG into contributions of individual
motor units. Also worth noting: a single artefact might
sometimes be present in multiple EMG channels at the
same time, so eliminating a single HDEMG channel (for
a period of time) is not always effective.
In this study, we exemplified our technique for artefact
detection and elimination in HDEMG by using previously
introduced Activity Index [1] and Independent Compo-
nent Analysis (ICA) techniques [5].

2 Materials and Methods

2.1 HDEMG model and Activity Index

In isometric contractions of skeletal muscles, HDEMG
signals can be modeled by the following convolutive
model [3]:

y(n) = Ht(n) + ω(n) (1)

DOI https://doi.org/10.18690/978-961-286-516-0.1
ISBN 978-961-286-516-0 3

where
y(n) = [y1(n) ... y1(n− F + 1) ... yM (n− F + 1)]T (2)

stands for time-wise extended vector of HDEMG signals,
with extension factor F set between 10 and 20 [3],

ω(n) = [ω1(n) ... ωM (n− F + 1)]T (3)
is the time-wise extended noise vector, and
t(n) = [t1(n) ... t1(n−L−F+1) ... tJ(n−L−F+1)]T (4)

is similarly extended vector of MU spike trains. Here, the
spike train of the j-th MU is defined as

tj(n) =
∑

k

δ(n− τj(k)), j = 1, ... , J (5)

where δ() denotes the Delta function and the k-th spike
of the j-th MU appears at time τj(k).
The mixing matrix H comprises L samples long MUAPs
of J active MUs, as detected by M uptake electrodes [3].
The Convolution Kernel Compensation (CKC) method
[3] estimates the MU filter iteratively as

f̂ j = f̂ j + αE(g(t̂j(n))y(n))T C−1
y (6)

f̂ j = f̂ j∥∥∥f̂ j

∥∥∥ (7)

where α determines the speed of convergence, E() stands
for mathematical expectation, g(t) is a nonlinear weight-
ing function, e. g. g(t) = log(1 + t2) and Cy =
E(y(n)yT (n)) represents the correlation matrix of ex-
tended HDEMG measurements. After each iteration of
Eqs. 6 and 7, the estimate of MU spike train gets updated

t̂j(n) = f̂
T

j y(n) (8)

The Activity Index IA at a given time n is defined as [3]
IA(n) = yT (n)C−1

y y(n) (9)

Calculating the Activity Index is the first step of the
CKC decomposition approach [3] and is susceptible to
HDEMG artefacts. Thus, it can also be used to detect
them before further processing. If we do not eliminate
the artefacts in HDEMG, they can cause problems for
decomposition, preventing the convergence of MU filter
in Eq. 6 or segmentation of MU firing moments from
identified MU spike train t̂j(n).

2.2 Independent Component Analysis

In signal processing, ICA is a method for separating a
multivariate signal into its additive subcomponents. This
is done by assuming that the subcomponents are non-
Gaussian signals and that they are statistically indepen-
dent from each other [4]. ICA is a special case of blind
source separation.
In our case, the fastICA [5] decomposition was applied
to HDEMG, yielding the individual independent com-
ponents. Deflation was chosen as the decorrelation ap-
proach in fastICA decomposition, and the nonlinearity
g(u) = u3 was selected in the fixed-point algorithm. The
stopping criterion ε was set to 0.0001 and the maximum
number of iterations was set to 1000 (the default values).

E
M

G
 a

m
pl

itu
de

 (
m

V
)

-0.07

0.08

1

-0.08

0.09

2

-0.12

0.12

3

-0.47

0.13

4

-0.06

0.10

5

-0.13

0.48

6

-0.09

0.08

7

-0.15

0.09

8

-0.64

0.16

9

-0.15

0.12

10

-0.14

0.65

11

-0.07

0.09

12

-0.10

0.09

13

-0.11

0.16

14

-0.08

0.25

15

-0.08

0.07

16

-0.08

0.10

17
-0.23

0.11

18

-0.07

0.07

19

-0.08

0.09

20

A
ct

iv
ity

 In
de

x
am

pl
itu

de
 (

a.
 u

.)

2.4 4.9 7.3 9.8 12.2 14.6 17.1 19.5
time (s)

0

2351

Figure 1: Representative HDEMG channels recorded
during the isometric contraction of biceps brachii at 10
% MVC contraction (in blue) and the corresponding Ac-
tivity Index (in red), with the detected outliers encircled
in green. The two most prominent artefacts are notice-
able in the 4th and 6th EMG channel at approximately
10th second, in the 9th and 11th EMG channel at ap-
proximately 17th second and in the 15th and 18th EMG
channel at approximately 4th second. A single artefact is
often present in several EMG channels. Also evident, not
all the HDEMG artefacts were detrimental for Activity
index calculation and, therefore, for MU identification.

2.3 Artefact detection and elimination

An example of a few representative HDEMG channels
recorded during isometric contraction of biceps brachii
muscle at 10 % of maximum voluntary contraction
(MVC) is shown in Fig. 1.
The artefact detection process began by calculating the
Activity Index (red line in Fig 1) from HDEMG. In our
study, the extension factor F was set to 1. This yielded
one time series from several HDEMG channels.
Next, the outliers (denoted by green circles on the red
line in Fig 1) were found in the Activity Index. In
our case, an outlier was defined as an element that was
more than 15 scaled median absolute deviations (MAD)
away from the local median. Noteworthy, this could
be parameterized and the outliers could be determined
in some other fashion. The local median was defined

4

as the median inside the window, where the window
size was equal to 2048 samples. To the best of our
knowledge there is no established method for artefact
elimination using the Activity Index, hence the MAD
threshold for determining the outliers in the Activity
Index was selected empirically using visual inspection
of the results by an expert. As an additional step, we
also ignored any outlier that was fewer than 200 samples
away from an already detected outlier. In this way,
we prevented the multiple identifications of the same
artefact.
Afterwards, fastICA decomposition was applied to the
HDEMG, yielding the individual independent compo-
nents. All the identified components were taken into con-
sideration, as we would like to preserve as much of the
information as possible after artefact elimination. Each
independent component was then excluded and a new
Activity Index IEX was calculated without the excluded
independent component. Noteworthy, calculating the Ac-
tivity Index from either HDEMG or all it’s ICA compo-
nents will always yield the same result. Then, for each
detected outlier in the Activity Index IA, we tried to iden-
tify the ICA component that contributed the most to the
outlier in the Activity Index (to the HDEMG artefact) by
observing the difference in the Activity Index at the time
of the outlier before and after the exclusion of the indi-
vidual ICA component. We did this by using the interest
metric defined as:

IntMetEX(n) = 1 − IEX(n)/IA(n) (10)
at any given time n. In partucular, for each detected out-
lier at time x in the old Activity Index IA(x), we looked
at all the new Activity Indices IEX(x) (with individual
ICA components excluded) and calculated the interest
metrics IntMetEX(x) at the time x of the outlier in the
Activity Index IA(x).
The interest metric IntMetEX helped to expose the rela-
tionship between the old Activity Index IA and the new
Activity Indices IEX . Higher value of the interest metric
corresponded to a greater chance that there was an arte-
fact in the excluded ICA component. Using this metric
it was possible to determine which ICA component con-
tains the artefact. It was assumed that only a single ICA
component will contain a single artefact, as ICA works
under the assumption that the sources are statistically
independent from each other. If we were to see arte-
facts in multiple ICA components at the same time, this
would imply that they came from statistically indepen-
dent sources. This would imply artefact co-occurrence,
which is unlikely given our findings about the number
of outliers and artefacts found per recording (Section 3).
Interest metric threshold, above which we considered the
artefacts to be successfully eliminated was set to 0.5.
By using the ICA algorithm it would also possible to re-
construct the original recordings from ICA components.
This would allow us to first transform the HDEMGs to
ICA space, eliminate the artefacts to the best of our
ability and then transform the ICA components back to
HDEMG space using simple matrix multiplication. In
our current study, we eliminated the whole ICA compo-
nent, but it would be worth considering “repairing” that
component (e.g. locally setting the component elements
to 0).

2.4 Dataset and evaluation

To evaluate our method for artefact detection and elimi-
nation, we used 20 second long HDEMG recordings from
7 neurologically intact young subjects performing isomet-
ric contractions of the biceps brachii muscle, at 5, 10, 15
and 20 % of MVC for a total of 28 HDEMG recordings.
13 × 5 electrode array was used. Visual feedback on
force was provided to the participants. All the experi-
ments were conducted in accordance with the Declara-
tion of Helsinki, and were approved by the local Ethical
Committee.
In Section 3 we reported the mean ± the Standard De-
viation (SD) of the number of outliers found in the Ac-
tivity Index per HDEMG recording, the mean number
of eliminated artefacts per HDEMG recording, the mean
number of outliers per HDEMG, where we identified at
least one outlier, the mean number of eliminated artefacts
per HDEMG where we eliminated at least one artefact as
well as the mean interest metric IntMetEX of the elimi-
nated artefacts. We also provided a visual example of an
elimination of an artefact.

3 Results

The mean number of outliers found in the Activity In-
dex per HDEMG recording was equal to 1.25 ± 1.29.
The mean number of eliminated artefacts per HDEMG
recording was equal to 1.07 ± 1.18. The mean number of
outliers in Activity Index per HDEMG with at least one
outlier was 2.06 ± 1.03 and the mean number of elimi-
nated artefacs per HDEMG with at least one eliminated
artefact present was 1.88 ± 0.96. The mean interest met-
ric IntMetEX of the eliminated artefacts was 0.85 ± 0.11.
In the HDEMGs used in our study, each artefact was
found in a separate ICA component. A representative
example of our results is provided in Fig. 2.

4 Discussion

Our results indicated that it was possible to eliminate
artefacts in HDEMG using Activity Index and ICA. How-
ever, it was difficult to accurately quantify the efficiency
of this approach, as we did not know the ground truth
about the artefacts’ locations in time, nor the HDEMG
channels where they were present. We could simulate
certain kinds of artefacts at known times and in known
HDEMG channels. However this would only account for
certain types of artefacts. For example, we could induce
an artefact by touching certain electrodes during record-
ing at a predefined time, or during the whole recording by
incorrectly applying the contact gel. But we would still
be left with other artefacts that we have little control
over. Moreover, not all the artefacts have a significant
impact on the Activity Index and on MU identification.
By observing the Activity Index and comparing it to the
HDEMG channels, it is quite clear, that certain artefacts
are more detrimental for the Activity Index than others.
Therefore, without using the Activity Index or a simi-
lar metric, the assessment of artefact impact on EMG
decomposition is often difficult.

5

-0.6

0.8

-1.3

1.4

-30.7

6.8

-2.2

2.3

-2.6

1.7

-2.3

1.8

-1.2

4.4

-2.6

3.2

-2.8

6.3

-2.2

2.8

-5.6

3.3

-3.1

2.9

-3.2

5.6

-2.1

2.7

-2.2

5.2

-3.3

2.5

-6.9

2.5

-4.7

2.9

-3.3

2.1

-2.4

1.9

-2.3

2.8

-3.3

5.6

-2.5

2.2

-4.5

2.7

-2.3

3.8

-4.3

4.1

-2.3

2.3

-3.3

2.3

-2.4

1.7

-3.4

2.7

-2.4

4.6

-1.9

1.7

-2.2

2.8

-2.2

3.1

-2.8

3.4

-2.0

3.4

-2.2

3.5

-2.2

3.0

-1.4

3.1

-3.4

2.4

-2.2

3.6

-2.3

2.8

-2.7

2.0

-3.8

2.1

-2.8

2.3

-2.5

3.2

-2.7

2.3

-3.7

2.2

-2.6

2.7

-2.0

3.7

-2.4

2.7

-2.3

3.2

-2.9

2.1

-3.7

2.5

-3.8

3.0

-3.5

3.0

-1.9

3.6

-2.5

3.2

-2.9

2.9

-2.9

2.5

0

975

2.4 4.9 7.3 9.8 12.2 14.6 17.1 19.5
time (s)

0

1240

Figure 2: Artefact detection and elimination in ICA
components of recorded HDEMG. The bottom panel de-
picts the IA of all the ICA components (in blue) and the
IEX without the excluded component (in red). The green
cross denotes the detected artefact time. The blue and
red circles represent the detected outliers in IA and IEX ,
respectively. The second row from the bottom shows the
200 samples of Activity Index before and after the de-
tected artefact time (green cross from the bottom panel).
The blue line shows the IA and the red line shows IEX .
The first dozen rows show the ICA components 200 sam-
ples before and after the detected artefact time (the green
cross). The excluded component is depicted in red. It
contains an artefact with an interest metric value of 0.96.
All y-axis units are arbitrary.

In our method, determining the outliers in the Activity
Index depend upon several parameters. The first one was
the extension factor F , which was set to 1 for the purposes
of this study. Also important was the scaled median
absolute deviation (MAD) threshold, above which we
considered an element of the Activity Index to be an
outlier. In our case, we set it to 15. Lowering this
threshold would yield more outliers in the Activty Index.
Another parameter was the sliding window size in the
Activity Index outlier detection, which in our case was
set to 2048 samples.
The presented outlier location detection could also be
refined, as using the currently described technique does
not guarantee the identified outlier location to be at the
location of the actual outlier peak. Instead, we aimed at

identifying the first of the 200 samples that is at least 15
MAD away from the local median. This selection could
have significant implications in the case of longer artefacts
in HDEMG signals.
In our dataset, we found the mean interest metric
IntMetEX value of the eliminated artefacts to be 0.85
± 0.11, while the threshold, above which we considered
the artefacts to be eliminated was set to 0.5. We also
found slightly more outliers than actual artefacts as
identified by visual inspection of HDEMG signals. This
indicated that the current parameters (especially the
extension factor for Activity Index calculation F of 1,
the MAD threshold for outlier detection of 15 and the
interest metric threshold of 0.5) were suitable to identify
artefacts in the HDEMGs. However, further tests are
required to confirm these findings in other muscles and
contraction levels.

Acknowledgment

This study was supported by the Slovenian Research
Agency (Project J2-1731 and Program funding P2-
0041).

References

[1] Holobar, A., and Zazula, D. Correlation-based
decomposition of surface electromyograms at low con-
traction forces. Medical and Biological Engineering
and Computing 42, 4 (2004), 487–495.

[2] Holobar, A., and Zazula, D. Gradient convo-
lution kernel compensation applied to surface elec-
tromyograms. In International Conference on Inde-
pendent Component Analysis and Signal Separation
(2007), Springer, pp. 617–624.

[3] Holobar, A., and Zazula, D. Multichannel blind
source separation using convolution kernel compensa-
tion. IEEE Transactions on Signal Processing 55, 9
(2007), 4487–4496.

[4] Hyvärinen, A. Independent component analysis:
recent advances. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engi-
neering Sciences 371, 1984 (2013), 20110534.

[5] Hyvärinen, A., and Oja, E. Independent com-
ponent analysis: algorithms and applications. Neural
networks 13, 4-5 (2000), 411–430.

6

Zero-Knowledge Authentication
Jakob Povšič

University of Primorska,
Faculty of Mathematics, Natural Sciences

and Information Technologies,
Glagoljaška 8, 6000 Koper, Slovenia

jakob.povsic@gmail.com

Andrej Brodnik
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Glagoljaška 8, 6000 Koper, Slovenia
andrej.brodnik@upr.si

Abstract
Zero-Knowledge proofs (ZKPs) enable proving of
mathematical statements, revealing nothing but
their validity. We design an authentication sys-
tem with a ZKP as a password verification mech-
anism within the Extensible Authentication Pro-
tocol (EAP) framework. Designing a secure pass-
word authentication system requires us to adopt
security practices for protecting ourselves against
the vulnerabilities of passwords. Integrating said
practices is not trivial because of the tight cou-
pling with the password verification method.

Keywords extensible authentication protocol, zero-
knowledge proofs, authentication, cryptography, key-
stretching, passwords, quadratic residuosity problem

1 Introduction

Today privacy is a necessary sacrifice we have to make
in order to take part in the digital world, imperative
to our modern life. Every day, more digital systems
gain access to our personal information. While this
practice is often a necessary evil, many companies seek
to exploit this position. Zero-knowledge proofs (ZKPs)
are an intriguing cryptographic phenomenon for proving
mathematical statements without revealing why they are
true, and have the potential to change how our data exists
in the digital space.
Our focus will be to define a simple use for zero-knowledge
proofs. We will design an authentication system using a
zero-knowledge proof as a password verification method,
as an authentication method in the extensible authenti-
cation protocol (EAP). When designing the system, we
need to protect ourselves from vulnerabilities of pass-
words. However, integrating security methods presents
a challenge because of the zero-knowledge proof system.

2 Extensible Authentication Protocol

Extensible authentication protocol [10] (EAP) is a gen-
eral purpose authentication framework designed for net-
work access authentication. EAP defines a set of mes-
sages that support negotiation and execution of a variety
of authentication protocols. EAP is a two-party protocol
between a peer and an authenticator at each end of a link.

Messages. The peer and the authenticator communi-
cate by exchanging EAP messages. The protocol starts
with the authenticator sending a message to the peer.
They keep exchanging messages until the authenticator
can either authenticate the peer or not. Messages are
exchanged in a lock-step manner, where an authentica-
tor sends a message and the peer responds to it. The
authenticator dictates the order of messages, meaning it
can send a message at any point of communication, as
opposed to the peer, which can only respond to messages
from the authenticator.
Messages are composed of fields, each field length is
multiple of an octet of bits (Table 1). We will store our
authentication method data within the Type-Data field.
Our EAP method is identified by the Type 84.

3 Zero-Knowledge Proofs

Zero-Knowledge Proofs [5, 6, 7] (ZKPs) are a concept
in cryptography for proving the validity of mathematical
statements. What makes them particularly interesting is
that ZKPs can prove a statement revealing no informa-
tion about why a statement is true, hence the term zero-
knowledge. In mathematics, theorem proofs are logical
arguments that establish truth through inference rules
of a deductive system based on axioms and other proven
theorems. ZKPs are probabilistic, meaning they convince
the verifier of the validity. We use the term convince, be-
cause ZKPs are not absolute truth, but the probability
of someone being convinced by a false statement is arbi-
trarily small.

3.1 ZKP System for the Quadratic Residuosity
Problem

Definition 3.1 (Quadratic Residuosity Problem)
Given an integer x, a semiprime modulus n = pq, where
p and q are unknown different primes, and a Jacobi
symbol value

(
x
n

)
= 1. Determine if x is a quadratic

residue modulo n or not.

The law of quadratic reciprocity enables efficient compu-
tation of the Jacobi symbol value

(
x
n

)
. However, when(

x
n

)
= 1, it does not tell if x is a quadratic residue modulo

n or not. x is only a quadratic residue if it’s a quadratic
residue of both modulo p and q (

(
x
p

)
=

(
x
q

)
= 1). To

compute this, we would have to know the factorization of
n. However, since n is a product of two primes pq = n,
this is computationally hard [2]. The only efficient way

DOI https://doi.org/10.18690/978-961-286-516-0.2
ISBN 978-961-286-516-0 7

Table 1: EAP Message Format

Length (Octets) 1 1 2 1 n ≤ 216

Field Code Identifier Length Type Type-Data

to prove x is a quadratic residue modulo n, is with the
root w. The problem acts as a trapdoor function, where
it’s hard to prove if x is a quadratic residue modulo n
solely from x and n, while it is easy to prove when you
know its root w.
Authors [7] described a ZKP system for the quadratic
residuosity problem. To prove x is a quadratic residue
modulo n in zero-knowledge we need to prove the exis-
tence of the root w, where w2 ≡ x (mod n), without
revealing w to the verifier.

n Semiprime, where Jacobi
(

x
n

)
= 1

x Residue, where w2 ≡ x (mod n)
w Root

Peer Authenticator
1 u R Z∗n

y = u2 (mod n) y−→
2 b←− b R {0, 1}
3 z = uwb (mod n) z−→ verify z2 ≡ yxb (mod n)

Table 2: ZKP Authentication with EAP

In Table 2 of the ZKP authentication process, the middle
spaces represent the EAP message Type-Data field.
The prover begins by picking a random integer u from
the field Zn, computing y = u2 (mod n), and sending
y to the verifier. The verifier picks a random bit b and
sends it to the prover. The prover computes the value z
with b and sends it back. The verifier checks the proof
by asserting z2 ≡ yxb (mod n), this is possible since

z2 ≡ yxb (mod n)
(uwb)2 ≡ u2(w2)b (mod n)
u2w2b ≡ u2w2b (mod n).

For each round a cheating prover has a 1
2 probability of

succeeding by correctly guessing the value of the random
bit b. To improve the strength of the proof, we repeat
this process m times for a confidence of 1− 2−m.
To use this protocol as a password verification method,
we can treat the root w as the password p = w known by
the peer. The ZKP protocol proves that x is a quadratic
residue modulo n, by proving the knowledge of the root
w, where w2 ≡ x (mod n). The peer will prove that x
is a quadratic residue modulo n, to do this however, the
peer needs to prove the knowledge of the password p = w.
With this, the authenticator can assert that the password
is valid.

4 Password Protection

Password cracking [1] is an offline attack [8], where an
attacker extracts passwords from data used by the au-
thentication system for password verification. Protect-
ing passwords on the data layer is of critical importance.
Key-stretching, [9, 1] also called password hashing, is the
industry standard method for improving security of low
entropy secrets like passwords.
The quadratic residue x is derived from root w = p
and persistently stored with the authenticator. This
introduces a vulnerability, as an attacker with access to
x could crack the password w in an offline attack. To
provide adequate security, we need to use key-stretching
in our authentication method. A common application of
a key-stretching method is to transform the vulnerable
data stored in the authentication system. However, this
approach doesn’t work in our case. Let us revisit how the
authenticator verifies the proof, and why key-stretching
the password verification data (x) data is an issue. We’ll
begin by assuming the system can verify the proof and
key-stretching the password verification data (x) data.
As we define our process, we will see why it is not possible.

Key-Stretching x. On the last step of the protocol
the authenticator verifies that

z2 ≡ yxb (mod n).

If we stretch x with a function H and a salt s

H(x, s) = xH ,

we can then verify the proof with an inverse function H−1

z2 ≡ yH−1(xH , s)b.

This is possible assuming a polynomial algorithm H−1

exists, however, since key-stretching methods are based
on hashing functions (one-way functions), we know that
the probability of a polynomial algorithm H−1 to success-
fully compute a pseudo-inverse is negligibly small. For all
positive integers c [4]

Pr[H(H−1(H(x))) = H(x)] < |x|−c.

Even if given unbounded time and resources, the pseudo-
inverse x′ = H−1(H(x)) might not be equal to x′ 6= x.
The set x, x′ ∈ Ix are all values that map into H(x) =
H(x′), and since H is not injective we know that |Ix| ≥ 1.
Meaning that the probability that x′ = x is

Pr[H−1(H(x)) = x] = 1
|Ix|

.

Key-stretching x prevents us from verifying the ZKP.
However, by increasing the entropy of the root w, we can
eliminate the vulnerability and ensure adequate security.
Our new approach won’t treat the password p 6= w as the

8

root w. However, we will use the password p to derive
the root w = H(p, s), using a key-stretching function H
and salt s. This way we’ve ensured the same level of pro-
tection against offline attacks as if we stretched the data
stored in the system. And because we didn’t transform x,
we can verify the proof without being affected by issues
mentioned in the previous paragraph. A similar approach
is used in the PPP EAP SRP-SHA1 protocol [3]. Ear-
lier we argued the ZKP works as a password verification
method because p = w, this argument isn’t true anymore.
However, even though w 6= p, the peer can only derive
w knowing the password p, so when the peer proves the
knowledge of w, it can only be so because they know p
as well.

5 Secure Authentication

The authentication process now begins with the peer
sending his identifier to the authenticator and the au-
thenticator responding with the peer’s unique salt s and
modulo n. The peer can now derive the root w from the
password p and salt s. This part of the process (Steps 1.
and 2. in the Table 3) happens only once.
The peer can then authenticate by following the process
as described in §3.1. This part (Steps 3., 4. and 5.) of the
process is repeated m times for a confidence of 1− 2−m.
The middle space in the Table 3 represents the Type-Data
field of the EAP messages.

Peer Authenticator
1 I−→
2 w = H(p, s) s,n←−−
3 u R Zn

y = u2 (mod n) y−→
4 b←− b R {0, 1}
5 z = uwb (mod n) z−→ verify z2 ≡ yxb (mod n)

Table 3: Improved ZKP Authentication with EAP

Let us examine the EAP messages (Figure 1) of the au-
thentication process described in Table 3. The mapping
between EAP messages and the steps in Table 3 is not
one-to-one. We merged some steps to reduce the number
of message exchanges required for the process to com-
plete.

Identity This message is used to query the identity of
the peer. In a system with multiple peers, this is
required to identify the peer authenticating, and
to find the correct salt s and quadratic residue x.
(Table 3, Step 1.)

Setup The peer needs both the salt s and the modulus
n to compute the proof, however, he only knows
the password p. Once the peer identifies himself,
the authenticator needs to send him the salt s and
modulus n in the setup request message. (Table 3,
Step 2. and 3.)

Verification With this message pair the peer and the
authenticator exchange data to compute and verify

Figure 1: EAP Method Execution

the proof. The authenticator sends the random bit
b and the peer responds with the proof z. The peer
also sends the yi+1 for the next verification round
i + 1, this is done as an optimisation to improve the
speed of the process. (Table 3, Step 4., 5. and 3.)

Success/Failure After each verification message, the
authenticator verifies the proof, and once it’s done
successfully for m rounds, the authenticator sends
the success message. However, if the proof isn’t
valid, the authenticator must send a failure message.

6 Conclusions and Future Work

The aim of this work was to study the utility of zero-
knowledge proofs as an EAP authentication method.
We’ve presented an EAP method using a ZKP system
for password verification. Additionally, we ensured
adequate password protection by using a key-stretching
method.
We have been successful in our goal of studying and using
the ZKP protocol. While theoretically interesting the
system’s performance may not appropriate for real-world
applications. The iterative nature of the underlying ZKP
protocol accumulates communication latencies, slowing
down the system.

Future work.

• The EAP method presented in this work can be
implemented and tested in a real-world environment.

9

• The ZKP protocol used in this work is a first gen-
eration protocol. Today there are many newer pro-
tocols that have solved many shortcomings of the
older generation ZKPs. Using a newer generation
ZKP protocol can improve the performance of the
authentication system.

• The ZKP protocol we’ve examined is iterative, which
can cause worse performance. A parallel ZKP con-
struction is assumed to have a weaker strength of
zero-knowledge. However, in a real-world applica-
tion, the performance improvements might justify
the theoretical shortcomings.

References

[1] Blocki, J., Harsha, B., and Zhou, S. On the
economics of offline password cracking. In 2018
IEEE Symposium on Security and Privacy (SP)
(2018), IEEE, pp. 853–871.

[2] Buchmann, J. A. Factoring. Springer US, New
York, NY, 2001, pp. 171–183.

[3] Carlson, J. D., Aboba, D. B. D., and Haveri-
nen, H. PPP EAP SRP-SHA1 Authentication Pro-
tocol. Internet-Draft draft-ietf-pppext-eap-srp-03,
Internet Engineering Task Force, July 2001. Work
in Progress.

[4] Goldreich, O. Foundations of cryptography: Vol-
ume 1, basic tools. Cambridge university press, 2007.

[5] Goldreich, O., and Krawczyk, H. On the
composition of zero-knowledge proof systems. SIAM
Journal on Computing 25, 1 (1996), 169–192.

[6] Goldreich, O., Micali, S., and Wigderson, A.
How to Prove all NP-Statements in Zero-Knowledge,
and a Methodology of Cryptographic Protocol De-
sign. vol. 263, pp. 171–185.

[7] Goldwasser, S., Micali, S., and Rackoff, C.
The knowledge complexity of interactive proof sys-
tems. SIAM Journal on computing 18, 1 (1989),
186–208.

[8] Grassi, P. A., Garcia, M. E., and Fenton,
J. L. NIST Special Publication 800-63-3 Digital
Identity Guidelines. National Institute of Standards
and Technology, Los Altos, CA (2017).

[9] Hornby, T. Salted password hashing-doing it right,
2016.

[10] Vollbrecht, J., Carlson, J. D., Blunk, L.,
Aboba, D. B. D., and Levkowetz, H. Extensible
Authentication Protocol (EAP). RFC 3748, June
2004.

10

Graphs where Search Methods are Indistinguishable
Matjaž Krnc and Nevena Pivač∗

University of Primorska,
Faculty of Mathematics, Natural Sciences and Information Technologies,

Glagoljaška 8, 6000 Koper, Slovenia
matjaz.krnc@upr.si nevena.pivac@iam.upr.si

Abstract
Graph searching is one of the simplest and most
widely used tools in graph algorithms. Every
graph search method is defined using some partic-
ular selection rule, and the analysis of the corre-
sponding vertex orderings can aid greatly in de-
vising algorithms, writing proofs of correctness,
or recognition of various graph families.
We study graphs where the sets of vertex order-
ings produced by two different search methods
coincide. We characterise such graph families
for ten pairs from the best-known set of graph
searches: Breadth First Search (BFS), Depth
First Search (DFS), Lexicographic Breadth First
Search (LexBFS) and Lexicographic Depth First
Search (LexDFS), and Maximal Neighborhood
Search (MNS).

Keywords graph search methods, breadth first search,
depth first search

1 Introduction

Graph search methods (for instance, Depth First Search
and Breadth First Search) are among essential concepts
classically taught at the undergraduate level of com-
puter science faculties worldwide. Various types of graph
searches have been studied since the 19th century, and
used to solve diverse problems, from solving mazes, to
linear-time recognition of interval graphs, finding mini-
mal path-cover of co-comparability graphs, finding per-
fect elimination order, or optimal coloring of a chordal
graph, and many others [1, 4, 7, 8, 10, 11].
In its most general form, a graph search (also generic
search [5]) is a method of traversing vertices of a given
graph such that every prefix of the obtained vertex order-
ing induces a connected graph. This general definition of
a graph search leaves much freedom for a selection rule
determining which node is chosen next. By defining some
specific rule that r estricts this choice, various different
graph search methods are defined. Other search methods
that we focus on in this paper are Breadth First Search,
Depth First Search, Lexicographic Breadth First Search,
Lexicographic Depth First Search, and Maximal Neigh-
borhood Search.
We briefly present the studied graph search methods in

∗This work is supported in part by the Slovenian Research
Agency (research programs P1-0285 and P1-0383, research
projects N1-0102, J1-9110, N1-0160, N1-0209 and Young Re-
searchers Grant).

Section 2, and then state the obtained results in Section 3.
Due to lack of space we omit the proofs and provide some
directions for further work in Section 4. All proofs are
available in the full version of paper on www.arxiv.org.

2 Preliminaries

We now briefly describe the above-mentioned graph
search methods, and give the formal definitions. Note
that the definitions below are not given in a historically
standard form, but rather as so-called three-point
conditions, due to Corneil and Kruger [5] and also
Brändstadt et. al. [3]. Two vertices u, v ∈ V (G) satisfy
the relation u <σ v if u appears before v in the ordering
σ : V (G) → {1, 2, . . . , n} of vertices in G.

Breadth First Search (BFS), first introduced in 1959
by Moore [9], is a restriction of a generic search which
puts unvisited vertices in a queue and visits a first vertex
from the queue in the next iteration. After visiting a
particular vertex, all its unvisited neighbors are put at
the end of the queue, in an arbitrary order.

Definition 2.0.1 An ordering σ of V is a BFS-ordering
if and only if the following holds: if a <σ b <σ c and
ac ∈ E and ab /∈ E, then there exists a vertex d such that
d <σ a and db ∈ E.

Any BFS ordering of a graph G starting in a vertex v
results in a rooted tree (with root v), which contains the
shortest paths from v to any other vertex in G (see [6]).
We use this property implicitly throughout the paper.

Depth First Search (DFS), in contrast with the BFS,
traverses the graph as deeply as possible, visiting a neigh-
bor of the last visited vertex whenever it is possible, and
backtracking only when all the neighbors of the last vis-
ited vertex are already visited. In DFS, the unvisited
vertices are put on top of a stack, so visiting a first ver-
tex in a stack means that we always visit a neighbor of
the most recently visited vertex.

Definition 2.0.2 An ordering σ of V is a DFS-ordering
if and only if the following holds: if a <σ b <σ c and
ac ∈ E and ab /∈ E, then there exists a vertex d such that
a <σ d <σ b and db ∈ E.

Lexicographic Breadth First Search (LexBFS) was
introduced in the 1970s by Rose, Tarjan and Lueker [10]
as a part of an algorithm for recognizing chordal graphs in
linear time. Since then, it has been used in many graph
algorithms mainly for the recognition of various graph
classes.

DOI https://doi.org/10.18690/978-961-286-516-0.3
ISBN 978-961-286-516-0 11

Generic Search

BFS DFS
MNS

MCSLexBFS LexDFS

Generic Search

BFS DFS
MNS

LexBFS LexDFS

Figure 1: On the left: Hasse diagram showing how graph searches are refinements of one another. On the right is
a summary of our results: Green pairs are equivalent on {P4, C4}-free graphs. Violet pairs are equivalent on {pan,
diamond}-free graphs. Blue pairs are equivalent on {paw, diamond, P4, C4}-free graphs.

Definition 2.0.3 An ordering σ of V is a LexBFS or-
dering if and only if the following holds: if a <σ b <σ c
and ac ∈ E and ab /∈ E, then there exists a vertex d such
that d <σ a and db ∈ E and dc /∈ E.

LexBFS is a restricted version of Breadth First Search,
where the usual queue of vertices is replaced by a queue
of unordered subsets of the vertices which is sometimes
refined, but never reordered.

Lexicographic Depth First Search (LexDFS) was in-
troduced in 2008 by Corneil and Krueger [5] and repre-
sents a special instance of a Depth First Search.

Definition 2.0.4 An ordering σ of V is a LexDFS or-
dering if and only if the following holds: if a <σ b <σ c
and ac ∈ E and ab /∈ E, then there exists a vertex d such
that a <σ d <σ b and db ∈ E and dc /∈ E.

Maximal Neighborhood Search (MNS), introduced
in 2008 by Corneil and Krueger [5], is a common gen-
eralization of LexBFS, LexDFS, and MCS, and also of
Maximal Label Search (see [2] for definition).

Definition 2.0.5 An ordering σ of V is an MNS or-
dering if and only if the following statement holds: If
a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a
vertex d with d <σ b and db ∈ E and dc /∈ E.

The MNS algorithm uses the set of integers as the label,
and at every step of iteration chooses the vertex with
maximal label under set inclusion.
Corneil [5] exposed an interesting structural aspect of
graph searches: the particular search methods can be
seen as restrictions, or special instances of some more
general search methods. For six well-known graph search
methods they present a depiction, similar to the one in
Figure 1, showing how those methods are related under
the set inclusion. For example, every LexBFS ordering is
at the same time an instance of BFS and MNS ordering
of the same graph. Similarly, every LexDFS ordering
is at the same time also an instance of MNS, and of
DFS (see Figure 1). The reverse, however, is not true,
and there exist orderings that are BFS and MNS, but
not LexBFS, or that are DFS and MNS but not LexDFS.

3 Problem description and results

Since the connections in Figure 1 represent relations of
inclusion, it is natural to ask under which conditions
on a graph G the particular inclusion holds also in the
converse direction. More formally, we say that two search
methods are equivalent on a graph G if the sets of vertex
orderings produced by both of them are the same. We say
that two graph search methods are equivalent on a graph
class G if they are equivalent on every member G ∈ G.
Perhaps surprisingly, three different graph families suffice
to describe graph classes equivalent for the ten pairs
of graph search methods that we consider. Those are
described in Theorems 3.1 to 3.3 below, but first we need
a few more definitions.
All the graphs considered in the paper are finite and
connected. A k-pan is a graph consisting of a k-cycle,
with a pendant vertex added to it. We say that a graph
is pan-free if it does not contain a pan of any size as an
induced subgraph. A 3-pan is also known as a paw graph.

Theorem 3.1 Let G be a connected graph. Then the
following is equivalent:
A1. Graph G is {P4, C4, paw, diamond}-free.
A2. Every graph search of G is a DFS ordering of G.
A3. Every graph search of G is a BFS ordering of G.
A4. Any vertex-order of G is a BFS, if and only if it is

a DFS.

Theorem 3.2 Let G be a connected graph. Then the
following is equivalent:
B1. Graph G is {pan, diamond}-free.
B2. Every DFS ordering of G is a LexDFS ordering of

G.
B3. Every BFS ordering of G is a LexBFS ordering of

G.
B4. Every graph search of G is an MNS ordering of G.

Theorem 3.3 Let G be a connected graph. Then the
following is equivalent:
C1. Graph G is {P4, C4}-free.
C2. Every MNS ordering of G is a LexDFS ordering of

G.
C3. Every MNS ordering of G is a LexBFS ordering of

G.

12

b c

a e

d

σ = (b, c, d, a, e)
a

b

c d e

σ = (d, c, b, e, a)

a

b c

d

e

σ = (c, a, d, e, b)

a

b c

d

e

σ = (a, d, c, e, b)

a

b c

d

e

σ = (e, b, a, d, c)

a

b cd

e
σ = (d, b, e, a, c)

a

b

c

d

e

σ = (a, c, e, d, b)

Figure 2: Graphs and corresponding orderings that are MNS and not MCS orderings.

From Theorems 3.1 and 3.2 we can immediately derive
similar results for two additional pairs of graph search
methods.

Corollary 3.3.1 Let G be a connected graph. Then the
following is equivalent:

A1. Graph G is {P4, C4, paw, diamond}-free.
A5. Every graph search of G is a LDFS ordering of G.
A6. Every graph search of G is a LBFS ordering of G.

4 Conclusion and further work

In this paper we consider the major graph search methods
and study the graphs in which vertex-orders of one type
coincide with vertex-orders of some other type. Inter-
estingly, three different graph families suffice to describe
graph classes equivalent for the ten pairs of graph search
methods that we consider, which provides an additional
aspect of similarities between the studied search methods.
Among the natural graph search methods not yet consid-
ered in this setting would be the Maximum Cardinality
Search (MCS), introduced in 1984 (for definition see Tar-
jan and Yannakakis [12]). As shown on Figure 1, every
MCS is a special case of an MNS vertex-order. While it
is easy to verify that {P4, C4,paw, diamond}-free graphs
do not distinguish between MNS and MCS vertex orders,
Figure 2 provides examples of graphs which admit MNS,
but not MNS vertex orders. Characterising graphs equiv-
alent for MNS and MCS remains an open question.

Acknowledgements

The authors would like to thank prof. Martin Milanič for
the initial suggestion of the problem, and to Ekki Köhler
and his reseach group, for introducing the diverse world
of graph searches to us.

References

[1] Beisegel, J. Characterising AT-free graphs with
BFS. In Graph-Theoretic Concepts in Computer Sci-
ence (2018), A. Brandstädt, E. Köhler, and K. Meer,
Eds., pp. 15–26.

[2] Berry, A., Krueger, R., and Simonet, G.
Maximal label search algorithms to compute perfect
and minimal elimination orderings. SIAM Journal
on Discrete Mathematics 23, 1 (2009), 428–446.

[3] Brandstädt, A., Dragan, F. F., and Nicolai,
F. LexBFS-orderings and powers of chordal graphs.
Discrete Math. 171, 1-3 (1997), 27–42.

[4] Corneil, D. G., Dusart, J., Habib, M., and
Kohler, E. On the power of graph searching for
cocomparability graphs. SIAM Journal on Discrete
Mathematics 30, 1 (2016), 569–591.

[5] Corneil, D. G., and Krueger, R. M. A unified
view of graph searching. SIAM Journal on Discrete
Mathematics 22, 4 (2008), 1259–1276.

[6] Even, S. Graph algorithms. Cambridge University
Press, 2011.

[7] Golumbic, M. Algorithmic Graph Theory and Per-
fect Graphs. Annals of Discrete Mathematics, Vol-
ume 57. Elsevier, 2004, pp. 98–99.

[8] Köhler, E., and Mouatadid, L. Linear time
lexdfs on cocomparability graphs. In Scandinavian
Workshop on Algorithm Theory (2014), Springer,
pp. 319–330.

[9] Moore, E. F. The shortest path through a maze.
In Proc. Int. Symp. Switching Theory, 1959 (1959),
pp. 285–292.

[10] Rose, D. J., Lueker, G. S., and Tarjan, R. E.
Algorithmic aspects of vertex elimination on graphs.
SIAM Journal on Computing 5, 2 (1976), 266–283.

[11] Tarjan, R. E. Depth-first search and linear graph
algorithms. SIAM journal on computing 1, 2 (1972),
146–160.

[12] Tarjan, R. E., and Yannakakis, M. Simple
linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on computing
13, 3 (1984), 566–579.

13

14

System for Remote Collaborative Embedded
Development

Martin Domajnko
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

martin.domajnko@student.um.si

Nikola Glavina
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

nikola.glavina@student.um.si

Aljaž Žel
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

aljaz.zel@student.um.si

Abstract
This paper explores the challenges and devised
solutions for embedded development which arose
during the COVID-19 pandemic. While software
development, nowadays with modern tools and
services such as git, virtual machines and commu-
nication suits, is relatively unaffected by resource
location. That is not the case for firmware and
embedded systems, which relies on physical hard-
ware for design, development, and testing. To
overcome the limitations of remote work and ob-
structed access to actual hardware, two ideas were
implemented and tested. First, based on inte-
grated circuit emulation using QEMU to emulate
an ARM core and custom software to facilitate
communication with the embedded system. Sec-
ond, remote programming and debugging over the
internet with a dedicated computer system acting
as a middle man between a development environ-
ment and physical hardware using OpenOCD de-
bugger.

Keywords embedded development, remote develop-
ment, OpenOCD, QEMU, ARM, ARM semihosting

1 Introduction

During the design, development, and testing phases of
our Passive Floating Probe project [7], we heavily relied
on physical access to the hardware. The restrictions that
were put in place during the COVID-19 pandemic didn’t
stop the development process of our project, but they
heavily limited it. Lack of working hardware for every
member of the team was our major issue, so we tried
to think up solutions to overcome that problem. The
first idea, which would allow our work on the project to

∗Listed in alphabetical order

continue, was based on the QEMU [8] machine emula-
tor. We emulated our integrated circuit with an ARM
core processor and added a custom software layer, which
served as an emulation of the real-world communication
pipeline with the system. The solution proved useful,
albeit with the restriction that it allowed only local de-
velopment, prompting us to develop our second idea. Re-
mote programming and debugging of our hardware over
the internet was the main part of that solution. This
was achieved with a dedicated computer system acting
as a middle man between our development environment
and the targeted hardware, enabling programming and
debugging.
Finally, we present the structure of this paper. In the
second section, we are going to explain in detail the
implementations of both solutions. Following in section
three, where we are going to talk about the limitations of
the implemented solutions and the lessons we learned.
The paper will conclude in section four with possible
improvements.

2 Implementation of remote embedded
development

For the work on the project to continue under COVID-
19 restrictions, a solution had to be devised to solve the
problems that came with remote work on a project depen-
dent on specific hardware. This included hardware devel-
opment, maintenance, and the ability to develop and test
software on the hardware remotely. During the academic
year, two solutions were devised and implemented.

2.1 Solution using emulator

The first solution was based on microcontroller emu-
lation, as seen in figure 1, using a specialized version
of QEMU emulation software called xPack [14] version
2.8.0-9. This enabled us to emulate a variant of STM32

DOI https://doi.org/10.18690/978-961-286-516-0.4
ISBN 978-961-286-516-0 15

family of microcontrollers. The variant chosen was
STM32F407-Discovery development board, since it was
closest to our target hardware, and we had access to
a matching development board on which to test the
differences. Using the emulator method proved to be
a great benefit, since not all members had access to
real hardware at that time, but everyone could set up
the emulator on their computer. Since we didn’t have
previous experience working with STM family micro-
controllers, the emulator also allowed us to focus on
platform-specific software issues without the complexity
of hardware issues in novice programmers. However, this
also came with a cost. First one, the emulator didn’t
work out of the box. Second one, no sensors can be
connected to the board directly since interfaces in the
emulator are virtual.
Before the emulator could be used with the desired fam-
ily, a minor bug inside the emulator source code, that
was causing ROM memory overlap, needed to be patched
manually. After initial setup, we established a basic form
of IO system using a script that allowed us to run the
emulator and automatically redirect the standard output
using UNIX pipes to a file where we could monitor the
output. The emulator approach enabled us to test out the
version of real time operating system FreeRTOS [2] for
STM32 microcontrollers. Some modification to compiler
flags were required, especially the soft floating-point unit
because the emulator was unable to emulate real FPU.
While unable to connect sensors to the virtual environ-
ment, we were mostly focused on creating task manager,
which took care of the correct operation and communica-
tion between individual tasks or sensors. Tasks, that were
supposed to be related to the sensors, were temporarily
replaced with empty functions that returning predefined
values for testing.
To enable outside communication with our embedded
software, semihosting feature of ARM architecture
was used [1]. A custom communication service was
implemented in which standard input and output
were redirected to netcat running locally, creating
a network interface. After successful compilation of
the program, the emulator could be run with the
compiled elf binary and redirect semihosting IO to
stdio. An example in our case: < /dev/null nc -q -1
-l 5000 | qemu-system-gnuarmeclipse –verbose –verbose
–board STM32F4-Discovery –mcu STM32F407VG -d
unimp,guest_errors –image STM32F407-Discovery-
blinky.elf –semihosting-config enable=on,target=native |
nc -l 6000 > /dev/null. This allowed us to emulate a se-
rial connection to and from the emulated microcontroller
over a network connection.

2.2 Solution using remote development

To amend the shortcomings of the development on the
emulator, a remote development solution was devised and
implemented. The solution, as seen on figure 2, is based
on a dedicated computer system leveraging remote con-
nection functionality of GDB or "GNU Project Debugger"
[4] for remote programming and real-time debugging.
The system was built using Raspberry Pi 3 Model B
[9], running ARM version of Ubuntu version 20.04 LTS

Figure 1: Schematic of the development system using
emulation.

Figure 2: Schematic of the remote development system.

[13]. The selected single board computer handled net-
work communications, attached peripherals and services
needed to facilitate remote programming and real-time
debugging. For embedded development, an ST-LINK
in-circuit debugger and programmer [11], in our case
STM32F407G-DISC1 development board [10] providing
ST-LINK/V2-A, was connected via USB connection to
the Raspberry Pi. To connect GDB debugging function-
ality with the ST-LINK programming functionality with
the target integrated circuit, the OpenOCD software [6]
version 0.10.0 was used.
To prepare the setup, two configuration files in
OpenOCD format needed to be created. First one
defining "hla_serial" value, describing the serial number
of the connected ST-LINK device. The second one
defining "-event gdb-detach" behavior as "resume".
Defining this permitted the embedded program to run
even after the debug session disconnected, allowing to
test the functionality over longer periods of time without
constant connection to the host machine.
With the prepared configuration files, a script was
created to start the OpenOCD session with the correct
parameters for the ST-LINK device, target device,
network settings and created configuration files. An
example in our case: openocd -c "bindto $HOSTNAME"

16

-c "gdb_port 3333" -c "tcl_port disabled" -c "telnet_port
disabled" -f /usr/share/openocd/scripts/interface/stlink-
v2.cfg -c "adapter_khz 480" -c "transport select hla_swd"
-f /usr/share/openocd/scripts/target/stm32l4x.cfg -f
./gdb_resume.cfg -f ./serial.cfg » log.txt
The script was started inside a tmux [12] instance. This
allowed for the OpenOCD session to run without an
active user connection to the shell executing the script,
or alternately for multiple users to be connected to the
same shell instance to observe debug in print messages.
Once the system was set up, multiple ST-LINK devices
could be connected and used simultaneously by adding
additional configuration files with serial numbers and
starting OpenOCD sessions on different network ports.

3 Usage and lessons learned

The development process was arranged in the form of the
required hardware development and maintenance to be in
the domain of our mentor and be kept at the university.
Team members could make request for hardware mod-
ifications and then develop and debug the project soft-
ware remotely. While concurrent remote software collab-
oration was achieved through distributed revision control
system Gitea [3] as source code repository and manage-
ment tool.

3.1 Emulator

The emulator provided a good start into getting ac-
quainted with embedded development. This allowed us
to learn and develop embedded software without phys-
ical hardware. The downside was the inability to work
with real sensors, which later made us switch to a remote
system. Another problem was that the emulator was not
capable of running functions that required precise timing,
such as real-time code or interrupt execution.

3.2 Remote

The advantage of remote system made it possible for us to
connect to the targeted hardware from anywhere as if it
was accessible locally. This included real-time debugging
with the ability to see microcontroller processor states
and memory values. The problem with this solution was
the restriction of a single connection to the OpenOCD
instance, which limited the work on the hardware to
a single developer at a time. This was resolved with
communication and access scheduling.

4 Conclusions

The system was sufficient to allow our work on the project
to continue. During development, we were fortunate
enough to not have major problems with security. The
system, as it was used, would allow anyone to access
the system if they identified the used network ports and
protocols. This was not a major concern, as it only
allowed to program our particular microcontroller with
a dedicated firmware. As such, this problem was not
addressed during the production. Possible additional

security was tested, with the implementation of username
and password authentication using NGINX reverse proxy
server [5] and httpd access restrictions on the system
URL.

Acknowledgment

The authors acknowledge the financial support from the
Institute of Computer Science of the Faculty of Electri-
cal Engineering and Computer Science and would like to
thank mag. Jernej Kranjec for his guidance and assis-
tance. The authors would also like to acknowledge the
remaining members of the project group, namely Tilen
Koren, Anna Sidorova and Viktorija Stevanoska for their
work on the project.

References

[1] ARM. Arm target input/output facilities.
https://developer.arm.com/documentation/
dui0471/g/Bgbjjgij, 2021. Accessed: 2021-07-30.

[2] FreeRTOS. Real time operating system for mi-
crocontrollers. https://www.freertos.org/, 2021.
Accessed: 2021-07-30.

[3] Gitea. Lightweight code hosting solution. https:
//gitea.io, 2021. Accessed: 2021-07-30.

[4] GNU. The gnu project debugger. https://www.
gnu.org/software/gdb/, 2021. Accessed: 2021-07-
30.

[5] NGINX. Reverse proxy. https://www.nginx.com/,
2021. Accessed: 2021-07-30.

[6] OpenOCD. Open on-chip debugger. http://
openocd.org/, 2021. Accessed: 2021-07-30.

[7] Perrone, M., Knupleš, U., Žalik, M., Keršič,
V., and Šinko, T. Pasive floating probe. In Stu-
CoSReC: Proceedings of the 2019 6th Student Com-
puter Science Research Conference (2019), pp. 13–
17.

[8] QEMU. the fast! processor emulator. https:
//www.qemu.org/, 2020. Accessed: 2020-04-30.

[9] Raspberry Pi. Raspberry pi 3 model b. https:
//www.raspberrypi.org/products/raspberry-
pi-3-model-b/, 2021. Accessed: 2021-07-30.

[10] STM. Discovery kit with stm32f407vg
mcu. https://www.st.com/en/evaluation-
tools/stm32f4discovery.html, 2021. Accessed:
2021-07-30.

[11] STM. Stm st-link/v2 in-circuit debug-
ger/programmer. https://www.st.com/en/
development-tools/st-link-v2.html, 2021.
Accessed: 2021-07-30.

[12] tmux. Terminal multiplexer. https://github.
com/tmux/tmux/wiki, 2021. Accessed: 2021-07-30.

[13] Ubuntu. Ubuntu os. https://ubuntu.com/
download/raspberry-pi, 2021. Accessed: 2021-07-
30.

[14] xPack. The xpack qemu arm. https://xpack.
github.io/qemu-arm/, 2020. Accessed: 2020-04-30.

17

https://developer.arm.com/documentation/dui0471/g/Bgbjjgij
https://developer.arm.com/documentation/dui0471/g/Bgbjjgij
https://www.freertos.org/
https://gitea.io
https://gitea.io
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.nginx.com/
http://openocd.org/
http://openocd.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/development-tools/st-link-v2.html
https://www.st.com/en/development-tools/st-link-v2.html
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://ubuntu.com/download/raspberry-pi
https://ubuntu.com/download/raspberry-pi
https://xpack.github.io/qemu-arm/
https://xpack.github.io/qemu-arm/

18

Leaf Segmentation of Rosette Plants using Rough
K-Means in CIELab Color Space

Arunita Das ∗
Dept. of Computer Science and Application

Midnapore College (Autonomous)
Paschim Medinipur, West Bengal, India

arunita17@gmail.com

Daipayan Ghosal
Dept. of Computer Science and Application

Midnapore College (Autonomous)
Paschim Medinipur, West Bengal, India

daipayan.ghosal@gmail.com

Krishna Gopal Dhal †
Dept. of Computer Science and Application

Midnapore College (Autonomous)
Paschim Medinipur, West Bengal, India

krishnagopal.dhal@midnaporecollege.ac.in

Abstract
Segmentation of Plant Images plays an important
role in modern agriculture where it can provide
accurate analysis of a plant’s growth and possi-
ble anomalies. In this paper, rough set based
partitional clustering technique called Rough K-
Means has been utilized in CIELab color space
for the proper leaf segmentation of rosette plants.
The efficacy of the proposed technique have been
analysed by comparing it with the results of tra-
ditional K-Means and Fuzzy C-Means clustering
algorithms. The visual and numerical results re-
veal that the RKM in CIELab provides the near-
est result to the ideal ground truth, hence the
most efficient one.

Keywords image segmentation, color space, rough set,
partitional clustering

1 Introduction

Leaf check and leaf region (i.e., plant area) are the key
plant phenotyping qualities used to examine the plant
development and advancement [19] [25] [28], blossoming
time [13], and yield potential. The leaf include can be
tended to in different manners from the AI viewpoint
[1]. One such route is to check the number of leaves
from fragmented plant area. Several image segmenta-
tion techniques are reported in literature for leaf segmen-
tation. For example, Maximal Similarity-based Region
Merging (MSRM) [18] is an intuitive segmentation ap-
proach which utilizes a region merging framework to meld
super-pixel division. gPb-owt-ucm [2] is another segmen-
tation method which is dependent on spectral clustering
and contour detection. The IPK technique [20] utilized
3D histogram of L*a*b* tone space of the plant images
for regulated segmentation of closer view/foundation.
Vukadinovic and Polder employed neural networks com-
bined with watershed for leaves segmentation [24]. A col-
∗First Author
†Corresponding Author

lation study among several leaf segmentation algorithms
had been presented in [27]. Well-known clustering tech-
niques like KM, FCM, Self-organizing Map (SOM), and
Particle Swarm Optimization (PSO) are also applied for
leaf segmentation in [11] and SOM outperforms other
tested methods visually and numerically. Other than
the above techniques, deep learning is also utilized for
the leaf segmentation [15]. However, deep learning needs
large dataset in order to produce good results.
Therefore, it can be seen from the above discussion that
different clustering strategies provide promising segmen-
tation results. Although classical KM, FCM, SOM , and
PSO are utilized for leaf segmentation, but rough set
based K-Means (RKM) clustering did not used in this
area according to the knowledge of the authors. Rough
k-means is developed by Lingras et al. [16] and a refined
version is proposed by Peters [21] and it shows the perfor-
mance in image clustering domain as a similarity based
clustering model like KM and FCM [14] [10] [12] [22].
RKM has been efficiently applied for the proper segmen-
tation of tumor region from brain MRI images [14] [10],
White blood cell segmentation [12], and satellite image
segmentation [22]. As a consequence, the main contribu-
tion of the paper is the utilization of RKM in CIELab
and its application for leaf segmentation. The proposed
methodology which is represented in Figure 1 has been
compared with classical KM and FCM. Experimental re-
sults show the supremacy of the proposed approach over
other tested techniques.
The rest of the paper is organized as follows: Section 2
discusses the proposed methodology. Section 3 describes
the experimental results and the paper is concluded in
section 4.

2 Proposed Methodology

Clustering is a procedure of consortium a bunch of data
into clusters that have superior intra-cluster and inferior
inter-cluster resemblance among clusters. Two rudimen-
tary types of image clustering practices are hard cluster-
ing and soft clustering. In hard clustering, one pixel can
be the adherent of only one cluster and the proper exam-

DOI https://doi.org/10.18690/978-961-286-516-0.5
ISBN 978-961-286-516-0 19

ple of this is K-means [5] [9] [7]. On the contrary of the
previous one, soft clustering uses a miniscule membership
unlike hard clustering which makes it more practicable for
real world usages. One pixel can be the fragment of sev-
eral clusters with some degree of belongingness which is
described by the fractional membership. Fuzzy C-means
is a specimen of this mechanism which had been projected
by Bezdek [3] [6]. FCM is better than hard clustering
technique like K-means because it has the more ability
to handle the ambiguity of gray levels. In some cases,
the fuzzy degree of membership may be too descriptive
for interpreting clustering results. Therefore, researchers
have applied rough set theory into k-means and developed
rough k-means [16] [21]clustering algorithm which man-
ages these equidistant data objects or overlapping clusters
using upper and lower approximations of each cluster.
Rough set-based clustering provides a solution that is less
restrictive than conventional clustering and less descrip-
tive (specific) than fuzzy clustering. In this study, Rough
K-Means has been utilized to segment the leaf images.
Due to non-uniform illumination of regions, the segmen-
tation algorithm’s performance is influenced by the color
spaces used. According to the literature, perceptually
uniform color spaces such as L*a*b* or L*u*v* achieve
much better segmentation results than non-uniform color
spaces such as RGB [23], which was developed for better
color representation. As a first stage in our approach,
we used MATLAB to transform all RGB images to CIE
L*a*b* color space, which yielded three components: L*,
a*, and b*. “L*” denotes lightness, while “a*” and “b*”
denote colors, with “a*” denoting red-green and “b*” de-
noting blue-yellow, respectively. The flowchart of the pro-
posed work is presented in Figure 1 The brief mathemat-
ical implementation of RKM is described in section 2.1.

Input Rosette Plant RGB image

Convert RGB to CIELab Color

Space

Find the Cluster Centers using

Rough K-Means

Reform Segmented Image in

RGB Color Space

Output Leaf Segmented Region

Figure 1: Flowchart of the Proposed Methodology

2.1 Rough K-Means (RKM)

Suppose, a hypothetical clustering scheme is defined as
Eq. (1) which partitions U depending on the equivalence
relation P. Again, assume that it may not possible to
accurately describe the sets Ci, 1 ≤ i ≤ k due to inad-
equate knowledge in the partition. But it is possible to

define each set Ci ∈ U/P using its lower approximation
A(C)and upper approximation Ā(C).

U/P = {C1, C2, . . . , Ck} (1)
Let, v and ci are the vector representation of the data
object and cluster Ci respectively. Upper and lower
approximations of only a few subsets of U have been
considered. Hence, it is not possible to verify all the
properties of the rough sets [16] [21]. However, the
upper and lower estimates of Ci ∈ U/P are obligatory
to follow some of the basic rough set properties which
are as follows:
P1: A data entity v can be a participant of at most one
lower approximation A(ci).
P2: If a data object v is the portion of the lower ap-
proximation A(ci), then it is also portion of the upper
approximation Ā(C) i.e.,v ∈ A(ci) =⇒ v ∈ Ā(ci).
P3: If a data article v does not belong to any lower
approximationA(ci) then it belongs to two or more upper
approximations Ā(ci).
In rough k-means, the lower and upper approximations of
the clusters have been computed by the following rules:
Let v be a data object and d(v, zi)be the distance between
v and zi which is the centroid of cluster ci.
Let d(v, zi) = min(1≤j≤k) d(v, zj)

T =
{
j : d(v, zi)

d(v, zi)
≤ th and i 6= j

}
(2)

Where, th is the threshold value specified by the user.
In order to classify a data object to the correct approx-
imation(s), the following classification criteria are being
used:
R1: If the set, T is not an empty set, then the data object
is classified as upper approximation of both cluster i and
j. So, if T 6= φ then [v ∈ Ā(ci) and v ∈ Ā(cj),∀j]
R2: If T is a vacant set, the data object is being cate-
gorized as lower approximation for cluster i. Then the
pixel is categorized as upper approximation for clus-
ters i as per the hypothesis P2. So, if T = φ then
[v ∈ Ā(ci) and v ∈ A(ci)]
Depending on the above deliberations the algorithm steps
for rough k-means are represented as Algorithm 1.

3 Experimental Results

The experiment has been performed over 30 plant im-
ages using MatlabR2018b on Windows-10 OS, x64-based
PC, Intel core i5 CPU with 8 GB RAM. The plant im-
ages are collected from [17]. The parameter settings of
the utilized clustering techniques are as follows. Number
of cluster prototype value depends on the user which is
taken as 2 for all clustering techniques. For FCM, fuzzifi-
cation parameter is taken as 2 and if maximum difference
between two successive partition matrices U is less than
minimal error threshold η then stop the corresponding al-
gorithm. Mathematically, if [MaxU t − U (t+1)] < η then
stop, where, minimal error threshold η = 10(−5). For KM
and RKM, if the change in centroid values are smaller

20

1 For each cluster and data object, find the
distance d and threshold T

2 Classify the data object to lower and upper
estimates utilizing the classification criteria i.e.,
R1 and R2.

3 Calculate the new cluster center (mean zi) as per
following expressions:

4 If [A(ci) 6= φand Ā(ci)−A(ci) = φ]

5 then zi =
∑

v∈A(ci)
v

|A(ci)|
6 else if A(ci) 6= φand Ā(ci)−A(ci) 6= φ]

7 then zi =
∑

v∈A(ci)−A(ci)
v

|A(ci)−Ā(ci)|

8 else zi = wl ×
∑

v∈A(ci)
v

|A(ci)| + wu ×
∑

v∈A(ci)−A(ci)
v

|A(ci)−Ā(ci)|
9 wl + wu = 1 and usually, wl > wu The

parameters wl and wu correspond to the
relative importance of lower and upper
approximations respectively.

10 If the algorithm converges, then stop. Otherwise,
repeat steps 2 to 4.

Algorithm 1: Procedure of Rough K-Means
(RKM)

than η the stop the procedure.The rough set parameters
for classical RKM are th = 0.7, wl = 0.6, and wu = 0.4.
Threshold (th) selection in RKM is tough for different
image. We have done the experiment within the range
0 < th <= 10 and optimally set to 0.7. The performance
of the utilized clustering techniques has been evaluated
by calculating four ground truth based performance eval-
uation parameters namely accuracy, dice, Jaccard, and
Matthews correlation coefficient (MCC) which are sum-
marized in Table 1 [6] [26]. Here, TP - true positive, FP
- false positive, TN - true negative, FN - false negative.

Sample No. Original Image KM FCM RKM

1

2

3

4

5

Figure 2: Color segmentation results of clustering tech-
niques over five sample images

Table 1: Performance parameters considered for evalu-
ation of the clustering methods.

Sl. Para-
meters

Formulation and Remarks

1 Accuracy
(AC)

AC = (T P +T N)
(F N+F P +T P +T N) ; Accu-

racy is one metric for evaluating
classification models. We calcu-
late the accuracy to know how
good our model predicts.

2 Dice
Index
(DI)

DI = 2×
(2×T P +F P +F N) ; It com-

bines the precision and recall
concepts from information re-
trieval. It is the harmonic mean
of the precision and recall. The
DI values are within the interval
[0, 1] and larger the value indi-
cates higher clustering quality.

3 Jaccard
Index(JI)

JI = DI/(2−DI); Jaccard sim-
ilarity index measures the over-
lap between two sets. It is de-
fined as the size of the intersec-
tion of two sets divided by the
size of their union. The higher
value indicates more similarities
between two objects.

4 Matthews
correla-
tion
coeffi-
cient
(MCC)

MCC =
(T P×T N−F P×F N)√

(T P +F P)×(T P +F N)×(T N+F P)×(T N+F N)
;

(MCC) is a more reliable sta-
tistical rate which produces a
highscore only if the prediction
obtained good results in all
TP, TN, FP, FN categories and
proportionally both to the size
of positive elements and the
size of negative elements in the
dataset. Higher value indicates
the better results.

Table 2: Numerical values of segmentation quality pa-
rameters over five sample images

Sample
No.

Method Accu-
racy

Dice Jac-
card

MCC

1 KM 0.9756 0.9651 0.9325 0.9463
FCM 0.9743 0.9633 0.9292 0.9435
RKM 0.9851 0.9791 0.9590 0.9677

2 KM 0.9786 0.9720 0.9455 0.9548
FCM 0.9819 0.9762 0.9536 0.9617
RKM 0.9845 0.9798 0.9603 0.9675

3 KM 0.9730 0.9555 0.9147 0.9364
FCM 0.9761 0.9607 0.9244 0.9440
RKM 0.9773 0.9630 0.9287 0.9476

4 KM 0.9714 0.9541 0.9122 0.9336
FCM 0.9720 0.9552 0.9143 0.9350
RKM 0.9880 0.9810 0.9627 0.9723

5 KM 0.9738 0.9659 0.9341 0.9453
FCM 0.9793 0.9729 0.9473 0.9565
RKM 0.9838 0.9788 0.9585 0.9661

21

Table 3: Average numerical values of segmentation qual-
ity parameters and execution time

MethodAccu-
racy

Dice Jac-
card

MCC Time
(Sec.)

KM 0.9638 0.9470 0.9001 0.9200 3.78
FCM 0.9593 0.9417 0.8909 0.9112 4.56
RKM 0.9662 0.9531 0.9124 0.9293 8.26

Sample No. Ground Truth KM in binary FCM in binary RKM in binary

1

2

3

4

5

Figure 3: Ground truth images and segmentation re-
sults of clustering techniques in binary format over five
sample images

0
.9

6
3

8

0
.9

4
7

0
.9

0
0

1

0
.9

2

0
.9

5
9

3

0
.9

4
1

7

0
.8

9
0

9

0
.9

1
1

2

0
.9

6
6

2

0
.9

5
3

1

0
.9

1
2

4

0
.9

2
9

3

Accuracy Dice Jaccard MCC

K-Means Fuzzy C-Means Rough K-Means

Figure 4: Graphical analysis of average quality param-
eters for clustering techniques

The three clustering algorithms i.e., KM, FCM, and

RKM have been utilized to segment the leaves of the
rosette plants. Figure 2 and 3 represents the original
color plant image, the ground truth images of the leaf
segmentation provided by the experts, their segmented
leaf part by the three utilized algorithms binary seg-
mented leaf part provided by the employed clustering
algorithms. Figures 2 and 3 here clearly show that
the RKM provides the best leaf-based segmentation
results. Not only visual analysis, the segmentation
efficacy of the clustering algorithms has been analyzed
by computing four well-known segmentation quality
parameters which are presented in Table 2. The values
of the segmentation quality parameters regarding five
plant samples presented in Table 2. The average values
of the segmentation quality parameters over 30 images
are given in Table 3. The best numerical values of
the Tables 2 and 3 are given in bold. Most of the
values of the quality parameters clearly reveal that
RKM provides superior outcomes to other three tested
clustering algorithms. The graphical representation of
the average quality parameters (recorded in Table 3) is
also showed in Figure 4. The average execution times of
the four clustering algorithms over 30 images are also
presented in Table 3. KM needs least computational
effort. RKM takes the largest execution time in the
same environment.

4 Conclusion

This paper presents a Rough K-Means (RKM) based clus-
tering algorithm in CIELab color space for leaf image seg-
mentation of rosette plants. The proposed RKM based
technique is compared against two well-known conven-
tional clustering algorithms namely K-Means and Fuzzy
C-Means. An entire dataset of 30 images have been used
for this experiment. Experimental results here reveals
that the RKM based clustering algorithm outperforms
the others and delivers the best outcomes in both the
visual as well as numerical analysis for the utilized seg-
mentation parameters. The main three limitations of the
proposed method are noise sensitivity, local optima trap-
ping and large computational time. If researched further,
it can be possible to analyze the plant’s growth or to de-
tect any visually identifiable signs of disease or damage,
or any possible visual anomaly. These results encourage
further research in the improvement of RKM for image
segmentation such as incorporation of nature-inspired op-
timization algorithms to overcome local optima trapping
problem [8] [4].

References

[1] Aich, S., and Stavness, I. Leaf counting with
deep convolutional and deconvolutional networks. In
Proceedings of the IEEE International Conference
on Computer Vision Workshops (2017), pp. 2080–
2089.

[2] Arbelaez, P., Maire, M., Fowlkes, C., and
Malik, J. Contour detection and hierarchical image
segmentation. IEEE transactions on pattern analy-
sis and machine intelligence 33, 5 (2010), 898–916.

22

[3] Bezdek, J. C., Ehrlich, R., and Full, W. Fcm:
The fuzzy c-means clustering algorithm. Computers
& geosciences 10, 2-3 (1984), 191–203.

[4] Dhal, K. G., Das, A., Gálvez, J., Ray, S., and
Das, S. An overview on nature-inspired optimiza-
tion algorithms and their possible application in im-
age processing domain. Pattern Recognition and Im-
age Analysis 30, 4 (2020), 614–631.

[5] Dhal, K. G., Das, A., Ray, S., and Das, S.
A clustering based classification approach based on
modified cuckoo search algorithm. Pattern Recogni-
tion and Image Analysis 29, 3 (2019), 344–359.

[6] Dhal, K. G., Das, A., Ray, S., and Gálvez,
J. Randomly attracted rough firefly algorithm for
histogram based fuzzy image clustering. Knowledge-
Based Systems 216 (2021), 106814.

[7] Dhal, K. G., Fister Jr, I., Das, A., Ray, S.,
and Das, S. Breast histopathology image clustering
using cuckoo search algorithm. In Proceedings of
the 5th student computer science research conference
(2018), pp. 47–54.

[8] Dhal, K. G., Fister Jr, I., and Das, S. Parame-
terless harmony search for image multi-thresholding.
In 4th student computer science research conference
(StuCosRec-2017) (2017), pp. 5–12.

[9] Dhal, K. G., Gálvez, J., Ray, S., Das, A., and
Das, S. Acute lymphoblastic leukemia image seg-
mentation driven by stochastic fractal search. Mul-
timedia Tools and Applications (2020), 1–29.

[10] Dobe, O., Sarkar, A., and Halder, A. Rough
k-means and morphological operation-based brain
tumor extraction. In Integrated Intelligent Comput-
ing, Communication and Security. Springer, 2019,
pp. 661–667.

[11] Ghosal, D., Das, A., and Dhal, K. G. A com-
parative study among clustering techniques for leaf
segmentation in rosette plants. Pattern Recognition
and Image Analysis 31, 4 (2021).

[12] Inbarani H, H., Azar, A. T., et al. Leukemia
image segmentation using a hybrid histogram-based
soft covering rough k-means clustering algorithm.
Electronics 9, 1 (2020), 188.

[13] Koornneef, M., Hanhart, C., van Loenen-
Martinet, P., and Blankestijn de Vries, H.
The effect of daylength on the transition to flowering
in phytochrome-deficient, late-flowering and double
mutants of arabidopsis thaliana. Physiologia Plan-
tarum 95, 2 (1995), 260–266.

[14] Kumar, D. M., Satyanarayana, D., and
Prasad, M. G. An improved gabor wavelet trans-
form and rough k-means clustering algorithm for mri
brain tumor image segmentation. Multimedia Tools
and Applications 80, 5 (2021), 6939–6957.

[15] Kumar, J. P., and Domnic, S. Rosette plant seg-
mentation with leaf count using orthogonal trans-
form and deep convolutional neural network. Ma-
chine Vision and Applications 31, 1 (2020), 1–14.

[16] Lingras, P., and West, C. Interval set cluster-
ing of web users with rough k-means. Journal of
Intelligent Information Systems 23, 1 (2004), 5–16.

[17] Minervini, M., Fischbach, A., Scharr, H.,
and Tsaftaris, S. A. Finely-grained annotated
datasets for image-based plant phenotyping. Pat-
tern recognition letters 81 (2016), 80–89.

[18] Ning, J., Zhang, L., Zhang, D., and Wu, C.
Interactive image segmentation by maximal similar-
ity based region merging. Pattern Recognition 43, 2
(2010), 445–456.

[19] Orlando, F., Napoli, M., Dalla Marta, A.,
Natali, F., Mancini, M., Zanchi, C., and Or-
landini, S. Growth and development responses of
tobacco (nicotiana tabacum l.) to changes in physi-
cal and hydrological soil properties due to minimum
tillage.

[20] Pape, J.-M., and Klukas, C. 3-d histogram-
based segmentation and leaf detection for rosette
plants. In European Conference on Computer Vision
(2014), Springer, pp. 61–74.

[21] Peters, G. Some refinements of rough k-means
clustering. Pattern Recognition 39, 8 (2006), 1481–
1491.

[22] Raj, A., and Minz, S. Spatial rough k-means
algorithm for unsupervised multi-spectral classifica-
tion. In International Conference on Information
and Communication Technology for Intelligent Sys-
tems (2020), Springer, pp. 215–226.

[23] Sarkar, S., Das, S., and Chaudhuri, S. S. A
multilevel color image thresholding scheme based on
minimum cross entropy and differential evolution.
Pattern Recognition Letters 54 (2015), 27–35.

[24] Scharr, H., Minervini, M., French, A. P.,
Klukas, C., Kramer, D. M., Liu, X., Luengo,
I., Pape, J.-M., Polder, G., Vukadinovic, D.,
et al. Leaf segmentation in plant phenotyping: a
collation study. Machine vision and applications 27,
4 (2016), 585–606.

[25] Telfer, A., Bollman, K. M., and Poethig,
R. S. Phase change and the regulation of trichome
distribution in arabidopsis thaliana. Development
124, 3 (1997), 645–654.

[26] Thanh, D. N., Prasath, V. S., Hien, N. N.,
et al. Melanoma skin cancer detection method
based on adaptive principal curvature, colour nor-
malisation and feature extraction with the abcd rule.
Journal of digital imaging (2019), 1–12.

[27] Vukadinovic, D., and Polder, G. Watershed
and supervised classification based fully automated
method for separate leaf segmentation. In The
Netherland Congress on Computer Vision (2015),
pp. 1–2.

[28] Walter, A., and Schurr, U. The modular char-
acter of growth in nicotiana tabacum plants un-
der steady-state nutrition. Journal of Experimental
Botany 50, 336 (1999), 1169–1177.

23

24

Adversarial Image Perturbation with a Genetic
Algorithm

Rok Kukovec
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

rok.kukovec@student.um.si

Iztok Fister Jr.
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

iztok.fister1@um.si

Špela Pečnik
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

spela.pecnik@um.si

Sašo Karakatič
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

saso.karakatic@um.si

Abstract
The quality of image recognition with neural
network models relies heavily on filters and
parameters optimized through the training
process. These filters are different compared to
how humans see and recognize objects around
them. The difference in machine and human
recognition yields a noticeable gap, which is
prone to exploitation. The workings of these
algorithms can be compromised with adversarial
perturbations of images. This is where images
are seemingly modified imperceptibly, such that
humans see little to no difference, but the neural
network classifies t he m otif i ncorrectly. This
paper explores the adversarial image modifica-
tion with an evolutionary algorithm, so that the
AlexNet convolutional neural network cannot
recognize previously clear motifs while preserving
the human perceptibility of the image. The ex-
periment was implemented in Python and tested
on the ILSVRC dataset. Original images and
their recreated counterparts were compared and
contrasted using visual assessment and statistical
metrics. The findings s uggest t hat t he human
eye, without prior knowledge, will hardly spot
the difference compared to the original images.

Keywords adversarial perturbation, AlexNet, CNN,
computer vision, evolutionary algorithms

1 Introduction

Computer vision algorithms are already used widely in
every day applications, but the safety concerns persist
regarding their reliability. Leaving vital decisions to them
can cause dire consequences in cases of error. Therefore,
additional caution is necessary in most use cases. Such
algorithms have to be tested extensively before they are
allowed to make such decisions on their own.
Deep neural networks are currently the state-of-the-art

technology for recognizing motifs from an image. Com-
puter vision achieves near-human-level accuracy in recog-
nition, and the question arises of the key differences be-
tween human and computer vision. They return pre-
dicted labels and their corresponding certainties. The
problem arises when there are high certainties for wrong
labels [2].
This paper presents an approach for adversarial image
perturbation with evolutionary algorithms, with the goal
of misguiding the AlexNet convolutional neural network
(CNN). The implemented approach demonstrates how
simple and effective adversarial perturbation is, and how
vulnerable every day image recognition models are. The
implemented approach aims to recreate the image as
similar to the original image as possible, keeping the
human perception of the motif intact, while maximizing
the error of the image recognition model. Pixel values
in certain places are changed such that computer vision
fails to classify them correctly.

2 Related work

The inspiration for this paper derives from [9], where the
authors implemented an adversarial perturbation deceiv-
ing computer vision with only changing one pixel in the
original image. This attack was carried out on images of
very low resolution, which is the reason for its success.
In the paper authored by Fawzi et al. [1], an analysis
was made of the resistance of computer vision algorithms
to adversary disturbances. The existence of adversarial
examples was confirmed, as there is an upper bound to
robustness. The goal was to find the correlation between
robustness against random and adversarial noise. As long
as the boundary is so high that the recreated image has to
be completely distorted, it does not indicate a problem.
A problem arises if the image is human-recognizable and
the recognition algorithm fails its prediction with high
certainty. Several different models of machine learning,
including CNNs, misclassify adversarial examples consis-
tently. These are intentionally created, small interfer-

DOI https://doi.org/10.18690/978-961-286-516-0.6
ISBN 978-961-286-516-0 25

ences that are detrimental for the recognition algorithm
[8]. The paper [13] shows that a universal adversarial
perturbation is possible. One adversarial noise filter can
be applied routinely to many different images. In the
paper [2], there are examples of specifically produced im-
ages in which the human eye only sees random noise, yet
the algorithm is near certain that there is a motif. The
paper [4] shows that a successful adversarial perturbation
against one neural network is likely to succeed against a
variety of network architectures trained on different data
sets.
A distinctive quality of this paper is that it is readily ac-
cessible to non-experts. It shows that implementations of
adversarial perturbations are not limited only to teams
of advanced researchers supported by both technical and
financial capabilities. The attacker requires only a ba-
sic understanding of machine learning. The experiment
uses only open-source libraries and a small amount of un-
derstandable custom code. Despite the straightforward
approach, results are comparable to the work mentioned
above.

3 Implementing adversarial
perturbation on AlexNet CNN

The main objective of the approach is that the solution
image is modified in accordance with two objectives: (1)
Similarity to the original image, and (2) AlexNet’s cer-
tainty during misrecognition. The optimization method
pursuing these objectives is a genetic algorithm. The goal
is that no change could be noticed by the human eye in
the reproduced image without prior knowledge.
The following Python libraries were used:

• NumPy [11] is used for numerical calculations,
• OpenCV [3] and Pillow [6] for image preprocessing,
• Scikit-image [14] for the structural similarity index

measure metric,
• PyTorch [12] is used for a pre-trained AlexNet CNN.
• GARI - Genetic Algorithm for Reproducing Images

is used for the EA (Evolutionary algorithm) [7].

The proposed approach is divided into the following in-
terconnected parts:

• Generation of sets of candidate solutions,
• Evaluation of the image similarity between the can-

didate solution and the original image using the nor-
malized average of absolute pixel differences,

• Classification of the candidate solution using the
AlexNet image recognition model,

• Computation of the fitness value for the candidate
solution,

• Selection of the fittest candidate images for further
reproduction.

Figure 1 shows the initial idea of the implementation of
the adversarial perturbation. The start block represents
the execution of the experiment with any given original
image. The evolutionary algorithm creates candidate so-
lutions, which are evaluated using two separate criteria,

which, together, form a fitness function. It combines both
results using fuzzy logic’s operator AND (∧). The value
of normalized average absolute pixel difference is multi-
plied with AlexNet’s certainty into a wrong prediction.
The process is repeated iteratively until the termination
condition is reached.

Start

EA

Reached termination condition

Candidate solution

Similarity Score

AlexNets’ certainty
into wrong recognition

Fitness function

Figure 1: Diagram of the proposed adversarial pertur-
bation.

Data: Original image
Result: Recreated image

1 initialization;
2 create first candidate solution;
3 while termination goal not reached do
4 calculate similarity score;
5 check AlexNet’s certainty into wrong

prediction;
6 calculate fitness value;
7 send score to evolutionary algorithm;
8 create new candidate solutions;
9 end

Algorithm 1: Algorithm in pseudo-code

It was shown that the combination of AlexNet’s predic-
tions, genetic algorithm and evaluation of the fitness func-
tion was very time-consuming. Thus, it was not possible
to recreate the image within the set time frame to the
point of recognition by the human eye. The bottleneck
appeared in the time-consuming evaluation of candidate
solutions by AlexNet. It renders the attack infeasible for
use cases where real-time solutions are needed.
We bypassed this bottleneck somewhat by not running
AlexNet before the starting 80,000 iterations at all, since
the first recreated images are random noise, which was
optimized towards our goal. Initially, the only feedback
given to the EA was the similarity score. It turned out
that the recreated image was recognizable to the human
eye much earlier than to AlexNet. AlexNet’s predictions
were only calculated after the candidate image was suffi-
ciently similar. Once AlexNet recognizes the image, the
evolutionary algorithm can start calling our final fitness
function. It comprises of both the similarity score, as

26

well as AlexNet’s predicted class and its corresponding
certainty.
Figure 2 shows a working version of the experiment. Pre-
sented is the detailed control flow dictating the entry of
AlexNet into fitness value calculation. The experiment
is divided into two phases. Phase one consists mainly
of quick operations. No phase transition conditions are
checked in the first 80,000 generations. Depending on
the image, AlexNet started giving the first correct clas-
sification at about 30,000 generations. Towards the end
of the first phase, correct classification is checked. If the
prediction is correct, we advance to the second phase. It
aims to create an adversarial perturbation. The output
of AlexNet is an array of sorted certainties with labels.
For the calculation of fitness function, the value is taken
from the incorrect label which has the highest certainty
and is combined with the similarity score.

GARI

Start

Reached termination condition

Returned best candidate solution

No. of generations ≥ 80000

Check, if phase 2 is active

No. of generations mod 100 = 0

Check AlexNet classification

Advance to 2nd phase

Execution of 2nd phase

AlexNets certainty into wrong recognition

Original label

Candidate solution

Similarity score

Original image

Fitness value

•

•

•

•

•

•

Candidate solution

YES

NO

YES

True

NO

NO

False

YES

Figure 2: Flowchart of the final implementation of the
proposed approach.

4 Results

The results of the experiment are evaluated visually and
using statistical metrics. Terminating conditions were set
as follows:

• Time limit of 2 hours reached,
• Calculated fitness exceeded 0.99,
• Algorithm finished both phases.

(3.1) Leafhopper (3.2) Filter (3.3) Recreated

(3.4) Manhole (3.5) Filter (3.6) Recreated

(3.7) Maze (3.8) Filter (3.9) Recreated

(3.10) Nautilus (3.11) Filter (3.12) Recreated

(3.13) Strawberry (3.14) Filter (3.15) Recreated

Figure 3: Original images, adversarial filters and recre-
ated images.

27

The benchmark value was set to 0.99, since it was forcing
both factors, normalized average of absolute pixel differ-
ences and AlexNet’s certainty, into wrong prediction to
be above 0.99. The product of two numbers between 0
and 1 is smaller than either factor.
Since images are difficult to evaluate qualitatively and the
normalized mean of sum of absolute errors was already
used in the evaluation process, new statistical metrics
were introduced:

• Mean Squared Error (MSE),
• Peak signal-to-noise ratio (PSNR), and
• Structural similarity index measure (SSIM).

Results showed a promising direction, but they were not
optimized fully due to operational limitations. The com-
promise was agreed upon deceiving AlexNet’s prediction
to the closest label in the feature space.

4.1 Examples of missclassified images

The results of the experiment are shown in Table 1.
Recreated images are shown in Figure 3.

Original category Category
after attack

Certainty into
missclassified label

Leafhopper Lacewing 99.97%
Manhole-cover Electric ray 99.98%
Maze Hay 99.97%
Nautilus Brain coral 99.98%
Strawberries Bell pepper 99.97%

Table 1: Results of images in Figure 3

The calculated metrics on different recreated images
achieve relatively high values. The human eye recognizes
the motif of the image. The attack was carried out
successfully and results are shown in Table 2.

Picture MSE PSNR SSIM
Agama 768.69 29.51dB 0.62
Baseball 956.16 29.04dB 0.56
LeafHopper 666.89 29.52dB 0.77
Manhole cover 642.42 29.53dB 0.77
Maze 270.50 31.11dB 0.79
Nautilus 396.71 30.58dB 0.81
Nautilus 2 667.03 29.65dB 0.73
Panda 908.09 29.10dB 0.75
Rosehip 944.62 29.29dB 0.68
Strawberry 394.05 31.52dB 0.83
Sulphur butterfly 1015.85 28.82dB 0.61
Upright piano 975.15 29.00dB 0.66

Table 2: Calculated metrics of recreated images

One of the goals set was to recreate images in the input
resolution of AlexNet (meaning 224·224 pixels). This goal
was not reached because the time-complexity growth rate
was non-linear. Recreated images were around 100 · 100

pixels in resolution. Figure 3 shows recreated images
that, without prior-knowledge, it is hard to spot the dif-
ference, taking into account that the images are relatively
small.

5 Discussion

Despite the limitations of the experiment, we showed that
adversarial perturbations are possible to implement in a
relatively short time with the help of genetic algorithms.
Future research may point to one of the following six
directions:

• Speeding up the process of optimization,
• Deceiving computer vision into a custom label,
• Selecting a more complex CNN,
• Testing other optimization methods (i.e. even other

nature-inspired algorithms [5]),
• Testing with only using some features [10] to speed

up the optimization process, and
• Protection against adversarial noise.

References

[1] Alhussein Fawzi, e. a. Analysis of classifiers’
robustness to adversarial perturbations. CoRR
abs/1502.02590 (2015).

[2] Anh Mai Nguyen, e. a. Deep neural networks are
easily fooled: High confidence predictions for unrec-
ognizable images. CoRR abs/1412.1897 (2014).

[3] Bradski, G. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools (2000).

[4] Christian Szegedy, e. a. Intriguing properties of
neural networks, 2014.

[5] Fister Jr, e. a. A brief review of nature-
inspired algorithms for optimization. arXiv preprint
arXiv:1307.4186 (2013).

[6] Fredrik Lundh. Pillow - Pillow (PIL Fork) 8.2.0
Documentation, 2021.

[7] Gad, A. F. ahmedfgad/GARI: GARI (Genetic Al-
gorithm for Reproducing Images) reproduces a sin-
gle image using Genetic Algorithm (GA) by evolving
pixel values.

[8] Ian J. Goodfellow, e. a. Explaining and har-
nessing adversarial examples, 2015.

[9] Jiawei Su, e. a. One pixel attack for fooling deep
neural networks. CoRR abs/1710.08864 (2017).

[10] Karakatič, S. Evopreprocess—data preprocessing
framework with nature-inspired optimization algo-
rithms. Mathematics 8, 6 (2020), 900.

[11] NumPy. What is NumPy? — NumPy v1.20 Man-
ual, 2021.

[12] Paszke, A. e. a. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Cur-
ran Associates, Inc., 2019, pp. 8024–8035.

28

[13] Seyed-Mohsen Moosavi-Dezfooli, e. a.
Universal adversarial perturbations. CoRR
abs/1610.08401 (2016).

[14] van der Walt, e. a. scikit-image: image process-
ing in Python. PeerJ 2 (6 2014), e453.

29

30

Fast Recognition of Some Parametric Graph Families

Nina Klobas
Durham University,

Department of Computer Science,
 Upper Mountjoy Campus, Stockton Road,

Durham DH1 3LE,United Kingdom
nina.klobas@durham.ac.uk

Matjaž Krnc
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Glagoljaška ulica 8, 6000 Koper, Slovenia
matjaz.krnc@famnit.upr.si

Abstract
Recognizing graphs with high level of symmetries
is hard in general, and usually requires additional
structural understanding. In this paper we study
a particular graph parameter and motivate its
usage by devising efficient recognition algorithm
for the family of I-graphs.
For integers `, λ,m a simple graph is [`, λ,m]-
cycle regular if every path of length ` belongs to
exactly λ different cycles of lengthm. We identify
all [1, λ, 8]-cycle regular I-graphs and, as a conse-
quence, describe linear recognition algorithm for
the observed family.
Similar procedure can be used to devise the recog-
nition algorithms for Double generalized Petersen
graphs and folded cubes. Besides that, we believe
the structural observations and methods used in
the paper are of independent interest and could
be used for solving other algorithmic problems.

Keywords I-graphs, double generalized Petersen
graphs, folded cubes, recognition algorithm, cycle
regularity.

1 Introduction

Important graph classes such as bipartite graphs,
(weakly) chordal graphs, perfect graphs and forests are
defined or characterized by their cycle structure. A
particularly strong description of a cyclic structure is the
notion of cycle-regularity, introduced by Mollard [11]:

For integers l, λ,m a simple graph is
[l, λ,m]-cycle regular if every path on l + 1
vertices belongs to exactly λ different cycles of
length m.

It is perhaps natural that cycle-regularity mostly appears
in the literature in the context of symmetric graph fami-
lies such as hypercubes, Cayley graphs or circulants.
Understanding the structure of subgraphs of hypercubes
which avoid all 4-cycles does not seem to be easy. Indeed,
a question of Erdős regarding how many edges can such
a graph contain remains open after more than 30 years
[5].
In this paper we study cycle-regularity and more general
cyclic aspects of a family of I-graphs, with the focus of
devising an efficient recognition algorithm. Similar ap-
proach can be extended also to two other graph families,

namely Double generalized Petersen graphs and folded
cubes. Due to the space constraints the study of these
two families is not covered here, therefore we defer inter-
ested readers to the full version of this paper [9].

Figure 1: I-graph I(12, 2, 3), double generalized Pe-
tersen graph DP(10, 2), and folded cube FQ4.

I-graphs were introduced in the Foster census [6], and
are trivalent or cubic graphs with edges connecting ver-
tices of two star polygons. They form a natural gener-
alization of the well-known generalized Petersen graphs
introduced in 1950 by Coxeter [3] and later named by
Watkins in 1969 [14]. The family of I-graphs has been
studied extensively with respect to their automorphism
group and isomorphisms [1, 7, 13], Hamiltonicity [2],
spectrum [12], and independence number [4, 8].
Our first result identifies all [1, λ, 8]-cycle regular mem-
bers and determines the corresponding values of λ.
Theorem 1. An arbitrary I-graph is never [1, λ, 8]-cycle
regular, except when isomorphic to I(n, j, k) where j =
1 and (n, k) ∈ {(3, 1), (4, 1), (5, 2), (8, 3), (10, 2), (10, 3),
(12, 5), (13, 5), (24, 5), (26, 5)}.

These structural results are used to devise the recognition
algorithm for I-graphs.
Theorem 2. I-graphs can be recognized in linear time.

If the input graph is a member of the observed family, we

DOI https://doi.org/10.18690/978-961-286-516-0.7
ISBN 978-961-286-516-0 31

not only provide its parameters but also give a certificate
of correctness, i.e. we give an exact isomorphism.

1.1 Preliminaries

Unless specified otherwise, all graphs in this paper are fi-
nite, simple, undirected and connected. For a given graph
G we use a standard notation for a set of vertices V (G)
and a set of edges E(G). A k-cycle C in G, on vertices
v1, v2, . . . , vk from V (G) is denoted as (v1, . . . , vk). For
integers a and b we denote with gcd(a, b) the greatest
common divisor of a and b respectively.
Definition 3. Let l, λ,m be positive integers. A simple
graph G is [l, λ,m]-cycle regular if every path on l + 1
vertices of G belongs to exactly λ different m-cycles of
G.

It is easy to see that [1, λ, 8]-cycle regular cubic graphs are
also [0, 3λ/2, 8]-cycle regular, but the converse does not
hold. Related to this we define a function σ : E(G) 7→ N,
where σ(e) corresponds to the number of distinct 8-cycles
an edge e belongs to. We call σ(e) an octagon value of an
edge e, and we say that a graph G has a constant octagon
value if σ is a constant function.

2 Structural analysis

Before we start with the analysis of the observed graph
family we need to formally define it and present some of
its basic properties.
Definition 4. Let n, j, k be positive integers for which
n ≥ 3 and n ≥ j, k ≥ 1. An I-graph I(n, j, k) is a graph
on vertices {u0, u1, . . . , un−1, w0, w1, . . . , wn−1}, with the
edge set consisting of outer edges uiui+j , inner edges
wiwi+k and spoke edges uiwi, where the subscripts are
taken modulo n.

Without loss of generality we always assume that j, k <
n/2. Since I(n, j, k) is isomorphic to I(n, k, j), we re-
strict ourselves to cases when j ≤ k. It is well known
[1] that an I-graph I(n, j, k) is disconnected whenever
d = gcd(n, j, k) > 1. In this case it consists of d copies
of I(n/d, j/d, k/d). Therefore, throughout the paper
we consider only graphs I(n, j, k) where gcd(n, j, k) =
1. We also know [7] that two I-graphs I(n, j, k) and
I(n, j′, k′) are isomorphic if and only if there exists an
integer a, which is relatively prime to n, for which either
{j′, k′} = {aj (mod n), ak (mod n)} or {j′, k′} = {aj
(mod n),−ak (mod n)}. Throughout the paper, when-
ever we discuss I-graphs with certain parameters, we con-
sider only the lexicographically smallest possible param-
eters by which the graph is uniquely determined.

2.1 Equivalent 8-cycles

A particular member of automorphism group of every I-
graph is a rotation defined as: ρ(ui) = ui+1, ρ(wi) =
wi+1. Clearly, applying n times the rotation ρ yields an
identity automorphism. When acting on I-graphs with
ρ we get 3 edge orbits: orbit of outer edges EJ , orbit
of spoke edges ES and orbit of inner edges EI . Edges
from the same orbit EJ , ES , or EI have the same octagon
value, which we denote by σJ , σS and σI , respectively.

Therefore the octagon value of an I-graph is said to be a
triple (σJ , σS , σI).
We say that two 8-cycles of an I-graph are equivalent if
we can map one into the other using rotation ρ. Let G '
I(n, j, k) be an arbitrary I-graph and let C be one of its 8-
cycles. With γ(C) we denote the number of equivalent 8-
cycles to C in G. Each 8-cycle contributes to the octagon
value of an I-graph. We denote the contributed amount
with τ(C), defined as the triple (δj , δs, δi), where we
calculate δj , δs, δi by counting the number of outer, spoke
and inner edges of a cycle and multiply these numbers
with γ(C)/n. If a graph G admits m non-equivalent
8-cycles C1, C2, . . . , Cm, one may calculate its octagon
value (σJ , σS , σI) as

∑m
i=1 τ(Ci).

The following claim serves also as an example of the
above-mentioned definitions.
Claim 5. For I(n, j, k) where n > 3 and integers k, j <
n/2 there always exists an 8-cycle.

Indeed, if k 6= j it is of the form
C∗ = (w0, w±k, u±k, u±k±j , w±k±j , w±j , u±j , u0).

If k = j it is of the form
C7 = (u0, uk, u2k, u3k, w3k, w2k, wk, w0).

2.2 Characterization of non-equivalent 8-cycles

Our aim is to identify all possible 8-cycles that can appear
in an arbitrary I-graph and determine their contribution
towards the octagon value of the graph. It is easy to
see that an arbitrary 8-cycle can have either 4, 0 or 2
spoke edges, so we obtained this list by distinguishing 8-
cycles by the number of spoke edges they admit. In the
case of the 8-cycle admitting 2 spoke edges, we further
distinguish cases by the number of outer and inner edges
within a given 8-cycle.
Due to space constraints we present the analysis of 8-
cycles admitting 4 spoke edges only, as it is the easiest
case to deal with (for remaining cases see [9]). This
analysis leads to complete characterisation of 8-cycles for
the family of I-graphs, presented in the Table 1.

8-cycles with 4 spoke edges In addition to 4 spoke
edges the 8-cycle must also have two inner and two outer
edges. When using the spoke edge there are two options
for choosing an inner (outer) edge. After considering all
cases it is easy to see that there can be just two such
8-cycles, C∗ (see Claim 5), which exists whenever j 6= k,
and C0, which is of the following form:
C0 = (w0, w±k, u±k, u±k±j , w±k±j , w±2k±j , u±2k±j , u±2k±2j).
Cycle C0 exists whenever 2k + 2j = n. One can verify
easily, that n applications of the rotation ρ to C∗ and n/2
applications of the rotation ρ to cycle C0 maps the cycle
back to itself. Therefore there are n equivalent cycles to
C∗ and n/2 equivalent cycles to C0 in an I-graph I(n, j, k)
and they contribute (2, 4, 2) and (1, 2, 1), respectively, to
the graph octagon value.

2.3 Obtaining constant octagon value

Every 8-cycle of an I-graph contributes to the octagon
value of each edge partition. It turns out that if we can

32

Label A representative of an 8-cycle Existence conditions τ (C) γ(C)
C∗ (w0, w±k, u±k, u±k±j , w±k±j , w±j , u±j , u0) k 6= j and n > 4 (2, 4, 2) n
C0 (w0, w±k, u±k, u±k±j , w±k±j , w±2k±j , u±2k±j , u±2k±2j) 2k + 2j = n (1, 2, 1) n/2
C1 (u0, uj , u2j , u3j , u4j , u5j , u6j , u7j) 8j = n or 3n (0, 0, 1) n/8
C2 (w0, wk, w2k, w3k, w4k, w5k, w6k, w7k) 8k = n or 3n (1, 0, 0) n/8
C3

(w0, wk, w2k, w3k, w4k, w5k, u5k, u5k+j) 5k + j = n or 2n (5, 2, 1) n(w0, wk, w2k, w3k, w4k, w5k, u5k, u5k−j) 5k − j = n or 2n
C4

(u0, uj , u2j , u3j , u4j , u5j , w5j , w5j+k) k + 5j = n or 2n (1, 2, 5) n(u0, uj , u2j , u3j , u4j , u5j , w5j , w5j−k) 5j − k = 2n or n or 0
C5

(w0, wk, w2k, w3k, w4k, u4k, u4k+j , u4k+2j) 4k + 2j = n or 2k + j = n (4, 2, 2) n(w0, wk, w2k, w3k, w4k, u4k, u4k−j , u4k−2j) 4k − 2j = n

C6
(u0, uj , u2j , u3j , u4j , w4j , w4j+k, w4j+2k) 2k + 4j = n or k + 2j = n (2, 2, 4) n(u0, uj , u2j , u3j , u4j , w4j , w4j−k, w4j−2k) 4j − 2k = n or 0

C7
(w0, wk, w2k, w3k, u3k, u3k+j , u3k+2j , u3k+3j) 3k + 3j = n or 2n (3, 2, 3) n(w0, wk, w2k, w3k, u3k, u3k−j , u3k−2j , u3k−3j) 3k − 3j = n or 0

Table 1: All non-equivalent 8-cycles of I-graphs, their existence conditions, their contribution towards the octagon
value of an I-graph τ , number of their equivalent cycles in an I-graph γ.

identify at least one edge partition of a graph, we can eas-
ily determine its parameters. Therefore, we want to find
graphs with constant octagon value. These are graphs
for which all edges touch the same number of 8-cycles.
They are called [1, λ, 8]-cycle regular graphs. We con-
sider all possible collections of 8-cycles and determine oc-
tagon values of I-graphs admitting those 8-cycles. Since
I-graphs are defined with 3 parameters and all 8-cycles
give constraints for these parameters, it is enough to con-
sider collections of at most 4 cycles, to uniquely determine
all [1, λ, 8]-cycle regular graphs. After a thorough anal-
ysis (see [9]) we see that the list of [1, λ, 8]-cycle regular
I-graphs consists of 10 members (see Figure 2). Surpris-
ingly, it turns out that all [1, λ, 8]-cycle regular I-graphs
are in the family of generalized Petersen graphs. This
proves Theorem 1.

3 Recognition algorithm

The recognition algorithm relies on the fact that there
is just a small number of I-graphs (ten) with the con-
stant octagon value. In particular, whenever the input
graph G of the Algorithm 1 is a member of the family
of I-graphs and is not [1, λ, 8]-cycle regular, we can im-
mediately identify one of its edge orbits (EI , EJ , or ES),
of size |V (G)|/2. Since the octagon value of each edge is
computed in constant time and there is a finite number of
the [1, λ, 8]-cycle regular I-graphs the Theorem 2 holds.

Correctness and time complexity of the algo-
rithm. We first note, that if G is not cubic then it does
not belong to observed graph families. Since checking
whether a graph is cubic takes linear time we simply
assume that the input graph is cubic. Furthermore, if
G is not connected then it can only be a member of the
family of I-graphs whenever it consists of multiple copies
of a smaller I-graph G′. However, this case can easily
be resolved by separately checking each part, so we can
assume that the input graph is connected. Algorithm 1
consists of the following 3 parts.

1. Partitioning the edges with respect to the
octagon value.
The algorithm determines the octagon value of each
edge e ∈ E(G) and builds a partition set P of graph

Data: connected cubic graph G
Result: parameters (n, j, k) and isomorphism to

I(n, j, k), if they exists.
1 P ← an empty dictionary
2 for e ∈ E(G) do
3 s = octagonValue(e) ; /* calculate

σ(e) */
4 P[s].append(e)
5 end
6 U ← an item of P with minimum positive

cardinality
7 if G[U] is a 2-factor ; /* 2-factor is a

2-regular graph */
8 then
9 U ← {e | e ∈ E(G), e is adjacent to an edge

of U} /* a perfect matching in G */
10 end
11 return Extend(G,U)

Algorithm 1: Recognition procedure for I-
graphs

edges (see lines 1 – 4). Since G is cubic and all 8-
cycles containing edge e consist of edges which are
at distance at most 4 from e, it is enough to check a
subgraphH of G of order at most 62, to calculate the
octagon value of an edge e. Therefore, calculation of
octagonValue(e) takes O(1) time for each edge e
and this whole part is performed in Θ(|E(G)|) time.

2. Identifying the edge-orbit which corresponds
to the set of spokes.
Throughout lines 6 – 9 we determine the edge-orbit
which corresponds to the set of spokes. It is easy to
see that this requires additional O(|E(G)|/3) time.

3. Using set U for determining parameters of a
given graph.
The algorithm uses computed set U to determine
exact isomorphism between G and an I-graph or
a double generalized Petersen graph, if it exists.
This procedure differentiates regarding the graph
family we are considering. The related procedure
Extend(G,U) is performed in Θ(|E(G)|) time.

33

(a) Triangular prism. (b) 3-cube. (c) Petersen graph, Dodecahedral, and Desargues
graph.

(d) Möbius-Kantor graph, Nauru graph, G(13, 5), F048 ∼= G(24, 5), and G(26, 5).

Figure 2: All [1, λ, 8]-cycle regular I-graphs. That is, (a) the graph on no 8-cycles; (b) the graph containing C0
and C7; (c) graphs containing C5, C6 and C∗; and (d) graphs containing C3, C4 and C∗.

3.1 Subprocedure Extend(G,U)

It is easy to see that Extend(G,U) can safely reject G
if |V (G)| is not divisible by 2. For this subprocedure
set n = |V (G)|/2 and denote by H the subgraph of G
induced by the vertices of U . There are two possibilities.

H = G. In this case graph G has a constant octagon
value. Since there are just ten such I-graphs check-
ing G against them takes constant time.

H is of order 2n and is 1-regular. Since U is a per-
fect matching of G the set E(G)\U is a collection of
cycles. If G is an I-graph, then there exist positive
integers i, j, l1, l2 with j ≤ i such that there are j
cycles of length l1 and i cycles of length l2. It re-
mains to determine parameter k and check whether
G ' I(n, j, k). This procedure depends on the struc-
ture of I-graphs and the 8-cycle C∗. It is performed
in Θ(|E(G)|) time (see [9] for details).

4 Conclusion

Studying the cyclic structure as described in this paper
led to the construction of fast recognition algorithms for
three parametric families. To the best of our knowledge,
in addition to this work, such a procedure was so far
only used in [10] for the family of generalized Petersen
graphs. We believe that a similar approach should give
interesting results for other parametric graph families of
bounded degree, such as Johnson graphs, rose window
graphs, Tabačjn graphs, Y -graphs, or H-graphs.

References

[1] Boben, M., Pisanski, T., and Žitnik, A. I-
graphs and the corresponding configurations. J.
Comb. Des. 13, 6 (2005), 406–424.

[2] Bonvicini, S., and Pisanski, T. Hamiltonian
cycles in I–graphs. Electronic Notes in Discrete
Mathematics 40 (2013), 43–47. Combinatorics 2012.

[3] Coxeter, H. S. M. Self-dual configurations and
regular graphs. Bull. Amer. Math. Soc. 56 (1950),
413–455.

[4] Dods, M. S. Independence number of specified I-
graphs. PhD thesis, Monterey, CA; Naval Postgrad-
uate School, 2020.

[5] Erdős, P. Some of my favorite solved and unsolved
problems in graph theory. Quaestiones Math. 16, 3
(1993), 333–350.

[6] Foster, R. M. The Foster census. Charles Bab-
bage Research Centre, Winnipeg, MB, 1988. R.
M. Foster’s census of connected symmetric trivalent
graphs, With a foreword by H. S. M. Coxeter, With
a biographical preface by Seymour Schuster, With
an introduction by I. Z. Bouwer, W. W. Chernoff,
B. Monson and Z. Star, Edited and with a note by
Bouwer.

[7] Horvat, B., Pisanski, T., and Žitnik, A. Iso-
morphism checking of I-graphs. Graphs Combin. 28,
6 (2012), 823–830.

[8] Klein, Z. J. Structural properties of I-graphs:
their independence numbers and Cayley graphs. PhD
thesis, Monterey, CA; Naval Postgraduate School,
2020.

[9] Klobas, N., and Krnc, M. Fast recognition
of some parametric graph families. arXiv e-prints
(Aug. 2020), arXiv:2008.08856.

[10] Krnc, M., and Wilson, R. J. Recognizing gener-
alized Petersen graphs in linear time. Discrete Ap-
plied Mathematics 283 (2020), 756 – 761.

[11] Mollard, M. Cycle-regular graphs. Discrete math-
ematics 89, 1 (1991), 29–41.

[12] Oliveira, A. S. S., and Vinagre, C. T. M. The
spectrum of an I-graph, 2015.

[13] Petkovšek, M., and Zakrajšek, H. Enumera-
tion of I-graphs: Burnside does it again. Ars Math.
Contemp. 2, 2 (2009), 241–262.

[14] Watkins, M. E. A theorem on Tait colorings with
an application to the generalized Petersen graphs.
J. Combinatorial Theory 6 (1969), 152–164.

34

Interactive Evolutionary Computation Approach to
Permutation Flow Shop Scheduling Problem

Vid Keršič
University of Maribor,

Faculty of Electrical Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

vid.kersic@um.si

Abstract
Artificial intelligence and its subfields have be-
come part of our everyday lives and efficiently
solve many problems that are very hard for us
humans. But in some tasks, these methods strug-
gle, while we, humans, are much better solvers
with our intuition. Because of that, the ques-
tion arises: why not combine intelligent methods
with human skills and intuition? This paper pro-
poses an Interactive Evolutionary Computation
approach to the Permutation Flow Shop Schedul-
ing Problem by incorporating human-in-the-loop
in MAX-MIN Ant System through gamification
of the problem. The analysis shows that combin-
ing the evolutionary computation approach and
human-in-the-loop leads to better solutions, sig-
nificantly when the complexity of the problem in-
creases.

Keywords scheduling problems, interactive evolution-
ary computation, ant colony optimization, metaheuristic
optimization

1 Introduction

Computers have become an essential (and sometimes the
only) tool to approach complex real-world problems. But
many problems are still too hard to solve, even for com-
puters. Many of these problems are NP-hard, and their
solution cannot be found by using exact algorithms [1].
Thus, many of these problems are solved with approxima-
tion and different stochastic nature-inspired population-
based algorithms, where suboptimal solutions are found.
However, they are still considered good enough to use
in practice. Some of these problems include Travelling
Salesman Problem (TSP), scheduling problems, etc. This
paper focuses on the Permutation Flow Shop Scheduling
Problem (PFSP), one of the scheduling problems.
PFSP is the scheduling problem where there are m ma-
chines and n jobs [2]. Each job consists of m operations,
where i-th operation must be executed on the i-th ma-
chine. The order of jobs must be the same on all ma-
chines, and each machine can perform only a single oper-
ation at a time. Each operation has a specified execution
time, and the goal is to minimize total job execution time,
called makespan. The problem was proven to be NP-hard
when m ≥ 3, which means no efficient algorithm exists
[3].

Different approximation approaches were presented in
the last decades and shown to be effective in finding
suboptimal solutions. Firstly, different approximation
algorithms were introduced to reduce time to solve the
problems and find suitable solutions [4]. Afterwards,
researchers applied and adjusted different optimization
algorithms, especially nature-inspired and metaheuristic
optimization algorithms, to improve results in shorter
time execution [5].
In the last years, a new approach emerged to solve these
problems. Inspired by human intuition of problem-
solving, the Interactive Evolutionary Computation
(IEC) approach combines metaheuristic optimization
algorithms, e.g., nature-inspired algorithms, with
human-in-the-loop through some process, e.g., gamifi-
cation of the problem [6]. This paper proposes an IEC
approach based on the MAX-MIN Ant System (MMAS),
one of the Ant Colony Optimization (ACO) algorithms,
to PFSP through gamification of the problem.
The structure of the paper is as follows: Section 2 pro-
vides an overview of related work. Section 3 describes
the IEC approach to PFSP. Section 4 describes the ex-
periment, shows the results, and provides an analysis of
the results. Section 5 concludes the paper.

2 Related Work

Researchers started solving PFSP almost 70 years ago,
when Johnson proposed the exact algorithm, but it was
restricted to two machines [2]. Many exact algorithms
with different strategies were proposed in the following
decades, such as the branch-and-bound algorithm [7].
Despite that, the exact algorithms could not scale to
bigger instances of the problem.
To overcome the NP-hard time complexity of the
problem, researchers started to develop approximation
and heuristic algorithms, where different approaches and
heuristics were considered, such as [8]. Methods based
on the Nawaz-Enscore-Ham (NEH) heuristic proved
to be one of the best performers to the problem [4].
NEH-based methods consist of two steps: first, order the
jobs based on some characteristic and then insert them
one by one. But the approximation algorithms still have
several drawbacks, such as being dependent on certain
characteristics of the specific setting of the problem and
still being too slow.
Metaheuristic optimization algorithms were also consid-

DOI https://doi.org/10.18690/978-961-286-516-0.8
ISBN 978-961-286-516-0 35

ered for PSFP, and they achieved more favorable results
than approximation algorithms, especially time-wise.
Many algorithms were applied to the problem, such
as Simulated Annealing, Differential Evolution, and
many nature-inspired algorithms, such as ACO [9, 5].
In many benchmarks, metaheuristic algorithms achieve
comparable or even better results than approximation
algorithms [10].
As mentioned in the introduction, researchers tried to in-
corporate human intuition into metaheuristic algorithms,
which proved beneficial [11]. Authors included human-
in-the-loop to TSP through gamification, where a user
affects pheromone level in MMAS algorithm when play-
ing a game [6]. Several other researchers also focused
on gamification of different NP-hard problems like Bin-
packing problem, Job Shop Scheduling, and Open Shop
Scheduling [12, 13]. Based on the related work, the pro-
posed approach incorporates human intuition to solve the
PFSP problem through the gamification process where a
user affects the pheromone trail in the MMAS algorithm.

3 IEC Approach to PFSP

The goal of PFSP is to find a permutation of n jobs that
minimize the total makespan. Thus, the optimization
task for the problem is defined as:

minC(π) (1)

where π is a permutation of n jobs and C is the cost
function that calculates makespan.
Based on the techniques and approaches discussed in the
previous section, the solution consists of three modules1:
video game, back-end server, and MMAS algorithm. The
video game was implemented in Unity, while the back-end
server and MMAS algorithm, which runs on the back-end,
are written in Python.
The video game contains blocks (jobs) and a board con-
structed from several rows (machines). The user tries to
move and stack blocks together while complying with the
limitations of the problem. For each game, a new instance
of the MMAS algorithm starts. Each movement per-
formed by the user is sent to the back-end server, where
the MMAS algorithm runs in iterations. For each block
placement, one iteration of the algorithm is launched.
Pheromone of the ants is presented as 2D matrix A of
size N × N , where N is the number of jobs. Matrix’s
element Ai,j is the pheromone level of positioning job i
on the position j. The user’s placement of blocks affects
the pheromone level of the algorithm; in the proposed ap-
proach, the value is multiplied by a scalar. This change of
the pheromone level is the human-in-the-loop part. After
each user’s movement, the solution for the current prob-
lem is recommended to the user based on the outcome and
current state of the MMAS algorithm (of course, users
can freely decide which move they will make next). The
player is also encouraged to perform well and achieve the
highest score as fast as possible since the game contains
a time counter. The final game score is calculated based

1Source code available at:
https://github.com/Vid201/flow-shop-scheduling-iec

on the combination of makespan and the time duration
of the game. The algorithm of the MMAS-IEC approach
is shown in Algorithm 1.

1 start the game
2 init MMAS
3 launch 1 iteration (MMAS)
4 while game not finished do
5 wait for the user to position a job (block)
6 i← positioned_job
7 j ← position_index
8 Ai,j ← Ai,j × 3
9 launch 1 iteration (MMAS)

10 end
11 return best found solution

Algorithm 1: Algorithm of the MMAS-IEC ap-
porach.

4 Experiments and Results

The experiment aims to show that incorporating human-
in-the-loop can positively affect the search process of
metaheuristic algorithms, which means better solutions
can be found in fewer iterations. Thus the analysis is
mainly oriented on comparing MMAS without human-
in-the-loop results with MMAS-IEC.
The operation times of the jobs are randomly generated
on each new instance of the game since standard bench-
mark datasets are too big to be visualized in the game.
Problem sizes used in the experiment are shown in Table
1. An example of the video game can be seen in Fig-
ure 1. The comparison of brute-force algorithm, MMAS
algorithm without human-in-the-loop, and MMAS-IEC
approach is performed. The results are also compared to
the one variant of the Genetic Algorithm (GA) [14].

Table 1: Sizes of the problem in the experiment.

Number of jobs Number of machines
5 3
10 2
10 4
12 2
12 4
12 6

In both executions of the MMAS algorithm, with and
without human-in-the-loop, the parameters were set as
follows: n = 5 (number of ants), p0 = 0.9 (probability
to select the job with highest pheromone), mmr = 5
(min-max ratio), ρ = 0.75 (persistence of the trail),
max_iter = 100 (maximum number of iterations) and
max_stag = 5 (maximum number of iterations of stag-
nation - iterations with the same solution). The param-
eters of MMAS were set according to the literature [5].
Readers are advised to read the referenced paper for an

36

Figure 1: The gameplay of the video game.

in-depth description of the MMAS algorithm. For GA,
the parameters were adapted from the used implementa-
tion [14].
The MMAS algorithm without human-in-the-loop was
run 30 times to get solutions characterized by the algo-
rithm and not randomness. In the MMAS-IEC approach,
the multiplier of the pheromone was set to 3, which means
element Ai,j is increased if the user places the job i on
position j in the game. The size of the multiplier was
chosen empirically.
To measure the performance of algorithms, the subopti-
mal solutions of metaheuristic algorithms were compared
to optimal solutions by calculating relative percentage
deviation (RPD), which tells how much suboptimal so-
lutions are worse than the optimal solution. RPD was
calculated according to the following equation:

RPD = Suboptimalsol −Optimalsol

Optimalsol
× 100 (2)

The number of iterations to find the best solution was
also compared since time execution was much longer in
the interactive approach due to playing the game.

4.1 Analysis and Discussion

The video game and other algorithms were launched
five times for each problem size, and the average/mean
makespan with standard deviation was calculated. The
brute force algorithm was run only on smaller problem
sizes since its execution time was too long for the other

instances. Where brute force results were available, RPD
was also calculated. Results for the experiment are shown
in Table 2.
While in the smallest instances of the problem, the
MMAS algorithm outperformed the MMAS-IEC ap-
proach, the latter achieved better results in all the
other problem sizes. This implies that when the search
space becomes enormous and complex, human intuition
positively affects the algorithm and leads to a better
solution. Since the user affected the pheromone level
and directed the algorithm towards better solutions, the
average number of iterations was less than with only
the MMAS algorithm. It must be noted that the best
solution in the MMAS-IEC is usually not the same as the
end state of the blocks in the user’s game. The user only
affected the pheromone level of the job on the selected
position, and the game’s order does not directly change
the solution. The best solution is still the solution
found by the MMAS algorithm, while the user only
changed the algorithm’s internal state, i.e., pheromone
matrix. Figure 2 shows that when the problem sizes
increase, MMAS-IEC tends to find solutions with a lower
makespan.

Figure 2: Box plots of makespan for different
sizes of the problem with all four approaches.
Colors represent different sizes of the problem,
while dots show makespans for all five settings

per each problem size for each approach.

Results of the MMAS-IEC approach are very dependent
on the way the user plays the game. In the first played
games, the results of the MMAS-IEC were not better

Table 2: Results of the experiment, where N is number of jobs, M is number of machines, M is
average makespan, σ is standard deviation, IT is average number of iterations for best solution and

RPD is average relative percentage deviation.

Problem sizes Approach
N M

Brute force MMAS GA MMAS-IEC
M σ M σ IT RPD M σ IT RPD M σ IT RPD

5 3 6.514 0.402 6.605 0.399 31.0 1.396 6.515 0.402 25.8 0.015 6.742 0.463 3.6 3.500
10 2 9.719 0.814 9.834 0.753 27.8 1.183 9.749 0.797 45.0 0.309 9.742 0.792 2.8 0.236
10 4 12.281 0.876 12.890 0.543 28.4 4.958 12.594 0.625 61.2 2.549 12.614 0.657 5.2 2.711
12 2 / / 12.019 0.845 26.0 / 11.870 0.877 42.4 / 11.869 0.877 2.6 /
12 4 / / 14.005 0.949 29.8 / 13.430 1.118 49.2 / 13.463 1.152 5.4 /
12 6 / / 17.075 0.464 19.8 / 15.970 0.739 84.2 / 16.801 1.195 8.2 /

37

or were even worse than MMAS alone. But after some
games, strategies for the game come into mind, and re-
sults get better, which means the makespan decreases.
One of the strategies that tend to work well is to po-
sition the job with increasing operations times by the
machine number in the first place and then putting jobs
with as little space between operations as possible on all
machines. While the number of iterations is much less
in the MMAS-IEC approach, time to find the best solu-
tion depends on how fast the user plays the game, e.g.,
MMAC alone can find the suboptimal solution in 1 sec-
ond, while the user cannot play the game so fast. For
bigger instances, around 10 seconds are needed to find
the best suboptimal solution (the game does not have to
be played to the end to find the best solution).
Comparing to the GA, both MMAS and MMAS-IEC
approaches achieve worse results, except when N = 10
andM = 2, where the MMAS-IEC approach achieves the
best ones. According to the obtained results, combining
an interactive process, i.e., gamification, and GA, looks
like a promising direction to explore.
The open problem for this gamification process is how
to scale the game to bigger problem sizes since the game
can become too complex, and it is also hard to visualize
blocks and boards. The experiments were successfully
conducted on the problems with up to 6 machines and 12
jobs, but scaling the game to more machines and jobs is
open for further research.

5 Conclusion

This work shows how human intuition for problem-
solving can be incorporated into metaheuristics
algorithms for NP-hard problem PFSP. MMAS-IEC
approach tends to find better solutions than fully
autonomous metaheuristic algorithm MMAS, especially
in bigger settings of the problem. Solutions are also
found in a fewer number of iterations. But still, there
are some open questions to the proposed approach, as
bigger instances are hard to visualize, and playing the
game usually takes more time than the MMAS algorithm
alone. Both of these drawbacks are good starting points
for further research.
Further research could be dedicated to selecting a meta-
heuristic algorithm since this study only accounts for the
MMAS algorithm for PSFP. At the same time, several
other algorithms proved to be suitable for this problem,
e.g., the GA from the analysis. The research goal was to
use the same metaheuristic algorithm with and without
human interaction and not to compare different meta-
heuristic algorithms. On the MMAS algorithm itself,
other techniques to change the pheromone level could be
explored. Various strategies to encourage the player to
perform well could also be introduced, e.g., online score-
boards or rewards, which could increase the player’s per-
formance with a positive loop. It would also be interest-
ing to compare and try the MMAS-IEC approach on one
of the benchmarks for PSFP, e.g., Taillard’s benchmark
problems [15].

References

[1] D. E. Knuth. Postscript about np-hard problems.
SIGACT News, 6(2):15–16, Apr. 1974. issn: 0163-
5700. doi: 10.1145/1008304.1008305.

[2] S. M. Johnson. Optimal two- and three-stage pro-
duction schedules with setup times included. Naval
Research Logistics Quarterly, 1(1):61–68, 1954.

[3] M. R. Garey, D. S. Johnson, and R. Sethi. The com-
plexity of flowshop and jobshop scheduling. Math-
ematics of operations research, 1(2):117–129, 1976.

[4] M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuris-
tic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1):91–95, 1983.

[5] T. Stützle et al. An ant approach to the flow
shop problem. In Proceedings of the 6th European
Congress on Intelligent Techniques & Soft Com-
puting (EUFIT’98), volume 3, pages 1560–1564,
1998.

[6] A. Holzinger, M. Plass, M. Kickmeier-Rust, K.
Holzinger, G. C. Crişan, C.-M. Pintea, and V.
Palade. Interactive machine learning: experimental
evidence for the human in the algorithmic loop.
Applied Intelligence, 49(7):2401–2414, 2019.

[7] E. Ignall and L. Schrage. Application of the branch
and bound technique to some flow-shop schedul-
ing problems. Operations research, 13(3):400–412,
1965.

[8] S. Suliman. A two-phase heuristic approach to the
permutation flow-shop scheduling problem. Inter-
national Journal of production economics, 64(1-
3):143–152, 2000.

[9] I. Osman and C. Potts. Simulated annealing
for permutation flow-shop scheduling. Omega,
17(6):551–557, 1989. issn: 0305-0483.

[10] E. Vallada, R. Ruiz, and J. M. Framinan. New
hard benchmark for flowshop scheduling problems
minimising makespan. European Journal of Opera-
tional Research, 240(3):666–677, 2015. issn: 0377-
2217.

[11] A. Holzinger. Interactive machine learning for
health informatics: when do we need the human-
in-the-loop? Brain Informatics, 3(2):119–131,
2016.

[12] N. D. Ross, M. B. Johns, E. C. Keedwell, and
D. A. Savic. Human-evolutionary problem solving
through gamification of a bin-packing problem. In
Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 1465–1473,
2019.

[13] M. Vargas-Santiago, R. Monroy, J. E. Ramirez-
Marquez, C. Zhang, D. A. Leon-Velasco, and
H. Zhu. Complementing solutions to optimization
problems via crowdsourcing on video game plays.
Applied Sciences, 10(23):8410, 2020.

[14] Suyunu. Github - suyunu/flow-shop-scheduling:
genetic algorithm for flow shop scheduling. url:
https : / / github . com / suyunu / Flow - Shop -
Scheduling (visited on 07/23/2021).

[15] E. Taillard. Benchmarks for basic scheduling
problems. european journal of operational research,
64(2):278–285, 1993.

38

https://doi.org/10.1145/1008304.1008305
https://github.com/suyunu/Flow-Shop-Scheduling
https://github.com/suyunu/Flow-Shop-Scheduling

Towards Representative Web Performance
Measurements with Google Lighthouse
Tjaša Heričko

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

tjasa.hericko@um.si

Boštjan Šumak
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

bostjan.sumak@um.si

Saša Brdnik
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

sasa.brdnik@um.si

Abstract
Web performance testing with tools such as
Google Lighthouse is a common task in software
practice and research. However, variability in
time-based performance measurement results is
observed quickly when using the tool, even if
the website has not changed. This can occur
due to variability in the network, web, and
client devices. In this paper, we investigated
how this challenge was addressed in the existing
literature. Furthermore, an experiment was
conducted, highlighting how unrepresentative
measurements can result from single runs; thus,
researchers and practitioners are advised to
run performance tests multiple times and use
an aggregation value. Based on the empirical
results, 5 consecutive runs using a median to
aggregate results reduce variability greatly, and
can be performed in a reasonable time. The
study’s findings a lert t o p otential p itfalls when
using single run-based measurement results and
serve as guidelines for future use of the tool.

Keywords websites, web performance, performance
testing, performance variability, tool, Google
Lighthouse

1 Introduction

In software engineering, performance tests are often con-
ducted by software researchers and practitioners to au-
dit a website’s quality. The former commonly use web
performance measurements to assess web performance
on the observed websites [12, 14, 15], to investigate
factors (positively or negatively) affecting performance
[4, 6, 13], and to improve performance testing [10], while
the latter use performance measurements for improving
a website’s quality to provide a better overall user
experience, as web performance influences website
traffic, user attrition, user engagement, online revenue,
and even rankings in search results greatly [2, 16, 17].

Performance testing can be conducted using various tools,
among which Google Lighthouse has gained increasing
attention in recent years. It is an open-source tool, pro-
viding audits for performance, as well as for accessibil-
ity, search engine optimization, and progressive web apps,
with indicators on how to improve these aspects of web-
sites if needed [8]. However, when dealing with time-
based measurements, the results of such testing can of-
ten be inconsistent, as several factors can interfere with
the measures and may introduce fluctuations, even if the
website has not changed. Most commonly, results tend
to vary due to variability in the network, web server,
client hardware, and client resource contention [7]. Light-
house addresses variability by providing vague strategies
and recommendations on how to reduce them, though
results can still vary. Besides isolating external factors,
e.g., using a dedicated device for testing, using a local
deployment or a machine on the same network, the most
straightforward strategy is to run Lighthouse multiple
times and use aggregate values instead of single tests [7].
The research objectives of this paper are: (i) To study
how the research community has addressed the challenge
of variability in performance measurements when using
the tool; and (ii) To demonstrate the strategy of per-
forming multiple runs empirically with their aggregation
into a single-value result. To achieve these objectives, we
performed a literature review and conducted an experi-
ment.
Our work is broadly related to previous research provid-
ing a better understanding and managing of variations in
measurements, testing, and benchmarking for timebased
performance measurements [3, 5, 10, 11]. These stud-
ies are focused primarily on suggesting recommendations
for robust testing in the presence of environmental fluc-
tuations, and, as such, are quite different in aim from
ours, which is to gain insight into how a specific tool –
Google Lighthouse – is used in research for web perfor-
mance measurement, further investigated with empirical
research alerting software researchers and practitioners
to potential pitfalls in the future use of the tool.

DOI https://doi.org/10.18690/978-961-286-516-0.9
ISBN 978-961-286-516-0 39

The contributions of the paper are: (i) Presenting an
overview of existing studies using Lighthouse for measur-
ing performance, with an emphasis on how the tool is
used, what measuring strategies are employed, and how
the authors addressed possible inconsistencies in results;
(ii) Providing analysis of the effects of repeating perfor-
mance measurements to prevent single run‘s outliers; (iii)
Highlighting potential pitfalls for research and practice
using single run-based results provided by Lighthouse;
and (iv) Serving as a base for research studies on miti-
gating unrepresentative web performance measurements.

2 Literature review

A literature review was performed to find existing re-
search utilizing Lighthouse as the tool for estimating web
performance. A full-text search was conducted using the
search string »Google Lighthouse« in the following digital
libraries: ACM Digital Library1, Google Scholar2, IEEE
Xplore3, and Web of Science4. The search was carried
out on July 28, 2021, and altogether 134 studies were
retrieved from the search. Inclusion and exclusion crite-
ria guided the study selection process. Only journal and
conference papers were considered. Materials not acces-
sible in English were excluded. Any research that only
described Lighthouse theoretically was excluded, and all
papers where Lighthouse was not used for performance
measurements were excluded as well. After the review
process, 8 primary studies were selected.
The list of primary studies is available in Table 1. All
primary studies were published in conference proceedings
in recent years, in 2018 or later. From the performance
measurements made with Lighthouse, primary studies
used the Performance Score (S1-S3, S6) most commonly,
a single-value indicator of websites’ overall performance,
for their further analysis. The following more specific
time metrics were also used commonly: Speed Index (S2,
S4, S7, S8), First Meaningful Paint (S1, S2, S4, S7)
and Estimated Input Latency (S1, S2, S7). Researchers
observed between 1 and 21 websites in each study. Less
than half of the primary studies (S1, S4, S7) have noted
some variance between runs when auditing the same
website due to uncontrollable variables, and employed
some strategies to mitigate this problem. In two studies
(S4, S7), the authors repeated runs consequently, while
in one study (S1), researchers ran performance audits
multiple times trough the day. The number of runs varied
from 5 to 100. Two studies (S1, S4) then used mean for
aggregating multiple runs into a single value, while one
study (S7) used median.

3 Experiment

An experiment was performed to demonstrate further
how single performance audits can be unrepresentative
in some scenarios, and investigate how the number of
runs affects variability. In the experiment, 10 real web-

1https://dl.acm.org/
2https://scholar.google.com/
3https://ieeexplore.ieee.org/
4https://apps.webofknowledge.com/

Table 1: A list of primary studies selected in the litera-
ture review with their performance audit strategies.

ID Year Performance audit strategy Ref
S1 2018 5 repetitions trough the day [6]
S2 2019 1 run [12]
S3 2019 1 run [15]
S4 2019 100 consecutive repetitions [13]
S5 2019 1 run [10]
S6 2020 1 run [4]
S7 2020 30 consecutive repetitions [14]
S8 2021 1 run [18]

sites were used, selected randomly from the Alexa Top
500 list, which includes top-ranked websites on the web
[1]. The selected websites were: AliExpress5, Amazon In-
dia6, Bola7, Freepik8, IKEA9, Mercari10, Shopify11, Un-
spash12, Wix13, and Zendesk14, further referred to as
W1, W2, W3, W4, W5, W6, W7, W8, W9, and W10,
respectively. The selected websites ranged from simple
static presentation websites to dynamic websites, i.e., e-
commerce websites and news sites.
All websites were audited with Google Lighthouse v7.3.0
on a device with macOS 10.15.7 using Headless Chrome.
A desktop device was emulated using a broadband net-
work connection. For each website, performance audits
were performed 4 times, each time with an increasing
number of repeated independent runs (N=1,5,10,100).
During the auditing process, external factors were iso-
lated as much as possible. The experiment was conducted
on July 29, 2021 between 4:42 and 8:37 PM (GMT+2).
From the collected results, we used the Performance Score
for analysis, as this value captures the overall web perfor-
mance of a website. It is calculated as a weighted average
of six metric scores, each metric representing some aspect
of a website’s performance. The Performance Score can
have the following values: Poor (0-50), Needs improve-
ment (50-89) and Good (90-100) [9].
Data analysis was conducted using IBM SPSS Statistics
v27. Descriptive statistics were used to present the char-
acteristics of sets of data collected with a different number
of consecutive runs, including a description and spread of
the data in each set. Mood’s median test was performed
to estimate if the medians of data sets from different runs
on the same website were equal.

5https://www.aliexpress.com/
6https://www.amazon.in/
7https://www.bola.com/
8https://www.freepik.com/
9https://www.ikea.com/

10https://www.mercari.com/
11https://www.shopify.com/
12https://unsplash.com/
13https://www.wix.com/
14https://www.zendesk.com/

40

4 Results and Discussion

The distribution of Performance Scores of each website
for N=100 is presented with boxplots in Figure 1. It can
easily be observed that, for almost all websites (except
for W4), some performance measurements occurred that
were not a typical representative of a website’s perfor-
mance. Suppose one of these outlier measurements was
the only assessment run, this can lead to an unrepresen-
tative result. Consequently, wrongful conclusions and de-
cisions can be made, e.g., a developer may think a change
he implemented into a code recently made performance
worse, yet, instead, this occurred due to fluctuation in
the network, web, or client device. An interesting ob-
servation is that, due to variability in the measurement
results, a website can be interpreted in a different score
group, e.g., W1, W2, W4, and W9 results are dispersed
between score groups Good and Needs improvement, and
W3 between score groups Poor and Needs improvement.

Figure 1: Data distribution of Performance Scores
(N=100).

Detailed results for all sets of data are presented in Table
2, providing insight into how the data are spread, how
much repeating the test reduces variability and how re-
sults stabilize as the number of tests run increases. These
results further illustrate the differences between single
and multiple runs, which can provide a more reliable es-
timate of a website’s performance; therefore, providing a
rationale why addressing intrinsic fluctuations when deal-
ing with time-based metrics should be considered, and
why a single run can (in some cases) not be representa-
tive enough to provide reliable measurements. We argue
that the use of a median value for aggregation is preferred
over other measures of central tendency to minimize the
impact of outliers.
Mood’s median test, performed for N=5, N=10, and
N=100, showed that the medians of the Performance
Score were the same across all three categories of runs
for all websites, except W5, where the test could not be
performed. These results, presented in Table 3, indicate
that 5 runs in comparison to 10 and 100 runs are sufficient

Table 2: Performance scores and their statistics across
different numbers of runs.

Statistics N=1 N=5 N=10 N=100

W1
Mean 87 91 91.2 90.9
Median 87 92 92 92
Range / 6 6 21
SD / 2.3 1.9 2.9

W2
Mean 86 86 88.3 89.5
Median 86 90 90 90
Range / 18 20 20
SD / 7.5 5.7 2.8

W3
Mean 40 42.8 44.3 43.3
Median 40 43 44 44
Range / 5 10 14
SD / 1.9 2.8 1.9

W4
Mean 89 88.4 88.3 88.6
Median 89 89 88 89
Range / 5 5 7
SD / 1.9 1.5 1.5

W5
Mean 99 98.6 98.5 98.6
Median 99 99 98.5 99
Range / 1 1 5
SD / 0.5 0.5 0.9

W6
Mean 28 35 32.9 33.9
Median 28 34 31 33.5
Range / 15 16 21
SD / 7.3 6.1 3.9

W7
Mean 98 98 97.6 97.3
Median 98 98 98 98
Range / 0 2 5
SD / 0 0.7 1.2

W8
Mean 94 94.4 94.4 94.5
Median 94 94 94 94
Range / 1 1 4
SD / 0 0.5 0.6

W9
Mean 77 72.4 72.1 73.3
Median 77 72 72 73
Range / 7 8 23
SD / 2.9 2.5 4.2

W10
Mean 75 83.4 85.3 86.1
Median 75 86 87 87
Range / 12 13 13
SD / 4.9 3.9 2.5

to eliminate possible outliers while still performing web
performance testing in a reasonable time.

5 Conclusion

Several strategies can be employed to reduce random
noise, measurement bias and errors when using Light-
house for web performance measurements. In the paper,
we performed a literature review in which we selected
studies using Lighthouse for estimating web performance.
The results show that more than half of the primary stud-
ies did not employ any specific strategy to address vari-
ability in web performance measurements. Others use a
reasonably straightforward approach to repeat the Light-
house audit multiple times and summarize repeated runs
using a mean or median. However, a large discrepancy
was noticed in these works in the number of runs and
measures of central tendency used to aggregate multiple

41

Table 3: Mood’s median test by website, comparing groups of N=5, N=10, and N=100.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
Asymp.Sig 0.996 0.723 0.137 0.557 * 0.744 0.927 0.879 0.211 0.758

*All values are less than or equal to the median. Mood’s median test could not be performed.

runs into a single-value result. Thus, we investigated this
further empirically by conducting an experiment on real
popular websites, to demonstrate how the number of runs
affects variability and prevents single-run outliers. With
this, we highlighted how measurement results from single
runs could be misleading and unrepresentative; therefore,
we recommend for research and practice to run perfor-
mance tests multiple times and use an aggregation value.
Based on our results, performing performance audits 5
times reduces variability in results greatly in a reasonable
time. Our study provides a base for future research stud-
ies addressing outliers in web performance testing, and for
guidelines for future studies on how to perform represen-
tative web performance measurements with Lighthouse.

Acknowledgment

The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No.
P2-0057).

References

[1] Alexa Internet, Inc. The top 500 sites on the
web, 2021.

[2] Arapakis, I., Bai, X., and Cambazoglu, B. B.
Impact of response latency on user behavior in web
search. In Proceedings of the 37th International
ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval (New York, 2014),
SIGIR ’14, ACM, pp. 103–112.

[3] Beyer, D., Löwe, S., and Wendler, P. Reliable
benchmarking: Requirements and solutions. Inter-
national Journal on Software Tools for Technology
Transfer 21, 1 (2019), 1–29.

[4] Chan-Jong-Chu, K., Islam, T., Exposito,
M. M., Sheombar, S., Valladares, C., Philip-
pot, O., Grua, E. M., and Malavolta, I. Inves-
tigating the correlation between performance scores
and energy consumption of mobile web apps. In
Proceedings of the Evaluation and Assessment in
Software Engineering (New York, 2020), EASE ’20,
ACM, pp. 190–199.

[5] Chen, J., and Revels, J. Robust benchmarking
in noisy environments, 2016.

[6] Gambhir, A., and Raj, G. Analysis of cache in
service worker and performance scoring of progres-
sive web application. In 2018 International Confer-
ence on Advances in Computing and Communica-
tion Engineering (ICACCE) (2018).

[7] Google Developers. Variability, 2019.
[8] Google Developers. Lighthouse, 2021.

[9] Google Developers. Lighthouse performance
scoring, 2021.

[10] Johnston, O., Jarman, D., Berry, J., Zhou,
Z. Q., and Chen, T. Y. Metamorphic relations
for detection of performance anomalies. In 2019
IEEE/ACM 4th International Workshop on Meta-
morphic Testing (MET) (2019), pp. 63–69.

[11] Kalibera, T., and Jones, R. Rigorous bench-
marking in reasonable time. In Proceedings of the
2013 International Symposium on Memory Manage-
ment (New York, 2013), ISMM ’13, ACM, pp. 63–74.

[12] Nurshuhada, A., Yusop, R. O. M., Azmi, A.,
Ismail, S. A., Sarkan, H. M., and Kama, N.
Enhancing performance aspect in usability guide-
lines for mobile web application. In 2019 6th In-
ternational Conference on Research and Innovation
in Information Systems (ICRIIS) (2019), pp. 1–6.

[13] Rahman, S., and Wittie, M. P. MR-DNS:
Multi-resolution Domain Name System. In Internet
and Distributed Computing Systems (Cham, 2019),
R. Montella, A. Ciaramella, G. Fortino, A. Guerrieri,
and A. Liotta, Eds., Springer International Publish-
ing, pp. 191–202.

[14] Riet, J. v., Paganelli, F., and Malavolta,
I. From 6.2 to 0.15 seconds – an industrial case
study on mobile web performance. In 2020 IEEE
International Conference on Software Maintenance
and Evolution (ICSME) (2020), pp. 746–755.

[15] Rojas-Mora, J., Lincolao-Venegas, I., and
Schneeberger-Leon, F. S3e2: a web-based
gis for the visualization and analysis of socioe-
conomic segregation in chile’s elementary educa-
tion system. In Proceedings of the 1st Interna-
tional Conference on Geospatial Information Sci-
ences (2019), O. S. Siordia, J. L. S. Carde-
nas, A. Molina-Villegas, G. Hernandez, P. Lopez-
Ramirez, R. Tapia-McClung, K. G. Zuccolotto, and
M. C. Colunga, Eds., vol. 13 of Kalpa Publications
in Computing, EasyChair, pp. 12–20.

[16] Shivakumar, S. K. Modern Web Performance
Optimization. Apress, Berkeley, Ca, 2020.

[17] Szalek, K., and Borzemski, L. Conversion Rate
Gain with Web Performance Optimization. A Case
Study. In Information Systems Architecture and
Technology: Proceedings of 39th International Con-
ference on Information Systems Architecture and
Technology – ISAT 2018 (Cham, 2019), Springer,
pp. 312–323.

[18] Yu, A., and Benson, T. A. Dissecting perfor-
mance of production quic. In Proceedings of the
Web Conference 2021 (New York, 2021), WWW ’21,
ACM, pp. 1157–1168.

42

Transformer-based Sarcasm Detection in English and
Slovene Language

Matic Rašl
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

matic.rasl@student.um.si

Mitja Žalik
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

mitja.zalik1@student.um.si

Vid Keršič
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

vid.kersic@um.si

Abstract
Sarcasm detection is an important problem in the
field of natural language processing. In this pa-
per, we compare performances of the three neural
networks for sarcasm detection on English and
Slovene datasets. Each network is based on a
different transformer model: RoBERTa, Distil-
Bert, and DistilBert – multilingual. In addition
to the existing Twitter-based English dataset, we
also created the Slovene dataset using the same
approach. An F1 score of 0.72 and 0.88 was
achieved in the English and Slovene dataset, re-
spectively.

Keywords natural language processing, sarcasm
detection, transformers, RoBERTa, DistilBert

1 Introduction

Language is the essential tool for communication in real
life and online in the digital world. With the fast growth
of the internet in the last two decades, an enormous
amount of text data is available to everyone, which is one
of the main reasons natural language processing (NLP)
has become one of the fastest-growing fields in computer
science and artificial intelligence. While the most com-
monly used NLP application is text translation, many
other applications are being researched and applied, e.g.,
text summarization, emotion recognition, sarcasm, and
irony detection [1]. In this paper, we focus on the sar-
casm detection problem.
Sarcasm detection is defined as a binary classification
problem, where the goal is to detect if the given text is
sarcastic [2]. The most common places to find sarcastic
comments are social media platforms, e.g., Twitter, where
people often express their opinions and views on different
topics. While in some examples, e.g., "I work 40 hours
a week for us to be this poor", it is easy to spot, some-
times, e.g., "Great, that’s just what I needed!" is harder to
perceive at first sight. Detection of sarcasm is essential

because not understanding and detecting it can lead to
substantial miscommunication errors and disagreements.
Automatic sarcasm detection is also crucial in other NLP
problems, such as sentiment analysis, where undetected
sarcasm can negatively affect an analysis. Therefore,
there is a need for automatic detection of sarcastic com-
ments and text.
This paper compares performances of three neural net-
works for sarcasm detection on English and Slovenene
datasets. Each neural network is based on a transformer
model. In the following sections, we overview the related
work, describe the used datasets, present the experiment,
analyze the results, and conclude the paper emphasizing
future work.

2 Related Work

Automatic sarcasm detection dates back to 2006 [3], but
it has gotten momentum in the past few years with ad-
vancements in the fields of neural networks and NLP. In
general, sarcasm can be detected in three different ways
[2]. Rule-based approaches use specific evidence, such as
words or phrases, for identification. Such techniques were
often used in earlier systems, such as [4]. Statistical ap-
proaches either use text features or learning algorithms
to find sarcasm. Statistical methods were used in works,
such as [5], where combinations of positive verbs and
negative situation phrases were used as classification fea-
tures. The most common approach today is by using deep
learning techniques. For example, in [6], the model can
learn user-specific context and thus achieve better results
than previous state-of-the-art models.
Significant advancements in NLP tasks were achieved
with transformers. They are a new form of neural net-
work that does not use convolution and recursion. In-
stead, they use attention to find correlations between
words in the text. Transformers can process text in paral-
lel, allowing much faster learning than sequential meth-
ods [7]. They also achieve better results than previous
methods.

DOI https://doi.org/10.18690/978-961-286-516-0.10
ISBN 978-961-286-516-0 43

With the increasing number of learning parameters, neu-
ral networks need a larger training dataset to prevent
overfitting. While building large labeled datasets can
be demanding, it is easy to construct large unlabelled
corpora. Therefore, large models can be trained on un-
labelled text data to create a good language model, i.e.,
expressive word embeddings. Afterwards, these represen-
tations can be used for different NLP-related tasks [5].
The mainstream architecture of the pre-trained mod-
els is Bidirectional Encoder Representations from Trans-
formers (BERT). The initial model was pre-trained on
BooksCorpus and English Wikipedia, which advanced
state-of-the-art for eleven NLP tasks [8]. Nowadays,
many BERT-based architectures exist. For example,
RoBERTa (A Robustly Optimized BERT Pre-training
Approach) [9] optimizes the way of masking tokens and
thus improving the performance of the model. Another
common architecture is DistilBert [10], which has reduced
the number of training parameters. That makes its train-
ing 60 % faster while retaining 97 % of BERTs language
understanding capabilities.
BERT has been widely and successfully utilized for sar-
casm detection [11]. In [12], the accuracy is even more
improved by also considering the context of sarcastic com-
ments. The authors in [13] use RoBERTa to detect
sarcasm with even higher accuracy. Although BERT-
based architectures are very successful, their pre-training
still has some drawbacks. Sarcasm is present primarily
in informal communication (e.g., social networks such as
Reddit, Twitter, etc.), which was not part of the train-
ing set. Therefore, in [14] BERT was outperformed by
the context-independent GloVe embeddings model, which
was pre-trained on Twitter data.

3 Datasets

Constructing a dataset for the sarcasm detection problem
is not a straightforward task since the perception of
sarcasm is difficult even for people. A general approach
to dataset creation is to scrap the data from different
social media platforms, e.g., Twitter, Reddit, and use
user-specified labels, i.e., hashtags on Twitter and /s
on Reddit [11, 15, 16]. But this approach has several
drawbacks, like users not annotating sarcasm with tags
or misusing labels to express their opinion better. The
Headlines dataset was introduced to solve the mentioned
problem. The dataset contains headlines from two news
websites: one, where real-world events are reported, and
the other with sarcastic descriptions of events, including
sarcastic headlines [17]. The third common way is to
manually label data, but this is time-consuming and still
requires the annotator with a good sense of sarcasm.
Since no dataset for sarcasm detection in the Slovenian
language exist, and manual labeling is time-consuming,
we created the Slovene dataset with the user-specified
labels. As a knowledge base for our task, tweets (i.e.,
posts on Twitter) were selected. Tweets, annotated by
users with specific hashtags (e.g., #sarcasm, #sarkazem),
were considered sarcastic (i.e., positive) examples, while
other tweets were non-sarcastic (i.e., negative) examples.
For the English dataset, we selected the one from the
2nd Workshop on Figurative Language Processing [11]

because it was constructed in the same way as the Slovene
dataset. Before training, datasets were split into the
training and the test sets, as shown in Table 1.

Table 1: Train-Test split.

Set English Slovene
Train 5000 759
Test 1800 272

4 Method

Although transformers can be fine-tuned to specialize in
a specific task, the process takes a long time on common
hardware. However, as shown in [13], fine-tuning can be
avoided by utilizing other networks to find correlations in
transformer embeddings. Since the transformer’s weights
are not changing, its output can be calculated only once
and then saved before learning the second part of the
network. This approach significantly improves learning
times.
For the experiment, we implemented the neural network
model similar to the one used in [13]. As some details
about the network were missing in the mentioned paper,
we also relied on implementation in [18]. The architecture
of the neural network is shown in Figure 1. During the
experiment, three different transformers were explored,
RoBERTa [9], pre-trained on English dataset, and two
DistilBert [10] transformers, one pre-trained on the En-
glish language and the other one on multiple languages
(DistilBert mult). DistilBert transformers are smaller
than RoBERTa (66 M vs. 125 M training parameters),
which translates to significant speedup embedding gen-
eration time.
As mentioned before, tokenized inputs were transformed
to embeddings at the beginning of the training. Embed-
dings were saved to the Transformer output cache. Then
they were used as input to the Bidirectional LSTM layer,
whose outputs were concatenated with original embed-
dings before the pooling layer. Before flattening the data,
1D spatial dropout was applied. After dense and another
dropout layer, a dense layer with softmax activation was
applied.
For the training, the Google Colab [19] environment with
Google TPU was used. Neural networks were trained for
25 epochs with a 10 % validation split. In the end, weights
of epoch with the smallest validation loss were restored.

5 Experiments and Results

The accuracy of the models was tested on the test
datasets with the embedding of length 20. Additionally,
we tested the model using RoBERTa transformer with
the embeddings of length 100 to find out how embeddings
length affects the results. However, since the results with
larger embeddings were similar to those obtained with
smaller ones, we did not train DisitlBert based models
on larger embeddings due to the hardware limitations.
Results are shown in Table 2.

44

Transformer

Concatenation

Bidirectional LSTM

Pooling

Dropout

Flatten

Dense

Dropout

Softmax

Transformer output cache

Figure 1: The architecture of the neural network.

For all tested models, the results on the Slovene data
were significantly better than on the English data
(ranging from 11 % to 18 % improvement). This means
that in the used Slovene dataset, sarcasm was more
clearly expressed. The best results on both datasets
were achieved using the RoBERTa transformer with
an embedding length of 100. Even when using shorter
embeddings, the RoBERTa transformer performed the
best. However, the difference between embeddings of
length 100 and 20 was small (only 2 % difference in
F1 score). Additionally, the difference between using
RoBERTa and DistilBERT transformer is also relatively
small (3 % to 6 % difference in F1 score), which implies
that the usage of DistilBERT can be a good alternative
to RoBERTa on low-cost hardware. When using a mul-
tilingual transformer, the results on the English dataset
were close to the English-only transformer. However, on
the Slovene dataset, the multilingual dataset provided
slightly better results.
In [13], the performance of the RCNN-RoBERTa model

Table 2: Results of the experiment. The first three
columns contain transformer’s name (M), used dataset
(L), and embeddings length (EL). The dataset is denoted
by its language (slo for Slovene and en for English). In
the last four columns, accuracy (A), precision (P), recall
(R), and F1 norm (F1) are presented. The results are
rounded to two decimal places.

M L EL A P R F1
RoBERTa en 100 0.70 0.67 0.78 0.72
RoBERTa en 20 0.66 0.63 0.79 0.70
DistilBert en 20 0.63 0.60 0.74 0.67

DistilBert - mult en 20 0.61 0.58 0.80 0.67
RoBERTa slo 100 0.83 0.82 0.95 0.88
RoBERTa slo 20 0.81 0.83 0.89 0.86
DistilBert slo 20 0.74 0.83 0.78 0.80

DistilBert - mult slo 20 0.79 0.89 0.78 0.83

was measured on various datasets. The F1 score was be-
tween 78 % and 90 %, which is considerably better than
the results in English, but comparable to the Slovene
dataset. However, since different datasets were used in
the study, the results are hard to compare. The same
English dataset as applied here was used in [11], where
participants presented 13 different solutions, ranging be-
tween an F1 score of 0.58 and 0.83 Only three solutions
were better than the F1 score of 0.72 , which we achieved
with RoBERTa transformer and embeddings length of
100
Dataset construction is one of the most critical parts of
the experiment since it provides the knowledge base for
the transformer models. According to the obtained re-
sults, models were able to detect sarcasm in the given
examples, despite several drawbacks explained in section
3. The used approach is good enough for uncomplicated
use cases where sarcasm is meant to be detected since
users also annotate messages with #sarcasm. But for
more complicated use cases with complex and more chal-
lenging examples, alternative methods to the dataset con-
struction should also be explored.

6 Conclusion

In this paper, we compare how the utilization of different
transformers combined with the BiLSTM model affects
the accuracy of sarcasm prediction. RoBERTa, English-
based DistilBERT, and multilingual DistilBERT trans-
formers were used in the experiment. All three trans-
formers were combined with the same BiLSTM model
and trained on English and Slovene datasets. After-
wards, the accuracy of the models was obtained using
test datasets in English and Slovene language. In the best
case, F1 scores of 0.72 and 0.88 were achieved on English
and Slovene datasets, respectively.
In the future, more work could be done on dataset cre-
ation. Different dataset construction approaches, as de-
scribed in section 3, can be explored and adjusted for
the Slovene language. Furthermore, current datasets can
be expanded by adding more Tweets (especially Slovene)
or data from different sources, e.g., Reddit. Another in-

45

teresting direction for future work is exploring transfer
learning to reuse models on different languages, e.g., lan-
guages similar to Slovene.

References

[1] G. G. Chowdhury. Natural language processing.
Annual Review of Information Science and Tech-
nology, 37(1):51–89, 2003. doi: 10 . 1002 / aris .
1440370103.

[2] A. Joshi, P. Bhattacharyya, and M. J. Carman. Au-
tomatic sarcasm detection: a survey. ACM Comput.
Surv., 50(5), Sept. 2017. doi: 10.1145/3124420.

[3] J. Tepperman, D. Traum, and S. Narayanan. "Yeah
Right": sarcasm recognition for spoken dialogue
systems. In Ninth international conference on spo-
ken language processing, 2006.

[4] T. Veale and Y. Hao. Detecting ironic intent in cre-
ative comparisons. In Proceedings of 19th European
Conference on Artificial Intelligence - ECAI 2010,
pages 765–770, Amsterdam, The Netherlands. IOS
Press, 2010. doi: 10.3233/978-1-60750-606-5-
765.

[5] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X.
Huang. Pre-trained models for natural language
processing: A survey. Science China Technological
Sciences, 63(10):1872–1897, 2020. doi: 10.1007/
s11431-020-1647-3.

[6] S. Amir, B. C. Wallace, H. Lyu, P. Carvalho, and
M. J. Silva. Modelling context with user embed-
dings for sarcasm detection in social media. In Pro-
ceedings of The 20th SIGNLL Conference on Com-
putational Natural Language Learning, pages 167–
177, Berlin, Germany. Association for Computa-
tional Linguistics, Aug. 2016. doi: 10.18653/v1/
K16-1017.

[7] R. Kulshrestha. Transformers. 2020. url: https:
/ / towardsdatascience . com / transformers -
89034557de14 (visited on 06/20/2021).

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding, 2018. arXiv:
1810.04805.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D.
Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. RoBERTa: A Robustly Optimized
BERT Pretraining Approach, 2019. arXiv: 1907.
11692.

[10] V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter, 2019. arXiv: 1910 .
01108.

[11] D. Ghosh, A. Vajpayee, and S. Muresan. A re-
port on the 2020 sarcasm detection shared task. In
Proceedings of the Second Workshop on Figurative
Language Processing, pages 1–11, Online. Associa-
tion for Computational Linguistics, July 2020. doi:
10.18653/v1/2020.figlang-1.1.

[12] H. Srivastava, V. Varshney, S. Kumari, and S.
Srivastava. A Novel Hierarchical BERT Archi-
tecture for Sarcasm Detection. In Proceedings
of the Second Workshop on Figurative Language
Processing, pages 93–97, Stroudsburg, PA, USA.
Association for Computational Linguistics, 2020.
doi: 10.18653/v1/2020.figlang-1.14.

[13] R. A. Potamias, G. Siolas, and A. G. Stafy-
lopatis. A transformer-based approach to irony
and sarcasm detection. Neural Computing and
Applications, 32(23):17309–17320, Dec. 2020. doi:
10.1007/s00521-020-05102-3.

[14] A. Khatri and P. P. Sarcasm detection in tweets
with BERT and GloVe embeddings. In Proceedings
of the Second Workshop on Figurative Language
Processing, pages 56–60, Online. Association for
Computational Linguistics, July 2020. doi: 10 .
18653/v1/2020.figlang-1.7.

[15] M. Bouazizi and T. Otsuki Ohtsuki. A pattern-
based approach for sarcasm detection on twitter.
IEEE Access, 4:5477–5488, 2016. doi: 10.1109/
ACCESS.2016.2594194.

[16] M. Khodak, N. Saunshi, and K. Vodrahalli. A
Large Self-Annotated Corpus for Sarcasm, 2017.
eprint: 1704.05579.

[17] R. Misra and P. Arora. Sarcasm Detection using
Hybrid Neural Network, 2019. arXiv: 1908.07414.

[18] L. Famiglini. Irony-Sarcasm-Detection-Task. url:
https : / / github . com / lorenzofamiglini /
Irony - Sarcasm - Detection - Task (visited on
06/25/2021).

[19] Google Colab. url: https://colab.research.
google.com/notebooks/intro.ipynb (visited on
06/06/2020).

46

https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1002/aris.1440370103
https://doi.org/10.1145/3124420
https://doi.org/10.3233/978-1-60750-606-5-765
https://doi.org/10.3233/978-1-60750-606-5-765
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.18653/v1/K16-1017
https://doi.org/10.18653/v1/K16-1017
https://towardsdatascience.com/transformers-89034557de14
https://towardsdatascience.com/transformers-89034557de14
https://towardsdatascience.com/transformers-89034557de14
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2020.figlang-1.1
https://doi.org/10.18653/v1/2020.figlang-1.14
https://doi.org/10.1007/s00521-020-05102-3
https://doi.org/10.18653/v1/2020.figlang-1.7
https://doi.org/10.18653/v1/2020.figlang-1.7
https://doi.org/10.1109/ACCESS.2016.2594194
https://doi.org/10.1109/ACCESS.2016.2594194
1704.05579
http://arxiv.org/abs/1908.07414
https://github.com/lorenzofamiglini/Irony-Sarcasm-Detection-Task
https://github.com/lorenzofamiglini/Irony-Sarcasm-Detection-Task
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb

Extraction and Analysis of Sport Activity Data Inside
Certain Area

Luka Lukač
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

luka.lukac@student.um.si

Abstract
Nowadays, sport data analysis is one of the cru-
cial factors, used to enhance the athletes’ per-
formance, which can depend upon many differ-
ent circumstances. One of those is the area of
an exercise, which can dramatically impact on an
athlete’s performance. Since not enough devotion
has been given to this topic, this study focuses on
extracting and analysing parts of exercises, which
take place inside of a specific area, using principles
from another part of Computer Science, Compu-
tational Geometry.

Keywords sports, area, extraction, analysis

1 Introduction

As long as professional sport competitions have been
organised, professional, as well as amateur athletes have
been constantly trying to enhance their performance. In
order to know in which aspects their exercises can be
improved, tracking and analysing data are crucial. One of
important factors, which can influence the performance,
is the area where the training is performed. This study
focuses on the extraction of the data inside certain areas,
which allows thorough analysis of the effectiveness of an
athlete in those regions.

2 Materials and Methods

2.1 Materials

In these days, a lot of athletes track their performance
during the training using modern sport trackers, which
allow them to capture a lot of indicators of their exer-
cise. Since there are many indicators that are not visible
directly, but can be extracted as a product of an exten-
sive data analysis, a sport activity can be analysed more
thoroughly and deeply. A great tool in analysing the data
is Machine Learning, efficient computational methods of
which enabled rising the researches in automatic planning
of sport training sessions. [1]
Nowadays, many athletes monitor their performance us-
ing modern sport equipment, such as sport watches or
sport wrists. There are websites that are focused on col-
lecting that kind of data, however, it is very likely that
the data does not have a public access [3] and that the

databases require a lot of preprocessing skills. An ex-
ample of a toolbox for extracting features from a sport
activity is ’sport-activities-features’, which is available in
GitHub repository at: https://github.com/firefly-
cpp/sport-activities-features. It is focused on one
of the most intensive and demanding tasks in Machine
Learning: data preprocessing. [2]
The overall load indicators that are parts of sport activ-
ity datasets (total distance, total duration, average heart
rate, etc.) have some disadvantages, such as that de-
tails are not expressed sufficiently, only a general outlook
of the training is captured and different phases of the
training are not recognized directly or are not recognized
at all. Thus, more hidden indicators, like intervals, to-
pographic maps and weather data are extracted in the
’sport-activities-features’ toolbox. [2]
One of the crucial features that allows retrieving a lot
of interesting and useful data is area detection, which
is the main part of this study. It is well known that
doing exercises in hilly areas can be a lot more difficult
and demanding. Despite apparently worse performance
in those regions (if only overall indicators are observed),
an athlete can put more power in that activity compared
to the one which is set in a flat area. As different areas
may contain distinct characteristics, it is important to be
able to analyse the performance of an athlete in a certain
area.
Datasets that are used to extract this kind of data must
include positions of an athlete at a certain time. If a
dataset is corrupt or some data is missing, the analysis
can output wrong results, therefore it is very important
to have datasets that have no such issues.

2.2 Methods

In order to unambiguously detect points that are located
inside the chosen area, inclusion test is a necessity. There
are three major algorithms one can use to determine,
whether a point is inside the area:

• Algorithm of the same signs,
• Algorithm of the sum of angles,
• Algorithm with rays.

To start with, the first algorithm that was implemented
and seemed to be working was the algorithm of the same
signs. Its principles are quite simple: if the sign of the
cross product between the hull line and the line from

DOI https://doi.org/10.18690/978-961-286-516-0.11
ISBN 978-961-286-516-0 47

https://github.com/firefly-cpp/sport-activities-features
https://github.com/firefly-cpp/sport-activities-features

the hull to the point is the same for all the hull lines,
the point lies within the polygon that represents the area
with great certainty. However, there are two significant
disadvantages regarding this algorithm, namely, it does
not allow holes inside the area, and secondly, it does not
allow concave polygons (representing area). [4]

Figure 1: Algorithm of the same signs.

The next algorithm that was considered was the algo-
rithm of the sum of angles. To each point that is located
on the hull, a ray from the point, which has been chosen
for the inclusion test, is made. The next step is to calcu-
late the sum of the angles between the rays, constructed
in the previous step. If the sum is 360◦, the point is in
the area and if the sum is 0◦, the point lies outside the
area. Although this algorithm allows concave angles on
the border of the area, the holes are still not permitted,
this is why it has not been implemented to the package
as an inclusion test. [4]

Figure 2: Algorithm of the sum of angles.

Finally, the third algorithm that uses rays to determine
whether a point lies inside an area has been implemented.
A ray from the point, which we want to check if inside
or outside the area, to any direction is being constructed.
If the ray intersects with the area border even times, the
point is not a part of the area. On the other hand, if there
is an odd number of intersections between the ray and the
hull, the point lies inside the area. This algorithm is much
less error-prone than the aforementioned algorithms, as

it produces the right results even if there are holes or
concave angles present in the area, this is why this algo-
rithm has been chosen for determining which parts of an
exercise were inside the given area. [5]

Figure 3: Ray algorithm.

1 function GET-POINTS-INSIDE-AREA(positions,
area)

2 points_in_area ← {};
3 for position ← 1 to positions.count do
4 n ← number_of_intersections(position,

area);
5 if n % 2 = 1 then
6 points_in_area ← points_in_area +

position;
7 end
8 end
9 return points_in_area;

Algorithm 1: Detection of points of an exercise
inside the given area

3 Results

After the implementation of the algorithm that detects
parts of an exercise inside area, visualisation has been
made in order to be able to test the algorithm properly.
To start with, the map sectors, where the exercise is tak-
ing place, are downloaded from OSM (OpenStreetMap)
and merged into an image, represented as a map. Then,
the area that has been used for the extraction of data is
plotted on the map, and lastly, the identified and uniden-
tified points of an exercise are being drawn on the map
according to the coordinates. An example of the visual-
ization can be found at 5, where the wider area of the
Slovenian Littoral is being displayed on the map and the
exercise is plotted.
However, not only are parts inside the area extracted,
but the data inside the area is also analysed. As already
pointed out, the performance of an athlete inside different
areas can vary significantly. This is why it is important
to be able to retrieve data, specific to a certain region.
One important factor about areas is also, what the perfor-
mance of an athlete was like not only in one training, but

48

in more exercises that took place at different times. This
is why data, such as whole distance, average speed, max-
imum speed, average heart rate, etc. is being extracted
from the activities or their parts, which took place inside
the same area.
Despite the algorithm working flawlessly, there can be
issues with obtaining datasets which would suit the anal-
ysis. As this kind of data is usually not publicly available,
a user is often limited to analysing their own activities,
which is one of the reasons why there is only a limited
amount of exercises visualized and displayed in this pa-
per.

Figure 4: Visualization of the area detection.

Figure 5: Visualization of more exercises inside area.

4 Discussion

To conclude, area identification is one of the crucial
factors in the sport data analysis. Since different areas
have different difficulties, it is crucial to be able to analyse
regions separately. This study portrays how this task can
be done using algorithms from Computational Geometry.
In the beginning, parts of exercises inside desired areas
should be extracted and then the extracted data can
be used for analysis of the performance of an athlete.
The next step, which has not been a part of this study,
could be the Machine Learning phase, during which the
extracted data could be analysed even further.

Acknowledgment

The author of this paper would like to kindly thank Iztok
Fister Jr., who provided a lot of motivation and assistance
during the writing of this study.

References

[1] Fister, I., Fister Jr, I., and Fister, D. Compu-
tational intelligence in sports. Springer, 2019.

[2] Fister Jr., I., Lukač, L., Rajšp, A., Fister,
I., Pečnik, L., and Fister, D. A minimalistic
toolbox for extracting features from sport activity
files. In 2021 IEEE 25th International Conference
on Intelligent Engineering Systems (INES) (2021),
IEEE, pp. 121–126.

[3] Rajšp, A., and Fister Jr., I. A systematic liter-
ature review of intelligent data analysis methods for
smart sport training. Applied Sciences 10, 9 (2020),
3013.

[4] Topiwala, A. Is the point inside the polygon?
Towards Data Science (2020).

[5] Vacek, L., Atter, E., Rizo, P., and Nam, B.
suas for deployment and recovery of an environmental
sensor probe.

Table 1: List of extracted features inside area.

ID Feature Description
1 Distance Total distance inside area.
2 Time Total time inside area.
3 Maximum speed Maximum speed inside area.
4 Average speed Average speed inside area.
5 Minimum heart rate Minimum heart rate inside area.
6 Maximum heart rate Maximum heart rate inside area.
7 Average heart rate Average heart rate inside area.

49

50

Methodology for the Assessment of the Text Similarity of
Documents in the CORE Open Access Data Set of Scholarly

Documents
Ivan Kovačič

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

ivan.kovacic@um.si

David Bajs
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

david.bajs@student.um.si

Milan Ojsteršek
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

milan.ojstersek@um.si

Abstract
This paper describes the methodology of data
preparation and analysis of the text similarity
required for plagiarism detection on the CORE
data set. Firstly, we used the CrossREF API and
Microsoft Academic Graph data set for metadata
enrichment and elimination of duplicates of doc-
uments from the CORE 2018 data set. In the
second step, we used 4-gram sequences of words
from every document and transformed them into
SHA-256 hash values. Features retrieved using
hashing algorithm are compared, and the result
is a list of documents and the percentages of cov-
erage between pairs of documents features. In
the third step, called pairwise feature-based ex-
haustive analysis, pairs of documents are checked
using the longest common substring.

Keywords data preparation for text similarity analysis,
text similarity, CORE data set, metadata enrichment

1 INTRODUCTION

Text similarity is a measure of the degree of content
similarity between two textual documents. It is used
as a metric which assists for plagiarism detection. In
general, plagiarism is a term that is used to describe acts
of intellectual theft and violating the material and moral
rights of the authors of intellectual property. However,
there are several definitions o f p lagiarism that may be
applied, depending on the circumstance of each individual
case of plagiarism. Maurer et. al. [9] have compiled a
list of possible definitions of plagiarism. They include:

• presenting other people’s work as your own
• copying other people’s work (or ideas) without giving

credit
• improper quotation

• copying sentence structures with minor modification
without giving credit

• copying the majority of your work from others, re-
gardless of giving credit [9]

In order to efficiently assert the existence and degree of
plagiarism, electronic detection is necessary along with
manual analysis. Using electronic detection, the similar-
ity index [1] is a metric which is reliable for identifying
potential cases of plagiarism, but it does not necessarily
indicate that plagiarism had occurred in an individual
case. Another important step is to obtain a sufficient
amount of metadata about any given document which is
analyzed. Using a sufficient amount of metadata, it is
easier to detect duplicate records of the same document,
which allows for a higher quality assessment of the degree
of plagiarism on a given document. If a journal article
is recorded twice in the same data set with inconsistent
metadata, there exists a pair of documents with a high
degree of similarity. Without good quality metadata, the
pair of documents may appear as totally different jour-
nal articles, although they represent the same instance of
intellectual work. In the following sections, we describe
our methodology of data preparation for text similarity,
metadata enrichment and the computation of text simi-
larity metrics on the CORE data set of scholarly docu-
ments as well as an analysis of the run time complexity
of our methodology.

2 RELATED WORK

Eaton and Crossman did a review of literature in the field
of self-plagiarism in social sciences research databases
and found that only 5.8 % of a sample of search results
consisted of primary research done in this field, which
indicates that the field of self-plagiarism is a relevant
topic of research in social sciences, we may also infer a
higher relevance of this research topic for computational
methods of detecting self-plagiarism [2].

DOI https://doi.org/10.18690/978-961-286-516-0.12
ISBN 978-961-286-516-0 51

In [8], a study was described in which a sample of arti-
cles that were published in the Scientific Periodicals Elec-
tronic Library (SPELL) was analyzed for plagiarism. A
comparison was made between two samples taken from
the years 2013 and 2018. The former sample contained
literal reproductions in 65.9 % of the total sample size,
while the latter sample from 2018 contained evidence of
plagiarism in 44 % of the total sample size. A reduction
of the similarity index was noticeable, the difference be-
ing attributed to the fact that the sample of articles from
2018 contained guidelines related to plagiarism and self-
plagiarism. The methodology of this study consisted of
random sampling of the data set and inputting the sam-
ples into iThenticate plagiarism detector. García-Romero
and Estrada-Lorenzo have described the analysis of the
Déjà vu database using citation analysis and found that
cases of plagiarism are more frequently published in jour-
nals with lower visibility and also confirmed that dupli-
cate documents not citing the original document show a
higher degree of full text similarity than those citing it
[5].

3 METHODOLOGY

In this section, we present our methodology of apply-
ing plagiarism detection algorithms and procedures on
the CORE data set, including metadata enrichment tech-
niques and the plagiarism detection methods used in this
study.

3.1 The CORE data set

CORE is one of the leading aggregation services of
open-access scholarly documents publicly available on
the web. Currently, CORE has aggregated metadata of
over 200 million open-access research articles and other
scholarly documents, harvested from over 10.000 open-
access repositories. A full list of harvested repositories
may be seen in [12]. In our study, we used the 2018-03-01
CORE data set. The data set contains 9.767.152 unique
documents with full text. Each individual document is
represented as a JSON record containing both the full
text of the document as well as the extracted metadata.
The schema of the JSON records is described in Table 1.
Metadata is important for plagiarism/self-plagiarism
analysis because it allows an expert who analyses an
individual case of plagiarism to evaluate the authorship,
year of publication and other data of a document
which is being analyzed in comparison to a document’s
potential candidates for document similarity. The CORE
data set does provide a rich aggregation of metadata
for scholarly documents, but it is also limited by the
quality of metadata provided by the individual servers
in harvested OAI-PMH repositories. The CORE team
actively develops means of enriching/improving the
metadata associated with each individual document,
since there exist issues with the metadata provided.
These issues include:

• Duplicate document entries - there exist several
duplicates in the CORE data set. These are present
because of multiple publications of the same docu-
ment in several different repositories that are har-

Table 1: CORE data set JSON schema.

JSON attribute Description
coreId unique CORE identifier
doi DOI identifier (if available)
title Title of the document
authors Authors (array)
contributors Contributors (array)
datePublished Date of publication
abstract The abstract of the document
downloadUrl URL of the PDF document
language Language of the document
fullTextIdentifier Full text unique ID
pdfHashValue PDF signature hash
journals List of journals or journal aliases
rawRecordXml Harvested OAI-PMH XML response
year Year of publication
relations Related entities (journals,journal aliases)
topics OAI-PMH dc:topic value
subjects OAI-PMH dc:subject value
issn ISSN (if available)
fullText Full text of the document

vested by CORE. The individual repositories have
inconsistent metadata, which makes detection of du-
plicates a non-trivial task.

• Unstructured metadata - most documents in the
2018 CORE data set contain insufficiently struc-
tured metadata, since the aggregation process makes
it difficult to ascertain the data like the journal
name, publisher. This information gets missing in
the dc:topic and dc:subject fields and mapping the
data in these fields to their respective metadata fields
is a non-trivial task.

• Non-defined document types
• Non-defined fields of study
• Non-normalized author names

The issues can be elaborated with a concrete example.
The document with CORE ID 47847252 is a book section
written in French. The document type, found in the sub-
jects field, is "Book sections", which is a non-standardized
document type, originating from the terminology used by
the digital library that hosts the OAI server which pro-
vided this document. The authors’ names are recorded
with the last name written first, followed by the initial
of the first name. In contrast, the document with CORE
ID 6871221 has authors written with the first name writ-
ten firstly, followed by the last name. Such inconsisten-
cies, which are the result of different bibliographic no-
tations, increase the difficulty of automated detection of
self-plagiarism and/or duplication of documents.

3.2 Microsoft Academic Graph (MAG)

In order to tackle the issue of incomplete and inconsistent
metadata, we utilized the mapping to the Microsoft Aca-
demic Graph done by the CORE team with the help of
their published 2019-04-01 MAG mapping data set. The
Microsoft Academic Graph is a document graph that con-

52

tains metadata records about scholarly documents, cita-
tion relationships between them, as well as normalized
data about authors, journals, fields of study and other
metadata. By connecting CORE to MAG by using the
DOI persistent identifier, an intersection of over 1.200.000
million articles was made in 2016 [6]. The MAG data set
contains structured metadata of scholarly documents. It
is organized the same way a classical relational database
is, with individual schemas representing entities and con-
nections between them represented as foreign keys. A
full description of the MAG schema is available in [3].
We emphasize some of the more useful metadata entries
in MAG which allow for metadata enrichment of CORE:

• Normalized authors - the authors in MAG are
normalized in a way that makes them uniquely iden-
tifiable and distinguishable from other authors. The
displayed author name is separated from the author’s
normalized name. Where available, authors are also
associated with an affiliation.

• Fields of study - papers documented in MAG have
a mapping to fields of study of that particular pa-
per. The fields of study are organized in a hierar-
chical structure which allows us to construct a tree
structure of fields of study for each paper in MAG.

• Journal data - in MAG journal articles are associ-
ated with journals, which have their names normal-
ized and other metadata associated to them, where
available. Namely, a citation count, the publisher of
the journal and the ISSN, where available [11].

3.3 CrossREF API

CrossREF is a service that aggregates metadata from
publishers and provides tools for several use cases related
to metadata, among other things it is an agent of the DOI
foundation (DF) and it allows users to register DOIs for
their scholarly documents. One of the most useful fea-
tures of CrossREF is the CrossREF public API, which
allows for metadata enrichment by resolving a DOI which
is contained in the CrossREF database into the metadata
of the associated document. The metadata provided by
CrossREF is rich and reliable, with information about the
journal and publisher, authors with affiliations (where
available), document types (e.g. journal article or con-
ference paper), reference counts, the volume and issue,
among others. The API itself is free to use, with no sign-
up or authentication required, the client who consumes
the REST API must only adhere to throttling mecha-
nisms specified by CrossREF which limit the number of
requests per second available to the client. The API
returns a requested sleep interval for the client in the
X-Rate-Limit-Interval HTTP header.

3.4 Metadata enrichment of CORE using
CrossREF and MAG

Our approach of metadata enrichment utilized the CORE
MAG mapping with some additional enhancements. We
imported a published MAG dump available in [10]. When
a document in CORE had a DOI available, the docu-
ment’s DOI was used for pairing with MAG, where the
mapping was not previously present in the 2019-04-01

MAG mapping data set. In addition, we normalized the
document titles and looked for matches in MAG, exclud-
ing the pairings where anomalies had been detected (non-
matching year of publication, non-matching authors). We
further enriched the metadata of these documents by con-
suming the CrossREF API and acquiring the ISSN, the
proper volume, issue and publisher for the documents.
Over 30 % of articles in CORE that have a DOI have no
ISSN associated with them in the MAG dump provided in
[10]. Our method of metadata enrichment is summarized
by Algorithm 1.

Data: set of CORE documents
Result: set of CORE documents with enriched

metadata
1 for document in set of CORE documents do
2 if document in CORE MAG mapping and

document has DOI then
3 consume CrossREF API;
4 map result to metadata properties of the

CORE document;
5 else if normalized document title and year

match then
6 enrich document using new MAG

mapping;
7 consume CrossREF API;
8 map result to metadata properties of

CORE document;
9 else

10 mark document as incomplete;
11 end
12 end

Algorithm 1: CORE metadata enrichment with
MAG and CrossREF.

3.5 Text matching in the CORE data set

In this section, we describe how plagiarism detection was
implemented on the CORE data set. We serialized the
entire CORE 2018-03-01 data set of JSON records into a
PostgreSQL database, creating a relational model which
corresponds to the JSON schema of CORE. To implement
a plagiarism detector, we firstly had to implement a
candidate search, followed by a pairwise text matching
algorithm.

3.5.1 Candidate retrieval

For finding plagiarism candidates for each individual doc-
ument, we computed n-gram models for each document in
CORE. The full text of the documents is tokenized with
a minimum sentence length of 40 characters, using rules
for mapping ordinal numbers, URLs, email addresses to
tokens, removing stop words and computing lexicograph-
ically sorted n-gram sequences with n = 4. The minimum
length of 40 characters was chosen because it is used in
the Slovenian open access infrastructure. Sequences of
4-grams have been determined as more efficient for can-
didate retrieval in previous studies [4]. A space delim-
ited sequence of sentence n-grams is transformed into an
SHA-256 hash value which is stored in a database. The

53

set of all n-gram hashes represents the set of features of
the entire full text which can be matched to other doc-
uments, thus acquiring lists of potential candidates for
plagiarism. In relational databases, this approach can be
implemented efficiently by performing a table join of the
table containing the SHA-256 hashes with itself, with the
table itself being structured as a key-value map, where
the key is a unique ID of the document which is mapped
to the hashed n-gram value. In order for such a table join
query to be time-efficient, indexes are necessary on the
column containing the n-grams hashes, which drastically
increases the space complexity of the described method.
Once the self-join query had been performed, a hash cov-
erage index was computed:

hashCoverage = unique covered hashes in candidate
total number of hashes in document

The candidates are then sorted in descending order by
the hashCoverage metric and stored into the database
as a candidate list. The procedure of candidate search is
summarized in Algorithm 2.

Data: fileid - CORE document ID
Result: set of candidate documents in CORE

1 for document in set of CORE documents do
2 perform self-join on the table of hashes

where document ID = fileid;
3 compute hashCoverage;
4 sort candidate list by hashCoverage

descending;
5 store candidate list into database;
6 end

Algorithm 2: Candidate retrieval with hashed
n-gram sequences.

3.5.2 Text matching of candidates

For each document, a maximum of 100 candidate docu-
ments is set as a limit for reasons of reducing the space
complexity of the procedure. After lists of candidates
are obtained for all documents in CORE, a fine text
comparison algorithm is used by Kärkkäinen et. al.
which constructs a permuted longest common prefix ar-
ray efficiently [7]. The output of the algorithm is a se-
quence of longest common prefixes along with offsets at
which a computed longest common prefix occurred in
the text. Our implementation of the algorithm is writ-
ten in C++ and wrapped by a REST API, which ac-
cepts two texts with configuration parameters and re-
turns the longest common prefix array. The configura-
tion parameters are the minimum length of the docu-
ment (minLen), the minimum length of the longest com-
mon suffix (lengthBoundary) and the size of the win-
dow in which neighbor prefixes are searched (windowSize
- for merging adjacent common prefixes into longer se-
quences). The REST API is bundled into a Docker im-
age, which allows for an implemention of a distributed
approach for calculating text matching on the CORE
dataset. A workload of documents is generated, on which
text matching is performed for each candidateas a pair
(document ID, status) in a table in a relational database,
with status being a flag described in Table 2.

Table 2: Distributed text matching workload status
flags.

Status flag Description
-1 unprocessed
0 processing
1 processed

Each node running the distibuted program performs a
transactional UPDATE query on the workload table, set-
ting the flags of N documents to 0 and simultaneously
obtaining the document IDs from the table where the
current flag value equals -1. It proceeds by obtaining all
the full texts of the document and the candidates from
the database and passing them on to a pairwise com-
parison performed by the Docker REST service which
is running on the same node. This approach allows for
efficient parallel computation of text matching between
documents and their candidates. The parameter N is
limited by the amount of free memory available to the
node. Given an average number of candidates C per doc-
ument and an average length L bytes of a document in
CORE, the estimated space complexity in bytes iss given
by N ∗ C ∗ L. If a node failed to perform the compari-
son, for example in the case of running out of free virtual
memory, a transactional update of the status flag is made,
setting the flag back to -1. This allows the document to
be processed by another node. Using this approach, the
procedure is fault-tolerant and partition tolerant. The
results of the text matching comparisons are arrays of
offsets and length of common prefixes, which are used in
the implementation of a plagiarism detector text match-
ing user interface. The prefixes are also used to compute
the similarity indices of the documents:

similarityIndex = Σ length of matches
total length of document

3.5.3 Deduplication

After computing pairwise text matching between docu-
ments and their candidates for plagiarism, the process
of plagiarism detection in the CORE database is com-
plete. We described the problem of duplicate entries in
the CORE data set in 3.1. With overall and pairwise sim-
ilarity indices computed, we were able to conduct dedu-
plication by using the computed indices in conjunction
with the enriched metadata we extracted from MAG and
CrossREF. The process of removing duplicates begins by
acquiring a list of all pairwise matches with a similarity
index above 85 %. For each such pair, we compare the
normalized titles of the two documents, the year of publi-
cation and ISSN. When a full match has been made, the
second document is automatically marked as duplicated.
When only a partial match has been made (e.g. only the
normalized titles match), the document is marked as a
potential duplicate. The potential duplicates are submit-
ted for manual inspection, meanwhile the detected dupli-
cates are excluded from candidate lists and the similarity
indices of the documents which contained duplicates are
corrected, respectively.

54

4 RESULTS

By utilizing our method for metadata enrichment, we en-
riched metadata for 3.457.071 documents in the 2018-03-
01 CORE data set which contain a DOI persistent iden-
tifier value. We also acquired a complete set of metadata
for a subset of 618.754 documents. This result is cru-
cial for the goal of data preparation, since text similarity
analysis is an instrument of plagiarism detection, which
requires a sufficient amount of metadata in order to be
useful to the expert conducting the plagiarism analysis.
The latter, smallest subset contains ISSN values which
allow for further studies on journal plagiarism and self-
plagiarism statistics by implementing plagiarism detec-
tion on this subset. Using our candidate retrieval method,
we have computed over 4.7 billion n-grams hashes for the
9.8 million documents in the 2018-03-01 CORE data set,
yielding a total hash table size of 1478 GB in PostgreSQL,
using b-tree indexes and document IDs in the form of
SHA-256 hashes. On average, we found 87.37 candidates
per document for each document in the CORE data set.
For our implementation of text matching comparison, we
installed the Docker image containing the text match-
ing REST API implementation on a cluster of 33 ma-
chines with Intel i5-8600 and 8 GB internal memory. Our
configuration for the parameters equaled minLen = 20,
lengthBoundary = 40 and windowSize = 350, respec-
tively, as they are set used in the Slovenian open access in-
frastructure. The average document length in the CORE
2018-03-01 data set is 73.41 KB, we found setting the pa-
rameter N=20 allows for stable and efficient processing of
the CORE data set using this approach. Table 3 contains
benchmark statistics for a varible number of computing
nodes running the text similarity Docker image. A ran-
dom sample of 1000 documents is selected for a variable
amount of nodes which process the workload in paral-
lel. The efficiency of the approach tends to asymptoti-
cally decline as we increase the number of nodes, which
is a result of the centralized data storage being used for
synchronization of the compute nodes. The network in-
frastructure and the hardware and configuration of the
database server represent a bottleneck. The table also
contains a reference value for the time necessary to pro-
cess all the 9.767.152 documents in the CORE 2018 data
set for a given number of nodes. The benchmarks were
performed on a subset of 10 nodes of the total 33 nodes
used to process the entire CORE data set, but the results
may be interpolated to a higher number of nodes.

5 CONCLUSION

The study described in this paper describes the method-
ology of establishing the largest plagiarism detection
dataset in Slovenia. We have developed a framework
of processing larger sets of documents into a pipeline
for plagiarism detection, with means of metadata
enrichment with the help of the CrossREF API and
Microsoft Academic Graph. Our output allows for
further study in the field of academic integrity, content
similarity detection, stylometry and other fields of
study. Utilizing our data set, which consists of enriched
metadata entries for the 2018-03-01 CORE data set,

Table 3: Distributed text similarity computation per-
formance benchmarks.

#nodes duration(s) est. days (CORE 2018)
1 1590,806 179,83
2 753,917 85,23
3 547,659 61,91
4 425,046 48,05
5 374,564 42,34
6 306,461 34,64
7 294,918 33,34
8 285,888 32,32
9 233,364 26,38
10 217,015 24,53

including the similarity indices for each document in the
data set, further research is possible.

6 ACKNOWLEDGMENTS

The authors thank Petr Knoth and the CORE team for
providing the 2018-03-01 CORE data set and technical
support during our efforts of obtaining data from CORE.
Also, we thank David Schmid for publishing the MAG
dump on Zenodo from April 2019.

References

[1] Bretag, T., and Mahmud, S. Self-plagiarism or
appropriate textual re-use? Journal of Academic
Ethics 7, 3 (Sep 2009), 193.

[2] Eaton, S. E., and Crossman, K. Self-plagiarism
research literature in the social sciences: A scoping
review. Interchange 49, 3 (Aug 2018), 285–311.

[3] Eide, D., and Huang, C. "microsoft academic
graph schema". Microsoft Academic Graph official
website. Accessed Jun 1, 2021. [Online] Available:
https://docs.microsoft.com/en-us/academic-
services/graph/reference-data-schema.

[4] Fartek, J. Distributed generation of plagiarism
detection reports. J. Fartek, 2018. Bachelor thesis.

[5] García-Romero, A., and Estrada-Lorenzo,
J. M. A bibliometric analysis of plagiarism and self-
plagiarism through déjà vu. Scientometrics 101, 1
(Oct 2014), 381–396.

[6] Herrmannova, D., and Knoth, P. An analysis
of the microsoft academic graph. D-Lib Magazine
22 (09 2016).

[7] Kärkkäinen, J., Manzini, G., and Puglisi,
S. J. Permuted longest-common-prefix array. In
Combinatorial Pattern Matching (Berlin, Heidel-
berg, 2009), G. Kucherov and E. Ukkonen, Eds.,
Springer Berlin Heidelberg, pp. 181–192.

[8] Krokoscz, M. Plagiarism in articles published in
journals indexed in the scientific periodicals elec-
tronic library (spell): a comparative analysis be-
tween 2013 and 2018. International Journal for Ed-
ucational Integrity 17, 1 (Jan 2021), 1.

55

https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema
https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema

[9] Maurer, H., Kappe, F., and Zaka, B. Plagia-
rism - a survey. Journal of Universal Computer Sci-
ence 12 (01 2006), 1050–1084.

[10] Microsoft Academic. Microsoft academic graph.
Zenodo. Accessed Jun 1, 2021. [Online] Available:
https://doi.org/10.5281/zenodo.2628216, Apr.
2019.

[11] Sinha, A., Shen, Z., Song, Y., Ma, H., Eide,
D., Hsu, B.-J. P., and Wang, K. An overview of
microsoft academic service (mas) and applications.
In Proceedings of the 24th International Conference
on World Wide Web (New York, NY, USA, 2015),
WWW ’15 Companion, Association for Computing
Machinery, p. 243–246.

[12] The CORE team. "core data providers". CORE
official website. Accessed Jun 1, 2021. [Online]
Available: https://core.ac.uk/data-providers?
q=&size=10.

56

https://doi.org/10.5281/zenodo.2628216
https://core.ac.uk/data-providers?q=&size=10
https://core.ac.uk/data-providers?q=&size=10

Embedding Non-planar Graphs: Storage and
Representation

Ðorđe K lisura
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Glagoljaška ulica 8, 6 000 K oper, S lovenia
klisuradjordje10@gmail.com

Abstract
In this paper, we propose a convention for repre-
senting non-planar graphs and their least-crossing
embeddings in a canonical way. We achieve this
by using state-of-the-art tools such as canonical
labelling of graphs, Nauty’s Graph6 string and
combinatorial representations for planar graphs.
To the best of our knowledge, this has not been
done before. Besides, we implement the men-
tioned procedure in a SageMath language and
compute embeddings for certain classes of cubic,
vertex-transitive and general graphs. Our main
contribution is an extension of one of the graph
data sets hosted on MathDataHub, and towards
extending the SageMath codebase.

Keywords planar graph, graph representation, crossing
number, graph database

1 Introduction

Computers are increasingly used by mathematicians to
assist them in their studies. This includes most aspects
of a researcher’s work, from publishing and reading pa-
pers to computations in mathematical software. Perhaps
surprisingly, mathematicians also generate and use data,
and the production and processing of massive datasets
are becoming increasingly important in several areas of
mathematics.
The primary applications for these mathematical datasets
and databases are exploratory in nature. They are used
by researchers to test hypotheses or to discover pat-
terns and counterexamples. It’s not difficult to find such
"datasets" that even predate computers: the Atlas of
Graphs and the Foster census are two examples from
graph theory. The Online Encyclopedia of Integer Se-
quences (OEIS) is a modern mathematical database that
represents an online database of integer sequences. The
OEIS now contains over 334000 sequences that are useful
to both professional and amateur mathematicians, mak-
ing it the largest database of its kind. The sequences
in the database serve as fingerprints for the records they
are associated with. A somewhat similar project in graph
theory is the House of Graphs. An important notion is
that of using mathematical objects, such as integer se-
quences, or graphs, to search for mathematical theorems.
This has been introduced as theorem fingerprinting by
Billey and Tenner [2] as a way to improve the efficiency

of searching for mathematical knowledge. In a broader
sense, fingerprints are used in many fields of science, rang-
ing from computer science to chemistry, archaeology, and
genetics. Computer documentation, reducing duplication
in web search results, and surely DNA fingerprinting are
a few examples.
Because of its applications in physics, biochemistry, bi-
ology, electrical engineering, astronomy, operations re-
search, and computer science, graph theory is rapidly
moving into the core of mathematics. The theory of
planar graphs is based on Euler’s polyhedral formula,
which is related to the polyhedron edges, vertices and
faces. Planar graphs are used in a variety of applications
in the modern era, including constructing and organiz-
ing sophisticated radio electronic circuits, railway maps,
planetary gearboxes, and chemical molecules. Pipelines,
railway lines, subway tunnels, electric transmission lines,
and metro lines are all vitally crucial for modelling an
urban city. For further readings on this topic, look at
Trudeau and Richard [13], and Barthelemy [1].

1.1 Related work and contributions

Some of the most significant projects that act as mathe-
matical databases which are of assistance to researchers
in their research projects are the SageMath platform [12],
American Mathematical Society MathSciNet [11], above-
mentioned Encyclopedia of Integer Sequences [6], House
of Graphs [5], and Atlas of Graphs [10].
The above-named tools are far from perfect and are many
times subject to important work of the open-source com-
munity. This project aims to provide another toolset for
researchers, via improving the platform MathDataHub
which will, in the future, provide our database contain-
ing planar embeddings minimising the number of cross-
ings. Those embeddings are hard to compute and such
a database of precomputed embeddings does not exist in
any mathematical database.
The paper is structured as follows. In Section 2, we
present the central technique and ideas of embedding
non-planar graphs. Moreover, we give a concrete algo-
rithm that uses them and evaluates them in terms of
space and time complexity. In Section 3, we talk about
the impact of our results so far. Finally, in Section 4, we
present some output samples of the algorithm that has
been evaluated before we make some concluding remarks
in Section 5.

DOI https://doi.org/10.18690/978-961-286-516-0.13
ISBN 978-961-286-516-0 57

2 Embedding non-planar graphs

In this section, we present our main result, namely the
algorithm for calculating the canonical embedding of non-
planar graphs.

Data: Non-planar graph G
Result: Planar embedding, crossing number

and added vertices of G
1 V V (G)
2 edgePairs {ab, cd, where a, b, c, d ∈ V (G) and

ab, cd ∈ E(G)}
3 k ← 0
4 while G is not planar do
5 S ← all k-subsets from edgePairs
6 for {a1, a2, . . . , ak} in S do
7 E(G)← E(G) \

⋃k
i=1 ai

8 for ai element in {a1, a2, . . . , ak} do
9 {{a1

i , a2
i }, {a3

i , a4
i }} ← ai

10 vi ← vertex such that vi /∈ V (G)
11 V (G)← V (G) ∪ {vi}
12 E(G)← E(G) ∪ {a1

i vi, via
2
i , a3

i vi,
via

4
i }

13 end
14 if G is planar then
15 return G, k, V (G) \ V
16 end
17 end
18 k k + 1
19 end

Algorithm 1: Algorithm for calculating the
canonical embedding of non-planar graphs.

After investigating several non-planar graphs with up to
five vertices in SageMath we came up with the notion
of representing their embeddings. Combinatorial embed-
ding is a key concept in the study of such graph embed-
dings. The significance stems from the fact that, when
combined with canonical labelling, combinatorial embed-
dings can be utilized to generate a unique representation
of (planar) embeddings for (planar) graphs. For further
reading on combinatorial representations and planar em-
beddings, refer to Mutzel and Weiskircher [9], Didjev [8],
Duncan, Goodrich and Kobourov [4], and to Hopcroft
and Tarjan [7].
The concept is as follows: we first construct all non-
incident pairs of edges of a graph; then, we go through
those pairs of edges and for each crossing of two edges,
we delete those edges and add a new vertex to which we
connect vertices of deleted edges. We repeat the process
until the graph is planar. Finally, if it is planar, in the
end, we canonically reorient its vertices and save new
embedding of a graph.
We show the approach and demonstrate how it works
using a Petersen graph shown in Figure 1. The first
step of Algorithm 1 is constructing all pairs of non-
incident edges of G, meaning that the two different edges
cannot share the same vertex. Those pairs of edges are
{{0, 1}, {2, 3}}, {{4, 9}, {5, 8}} etc. In the beginning, we

initialise crossing number k to 0, to check if the graph is
already planar if it is we return k and if it is not, k is
increased by 1, and we are going through the set of pairs
of non-incident edges. For each k we modify the graph
until we get a planar embedding, in the following way:
we take the first pair, in our example pair {{0, 1}, {2, 3}}
and we delete edges {0, 1} and {2, 3}. Then we add a new
vertex v to which we connect the vertices of the deleted
edges: {0}, {1}, {2}, {3}. We check for planarity. If the
checking confirmed a positive result, that is, confirmed
that the graph is planar, the crossing number is returned
and the algorithm terminates. However, if the checking
confirmed a negative result, that is, confirmed that the
graph is not planar we go to the next pair. If all pairs
fail, we look for tuples of size 3 next, and so on.

0

1

2 3

4

5

6

7 8

9

Figure 1: Petersen graph.

We get that graph G is planar after three iterations,
hence, the crossing number of the Peterson graph is 2.
In the end, we canonically relabel vertices and we obtain
a planar embedding presented in Figure 2.

Figure 2: Planar embedding of Petersen graph after
applying Algorithm 1.

See Section 3 for more details about the transformation.

2.1 Theoretical analysis of the algorithm

Consider first the space complexity of Algorithm 1. The
amount of memory used by Algorithm 1 to execute and
produce the result is linear with respect to the input
instance. This is due to the fact that the input instance
is a graph and most of the work on it is done in-place, by

58

modifying it locally and not taking more space even after
many manipulations. Hence, we can say that Algorithm 1
does not take too much memory.
Next, let us evaluate the time complexity of Algorithm 1.
To determine the time complexity, we need to consider
all of the SageMath integrated functions we called in our
main function. Function is_planar that is implemented
runs in linear time, concerning the graph as an input
instance, meaning it runs in time O(n + m) where n is
a number of vertices and m is a number of edges of the
graph. For more reading on the time complexity of the
planarity algorithm, refer to Boyer and Myrvold [3]. To
remove a vertex in a graph, we first need to find the vertex
in the data structure and the time complexity depends
on the structure we use; if we use a HashMap, the time
complexity will be O(1). Then we remove the vertex, and
we do it in O(n) time. Adding and removing an edge
of the graph is done in constant time, O(1), time while
adding a vertex to a graph takes O(n) time. Checking
if there is an edge between vertices is done in O(n) time
since a vertex can have at most O(n) neighbours. The
time complexity of getting an embedding of the graph
and of finding the neighbours is linear, that is O(n + m),
since we needed to perform the Breadth-First Search
algorithm.
Let us analyze the lines from Algorithm 1. Line 1 has
complexity O(n) , as it assigns to a set n vertices, while
line 2 assigns m2 edge pairs to a set and hence has com-
plexity O(m2). Line 3 has constant, O(1), complexity.
Let us now analyse the complexity of the while loop.
Inside the while loop, we see that line 5 generates all
subsets of size k from the set of size m2. Hence, the
assignment of the k-subsets to the set has complexity
equal to the size of the set which is O(

(
m2

k

)
) = O(m2k).

Now, the first for loop goes through all k elements of
the k-subset, and has complexity O(m2k(k + kn + m +
n)) = O(m2k(nk +m)) because the line 7 has complexity
O(k), the inner for loop has complexity O(nk) and the
if statement in line 14, that checks whether the graph is
planar, has complexity O(n + m). Finally, the while loop
is executed k times meaning that the complexity of the
whole while loop is O(m2kk(nk + m)).

3 Applications

Drawing: One of the applications is in graph colouring.
In Algorithm 1, we labelled newly added edges, then we
use the method plot() within SageMath and with the
property colour by label, we get different colours for the
newly added edges. In Figure 3 we see an example of the
transformed Petersen graph from Figure 2. As it can be
seen, the original graph embedding is coloured red, while
the newly inserted edges are coloured green and blue.

Storing graphs: Another application of our approach
is related to the storing of graphs with their combinatorial
embedding, added vertices (if the graph is non-planar)
and with Graph6 string. We constructed a function that
stores data about an individual graph in a single text
file that a computer can comprehend (Graph6 string,
calculated embedding and added vertices - separated by

(1).jpg (1).jpg (1).jpg

Figure 3: Colouring of planar embedding of Petersen
graph.

semicolons) since we aim to store graphs in the database.
Furthermore, we added the certificate flag verbose so that
we may provide a detailed output (when set to True) for
users - with output explanations.
By now, we processed cubic graphs with up to 21 edges,
vertex-transitive graphs with up to 20 edges and all
graphs with up to 13 edges. These files can be stored in
any database since we created a non-verbose mode of
writing into them. In Table 1 we present an overall of
the processed families of graphs by now.

Table 1: Processed families of graphs

family of graphs # generated up to edges
cubic 752 21
vertex-transitive 16 20
general 376899 13

4 Output samples

Here we present some examples of the algorithm’s final
outputs, as previously detailed in the paper. We’ve suc-
cessfully generated embeddings, saved them in files along
with additional vertices and Graph6 strings, and plotted
images of vertex-transitive graphs on less than 20 edges.
In Figure 4 we present some of them individually, with
the Graph6 string for each one written in the caption.

5 Conclusions

In the paper, we had a look at a non-planar graph embed-
ding, its storage, and representation. We introduced an
algorithm for constructing those embeddings and a func-
tion that writes them in both a human-readable way, or
in the way suitable for the storage in the database. This
contributes to the subject of representation theory be-
cause there was no standard way of encoding such em-
beddings.
We demonstrated how our method may be used to draw
graphs and save graph data in various file formats.
Our techniques can be used to enrich almost any graph

59

(a) :An (b) :DaHg∼

(c) :CcKI (d) :Ea@aRgs

(e) :Ea@_Q_QM@Gs (f) :Fa@_WIRQbP∧

(g) :GaGecctgs (h) :Ga@_WIRhDlDZ

(i) :Ga@_QaShDlDZ (j) :Ga@_WGwChLDgsTn

Figure 4: Coloured representations of several vertex-
transitive graphs with up to 20 edges, with Graph6 string
in captions.

database, and that is exactly what we were hoping
to achieve. We’ve generated vertex-transitive graphs
with up to 20 edges, all graphs with up to 13 edges,
and all cubic graphs with up to 21 edges by now. In
collaboration with Katja Berčič, PhD, our files will be
uploaded to the MathDataHub database.
Currently, we are working on contributing our code to
the SageMath project.

Acknowledgment

I’d like to thank Professor Matjaž Krnc for his advice and
suggestions throughout the planning, development, and
writing of this paper.
I’d like to thank Klemen Berkovič for his help in codifying
this Author’s Guide, and to Iztok Fister Jr. for his
contribution to Author’s Guide and .tex files.

References

[1] Barthelemy, M. Morphogenesis of Spatial Net-
works. New York: Springer, 2017.

[2] Billey, S. C., and Tenner, B. E. Fingerprint
databases for theorems. Notices of the AMS 60, 8
(2013), 1034.

[3] Boyer, J. M., and Myrvold, W. J. On the cut-
ting edge: Simplified o(n) planarity by edge addi-
tion. Journal of Graph Algorithms and Applications
8, 3 (2004), 241–273.

[4] Christian, D., T., G. M., and Stephen, K. Pla-
nar drawings of higher-genus graphs, graph drawing,
17th international symposium, gd 2009. vol. 5849,
pp. 45–56.

[5] Goedgebeur, G. B. K. C. J., and Mélot, H.
House of Graphs: a database of interesting graphs,
Discrete Applied Mathematics, 2013.

[6] Inc., O. F. The On-Line Encyclopedia of Integer
Sequences, 2021. http://oeis.org.

[7] John, H., and E., T. R. Efficient planarity testing.
Journal of the Association for Computing Machinery
21, 4 (1974), 549–568.

[8] N., D. H. On drawing a graph convexly in the plane,
graph drawing, dimacs international workshop, gd
’94, princeton. vol. 894, pp. 76–83.

[9] Petra, M., and René, W. Computing optimal
embeddings for planar graphs, computing and com-
binatorics, 6th annual international conference, co-
coon 2000. vol. 1858, pp. 95–104.

[10] Read, R. C., and Wilson, R. J. An Atlas of
Graphs (Mathematics). Oxford University Press,
Inc., USA, 2005.

[11] TePaske-King, Bert; Richert, N. The Iden-
tification of Authors in the Mathematical Reviews
Database, 2001.

[12] The Sage Developers. SageMath, the Sage
Mathematics Software System (Version 9.4), 2021.
https://www.sagemath.org.

[13] Trudeau, and J., R. Introduction to Graph The-
ory. New York: Dover Pub, 1993.

60

Analiza ritmičnosti števnih podatkov z uporabo modela
cosinor

Nina Velikajne
Faculty of Computer and Information Science,

University of Ljubljana,
Večna pot 113, SI-1000 Ljubljana, Slovenia

nv6920@student.uni-lj.si

Miha Moškon
Faculty of Computer and Information Science,

University of Ljubljana,
Večna pot 113, SI-1000 Ljubljana, Slovenia

miha.moskon@fri.uni-lj.si

Povzetek
Analiza ritmičnosti števnih podatkov je postala
pomembna v mnogih vidikih znanosti, inženirstva
in celo ekonomije. Obstajajo metode z namenom
detekcije ritmičnosti zveznih podatkov, ki pa veči-
noma niso primerne za analizo števnih podatkov.
V prispevku predstavimo metodologijo, ki omo-
goča analizo ritmičnosti v števnih podatkih. Me-
toda združuje metodo cosinor z uporabo različ-
nih računskih regresijskih modelov, ki so primerni
za analizo števnih podatkov. Omogoča tako de-
tekcijo ritma kot tudi ocenitev parametrov ritma,
primerjavo zgrajenih modelov in iskanje optimal-
nega števila komponent za metodo cosinor ter is-
kanje najbolj ustreznega tipa števnega modela.
Vzpostavljena metoda omogoča primerjavo zazna-
nega ritma v odvisnosti od različnih parametrov
ritmičnosti in izračun njihovih intervalov zaupa-
nja. Celotno metodologijo smo testirali na te-
denski periodičnosti realnih podatkov COVID-19
obolenj v Sloveniji.

Ključne besede metoda cosinor, analiza ritmičnosti,
števni podatki, pojavnost dogodkov, regresija.

1 Uvod

Detekcija in analiza ritmičnih vzorcev v števnih podatkih
ima pomembno vlogo pri mnogih vidikih znanosti. Perio-
dični podatki so podatki, v katerih se vzorci ponavljajo z
določeno periodo. Zelo pogost tip periodičnih procesov so
procesi, ki odražajo cirkadiano nihanje – procesi s periodo
24-ur [3]. Regulira jih Zemljina rotacija in izmenjavanje
dneva in noči, ki vpliva na vse organizme in posledično
na njihovo obnašanje ter gibanje (glej [20]). Poseben tip
podatkov predstavljajo števni podatki, ki opisujejo po-
javnost izbranih dogodkov [3].

Števni podatki se pogosto pojavljajo periodično. V na-
ravi in naši okolici so tovrstni podatki vseprisotni. Z nji-
hovo analizo lahko pripomoremo k razumevanju različnih
dogodkov in posredno k razumevanju delovanja organiz-
mov in družbenih sistemov. Na primer, analiza števila
porodov glede na uro v dnevu lahko pomaga pri orga-
nizaciji medicinskega in babiškega osebja v porodnišnici
[14]. Analiza dnevnih vzorcev v prometu in njihovo spre-
minjanje skozi čas nam lahko pove veliko o gibanju in
obnašanju populacije, posebej v času epidemije (glej [4]).
Za analizo števnih periodičnih podatkov potrebujemo po-

sebne računske metode, ki upoštevajo in ohranjajo od-
nose med podatki. Metode morajo upoštevati diskretno
porazdelitev, ki je omejena le na nenegativne cele vre-
dnosti. Pri uporabi navadne linearne regresije so lahko
napovedane vrednosti negativne, kar je teoretično nemo-
goče [8]. Za zaznavanje in analizo ritmičnosti v zveznih
podatkih obstaja kar nekaj neparametričnih metod (glej
[18, 12]). V primerjavi z omenjenimi metodami (glej [16])
nam uporaba trigonometričnih regresijskih metod v pove-
zavi z različnimi cosinor modeli predstavlja številne pred-
nosti, npr. ocenitev parametrov ritma [18]. Izkaže se
tudi, da alternativne metode v določenih primerih od-
povejo zaradi velikega števila osamelcev (angl. outliers),
same velikosti podatkov, neuravnoteženosti podatkov in
zbiranja podatkov brez ponovitev (glej [17]).
V tem prispevku predstavimo metodologijo, ki z zdru-
ževanjem metode cosinor skupaj z različnimi števnimi
računskimi modeli upošteva vse omejitve števnih peri-
odičnih podatkov in tako omogoča tudi ocenitev parame-
trov ritma. Metoda omogoča izračun intervalov zaupanja
za posamezen parameter ritma s pomočjo samovzorčenja
(angl. bootstrapping). S F testom določimo optimalno
število komponent za metodo cosinor, za iskanje najbolj
ustreznega tipa števnega modela pa uporabimo Vuongov
test.
Članek je razdeljen na pet poglavij. V drugem in tretjem
poglavju so predstavljeni metoda cosinor za analizo pe-
riodičnih podatkov in pet računskih regresijskih modelov
za delo s števnimi podatki. Sledi poglavje, ki opisuje
postopek izbire najbolj ustreznega računskega modela.
V poglavju Rezultati so predstavljeni rezultati testiranja
vzpostavljene metode na realnih podatkih. V zadnjem
poglavju so zajete ključne ugotovitve in postopki celotne
analize.

2 Metoda cosinor

Pri periodičnih podatkih se opazovani vzorci ponovijo z
določeno periodo. Njihovo analizo lahko naslovimo kot
regresijski problem, pri katerem pa je potrebno upošte-
vati tudi karakteristike ritma, npr. fazo in amplitudo
nihanja. Metoda cosinor se uporablja za analizo časov-
nih vrst in se posveča tako detekciji ritma kot tudi oceni
parametrov ritma. Model v ozadju metode lahko opišemo
z Enačbo 1, kjer je N število komponent, M srednja vre-
dnost ritma (MESOR, angl. Midline Estimating Statistic
of Rhythm), A amplituda, P perioda in e(t) funkcija na-
pake. Spremenljivka t označuje čas, i pa iterira po številu

DOI https://doi.org/10.18690/978-961-286-516-0.14
ISBN 978-961-286-516-0 61

komponent – od 1 do N [1, 15, 16].

Y (t) = M +
N∑
i=1

(
Ai,1 · sin

(
2π t

P/i

)
+

Ai,2 · cos
(

2π t

P/i

))
+ e(t), (1)

Če je perioda ritma znana vnaprej, lahko enačbo metode
cosinor poenostavimo v model linearne regresije:

Y (t) = M+
N∑
i=1

(Ai,1 ·Xi,1(t) +Ai,2 ·Xi,2(t))+e(t), (2)

kjer je Xi,1(t) = sin
(

2π t
P/i

)
in Xi,2 = cos

(
2π t

P/i

)
. V

kolikor perioda ni znana, jo lahko ocenimo s pomočjo
uporabe periodogramov (angl. periodograms) [1, 15, 16].

3 Analiza števnih podatkov z metodo
cosinor

Za analizo in detekcijo ritma na izvornih očiščenih podat-
kih naprej uporabimo metodo cosinor. V primeru znane
periode uporabimo Enačbo 2, ki podatke razdeli na po-
ljubno število komponent in jih transformira do regresij-
ske oblike. Na transformirane podatke nato apliciramo
regresijske računske modele. Regresijski modeli omogo-
čajo identifikacijo in karakterizacijo odnosov med mno-
gimi faktorji. Zaradi dela s števnimi podatki moramo iz-
brati ustrezne regresijske računske modele, ki upoštevajo
vse lastnosti tovrstnih podatkov.
Podatki so diskretni, omejeni na nenegativne cele vre-
dnosti in velikokrat tudi razpršeni (angl. dispersed). Sre-
čamo se s pojmom povečane (angl. overdispersion) ali
pa zmanjšane razpršitve (angl. underdispersion) [8]. Pri
povečani razpršitvi imajo podatki večjo varianco, kot bi
jo sicer pričakovali. Če je varianca večja kot povprečje
podatkov, gre za povečano razpršitev. Obratno velja za
zmanjšano razpršitev [7]. Z uporabo navadne linearne
regresije bi dobili nepravilne rezultate, saj tak računski
model ne bi upošteval omenjenih lastnosti [8].
V vzpostavljeni metodologiji smo se odločili za uporabo
petih različnih računskih modelov, ki se najpogosteje
uporabljajo za analizo števnih podatkov. Uporabili smo
Poissonov model (angl. Poisson model), generaliziran
Poissonov model (angl. generalised Poisson model), Pois-
sonov model z inflacijo ničel (angl. zero-inflated Poisson
model), negativen binomski model (angl. negative bino-
mial model) in negativen binomski model z inflacijo ničel
(angl. zero-inflated negative binomial model).
Poissonov model predpostavlja, da so podatki porazde-
ljeni s Poissonovo porazdelitvijo:

P (y = k) = λke−λ

k! , (3)

kjer je λ povprečna pričakovana vrednost oz. število do-
godkov na enoto časa. Povprečje podatkov µ je pri Pois-
sonovi porazdelitvi enako povprečni pričakovani vredno-
sti λ. Varianca σ2 je enaka povprečju, poenostavljeno
velja, da je σ2=λ. Model ne upošteva povečane ali pa
zmanjšane razpršitve podatkov [9].

Generaliziran Poissonov model izhaja iz navadnega Pois-
sonovega modela. Bistvena razlika tega modela v pri-
merjavi s Poissonovim modelom je ta, da je generaliziran
Poissonov model primeren tudi za podatke, ki imajo po-
večano ali zmanjšano razpršitev. Vpeljemo dodaten pa-
rameter α, ki opisuje stopnjo disperzije. Model torej ne
zahteva, da je povprečje µ enako varianci σ2. Obstajata
dve različici generaliziranega Poissonovega modela – GP-
1 in GP-2 [6]. V vzpostavljeni metodologiji smo uporabili
različico GP-1.
Poissonov model z inflacijo ničel je razširitev navadnega
Poissonovega modela. Tovrstni model za razliko od nava-
dnega in generaliziranega Poissonovega modela upošteva,
da so ničelne vrednost bolj pogoste kot ostale vrednosti.
Izhaja iz tega, da obstajata dva dejavnika, ki vplivata na
izid, ali je vrednost ničelna ali neničelna [13].
Negativen binomski model predpostavlja, da so podatki
porazdeljeni z negativno binomsko porazdelitvijo. Upo-
rabljata se dve verziji negativnega binomskega modela,
tj. NB-1 in NB-2. Različica NB-1 se je izkazala kot bolj
primerna, prilagojena krivulja se je namreč vidno lepše
prilegala izvornim podatkom, zato smo v metodologiji
uporabili verzijo NB-1. Varianca takega modela je de-
finirana kot σ2 = µ+α ·µ, kjer je α parameter disperzije
in µ povprečje. Povprečje je enako povprečni pričakovani
vrednosti λ. Model je zato primeren tudi za podatke s
povečano ali pa zmanjšano razpršitvijo [2, 11]. Ob ve-
čanju parametra α varianca konvergira k povprečju in
negativna binomska porazdelitev postane Poissonova [2].
Negativen binomski model z inflacijo ničel je razširitev
negativnega binomskega modela. Podobno kot Poissonov
model z inflacijo ničel upošteva, da so ničelne vrednosti
bolj pogoste kot ostale (neničelne) vrednosti. Ključna
razlika v primerjavi s Poissonovim modelom z inflacijo
ničel je, da ta model temelji na negativni binomski po-
razdelitvi. Model je zato primeren tudi za podatke, ki
imajo povečano ali pa zmanjšano razpršitev [10, 11].

4 Izbira najustreznejšega modela

Izbiro najbolj ustreznega računskega modela razdelimo
na dva nivoja. Na prvem nivoju iščemo optimalno šte-
vilo komponent za metodo cosinor. Na tem mestu smo
izhajali iz tega, da so modeli gnezdeni. Dva modela sta
gnezdena, če lahko prvi model izrazimo z drugim oz. če
drugi model poleg vsaj enega dodatnega parametra vse-
buje enake parametre kot prvi [5]. Implementirali smo F
test. Na podlagi dveh zgrajenih modelov izračunamo F
vrednost. F test temelji na razliki vsote kvadratov (angl.
sum of squares) dveh modelov in upošteva število para-
metrov modela [5].
Na drugem nivoju smo vrednotili tip računskega modela.
Uporabili smo Vuongov test, ki je primeren tako za gnez-
dene modele kot tudi za ne gnezdene in prekrivajoče se
(angl. overlapping) modele. Vuongov test omogoča izra-
čun Z vrednosti na podlagi logaritma največjega verjetja
(angl. maximum log-likelihood) dveh modelov. Tudi ta
test upošteva število parametrov modelov [19].
Oba testa sledita podobnemu postopku. Za dva modela,
tj. model A in model B, izračunamo F oz. Z vrednost.

62

Model A zavržemo, če je izračunana vrednosti manjša od
vnaprej določene meje, tj. statistične signifikance (angl.
statistical significance) [5, 19].

5 Rezultati

Vzpostavljeno metodologijo smo preizkusili na realnih po-
datkih. Podatke smo pridobili s strani COVID-19 sledil-
nik1 in analizirali število pozitivnih testov glede na dan v
tednu. Upoštevali smo vse teste, tj. seštevek PCR (angl.
polymerase chain rection) in hitrih antigenskih (HAGT)
testov. Metodo smo izvedli na treh podatkovnih zbirkah.
Prva zbirka beleži število pozitivnih testov od 20. okto-
bra 2020 – razglasitev 2. vala epidemije v Sloveniji, do
10. februarja 2021. Povprečje pozitivnih testov je 1340,
varianca pa 276278. Druga zbirka vsebuje primere od 11.
februarja 2021 do 26. aprila 2021. Povprečje podatkov je
796, varianca pa 90328. Tretja podatkovna zbirka zdru-
žuje časovni obdobji prve in druge podatkovne zbirke.
Povprečje zadnje zbirke je 1082, varianca pa 232224. Me-
todo smo preizkusili tudi za časovno obdobje 1. epidemije
v Slovenji – pomlad 2020, vendar je teh podatkov premalo
za smiselno analizo.
V podatkovni zbirki smo najprej odstranili osamelce
(angl. outliers), tako da smo za posamezno uro odstranili
vnose, kjer so bile vrednosti števila pozitivnih testov
večje ali manjše od 0,15 kvantila. Nato smo izvedli
metodo cosinor za posamezno število komponent – od 1
do 4, in zgradili posamezen tip računskega modela (glej
Poglavje 1). Pri številu komponent 4 smo se ustavili, ker
se računski modeli zaradi prevelikega števila komponent
niso več prilagajali izvornim podatkom. Zgrajene modele
smo nato ovrednotili, najprej smo poiskali optimalno
število komponent na podlagi F testa in nato še najbolj
ustrezen tip modela s pomočjo Voungovega testa.
Opisan postopek se ponovi za posamezno podatkovno
zbirko. Vse podatkovne zbirke imajo večjo varianco
kot povprečje kar pomeni, da imajo podatki povečano
razpršitev. Na podlagi porazdelitve izvornih podatkov
(glej Sliko 1) lahko ugotovimo, da podatki nimajo
ničelnih vrednosti.
Težave se pojavijo pri vseh modelih, v kolikor je število
komponent pri metodi cosinor večje od 3. Opazimo, da se
izvornim podatkom najbolje prilegata negativen binom-
ski model in generaliziran Poissonov model. Oba modela,
sta namreč primerna za podatke s povečano razpršitvijo.
Za vse podatkovne zbirke smo dobili enak rezultat. Op-
timalno število komponent je 3, najbolj ustrezen tip mo-
dela pa je generaliziran Poissonov model (glej Sliko 1).
Na podlagi izvedene analize smo lahko ovrednotili para-
metre ritmičnosti (glej Tabelo 1) in njihove intervale za-
upanja (glej Tabelo 2). Celoten postopek analize z vsemi
vmesnimi rezultati je dostopen v repozitoriju GitHub2.

6 Diskusija in zaključek

Vzpostavljena in implementirana metodologija omogoča
analizo števnih periodičnih podatkov. Metodologija je se-

1https://covid-19.sledilnik.org/sl/data
2https://github.com/ninavelikajne/Ritmicnosti-

stevnih-podatkov

Tabela 1: Ocenjeni parametri ritmičnosti za posamezno
podatkovno zbirko.

pod. zbirka tip modela št. komponent amplituda mesor vrhovi št. poz. testov
1. gen_poisson 3.0 794.62 1233.67 0.7 2028.29
2. gen_poisson 3.0 483.37 731.32 0.7

3.9
1214.69
969.59

3. gen_poisson 3.0 637.66 995.12 0.7 1632.77

Tabela 2: Intervali zaupanja parametrov ritmičnosti za
posamezno podatkovno zbirko.

pod. zbirka amplituda mesor vrhovi št. poz. testov
1. [727.44 863.81] [1164.72 1299.48] [0.63 0.85] [1897.05 2158.4]
2. [452.11 514.36] [701.36 757.49] [0.56 0.83]

[1.96 4.82]
[1154.14 1271.19]
[902.71 1040.37]

3. [596.96 691.66] [955.36 1051.93] [0.59 0.86] [1556.13 1739.78]

Ponedeljek Torek Sreda etrtek Petek Sobota Nedelja
Dan

500

1000

1500

2000

2500

te
vi

lo
 p

oz
iti

vn
ih

 te
st

ov

20.10.2020-10.2.2021
izvorni podatki
prilagojena krivulja

Ponedeljek Torek Sreda etrtek Petek Sobota Nedelja
Dan

200

400

600

800

1000

1200

te
vi

lo
 p

oz
iti

vn
ih

 te
st

ov

11.2.2021-26.4.2021
izvorni podatki
prilagojena krivulja

Ponedeljek Torek Sreda etrtek Petek Sobota Nedelja
Dan

250

500

750

1000

1250

1500

1750

2000

2250

te
vi

lo
 p

oz
iti

vn
ih

 te
st

ov

20.10.2020-26.4.2021
izvorni podatki
prilagojena krivulja

Slika 1: Zmagovalni modeli za posamezno podatkovno
zbirko. V vseh primerih je število komponent enako 3 in
tip modela generaliziran Poissonov model. Oranže črte
označujejo intervale zaupanja modela.

63

https://covid-19.sledilnik.org/sl/data
https://github.com/ninavelikajne/Ritmicnosti-stevnih-podatkov
https://github.com/ninavelikajne/Ritmicnosti-stevnih-podatkov

stavljena iz dveh delov. Prvi del predstavlja analizo pe-
riodičnih podatkov. Implementirana je metoda cosinor,
ki ji lahko uporabnik nastavlja poljubno število kompo-
nent. Drugi del zajema analizo števnih podatkov. Upo-
rabljeni so različni računski regresijski modeli, ki so pri-
merni za delo s števnimi podatki. Implementirali smo
pet tovrstnih modelov, tj. Poissonov model, generalizi-
ran Poissonov model, Poissonov model z inflacijo ničel,
negativen binomski model in negativen binomski model z
inflacijo ničel. Vzpostavljena metodologija omogoča vre-
dnotenje zgrajenih modelov. Tudi vrednotenje se tako
kot grajenje modelov deli na dva dela. V prvem delu se
osredotočimo na iskanje optimalnega števila komponent
za metodo cosinor. Izhajamo iz dejstva, da so modeli
gnezdeni in jih zato lahko ovrednotimo s F testom. V
drugem delu iščemo najbolj ustrezen tip računskega mo-
dela. Uporabimo Vuongov test, ki je primeren tako za
gnezdene, negnezdene in tudi prekrivajoče se modele.
Računsko metodo smo preizkusili na tedenski periodično-
sti števila obolenj z boleznijo COVID-19 v Sloveniji. Po-
datke smo razdelili na 3 podatkovne zbirke, vsaka opisuje
različno obdobje. Za vse podatkovne zbirke se kot naj-
boljši tip modela izkaže generaliziran Poissonov model,
optimalno število komponent pa je število 3 (glej Sliko
1). V podatkih se ritmičnost podatkov lepo izraža. Oce-
nili smo parametre ritma (glej Tabelo 1) in njihove inter-
vale zaupanja (glej Tabelo 2). Z uporabo predstavljene
metode na dobljenih rezultatih razberemo, da je število
pozitivnih testov največje ob torkih nato pa skozi teden
upada. Kot pričakovano je število pozitivnih testov naj-
manjše ob vikendih. Oblika zaznanega ritma je za vse
podatkovne zbirke podobna (glej Sliko 1).
Celotna metoda je implementirana kot modul v jeziku
Python in je prosto dostopna. Omogoča širok spekter
funkcionalnosti za analizo tovrstnih podatkov. Poten-
cialni uporabnik lahko direktno spreminja in prilagaja
funkcionalnosti glede na svoje potrebe.

Literatura

[1] Bingham, C., Arbogast, B., Guillaume,
G. C., Lee, J. K., and Halberg, F. Inferen-
tial statistical methods for estimating and compa-
ring cosinor parameters. Chronobiologia 9, 4 (1982),
397–439.

[2] Cameron, A. C., and Trivedi, P. K. Econome-
tric models based on count data: Comparisons and
applications of some estimators and tests. Journal
of Applied Econometrics 1, 1 (1986), 29–53.

[3] Cameron, A. C., and Trivedi, P. K. Regression
analysis of count data, vol. 53. Cambridge University
Press, 2013.

[4] Chang, S., Pierson, E., Koh, P. W., Gerar-
din, J., Redbird, B., Grusky, D., and Lesko-
vec, J. Mobility network models of covid-19 explain
inequities and inform reopening. Nature 589, 7840
(2021), 82–87.

[5] Clark, T. E., and McCracken, M. W. Tests of
equal forecast accuracy and encompassing for nested
models. Journal of econometrics 105, 1 (2001), 85–
110.

[6] Consul, P., and Famoye, F. Generalized Poisson
regression model. Communications in Statistics -
Theory and Methods 21, 1 (1992), 89–109.

[7] Coxe, S., West, S. G., and Aiken, L. S. The
analysis of count data: A gentle introduction to
Poisson regression and its alternatives. Journal of
personality assessment 91, 2 (2009), 121–136.

[8] Gardner, W., Mulvey, E., and Shaw, E. Re-
gression analyses of counts and rates: Poisson, over-
dispersed Poisson, and negative binomial models.
Psychological bulletin 118 (12 1995), 392–404.

[9] Gardner, W., Mulvey, E., and Shaw, E. Re-
gression analyses of counts and rates: Poisson, over-
dispersed Poisson, and negative binomial models.
Psychological bulletin 118 (12 1995), 392–404.

[10] Greene, W. H. Accounting for excess zeros and
sample selection in Poisson and negative binomial
regression models. Working Paper EC-94-10. Leo-
nard N. Stern School of Business, New York Univer-
sity, 1994.

[11] Hilbe, J. M. Negative binomial regression. Cam-
bridge University Press, 2011.

[12] Hutchison, A. L., Maienschein-Cline, M.,
Chiang, A. H., Tabei, S. A., Gudjonson, H.,
Bahroos, N., Allada, R., and Dinner, A. R.
Improved statistical methods enable greater sensi-
tivity in rhythm detection for genome-wide data.
PLoS Comput Biol 11, 3 (2015), e1004094.

[13] Lambert, D. Zero-inflated Poisson regression, with
an application to defects in manufacturing. Techno-
metrics 34, 1 (1992), 1–14.

[14] Martin, P., Cortina-Borja, M., Newburn,
M., Harper, G., Gibson, R., Dodwell, M.,
Dattani, N., and Macfarlane, A. Timing of sin-
gleton births by onset of labour and mode of birth in
nhs maternity units in england, 2005–2014: A study
of linked birth registration, birth notification, and
hospital episode data. PloS One 13, 6 (2018).

[15] Nelson, W., LEE, J. K., et al. Methods for
cosinor-rhythmometry. Chronobiologia 6, 4 (1979),
305–323.

[16] Refinetti, R., Cornélissen, G., and Halberg,
F. Procedures for numerical analysis of circadian
rhythms. Biological rhythm research 38, 4 (2007),
275–325.

[17] Ruben, M. D., Francey, L. J., Guo, Y., Wu,
G., Cooper, E. B., Shah, A. S., Hogenesch,
J. B., and Smith, D. F. A large-scale study reveals
24-h operational rhythms in hospital treatment. Pro-
ceedings of the National Academy of Sciences 116, 42
(2019), 20953–20958.

[18] Thaben, P. F., and Westermark, P. O. Detec-
ting rhythms in time series with RAIN. Journal of
biological rhythms 29, 6 (2014), 391–400.

[19] Vuong, Q. H. Likelihood ratio tests for model
selection and non-nested hypotheses. Econometrica
57, 2 (1989), 307–333.

[20] Zhdanova, I. Melatonin. In Encyclopedia of the
Neurological Sciences (Second Edition), M. J. Ami-
noff and R. B. Daroff, Eds., second edition ed. Aca-
demic Press, Oxford, 2014, pp. 1030 – 1033.

64

Analiza sentimenta komentarjev hotelov z uporabo
slovarjev in metode Naivni Bayes
Nina Murks

Univerza v Mariboru,
Fakulteta za elektotehniko, računalništvo

in informatiko,
Koroška cesta 46, 2000 Maribor, Slovenija

nina.murks@student.um.si

Anže Omerzu
Univerza v Mariboru,

Fakulteta za elektotehniko, računalništvo
in informatiko,

Koroška cesta 46, 2000 Maribor, Slovenija
anze.omerzu@student.um.si

Borko Bošković
Univerza v Mariboru,

Fakulteta za elektotehniko, računalništvo
in informatiko,

Koroška cesta 46, 2000 Maribor, Slovenija
borko.boskovic@um.si

Povzetek
V članku smo predstavili pristop k analizi sen-
timenta komentarjev hotelskih gostov s pomočjo
slovarjev in metode Naivni Bayes. Najprej smo
zgradili slovarja sentimenta, ki sta vsebovala n-
grame, ter njihove verjetnosti, da pripadajo pozi-
tivnemu ali negativnemu razredu. Nato smo s po-
močjo zgrajenih slovarjev klasificirali komentarje
hotelov, pri čemer smo uporabili metodo Naivni
Bayes. Pri klasifikaciji k omentarjev s mo raču-
nali klasifikacijske vrednosti o z. verjetnosti, da
so posamezni komentarji pozitivni ali negativni.
Komentarje smo klasificirali s p omočjo unigra-
mov in bigramov, ter rezultate primerjali z re-
zultati iz literature. Pri unigramih smo dosegli
natančnost 0,92, pri bigramih je natančnost zna-
šala 0,80. Klasifikacijske v rednosti posameznih
komentarjev smo si shranili, pri čemer smo pri
komentarjih, ki smo jih klacificirali kot negativne,
dodali negativen predznak. Predznačene klasifi-
kacijske vrednosti smo nato sešteli, za vsak hotel
ter na tak način izračunali hotelom pripadajoče
točke. Točke hotelov so v našem primeru poka-
zatelj splošnega zadovoljstva hotelskih gostov, ki
ga najdemo v komentarjih. Glede na točke smo
hotele uredili po vrsti in prišli do lestvice hote-
lov, pri katerih najdemo najbolj pozitivne komen-
tarje.

Ključne besede analiza sentimenta, komentarji
hotelskih gostov, slovar sentimenta, n-grami, Naivni
Bayes

1 Uvod

Preden se odpravimo na potovanje, je ena izmed po-
membnih odločitev izbira nastanitve. Pri določitvi kraja
namestitve so nam pomembne namestitvene zmožnosti
– ali ima hotel bazen, organizirano varstvo, brezplačno
parkiranje itd. Več o kvaliteti storitev, ki jih ponuja iz-
brana nastanitev, lahko izvemo neposredno od gostov, ki

so storitve že koristili; pobrskamo po spletnih komentar-
jih, povezanih z mnenjem o nastanitvi.
Odločili smo se, da analizo sentimenta apliciramo na ko-
mentarje gostov hotelov. Sprva smo komentarje klasifici-
rali kot pozitivne ali negativne. S pomočjo klasificiranih
komentarjev smo ugotovili, ali je bil večini hotelskih go-
stov izbran hotel všeč ali ne. Cilj našega eksperimenta
je bila aplikacija, ki omogoča takojšen vpogled v širše
mnenje o hotelu, ki ga najdemo v komentarjih hotelskih
gostov.
V članku smo predstavili različne pristope k analizi sen-
timenta, in sicer v poglavju Sorodna dela. V naslednjem
poglavju sledi opis eksperimenta, ki smo ga izvedli. Zno-
traj tega smo najprej predstavili, na kakšen način smo
pridobili podatke in kako smo jih predprocesirali. Nato
smo predstavili način grajenja slovarjev, njihovo uporabo
in klasifikacijo komentarjev hotelskih gostov. V zadnjem
podpoglavju tega poglavja smo predstavili pristop raču-
nanja točk za posamezen hotel. Nazadnje podamo še
zaključek in možnosti za nadaljnje delo.

2 Sorodna dela

Analiza sentimenta zajema računalniško analizo stališč
govorca ali pisca. Stališče pisca, ki ga lahko prepoznamo
v besedilu, je lahko pozitivno, negativno ali nevtralno.
Danes je uporaba analize izjemno koristna pri spremlja-
nju družbenih omrežij, saj nam omogoča vpogled v javno
mnenje [2].
Uporaba analize sentimenta je dobro raziskano področje,
kar kaže visoko število pojavitev znanstvenih in strokov-
nih člankov/prispevkov s tega področja. Znanih je več
pristopov k analizi sentimenta. V nadaljevanju smo jih
predstavili nekaj – po vzoru že objavljenih člankov [8][3].
Prvi pristop temelji na unigramih in vzorcih iz učne mno-
žice (ang. training set) [1][10]. Avtorji člankov so raz-
iskovanje usmerili na vzorce komentarjev na družbenem
omrežju Twitter. S pomočjo unigramov in vzorcev so raz-
poznavali, ali je komentar sovražen (žaljiv) ali čist (nev-

DOI https://doi.org/10.18690/978-961-286-516-0.15
ISBN 978-961-286-516-0 65

tralen) ali pozitiven [10]. V drugem članku so raziskovalci
s pomočjo vzorcev iskali prisotnost sarkazma v komentar-
jih.
Tudi v naslednjem, za naše raziskovanje pomemben
članku [11], so avtorji svoje raziskovanje usmerili na
sentimente komentarjev na družbenih omrežjih. Njihov
pristop uporablja utežene besedne vektorje, ki predsta-
vljajo vhod v celico nevronske mreže (BiLSTM), ki zazna
kontekstne informacije. Tako bolje predstavi vektorje
komentarjev. Sentiment komentarjev se kasneje naprej
določi s klasifikacijo nevronskih mrež.
V članku [8] so uporabili ordinalno regresijo z uporabo
tehnik učenja. Za omenjeno tehnologijo so uporabili
javno bazo komentarjev na Twitterju, ki jih je bilo treba
vnaprej procesirati z uporabo metode ekstrakcije lastno-
sti. Za klasifikacijo analize sentimenta so uporabili raz-
lične algoritme: Multinomijska logistična regresija (Mul-
tinomial logistic regression - SoftMax), podpora vektorski
regresiji (Support Vector Regression - SVR), odločitvena
drevesa (Decision Trees - DTs) in naključni gozd (Ran-
dom Forest - RF).
V članku [7] so raziskovalci za analizo sentimenta upora-
bili in nadgradili pristop k ansamblu lastnosti (ang. fe-
ature ensemble), pri katerem so upoštevali različne ele-
mente, ki jih drugi raziskovalci pri uporabi te metode
zanemarijo. Upoštevali so besedoslovje, besedno vrsto,
jezikovno semantiko in položaj besed.
Do zdaj omenjeni pristopi uporabljajo analizo sentimenta
nad angleškim jezikom. Zanimalo nas je, kako se ana-
lize sentimenta lotevajo v tujih jezikih, kjer je sentiment
manj jasen. Prav to so storili v članku [4], v katerem
so se posvetili nejasnosti kitajskih fraz, ki so izraženi v
sentimentu. Tradicionalni pristop s strojnim učenjem ne
more prikazati resničnega sentimenta, zato so predlagali
uporabo multistrateške metode analize razpoloženja in
prikazali, da hibridna analiza sentimenta dosega zadovo-
ljive rezultate.
Članka [5] in [9] vsebujeta analizo sentimenta s pomo-
čjo konvolucijskih nevronskih mrež. Prvi naveden članek
uporablja konvolucijske mreže za analizo sentimenta ko-
mentarjev na Twitterju, drugi pa za zaznavanje sarkazma
na socialnih omrežjih. Konvolucijske nevronske mreže so
sestavljene iz več slojev, kjer vsak sloj opravlja nalogo
pripravljanja, pretvarjanja ali popravljanja podatkov.
Analize sentimenta se lahko lotimo tudi s pomočjo slo-
varjev in metode Naivni Bayes, kot so to storili v članku
[6]. V tem članku so analizirali sentiment komentarjev
Danmaku1 videov. Uporabili so slovar sentimenta, ki so
ga razširili z emotikoni, saj so ti zelo pomembni pri ko-
mentarjih Danmaku videov. Pri analizi sentimenta pa
niso samo klasificirali pozitivne in negativne komentarje,
temveč so uporabili kar sedem razredov: gnus, žalost,
všečnost, jeza, presenečenje, strah in veselje. Po tem, ko
so generirali slovar, ki ustreza kontekstu (za komentarje
Danmaku videov), so se lotili klasifikacije komentarjev s
pomočjo metode Naivni Bayes. Pristop z uporabo slo-

1Danmaku je Japonski izraz za sistem podnapisov, ki ga
uporabljajo spletne video platforme. Omogočajo uporabniku
objavljanje premikajočih se komentarjev na video, ki se pred-
vaja.

varjev in metode Naivni Bayes je bil od vseh (prej ome-
njenih) najprimernejši, zato smo se odločili, da ga upo-
rabimo pri implementaciji lastne ideje.

3 Predlagan pristop

V tem poglavju smo predstavili našo analizo sentimenta
za klasificiranje hotelskih komentarjev in pridobivanje
točk zadovoljstva nastanitve posameznih hotelov, ki se
skrivajo v besedilu komentarjev. Sledi kratka predsta-
vitev načina pridobivanja podatkov, ter načrtovanja in
izvedbe eksperimenta.

3.1 Pridobivanje podatkov

Poiskali smo podatkovno bazo, ki je že vsebovala klasifici-
rane komentarje hotelov. To bazo podatkov smo našli na
spletni strani Kaggle. Sledi kratka predstavitev spletne
strani.
Kaggle, podružnica podjetja Google LLC, je spletna sku-
pnost podatkovnih znanstvenikov in izvajalcev strojnega
učenja. Kaggle uporabnikom omogoča, da najdejo in ob-
javijo nabore podatkov, raziskujejo in gradijo modele v
spletnem okolju za znanost o podatkih, sodelujejo z dru-
gimi znanstveniki in inženirji strojnega učenja ter se ude-
ležujejo tekmovanj za reševanje izzivov na področju po-
datkov.
Izbrana baza podatkov je bila narejena s pomočjo sple-
tne strani Booking.com. Vsebuje 515.000 komentarjev
o 1493 različnih Evropskih hotelih. Podatki imajo nasle-
dnjo obliko: naslov hotela, datum komentarja, povprečen
rezultat hotela (ta je izračunan s pomočjo zadnjega ko-
mentarja, ki se je pojavil v tekočem letu), ime hotela,
nacionalnost pisca komentarja, negativen komentar, šte-
vilo besed v negativnem komentarju, pozitiven komen-
tar, število besed v pozitivnem komentarju, točke pisca
komentarja (točke, ki jih je pisec dodelil hotelu), število
komentarjev, ki jih pisec podal, število komentarjev, ki jih
ima posamezen hotel, značke (ki jih je dodelil pisec ko-
mentarja), koliko dni je minilo od zadnjega komentarja,
dodatne točke k hotelu (nekateri so napisali samo točke)
ter geografska širina in dolžina lokacije hotela.
Komentarji v podatkovni bazi so že imeli izločena vsa lo-
čila in znake, ki jih ni v angleški abecedi (ASCII znaki).
Ker je bila baza dobro pripravljena, nismo imeli veliko
dela – odstranili smo številke in pretvorili besedilo komen-
tarjev v male črke. Podatkovno bazo smo tudi razdelili
na testno in učno množico, pri čemer je učna množica
zajemala približno 80 % vseh podatkov, testna pa pre-
ostalih 20 %. Učno množico smo uporabili za grajenje
slovarjev, testno pa za klasifikacijo komentarjev. Delitev
podatkov v učno in testno množico je potekala za vsak
hotel posebej. Zbrali smo vse komentarje o določenemu
hotelu, nato pa smo le-te razdelili na učno in testno mno-
žico tako, da je učna množica vsebovala približno 80 %
komentarjev.

3.2 Grajenje slovarjev

Podatki so bili predhodno obdelani in lahko smo se lotili
gradnje slovarjev. Odločili smo se, da bomo algoritem

66

izvedli na dva načina – s pomočjo unigramov in bigra-
mov. Algoritem, ki upravlja z unigrami, se od algoritma
z bigrami ne razlikuje preveč, le da slovarja temeljita en-
krat na unigramih, drugič pa na bigramih. Tudi pri upo-
rabi slovarjev in računanju klasifikacij s pomočjo metode
Naivni Bayes je prišlo do razlike le pri predprocesiranju
posameznih komentarjev, kjer smo pri unigramih vzeli
unigrame, torej posamezne besede, pri bigramih, pa bi-
grame, torej dvojice besed.
Grajenja slovarjev smo se lotili tako, da smo najprej pre-
brali učno množico podatkov in si shranili vse komentarje
posebej – razdelili smo jih na pozitivne in negativne. Pri
vsaki različici algoritma (unigrami in bigrami) smo na-
redili dva slovarja. Prvi slovar je imel izračunane verje-
tnosti, da posamezen n-gram (kadar koli se sklicujemo na
n-gram imamo v mislih unigram ali bigram) pripada pozi-
tivnemu komentarju, drugi pa verjetnosti, da posamezen
n-gram pripada negativnemu komentarju. Da smo ver-
jetnosti pripadnosti n-gramov v posamezen razred lahko
izračunali, smo najprej morali narediti še nekaj korakov.
Če smo gradili slovar pozitivnih komentarjev, smo po-
trebovali vse n-grame, ki jih najdemo v besednjaku po-
zitivnih komentarjev. Potrebovali smo tudi seznam vseh
n-gramov, ki se najdejo tako v pozitivnih komentarjih kot
tudi v negativnih, in njihove frekvence pojavitve. Izraču-
nali smo tudi velikost slovarja vseh n-gramov (koliko raz-
ličnih n-gramov se nahaja v pozitivnih in negativnih ko-
mentarjih). Sedaj smo se lahko lotili računanja posame-
znih verjetnosti n-gramov, da le-ti pripadajo določenemu
razredu (pozitivnemu ali negativnemu). Verjetnost, da
n-gram pripada razredu smo izračunali po enačbi:

P (n-gram|razred) = frekvenca(n-gram, razred) + 1
frekvenca(razred) + V (1)

Vsako verjetnost izračunamo tako, da vzamemo frekvenco
pojavitve n-grama znotraj razreda, tej prištejemo ena
(da se izognemo ničelnim vrednostim), nato pa dobljen
rezultat delimo z vsoto frekvence razreda in velikostjo
slovarja (V). Frekvenca razreda predstavlja število n-
gramov, ki se pojavi znotraj posameznega razreda. Za
vsak n-gram smo izračunali verjetnost za oba razreda
(pozitivni in negativni razred) ter si na tak način ustvarili
slovarja, ki smo ju shranili v datoteki. Ker se v testni
množici, ki smo jo uporabili za klasifikacijo, lahko pojavi
tudi takšen n-gram, ki ga v učni množici (s pomočjo te
smo gradili slovarja) nismo imeli, smo v slovar na začetek
dodali vrednost neznanega n-grama in ga označili kot
"unknown_". Pri oznaki smo uporabili podčrtaj, saj bi
se sam n-gram "unknown" lahko pojavil pri komentarjih,
torej bi v tem primeru vzeli napačno verjetnost. Ker
pa smo iz podatkovne zbirke že odstranili vsa ločila, smo
tukaj lahko uporabili to lastnost in n-gramu dodali ločilo.

3.3 Klasifikacija komentarjev

Klasifikacija komentarjev iz testne množice je potekala
tako, da smo najprej prebrali slovarja, ki smo si ju shanili
v prejšnjem koraku. Ustvarili smo podatkovno strukturo
Review, ki je vsebovala vsebino komentarjev, informacijo
o tem ali je komentar pozitiven, informacijo o pravilno-
sti klasificije komentarjev in vrednost klasifikacije. Na-
redili smo tudi podatkovno strukturo HotelReviews. Ta

je vsebovala ime hotela, seznam komentarjev (s pomočjo
prej definirane strukture Review) in vrednost klasifika-
cije. Naredili smo seznam podatkovnih struktur HotelRe-
views, kamor smo si shranili podatke, ki smo jih kasneje
pridobili iz testne množice podatkovne baze.
Prebrali smo testno množico podatkovne baze in si pri
tem shranjevali za nas potrebne informacije – ime hotela
in komentarje, ki smo jih že označili, ali so v podatkovni
bazi bili prepoznani kot pozitivni ali negativni, saj nam
je to kasneje pomagalo pri izračunu natančnosti klasifika-
cijskega modela. Podatke iz testne množice smo shranili
v prej omenjene strukture. Ko smo imeli vse podatke
shranjene v naših podatkovnih strukturah, smo se lotili
klasifikacije komentarjev.
Za vsak komentar, ki je sestavljen iz sekvence n-gramov,
smo vedno izračunali 2 vrednosti: klasifikacijsko vre-
dnost, da komentar pripada pozitivnemu komentarju, in
klasifikacijsko vrednost, da pripada negativnemu komen-
tarju.

komentar = n-gram1, n-gram2, ... n-gramN (2)

P (komentar|pozitiven) =
log(P (pozitiven))
+ log(P (n-gram1|pozitiven))
+ log(P (n-gram2|pozitiven))
...

+ log(P (n-gramN|pozitiven))
(3)

P (komentar|negativen) =
log(P (negativen))
+ log(P (n-gram1|negativen))
+ log(P (n-gram2|negativen))
...

+ log(P (n-gramN|negativen))
(4)

Če je bila pozitivna klasifikacijska vrednost večja od ne-
gativne, smo komentar klasificirali kot pozitiven, v na-
sprotnem primeru smo komentar klasificirali kot negati-
ven.
Izračunano klasifikacijsko vrednost smo si shranili, pri če-
mer smo pri negativnem klasifikacijskemu rezultatu do-
dali negativen predznak – to nam je pomagalo v priho-
dnjih korakih pri določanju splošnega zadovoljstva ho-
telskih gostov, ki ga najdemo v komentarjih s pomočjo
računanja točk posameznih hotelov. Več o tem sledi v
naslednjem poglavju.

3.4 Računanje točk zadovoljstva hotelskega
bivanja

Ko smo klasificirali vse komentarje posameznih hotelov,
smo se posvetili ocenjevanju splošnega zadovoljstva, ki ga
najdemo v komentarjih. Prvotna ideja je bila, da bi pre-
šteli pozitivne in negativne komentarje, ter izračunali nji-
hov delež v primerjavi z vsemi komentarji za posamezen

67

hotel. Odločili smo se, da bomo naredili še en korak na-
prej in namesto štetja računali vrednosti klasifikacije, kar
je točkam posameznih hotelov dodalo še dodatno težo.
Ta teža se odraža pri komentarjih, ki smo jih klasificirali
znotraj istega razreda – npr. 2 komentarja, ki sta kla-
sificirana kot pozitivna se lahko razlikujeta v tem, da je
eden bolj pozitiven kot drugi.
V prejšnjem koraku smo komentarjem, ki smo jih klasi-
ficirali za negativne, dodelili negativen predznak (ostali
imajo pozitivnega, saj je verjetnost nečesa vedno pozi-
tivna). Te klasifikacijske vrednosti smo nato sešteli za
posamezen hotel in na tak način izračunali splošno za-
dovoljstvo glede hotela. Večja kot je bila vsota komen-
tarjev posameznega hotela, bolj so bili gosti hotela, ki so
komentarje napisali, zadovoljni. Za vsak hotel smo to-
rej izračunali vrednost, ki predstavlja točke hotela, in v
splošnem zajema zadovoljstvo. Nato smo hotele uredili
glede na njihove izračunane točke ter na tak način dobili
lestvico hotelov.

4 Eksperiment

V eksperimentu smo klasifikacijo izvedli na dva načina
– z uporabo unigramov in bigramov. Oba klasifikacijska
načina smo primerjali med sabo z izračunom natančnosti
modela, preciznosti, priklicem in mero F1. Pri izračunu
natančnosti, preciznosti in priklicu smo uporabili para-
meter tp (ang. true positive), ki predstavlja število pra-
vilno klasificiranih pozitivnih komentarjev, tn (ang. true
negative), ki predstavlja število pravilno klasificiranih ne-
gativnih komentarjev, fp (ang. false positive), predstavlja
število napačno klasificiranih negativnih komentarjev in
fn (ang. false negative), ki pove število napačno klasifici-
ranih pozitivnih komentarjev.

Natancnost = tp + tn

tp + tn + fp + fn
(5)

Preciznost = tp

tp + fp
(6)

Priklic = tp

tp + fn
(7)

F1 = 2 ∗ Preciznost ∗ Priklic

Preciznost + Priklic
(8)

Pri računanju metrik uspešnosti klasificikacij smo vre-
dnosti izračunali tako za unigrame kot za bigrame, ter
prišli do rezultatov, ki so prikazani v tabeli 1. Zraven
naših rezultatov, so prikazani tudi rezultati iz literature
[6], po kateri smo se zgledovali pri implementaciji algo-
ritma.
Iz tabele 1 lahko razberemo, da se unigrami v vseh me-
trikah uspešnosti bolje obnesejo od bigramov. Unigrami
imajo namreč boljši rezultat pri natančnosti, preciznosti,
priklicu in pri uglašeni meri F1. Največjo razliko med uni-
grami in bigrami vidimo pri izračunu priklica. Na podlagi
tega lahko sklepamo, da smo pri bigramih imeli veliko
število napačno klasificiranih pozitivnih komentarjev.

Tabela 1: Metrike uspesnosti klasifikatorjev.

Unigrami Bigrami Članek [6]
Natančnost 0,92 0,80 0,75
Preciznost 0,94 0,93 /
Priklic 0,91 0,67 /
Mera F1 0,92 0,78 /

Če pa primerjamo priklic in preciznost bigramov, vidimo,
da so bigrami bili pri preciznosti bolj uspešni kot pri pri-
klicu. Iz slednjega lahko sklepamo, da je število napačno
klasificiranih nagativnih komentarjev bilo manjše kot šte-
vilo napačno klasificiranih pozitivnih komentarjev. Pri
unigramih pa je razlika med priklicom in preciznostjo do-
kaj mala, zato lahko sklepamo, da je delež napačno kla-
sificiranih komentarjev približno enako razporejen med
napačno klasificiranimi pozitivnimi komentarji (fn) in na-
pačno klasificiranimi negativnimi komentarji (fp).
V članku [6] so za klasifikacijo komentarjev videov
Danmaku uporabili slovar sentimenta, ki ni temeljil zgolj
na besedišču komentarjev. Pri klasifikaciji komentarjev
so uporabili bigrame, torej lahko njihove rezultate
primerjamo z našimi rezultati pri pristopu z bigrami.
Dosegli smo boljše rezultate (tabela 1) zaradi uporabe
slovarjev, ki so bolj domensko specifični.
Kot zanimivost smo ustvarili tudi vizualno predstavitev
unigramov (besed), ki se najpogosteje pojavijo v pozi-
tivnih in negativnih komentarjih. Vizualno predstavitev
vidimo na sliki 1, pri čemer zelena slika predstavlja po-
goste besede, ki jih najdemo v pozitivnih komentarjih,
rdeča slika pa prikazuje pogoste besede znotrah negativ-
nih komentarjev.

Slika 1: Vizualna predstavitev najpogostejsih besed v
komentarjih

5 Zaključek

V okviru naše naloge smo uporabili analizo sentimenta
nad komentarji hotelskih gostov. Klasifikacijo komen-
tarjev smo izvedli s pomočjo slovarjev in metode Naivni
Bayes, pri čemer smo eksperiment izvedli s pomočjo uni-
gramov in bigramov. Končni rezultati so pokazali, da je
klasifikacija s pomočjo unigramov uspešnejša, kot pa z
bigrami. Pri klasifikaciji s pomočjo unigramov smo do-
segli 92 % natačnost, pri bigramih pa 80 %. V članku
[6] so dosegli 75 % natančnost, torej so bili manj uspešni

68

pri klasifikaciji. Boljše rezultate napram primerjalnega
članka smo dosegli zaradi uporabe slovarjev sentimenta,
ki temeljijo zgolj na besedišču, ki ga najdemo v komen-
tarjih, med tem ko so v [6] uporabljali bolj splošen slovar.
Klasifikacijo komentarjev smo v našem članku uporabili
za raziskavo splošnega zadovoljstva hotelskih gostov, ki
so napisali komentarje za določen hotel. Eksperiment bi
lahko v nadaljnem delu razširili z upoštevanjem nacio-
nalnosti piscev komentarjev pri sami klasifikaciji. Na tak
način bi lahko ugotovili korelacijo med nacionalnostjo pi-
scev komentarjev in zadovoljstva glede določenega hotela,
ki se skriva v komentarjih. Posameznim komentarjem bi
v bodoče lahko dodali tudi številčno oceno (npr. od 1
do 5), ki bi jo pridobili s pomočjo razširitve trenutnega
eksperimenta.

Literatura

[1] Bouazizi, M., and Otsuki Ohtsuki, T. A
pattern-based approach for sarcasm detection on
twitter. IEEE Access 4 (2016), 5477–5488.

[2] Brandwatch, K. B. Understanding sentiment
analysis: What it is & why it’s used.

[3] Cai, R., Qin, B., Chen, Y., Zhang, L., Yang,
R., Chen, S., and Wang, W. Sentiment analysis
about investors and consumers in energy market ba-
sed on bert-bilstm. IEEE Access 8 (2020), 171408–
171415.

[4] Fang, Y., Tan, H., and Zhang, J. Multi-strategy
sentiment analysis of consumer reviews based on
semantic fuzziness. IEEE Access 6 (2018), 20625–
20631.

[5] Jianqiang, Z., Xiaolin, G., and Xuejun, Z.
Deep convolution neural networks for twitter senti-
ment analysis. IEEE Access 6 (2018), 23253–23260.

[6] Li, Z., Li, R., and Jin, G. Sentiment analysis of
danmaku videos based on naïve bayes and sentiment
dictionary. IEEE Access 8 (2020), 75073–75084.

[7] Phan, H. T., Tran, V. C., Nguyen, N. T., and
Hwang, D. Improving the performance of senti-
ment analysis of tweets containing fuzzy sentiment
using the feature ensemble model. IEEE Access 8
(2020), 14630–14641.

[8] Saad, S. E., and Yang, J. Twitter sentiment
analysis based on ordinal regression. IEEE Access
7 (2019), 163677–163685.

[9] Son, L. H., Kumar, A., Sangwan, S. R.,
Arora, A., Nayyar, A., and Abdel-Basset,
M. Sarcasm detection using soft attention-based
bidirectional long short-term memory model with
convolution network. IEEE Access 7 (2019), 23319–
23328.

[10] Watanabe, H., Bouazizi, M., and Ohtsuki, T.
Hate speech on twitter: A pragmatic approach to
collect hateful and offensive expressions and per-
form hate speech detection. IEEE Access 6 (2018),
13825–13835.

[11] Xu, G., Meng, Y., Qiu, X., Yu, Z., and Wu,
X. Sentiment analysis of comment texts based on
bilstm. IEEE Access 7 (2019), 51522–51532.

69

70

Časovni razporejevalniki in brezstrežniško okolje
Uroš Zagoranski

Univerza v Mariboru,
Fakulteta za elektrotehniko, računalništvo in informatiko,

Koroška cesta 46, 2000 Maribor, Slovenija
uros.zagoranski@student.um.si

Povzetek
V prispevku smo se osredotočili na časovne razpo-
rejevalnike (ang. cron job schedulers) v brezstre-
žniškem (ang. serverless) okolju in njihovo zane-
sljivo uporabo. Primerjali smo razporejevalnike,
implementirane s pomočjo zabojnikov s tistimi,
ki so gostovani v oblaku z uporabo pristopa funk-
cije kot storitve. Ugotavljali smo, katere so po-
sebnosti časovnih razporejevalnikov v brezstrežni-
škem okolju in kdaj je le-te sploh smiselno upo-
rabiti. Na praktičnem primeru smo predstavili,
kako jih lahko vključimo v večji sistem in na ka-
kšen način najlažje rešimo morebitne težave, ki
jih ob izbiri brezstrežniškega okolja zavestno pre-
vzamemo. Ugotovili smo, da so razporejevalniki
v FaaS (ang. Function as a Service) okolju naj-
primernejši zaradi enostavnega in hitrega razvoja
ter nizkih stroškov obratovanja.

Ključne besede brezstrežniška arhitektura · sodobni
pristopi implementacije informacijskih rešitev · časovni
razporejevalniki · funkcija kot storitev · zabojnik kot
storitev

1 Uvod

Tempo življenja se v zadnjih letih veča in zaradi tega
smo ljudje vse bolj časovno obremenjeni. S tem se posle-
dično veča tudi potreba po časovnem razporejanju rutin,
da se kakšna informacija v presežku le-teh ne izgubi. Že
od nekdaj so se razvijali sistemi, ki so omogočali takšno
in drugačno razporejanje, a to ni bilo še nikdar enostav-
nejše, kot je v današnji dobi računalništva v oblaku. Ve-
lik nabor ponudnikov oblačnih storitev omogoča izbiro
med le-temi, ki pa ravno zaradi velike ponudbe včasih
ni trivialna. Izbiro prave storitve otežuje predvsem po-
manjkanje analitičnih pregledov in primerjav storitev, ki
jih ponujajo različne korporacije. S tem namenom smo
želeli predstaviti razlike, prednosti in dodatne izzive, ki
nastanejo pri razvoju razporejevalnikov v oblaku z upo-
rabo funkcij kot gonilne sile v primerjavi s tistimi, ki so
implementirani v (bolj) klasičnih aplikacijah, s pomočjo
orkestracije zabojnikov. Poleg tega smo našteli in pred-
stavili glavne sisteme, ki ponujajo časovno razporejanje v
brezstrežniškem okolju in na praktičnih primerih uporabe
pojasnili, kateri izmed glavnih ponudnikov je za posame-
zen primer boljši in zakaj.
Raziskovalni vprašanji, ki smo ju obravnavali sta:

• Katere so posebnosti časovnih razporejevalni-

kov v brezstrežniškem okolju?
• Kdaj je smiselno uporabiti časovne razpore-

jevalnike brezstrežniškega okolja?

V nadaljevanju članka so v drugem poglavju predsta-
vljene posebnosti sodobnega pristopa razvoja program-
skih rešitev, to je z zabojniki in s pomočjo funkcij kot
storitev, ter njuna primerjava. Tretje poglavje pokriva
tematiko časovnih razporejevalnikov na splošno ter se
podrobneje posveča razporejevalnikom v brezstrežniškem
okolju, pregledno povzema glavne ponudnike takšnih sto-
ritev in navaja primere uporabe. Četrto poglavje predsta-
vlja realen primer uporabe časovnih razporejevalnikov v
namen razporejanja opravil v računovodskem servisu. V
petem poglavju odgovarjamo na raziskovalna vprašanja
in uvajamo diskusijo, v zadnjem poglavju pa povzemamo
rezultate raziskave in glavna nova dognanja, pridobljena
z njeno pomočjo.

2 Sodobni pristopi implementacije
informacijskih rešitev v namen
razporejanja opravil

Vse več razvijalcev informacijskih rešitev pomeni večji na-
bor možnosti in preferenc pri razvoju programske opreme.
Zaradi tega raziskovalno podjetje Gartner vsako leto iz-
dela poročilo trendov v informacijsko tehnološkem svetu
za prihodnje koledarsko leto. V zadnjem času lahko na tej
lestvici vse pogosteje zasledimo besedne zveze kot so ume-
tna inteligenca, obogatena resničnost, analitika, avtoma-
tizacija ipd. [12] Virtualizacija virov in programiranje v
oblaku sta se hitro zlili s klasičnimi pristopi implementa-
cije informacijskih rešitev, zato ni čudno, da je rast tega
področja in inovativnost rešitev v tej kategoriji v pozitiv-
nem trendu. Med napovedmi za bližnjo prihodnost se v
Gartnerjevih raziskavah tako pojavljajo besedne zveze, ki
omenjajo zabojnike, njihovo orkestracijo, funkcije kot sto-
ritev in brezstrežniški pristop razvoja programske opreme
splošno. [6]
Brezstrežniški pristop razvoja programske opreme je mo-
del računalništva v oblaku, v katerem ponudnik oblač-
nih storitev v imenu svojih strank skrbi za strežnike in
dodeljevanje strojnih virov. Glavna posebnost takšnega
pristopa je, da aplikacija nima dodeljenih računalniških
virov, če ta ni v uporabi. To se odraža v nižji ceni de-
lovanja, saj le-ta temelji na dejanski količini sredstev, ki
jih aplikacija porabi v določenem časovnem intervalu. [1]
Trenutno stanje brezstrežniških sistemov na trgu je v
Gartnerjevih analizah primerjano s predpostavkami za
bližnjo prihodnost, prav tako pa je podana finančna ocena

DOI https://doi.org/10.18690/978-961-286-516-0.16
ISBN 978-961-286-516-0 71

brezstrežniških sistemov v bližnji prihodnosti. Pri tem
napovedujejo, da se bo iz lanske globalne kvote prihod-
kov v višini 465,8 milijonov dolarjev do leta 2024 višina
prihodkov kar podvojila, in sicer naj bi znašala 944 mi-
lijonov dolarjev. Največjo rast naj bi po ocenah dosegli
ravno orkestracija zabojnikov ter brezstrežniški pristop
razvoja informacijskih rešitev, kateri tematiki bomo po-
drobneje opisali v nadaljevanju. [11]
Druga Gartnerjeva raziskava ocenjuje, da bo v prihodno-
sti drastično narasla tudi uporaba platform, ki kot spro-
žilce aktivnosti v sistemu uporabljajo najmanjše možne
komponente, to so funkcije. Trenutno približno 20 odstot-
kov globalnih IT podjetij uporablja »funkcijski« (FaaS)
način implementacije, do leta 2025 pa bi naj ta številka
narasla na kar 50 odstotkov. [4]
Porast interesa uporabe oblačnih infrastruktur se odraža
tudi na številu ponudnikov. Med vodilne uvrščamo na-
slednje:

• Amazon Web Services,
• Google Cloud Platform,
• Microsoft Azure,
• IBM Apache OpenWhisk.

V tekmovanju teh ponudnikov se kot glavni akter že vr-
sto let pojavlja platforma Amazon Web Services (v na-
daljevanju AWS), a v zadnjem času pridobiva vse več
tekmecev, med katerimi sta najbolj aktualna predvsem
Microsoft Azure in Google Cloud Platform (v nadaljeva-
nju GCP). A če povzamemo obe prej omenjeni podro-
čji (zabojnike in funkcije), v ospredje brez konkurence
stopi Google, saj si lasti tako orkestracijsko rešitev Ku-
bernetes kot tudi ogromno platformo za programiranje v
oblaku, GCP. [7] Podjetja želijo, da se razvijalci osredoto-
čajo predvsem na razvoj programske opreme, ne pa tudi
na vzdrževanje, vzpostavitev in druge podporne aktivno-
sti. Pri zabojnikih zato pogosto zasledimo tudi osebo, ki
je zadolžena za skrb in upravljanje s celotno arhitekturo
(DevOps), katere pa pri funkcijskem pristopu načeloma
ne potrebujemo.

2.1 Zabojniki: Container as a Service (CaaS)

Vse pogostejši trend uporabe zabojnikov za implementa-
cijo informacijskih rešitev se odraža tudi pri nastanku do-
kaj nove paradigme računalništva. CaaS predstavlja nad-
gradnjo kategorije IaaS (Infrastructure as a Service), kjer
korporacije v najem ponujajo strežnike, virtualne stroje,
omrežja in shrambe, pri čemer so njihovi uporabniki od-
govorni za upravljanje infrastrukture in nameščanje apli-
kacij nanjo. Zraven tega CaaS ponuja še zabojniške stroje
in funkcionalnosti za orkestracijo le-teh. [19] Za nas je
najzanimivejši podrazred CaaSa, KaaS (Kubernetes as a
Service), saj je zaradi svoje robustnosti, zrelosti in boga-
tega nabora funkcionalnosti Kubernetes postal de-facto
standard in najpogosteje uporabljena tehnologija, ko je
govora o razvoju informacijskih rešitev s souporabo za-
bojnikov. [13]
Kubernetes je odprtokodni sistem za orkestracijo, ki omo-
goča avtomatizirano upravljanje z zabojniki, prav tako
pa upravlja celoten življenjski cikel zabojnikov, pri čemer
uporabniki upravljajo z izvedbo in interakcijo aplikacij.

[8] Aplikacije so tipično sestavljene iz več zabojnikov, ki
so porazdeljeni po različnih virtualnih in fizičnih gosti-
teljih. Kubernetes nam pri tem pomaga pri upravlja-
nju s strukturiranjem zabojnikov v tako-imenovane stroke
(ang. pods), ki okolje bogatijo z dodatnim nivojem ab-
strakcije. Na ta način je poenostavljeno razporejanje z
viri, prav tako pa časovno razporejanje, ki je za nas naj-
zanimivejše. [10]
Pristop z zabojniki je primeren predvsem za ekipe, ki
prisegajo na podrobnejši nadzor nad storitvami kontejne-
rizacije. Prav tako omogoča avtomatizacijo uvajanja in
vračanja v prejšnje stanje, fine nastavitve količine pro-
cesorske moči in pomnilniškega prostora, samodejno ce-
ljenje zabojnikov, ki so bili pri izvajanju neuspešni ter
upravljanje s konfiguracijami. [8]

2.2 Funkcije: Function as a Service (FaaS)

FaaS je nov koncept v oblačnem računalništvu, podo-
ben PaaSu (Platform as a Service) z vidika omogočanja
enostavnejšega razvoja programske opreme in razbreme-
nitve razvijalcev upravljanja s strežniki in operacijskimi
sistemi. Prednost funkcij v oblaku v primerjavi s prej
omenjenima konceptoma je predvsem v poslovnem vi-
diku. Medtem, ko se pri PaaSu plačuje čas izvajanja niti,
se pri FaaSu plačuje izvajalni čas specifične funkcije. S
tem se lahko konkretno zvišajo performančne karakteri-
stike ogromnih sistemov, hkrati pa znižajo obratovalni
stroški same informacijske rešitve. [1]
Z začetki v letu 2014 z Amazonovo Lambdo je do da-
nes koncept FaaS postal priznan in dobro sprejet način
implementacije informacijskih rešitev. Dokazano je ve-
liko bolj skalabilen, elastičen, razvijalcem prijazen ter ce-
novno ugoden kot predhodne oblačne arhitekture. Poleg
AWSove Lambde v to kategorijo uvrščamo tudi Microsoft
Azure Functions, Google Cloud Functions, IBM Apache
OpenWhisk. [2]
Pristop s funkcijami v oblaku je primeren predvsem za
projekte, ki imajo neenakomerno razporeditev izvajanja,
izjemno visoke ali neznane zahteve za skaliranje sistema,
so vezani na zunanje dogodke, sestavljeni iz kratko-
živečih diskretnih funkcij, ali pa lahko s klici operirajo
brez stanja. Pogosto jih lahko zasledimo pri mobilnih
aplikacijah, IoT senzorskih komponentah in časovno
aktiviranih akcijah. [4]

2.2.1 Primerjava obeh skupin

V začetku porasta informacijske tehnologije je postala po-
pularna gradnja monolitnih aplikacij, ki pa se danes vse
manj pojavlja na seznamu trendov. V zadnjem času so
jih pretežno zamenjale mikro-storitve in posledično se je
vpeljala uporaba zabojnikov, s katerimi sta razporejanje
in razvoj aplikacij veliko enostavnejša. Zabojniki so se
v IT svetu prvič pojavili že pred letom 2000, zato ima
ta koncept daljšo in bogatejšo zgodovino, kot funkcije v
oblaku. Kljub temu t. i. eksplozija popularnosti obeh
konceptov sega v podobno časovno obdobje. Zabojniki
so namreč postali izjemno aktualni šele z Dockerjem v
letu 2013, FaaS pa z AWSovo Lambdo v letu 2014. [16]
FaaS predstavlja višji nivo abstrakcije kot CaaS. Slednji
namreč abstrahira nivoje strojne opreme, virtualizacij-

72

Tabela 1: Primerjava CaaS in FaaS [9]

CaaS FaaS
Prenosljivost Zabojniki predstavljajo standardizirano

enoto, zaradi česar je njihova prenosljivost
med ponudniki enostavna

Slaba standardizacija, večinoma odvisno
od ponudnika, razporejevalniki kljub temu
delno standardizirani

Dvig in premik Obstoječe aplikacije enostavno oviti v zaboj-
nike, če to ni že izvedeno, zabojniki nimajo
vpliva na delovanje razporejevalnikov

Ni mogoč, obstoječe aplikacije potrebujejo
adaptacijo ali popolno re-implementacijo

Razdrobljenost Enote ponavadi razdeljene na komponente,
ponujena možnost razporejanja specifičnih
funkcij, tudi tistih, ki skrbijo za razporejanje

Aplikacija razdrobljena na majhne enote, ki
jih je enostavno razporejati (funkcije), ide-
alno za implementacijo razporejevalnikov

Izvajanje Upravljano s strani razvijalca Upravljano s strani ponudnika v oblaku
Fleksibilnost Visoka Srednja
Primeri upo-
rabe

Celotne spletne aplikacije, mikro-storitve,
upravljanje s podatki

Specializirane funkcije, asinhrono procesira-
nje, dogodkovno vodena arhitektura

Izzivi Zahteva razumevanje delovanja zabojnikov,
težja implementacija razporejevalnikov

Upravljanje odvisnosti, sledenje in upravlja-
nje več mikro-storitev hkrati

Primernost Učinkovito za gostovanje osnovnih aplikacij,
manj primerno za implementacijo razporeje-
valnikov

Najprimernejše za lansiranje novih aplikacij,
izjemno primerno za implementacijo razpo-
rejevalnikov

skih strojev ter operacijskega sistema, pri čemer pa prvi
na vse prej omenjene nivoje dodaja še abstrakcijo izvedbe
programske kode in aplikacije. Obe skupini prenašata
odgovornost manipulacije z aplikacijo in funkcijami na
uporabnika storitve.
Če na kratko povzamemo celotno tabelo 1, ki predsta-
vlja primerjavo prej omenjenih pristopov lahko ugoto-
vimo, da v splošnem pristop z zabojniki nudi več svo-
bode pri implementaciji, nadzora nad izvajanjem ter eno-
stavno migracijo v primeru, da neka obstoječa aplikacija
še ne uporablja takšnega pristopa. Na drugi strani je
pristop s funkcijami v oblaku primernejši in lažji za vzdr-
ževanje, je pa manj fleksibilen in slabo standardiziran,
zato se tehnične podrobnosti, ki jih je potrebno upošte-
vati ob implementaciji, razlikujejo med posameznimi po-
nudniki. Kateri pristop uporabiti je odvisno predvsem
od primera uporabe, pri čemer je za spletne aplikacije z
mikro-storitvami primernejša izbira CaaS modela, za do-
godkovno vodene aplikacije z asinhronim procesiranjem
pa se bo bolje izkazal FaaS model.

3 Časovni razporejevalniki

Časovno tempiranje aktivnosti je v današnjem svetu čisto
običajna aktivnost, zato je vse pogostejša tudi uporaba
sistemov, ki skrbijo za izvajanje določenih funkcij ob spe-
cifičnem času, na željeno frekvenco ali pa z določenimi
zamiki. Razporejevalniki nas tako v informacijsko teh-
nološkem svetu spremljajo praktično od začetka. Ti so
prisotni v operacijskih sistemih, omrežnih komponentah,
konec koncev pa tudi v I/O operacijah (operacijah pisa-
nja in branja).
Medtem, ko se pri vseh prej naštetih komponentah ter-
min razporejanje pojavlja v obliki razporejanja virov, je
za našo raziskavo veliko zanimivejše časovno razporejanje
opravil. V tradicionalnih sistemih se takšni problemi ve-
činoma rešujejo z aplikacijskimi strežniki in orkestracijo

zabojnikov, v novi dobi oblačnega računalništva pa se vse
pogosteje pojavlja prej omenjeni pristop FaaS. Za izvedbo
specifičnih funkcij ob določenem času v informacijskih re-
šitvah takšnega tipa skrbijo funkcije, imenovane časovni
razporejevalniki, ki v vseh sistemih, ne glede na izbiro
tehnološkega sklada, delujejo po enakem principu. Poleg
enakega principa imajo tudi enako obliko sprejema po-
datkov, sestavljeno iz petih spremenljivk in klica funkcije
ali komande. Splošna oblika »cron« izraza je prikazana
na sliki 1.

Slika 1: Splošna oblika »cron« izraza

Med najpogostejšimi izrazi, ki jih zasledimo v imenih raz-
porejevalnikov sta angleški besedi »cron« in »scheduler«.
V sklopu prej opisanih razporejevalnikov najdemo glavne
ponudnike takšnih storitev, to so Googlov Kubernetes,
Amazonovo orodje Lambda v kombinaciji s storitvijo Clo-
udWatch Events, Googlovi Cloud Scheduler in Scheduled
Cloud PubSub ter Microsoftov Azure Time Trigger.

3.1 »Zabojniško« okolje

Zabojnike lahko uporabimo za različne namene, eden po-
membnejših je procesiranje in obdelava nalog v ozadju.
To je pogost primer uporabe, ki pa je vse prej kot trivi-
alen in odpira vrsto vprašanj, med drugim je vprašljivo
sledenje izvajanja, skaliranje in upravljanje s ponovnimi
zagoni. Zraven razporejevalnikov z viri, ki so v razdelani
arhitekturi z orodji kot sta Docker in Kubernetes neizbe-
žni, se v teh okoljih srečujemo tudi s časovnimi razpore-

73

jevalniki, ki znatno vplivajo na optimizacijo virov, da je
uporaba teh kar se da učinkovita. [14]
Zabojniki sami po sebi omogočajo uporabo časovnih spro-
žilcev, ki pa z vpeljavo več instanc in posledično kom-
pleksnosti zahtevajo uporabo posvečenega orodja, kot je
na primer Kubernetes. Stanje posameznega zabojnika se
tako ne more prenašati med preostalimi zabojniki zaradi
varnostnih razlogov, zaradi česar je potrebno najti druge
načine za izpostavitev skript. Kubernetes prav tako di-
namično generira imena zabojnikov, zaradi česar je do-
stopanje do njih oteženo. [17]

3.2 »Funkcijsko« okolje

Časovni razporejevalniki sami po sebi ne veljajo za naj-
bolj zanesljive. To pride do izraza v funkcijskem brezstre-
žniškem okolju, kjer jih pogosto najdemo kot popolnoma
neodvisne komponente. Njihova edina naloga je, da se
izvedejo ob določenem času, zaradi česar se lahko zgodi,
da se določena funkcija, ki je bila klicana v sklopu ne-
kega razporejevalnika, izvede neuspešno. Do tega lahko
pripelje nekaj dejavnikov, med drugim začasna prekinitev
delovanja infrastrukture (ki je v oblaku redka, a mogoča),
neuspešna obdelava podatkov, ali pa prekinitev povezave
s podatkovno bazo. Ker razporejevalniki v brezstrežni-
škem okolju kot parametre prejmejo le čas izvedbe, ni
potrebna validacija vnesenih parametrov. Iz tega vidika
so izjemno zanesljivi, saj (načeloma) ne more priti do na-
pake pri sami izvedbi. Večjo težavo predstavlja dejstvo,
da se predpisane funkcije po izvedbi preprosto »ugasnejo«
in jih uspešnost zaključka klicane funkcije ne zanima. [15]
Med glavne primere uporabe lahko uvrstimo naslednje:

• vzdrževalna naloga re-indeksiranja podatkovne baze,
ki se mora izvesti n-krat v določenem časovnem
intervalu,

• deaktivacija poteklih uporabniških računov,
• nadzor nad prostorom pomnilnika,
• kreacija varnostnih kopij občutljivih podatkov,
• upravljanje s predpomnilnikom,
• razpošiljanje glasila ali posebne ponudbe prijavlje-

nim uporabnikom,
• periodično preverjanje slepih povezav na spletni

strani,
• kodiranje videov in večjih datotek v ozadju.

Iz navedenega lahko vidimo, da nam časovni razporeje-
valniki pomagajo pri marsikaterem rutinskem opravilu, ki
bi bilo z izbiro drugačnega pristopa razvoja programske
opreme zahtevnejše za implementacijo. Kot že omenjeno
lahko za pristop k rešitvi problema izbiramo iz širokega
spektra ponudnikov, zato sta v naslednjih podpoglavjih
predstavljena dva najpomembnejša, GCP Cloud Schedu-
ler in AWS CloudWatch Events.

3.2.1 Google Cloud Platform – Cloud Scheduler

Podjetje Google ponuja veliko storitev, ki so strnjene v
ogromno platformo, imenovano Google Cloud Platform.
Če se za implementacijo časovnega razporejanja rutinskih
opravil odločimo za GCP, je potrebno za dosego cilja upo-
rabiti kombinacijo dveh storitev, to je Cloud Functions in

Cloud Scheduler. Slednja sama po sebi uporablja vse, kar
prva ponuja, zato nam za povezavo med njima ni treba
skrbeti.
Cloud Scheduler je v celoti upravljan razporejevalnik, ki
omogoča razporejanje paketnih opravil, opravil z velikimi
podatki ter operacij z oblačno infrastrukturo. Glavna
prednost izbire tega razporejevalnika je zanesljivost, saj
njegovo distribuirano infrastrukturo upravlja Google. S
tem zagotavlja vsaj-enkratno dostavo sporočil na cilj,
hkrati pa poenostavlja koncept »crontabov«, saj omo-
goča specifikacijo želenega urnika preko t. i. »cron«
izraza. Zraven tega ponuja tudi močno orodje za bele-
ženje izvedbe in uspešnosti ter enostavno konfiguracijo
pravilnika za ponovni poskus v primeru napak. V osnovi
so lahko na posameznem računu brezplačno gostovane tri
instance razporejevalnika, vsaka naslednja instanca pa
stane 0,10 dolarjev na mesec. [5]

3.2.2 Amazon Web Services – CloudWatch
Events

Podobno kot Google tudi Amazon lasti platformo, ki po-
nuja velik nabor storitev, to je Amazon Web Services.
V njenem sklopu lahko najdemo storitev AWS Lambda,
ki sama po sebi ne ponuja časovnega razporejanja. Za
dosego tega je Lambdo potrebno kombinirati z eno od
treh storitev, ki to omogočajo: CloudFormation, Cloud-
Watch Events in EventBridge, ki je posodobljena verzija
storitve CloudWatch Events. Medtem ko AWS Lambda
ponuja le storitve za oddaljeno izvajanje funkcij, se preo-
stale tri storitve osredotočajo na sistemski tok dogodkov
v realnem času. Storitev CloudWatch ostaja v tako ime-
novanem stanju pripravljenosti in ob določenih sprožilcih,
kot so na primer časovni sprožilci, reagira. Slednja omo-
goča specifikacijo pravil za zagon funkcij, na primer na
n-minut, dni, ali pa uporabi kompleksnejše razporejanje,
za katero se prav tako uporablja t. i. »cron« izraz. [3]
Storitev CloudFormation v kombinaciji z AWS SAM (Ser-
verless Application Model) omogoča tudi večstopenjsko
izvajanje rutin, pri čemer je pisanje SAM predlog za
brezstrežniško izvajanje povsem neboleče. Zaradi odlične
podpore integracije različnih storitev znotraj AWS plat-
forme je pri implementaciji razporejevalnikov meja le
nebo. [18]

3.2.3 Primerjava predlaganih razporejevalnikov

Oba prej omenjena ponudnika sta razvila vrhunski re-
šitvi za časovno razporejanje, a vendar ima vsaka svoje
prednosti.
Medtem ko GCP Cloud Schedule ponuja 3 brezplačne in-
stance razporejevalnika AWS CloudWatch Events zago-
tavlja »zastonjsko« različico z maksimalno 100 zagoni na
mesec. Opazna razlika je tudi v ceni - medtem, ko slednji
za 10.000 zagonov ponuja ceno 0.30 dolarjev na mesec,
GCP zagotavlja fiksno ceno 0.10 dolarjev na vsako doda-
tno instanco razporejevalnika. Dokumentacija Googlove
storitve je napisana nekoliko bolj površinsko, Amazonova
pa je podprta z ogromno primeri uporabe. Pri komple-
ksnosti v ospredje stopi Google, saj je povezovanje te sto-
ritve z drugimi iz nabora GCP trivialno, AWSove storitve
pa so nekoliko zahtevnejše za integracijo. Hitrost izvedbe

74

je pri obeh ponudnikih izjemno visoka, zato med njima
v tem aspektu praktično ni razlike. Če na kratko povza-
memo primerjavo je v primeru potrebe po več različnih
časovnih razporejevalnikih z majhnimi frekvencami za-
gona ter za eksperimentalne namene bolje izbrati AWS,
v primeru fiksnega (manjšega) števila razporejevalnikov
in točno zadanih ciljev kaj z razporejevalniki želimo do-
seči pa GCP.

4 Primer uporabe

Za bolj plastično predstavo delovanja časovnih razporeje-
valnikov v funkcijskem okolju uporabimo primer predsta-
vljenega računovodskega servisa na sliki 2 (na naslednji
strani), ki skrbi za pošiljanje plačilnih listov vseh zaposle-
nih v podjetjih s katerimi sodeluje. Servis želi popolno
avtomatizacijo pošiljanja plačilnih listov preko e-pošte.
Ker e-poštna sporočila vsebujejo kritične podatke za za-
poslene je potrebno zagotoviti, da so ta sporočila stood-
stotno poslana. To lahko dosežemo s kombinacijo razpo-
rejevalnikov, ki omogočajo časovno tempiranje sporočil in
sporočilnih sistemov, ki ponujajo zagotovljeno pošiljanje
sporočil. BPMN diagram iz slike 2 je zasnovan splošno,
zato ga je mogoče implementirati enotno, ne glede na iz-
biro ponudnika funkcijske arhitekture.
Z zahtevo po zanesljivosti naraste tudi kompleksnost za-
snovane arhitekture. Kot že omenjeno, lahko pride med
izvajanjem zgoraj opisanega procesa do motenj v delo-
vanju. Z zankami je tako predstavljeno lovljenje napak
znotraj objave sporočil na temo. V primeru, da instanca
med izvajanjem kode na prvi ali drugi temi pade, se po
ponovnem zagonu stanje zaradi shranjevanja vmesnih ko-
rakov vedno ohrani. S tem je doseženo, da se vsa sporo-
čila zagotovo pošljejo, prav tako pa, da se vsa sporočila
pošljejo natanko enkrat. V ta primer uporabe je mogoče
vključiti tudi druge prej omenjene možnosti. Ker plačilni
listi veljajo za občutljive podatke, bi računovodski servis
lahko razporejevalnike uporabil za kreacijo njihovih var-
nostnih kopij. Podobno bi se lahko izvedla deaktivacija
zaposlenih, ki v sistemu več niso aktivni, ali pa, v primeru
dodatnih funkcionalnosti v sistemu, omogočilo kodiranje
večjih datotek v ozadju.

5 Diskusija

Kot lahko razberemo iz drugega poglavja, je pristopov k
implementaciji časovnih razporejevalnikov rutin v oblač-
nih arhitekturah veliko, zato pri izbiri le-teh prevzamemo
tudi nekaj posebnosti, ki jih je potrebno upoštevati pri
implementaciji, izvedbi in vzdrževanju takšnih sistemov.
Prav to nas je zanimalo v sklopu prvega raziskovalnega
vprašanja, ki se glasi:

• Katere so posebnosti časovnih razporejevalni-
kov v brezstrežniškem okolju?

Posebnosti časovnih razporejevalnikov v brezstrežniškem
okolju se delijo na tiste, ki za uporabnika predstavljajo
prednosti ter tiste, ki zanj predstavljajo slabosti, kar je
razvidno iz tabele 1. Med posebnosti, ki jih je potrebno
upoštevati pri implementaciji, spadata nekoliko slabša
podpora personalizacije ter pomanjkanje standardizacije.

Iz tega razloga se je potrebno pri izbiri ponudnika podu-
čiti o specifikah razporejevalnika, ki ga ponujajo. Razlike,
ki jih zasledimo med ponudniki so predvsem finančne ter
performančne. Kljub temu izbira brezstrežniškega okolja
s funkcijskim pristopom, predstavljena v poglavju 3.2,
prinaša veliko prednosti, med drugim enostavne modi-
fikacije in nastavitev razporejevalnikov preko »cron« iz-
raza ter zagotovljena vsaj enkratna izvedba funkcije, ki je
poklicana v sklopu razporejevalnika, kar je pri klasičnih
sistemih nekoliko težje doseči.
Med posebnosti lahko uvrstimo tudi to, da so razporeje-
valniki v brezstrežniškem okolju samostojna komponenta.
To pomeni, da so ločeni od preostalega dela kode, zaradi
česar se lahko v primeru težav z osnovno aplikacijo na
njih še vedno zanesemo. Posebnost je tudi ta, da je ozke
časovne omejitve težko doseči, najnižji razpon dveh iz-
vedb je namreč zaradi možnosti časovnega prekrivanja
pri izvedbi dveh klicev ena minuta. V sklopu prednosti,
ki jih pridobimo z izbiro brezstrežniške arhitekture pa je
smiselno odgovoriti tudi na drugo raziskovalno vprašanje,
ki je bilo rdeča nit celotne vsebine članka:

• Kdaj je smiselno uporabiti časovne razpore-
jevalnike brezstrežniškega okolja?

Na prvi pogled razporejanje rutin ni nekaj, s čimer bi se
srečevali pogosto. A realnost je precej drugačna, hitro
lahko ugotovimo, da se časovne razporejevalnike upora-
blja za marsikatero opravilo, kar je razvidno iz nabora
najpogostejših primerov uporabe iz poglavja 3.2. Smi-
selno jih je torej uporabiti predvsem za opravila, za ka-
tera želimo, da se izvedejo v ozadju in brez potrebe po
poseganju upravljalca. Kot že omenjeno v poglavju 4
so to na primer vzdrževalne naloge re-indeksiranja po-
datkovne baze, deaktivacija poteklih uporabniških raču-
nov na nekem portalu, nadzor nad prostorom pomnilnika
in upravljanje z njim, kreacija varnostnih kopij občutlji-
vih podatkov, razpošiljanje e-poštnih sporočil določenim
uporabnikom ter kodiranje večjih datotek v ozadju. Ča-
sovne razporejevalnike brezstrežniškega okolja z uporabo
funkcij kot storitev je torej smiselno uporabiti vedno, ko
je smiselno uporabiti vse druge časovne razporejevalnike,
zraven tega pa imajo razporejevalniki tega tipa dodano
vrednost hitre implementacije in malega vložka s strani
uporabnikov, da storitev preverjeno deluje.
Izbira brezstrežniškega okolja pa ima še mnogo prednosti.
Ena od teh je, da se razporejevalniki zaženejo le takrat, ko
je nujno potrebno. Ravno nasprotno od tega lokalni raz-
porejevalniki za nemoteno delovanje zahtevajo napravo,
prižgano 24 ur na dan. Ločevanje komponent, v našem
primeru razporejevalnikov, v našo kodo prinese svežino
in olajša upravljanje s posameznimi deli projekta, saj so
manjše enote veliko bolj obvladljive. Glavna prednost
razporejevalnikov v brezstrežniškem okolju pa je vsekakor
odgovor na vprašanje: zakaj bi ponovno implementirali
nekaj, kar je že na voljo ter deluje zanesljivo in hitro.

6 Zaključek

V prispevku smo raziskovali pristope implementacije ča-
sovnih razporejevalnikov v brezstrežniškem okolju ter nji-
hovo zanesljivo uporabo. Poglobili smo se v primerjavo

75

Slika 2: BPMN diagram zasnove razporejevalnika računovodskega sistema

76

dveh predstavnikov brezstrežniškega okolja, zabojnikov
in pristopa FaaS. Podrobneje smo spoznali glavna ponu-
dnika funkcij kot storitev, AWS CloudWatch Events in
GCP Cloud Scheduler, ki sama po sebi omogočata imple-
mentacijo in zanesljivo uporabo časovnih razporejevalni-
kov.
Z analizo literature in odgovorom na raziskovalni vpraša-
nji, zastavljeni na začetku raziskave smo ugotovili, da je
časovne razporejevalnike predvsem v okolju FaaS izjemno
enostavno razviti, prav tako pa ne zahtevajo veliko vzdr-
ževanja. Smiselno jih je uporabiti za rutinska opravila, s
katerimi se nimamo časa ukvarjati, zato nas lahko razbre-
menijo, hkrati pa so cenovno izjemno dostopni. Če vse
skupaj povzamemo je časovne razporejevalnike brezstre-
žniškega okolja torej priporočljivo uporabiti vedno, ko se
v sklopu projekta pojavi potreba po reševanju ponavlja-
jočih oziroma rutinskih opravil.

Literatura

[1] Alqaryouti, O., and Siyam, N. Serverless Com-
puting and Scheduling Tasks on Cloud: A Review.
American Scientific Research Journal for Engine-
ering, Technology, and Sciences (ASRJETS) (mar
2018), 1–14.

[2] Aske, A. M. SCHEDULING FUNCTIONS-AS-A-
SERVICE AT THE EDGE. PhD thesis, WASHING-
TON STATE UNIVERSITY, Vancouver, may 2018.

[3] AWS. What Is Amazon CloudWatch Events? -
Amazon CloudWatch Events, 2021.

[4] Costello, K. The CIO’s Guide to Serverless Com-
puting. Gartner (jun 2020).

[5] Google. Cloud Scheduler | Google Cloud, 2021.
[6] Iams, T. Gartner Blog Network. Gartner (may

2019).
[7] Kohgadai, A. 6 Container Adoption Trends of 2020

| StackRox. StackRox (mar 2020).
[8] Kubernetes. What is Kubernetes? | Kubernetes,

feb 2021.
[9] Leger, Y., and Broshar, A. FaaS vs CaaS:

Comparing Use Cases and Responsibilities, feb 2021.
[10] Marathe, N., Gandhi, A., and Shah, J. M.

Docker swarm and kubernetes in cloud computing
environment. In Proceedings of the International
Conference on Trends in Electronics and Informa-
tics, ICOEI 2019 (apr 2019), vol. 2019-April, In-
stitute of Electrical and Electronics Engineers Inc.,
pp. 179–184.

[11] Moore, S. Gartner Forecasts Strong Revenue Gro-
wth for Global Container Management Software and
Services Through 2024. Gartner (jun 2020).

[12] Panetta, K. Gartner Top Strategic Technology
Trends for 2021. Gartner (oct 2020).

[13] Pereira Ferreira, A., and Sinnott, R. A per-
formance evaluation of containers running on mana-
ged kubernetes services. In Proceedings of the Inter-
national Conference on Cloud Computing Techno-
logy and Science, CloudCom (dec 2019), vol. 2019-
December, IEEE Computer Society, pp. 199–208.

[14] Rodriguez, M. A., and Buyya, R. Container-
based cluster orchestration systems: A taxonomy
and future directions. Software - Practice and Expe-
rience 49, 5 (may 2019), 698–719.

[15] Singhvi, A., Houck, K., Balasubramanian,
A., Danish Shaikh, M., Venkataraman, S.,
and Akella, A. Archipelago: A Scalable Low-
Latency Serverless Platform. Tech. rep., University
of Wisconsin-Madison, Wisconsin, nov 2019.

[16] Tozzi, C. Why Is Docker So Popular? Explaining
the Rise of Containers and Docker – Channel Futu-
res, jul 2017.

[17] Walker, J. How to Use Cron With Your Docker
Containers, jan 2021.

[18] Yilmaz, E. 3 Ways to Schedule AWS Lambda and
Step Functions State Machine Executions , jan 2020.

[19] Zhang, R., Chen, Y., Zhang, F., Tian, F.,
and Dong, B. Be Good Neighbors: A Novel
Application Isolation Metric Used to Optimize the
Initial Container Placement in CaaS. IEEE Access
8 (sep 2020), 178195–178207.

77

78

DOI https://doi.org/10.18690/978-961-286-516-0 ISBN 978-961-286-516-0

PROCEEDINGS OF THE 2021
7TH STUDENT COMPUTER SCIENCE

RESEARCH CONFERENCE

(STUCOSREC)

Keywords:
student
conference,
computer and
information
science,
artificial
intelligence,
data
science,
data
mining

IZTOK FISTER ET AL. (ED.)
University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor,
Slovenia.
E-mail: iztok.fister@um.si

Abstract The 7th Student Computer Science Research Conference is
an answer to the fact that modern PhD and already Master level
Computer Science programs foster early research activity among the
students. The prime goal of the conference is to become a place for
students to present their research work and hence further encourage
students for an early research. Besides the conference also wants to
establish an environment where students from different institutions
meet, let know each other, exchange the ideas, and nonetheless make
friends and research colleagues. At last but not least, the conference is
also meant to be meeting place for students with senior researchers
from institutions others than their own.

	Introduction
	Materials and Methods
	HDEMG model and Activity Index
	Independent Component Analysis
	Artefact detection and elimination
	Dataset and evaluation

	Results
	Discussion
	2.pdf
	Introduction
	Extensible Authentication Protocol
	Zero-Knowledge Proofs
	ZKP System for the Quadratic Residuosity Problem

	Password Protection
	Secure Authentication
	Conclusions and Future Work

	3.pdf
	Introduction
	Preliminaries
	Problem description and results
	Conclusion and further work

	4.pdf
	Introduction
	Implementation of remote embedded development
	Solution using emulator
	Solution using remote development

	Usage and lessons learned
	Emulator
	Remote

	Conclusions

	5.pdf
	Introduction
	Proposed Methodology
	Rough K-Means (RKM)

	Experimental Results
	Conclusion

	6.pdf
	Introduction
	Related work
	Implementing adversarial perturbation on AlexNet CNN
	Results
	Examples of missclassified images

	Discussion

	7.pdf
	1 Introduction
	1.1 Preliminaries

	2 Structural analysis
	2.1 Equivalent 8-cycles
	2.2 Characterization of non-equivalent 8-cycles
	2.3 Obtaining constant octagon value

	3 Recognition algorithm
	3.1 Subprocedure Extend(G,U)

	4 Conclusion

	8.pdf
	Introduction
	Related Work
	IEC Approach to PFSP
	Experiments and Results
	Analysis and Discussion

	Conclusion

	9.pdf
	Introduction
	Literature review
	Experiment
	Results and Discussion
	Conclusion

	10.pdf
	Introduction
	Related Work
	Datasets
	Method
	Experiments and Results
	Conclusion

	11.pdf
	Introduction
	Materials and Methods
	Materials
	Methods

	Results
	Discussion

	12.pdf
	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	The CORE data set
	Microsoft Academic Graph (MAG)
	CrossREF API
	Metadata enrichment of CORE using CrossREF and MAG
	Text matching in the CORE data set
	Candidate retrieval
	Text matching of candidates
	Deduplication

	RESULTS
	CONCLUSION
	ACKNOWLEDGMENTS

	13.pdf
	Introduction
	Related work and contributions

	Embedding non-planar graphs
	Theoretical analysis of the algorithm

	Applications
	Output samples
	Conclusions

	14.pdf
	Uvod
	Metoda cosinor
	Analiza števnih podatkov z metodo cosinor
	Izbira najustreznejšega modela
	Rezultati
	Diskusija in zakljucek

	15.pdf
	Uvod
	Sorodna dela
	Predlagan pristop
	Pridobivanje podatkov
	Grajenje slovarjev
	Klasifikacija komentarjev
	Racunanje tock zadovoljstva hotelskega bivanja

	Eksperiment
	Zakljucek

	16.pdf
	Uvod
	Sodobni pristopi implementacije informacijskih rešitev v namen razporejanja opravil
	Zabojniki: Container as a Service (CaaS)
	Funkcije: Function as a Service (FaaS)
	Primerjava obeh skupin

	Časovni razporejevalniki
	»Zabojniško« okolje
	»Funkcijsko« okolje
	Google Cloud Platform – Cloud Scheduler
	Amazon Web Services – CloudWatch Events
	Primerjava predlaganih razporejevalnikov

	Primer uporabe
	Diskusija
	Zaključek

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	15.pdf
	Uvod
	Sorodna dela
	Predlagan pristop
	Pridobivanje podatkov
	Grajenje slovarjev
	Klasifikacija komentarjev
	Racunanje tock zadovoljstva hotelskega bivanja

	Eksperiment
	Zakljucek
	Blank Page

