DOI: 10.2478/hacq-2014-0002 HACQUETIA 13/1 • 2014, 121-169 steppe-like grassland vegetation in the hills around the lakes of vegoritida and petron, north-central greece Chrisoula B. PIRINI1'*, Ioannis TSIRIPIDISi & Erwin BERGMEIER2 Abstract The present paper describes the floristic composition and synecology of steppe-like dry grasslands occurring in a Natura 2000 site in North-Central Greece around the two karstic lakes of Vegoritida and Petron. In total, 245 relevés of vascular plant species composition and abundance were sampled and subjected to cluster analysis and ordination analysis. Passive explanatory variables, including environmental parameters as well as indicator values, were used to support the ecological interpretation. Four plant communities were distinguished in the area, namely Artemisia campestris-Dasypyrum villosum, Chrysopogon gryllus-Bothriochloa ischaemum, Satureja montana-Artemisia alba and Stipa capillata-Koeleria macrantha. All communities were classified within the Festuco-Brometea class and the Astragalo-Potentilletalia order. Soil properties (soil reaction, moisture and nutrient content) and meso-climate factors (temperature variation along topographic gradients) were identified as the main factors determining the floristic differentiation among the four communities. The dry grasslands harbor a number of species associated with steppic habitats. We discuss the relict character of the steppe-like vegetation. Key words: Astragalo-Potentilletalia, dry calcareous grasslands, Festuco-Brometea, steppe plants, syntaxonomy, vegetation classification. Izvleček V članku opisujemo floristično sestavo in sinekologijo stepi podobnih suhih travišč, ki se pojavljajo v Natura 2000 območju v severni centralni Grčiji okoli dveh kraških jezer Vegoritida in Petron. Vzorčili smo 245 vegetacijskih popisov in jih analizirali s klastrsko in ordinacijsko analizo. Rastišče smo interpretirali s pasivnimi pojasnjevalnimi spremenljivkami, kamor smo vključili okoljske spremenljivke in indikatorske vrednosti. Na raziskovanem območju smo ločili štiri rastlinske združbe: Artemisia campestris-Dasypyrum villosum, Chrysopogon gryllus-Bothriochloa ischaemum, Satureja montana-Artemisia alba in Stipa capillata-Koeleria macrantha. Vse združbe smo uvrstili v razred Festuco-Brometea in red Astragalo-Potentilletalia. Lastnosti tal (reakcija tal) in mezo klimatski dejavniki (spreminjanje temperature vzdolž topografskih gradientov) so glavni dejavniki, ki vplivajo na floristične razlike med štirimi rastlinskimi združbami. V suhih traviščih najdemo številne vrste stepskih habitatov. V članku razpravljamo o reliktnem značaju stepi podobne vegetacije. Ključne besede: Astragalo-Potentilletalia, suha travišča na apnencu, Festuco-Brometea, stepske rastline, sintak-sonomija, klasifikacija vegetacije. 1 Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki; E-mail chpirini@ bio.auth.gr, tsiripid@bio.auth.gr 2 Department of Vegetation and Phytodiversity Analysis, Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany; E-mail erwin.bergmeier@bio.uni-goettingen.de * Corresponding author: Pirini B. Chrisoula; E-mail chpirini@bio.auth.gr 1. INTRODUCTION In the natural landscape of Europe, calcareous grasslands below the timberline would have occurred on steep outcrops in mountainous regions, on non-forested hilltops characterized by extreme environmental conditions, and in continental lowland steppes (Butaye et al. 2005). Today, nearly all low to montane calcareous grasslands are semi-natural, anthropogenic vegetation that replaces various kinds of forest on lime-rich bedrock and mostly shallow or permeable soils (Poschlod & WallisDe Vries 2002, Rodwell et al. 2007). While in central and western Europe numerous publications deal with the syntaxonomy of dry grasslands (e.g. Oberdorfer & Korneck 1978, Royer 1991, Bruun & Ejrnaes 2000, Price 2002, Rodwell et al. 2002, Dengler et al. 2006, Dengler & Lobel 2006, Illyes et al. 2007, Michalkova 2007), publications concerning dry grasslands in the Balkans have appeared mainly in the last decade (e.g. Redzic 1999, Dring et al. 2002, Meshinev et al. 2005, Apostolova & Meshinev 2006, Matevski et al. 2008, Tzonev 2009, Tzonev et al. 2009, To-dorova & Tzonev 2010, Custerevska et al. 2012, Vassilev et al. 2012). Studies on the grassland vegetation of Greece refer chiefly to high-altitude grasslands (Bergmeier 1990, 2002, Karagiannaki-dou et al. 1995, Schreiber 1998, Papanastasis et al. 2003), while the lowland and montane grassland vegetation has been scarcely studied as yet (but see Pirini & Babalonas 2002, Pirini et al. 2006, Bergmeier et al. 2009, Pirini 2011). In North-Central Greece, dry calcareous grasslands of lower elevations physiognomically resemble steppe grasslands (Pirini 2011). However, we refer to the original meaning of zonal semi-arid grasslands of the nemoral (temperate and sub-meridional) vegetation zone as emphasized by, e.g., Walter (1974) and Schroeder (1998). Steppe occurs as zonal vegetation in south-eastern Europe, the Ukraine, southern Russia and Central Asia (Martinovsky & Kolbek 1984, Schroeder 1998), while the corresponding vegetation of the Balkans is considered secondary, steppe-like grassland, with some species interpreted as relicts of the Tertiary period (Horvat et al. 1974, Ellenberg 1988, Zgaga 2005). The present paper describes the floristic composition and the underlying gradients of steppelike grassland vegetation around the two karstic lakes of Vegoritida and Petron in North-Central Greece, thus contributing to a better under- standing of the low-altitude dry grasslands near the south-eastern European margins of the vegetation class Festuco-Brometea (see Dengler et al. 2013). The phytosociological investigation and ecological interpretation provides a basis for the appropriate management and conservation of the steppe-like grasslands and their species. 2. MATERIAL AND METHODS 2.1. Study area The study area is located in North-Central Greece (Figure 1), between the coordinates 40° 49' to 40° 39' N and 21° 40' to 21° 50' E. It includes a complex of two karstic lakes (Vegoritida and Petron) in a total area of 12,077 ha, with an altitudinal range of 510 to 850 m. The study area is a Natura 2000 site (GR-1340004, Limnes Vegoritida-Petron). The climate of the area is submediterranean-subcontinental, characterized by harsh winters and mild drought in summers, with a mean annual precipitation of 437 mm (rain only, without snowfall) according to data from the meteorological station of Amindeo (longitude: 21° 41', latitude: 40° 41', altitude: 580m) for the period 1964-2008. Based on the Mediterranean bioclimatic divisions, the area belongs to the sub-humid zone with harsh winters (Emberger 1955, Mavromatis 1980). The dry period, according to the ombro-thermic diagram of Bagnouls & Gaussen (1957), lasts four months, from early June to late September. Geomorphologically, the study area is part of a long graben system that opened in the late Miocene. It was divided by ridges and hills into several sub-basins during the Pleistocene (Pavlides & Mountrakis 1987, Goldsworthy & Jackson 2001). The rocks of the sub-basins and the surrounding hills belong to the north Pelagonian geological zone and consist of crystalline limestones and marbles, recent talus cones and screes at the foothills, while recent alluvial and lacustrine deposits occur around the lakes (Pavlides & Mountrakis 1987). 2.2. Data recording and analysis In total, 245 relevés were sampled during the years 1999 to 2001 and 2003 to 2005, according to the Braun-Blanquet method (Braun-Blanquet 1964, Dierschke 1994). The plot size was between 20 and 50 m2. In each relevé, the altitude, expo- Figure 1: Map of the study area. Slika 1: Karta raziskovanega območja. sition and slope were measured. Coordinates of relevés were recorded using GPS. Species cover/abundance was estimated using the 7-point Braun-Blanquet scale (Braun-Blanquet 1964). Both multivariate classification and ordination techniques were applied. Vegetation data were entered into a database implemented in TUR-BOVEG version 2.32a (Hennekens & Schaminée 2001). The phytosociological table was processed in JUICE version 6.3 (Tichy 2002). Taxa occurring in only one or two relevés were omitted prior to analyses in order to reduce noise. For the classification of relevés, cluster analysis was performed using the S0rensen distance and the flexible beta method, setting the b value equal to -0.25. Classification was carried out using PC-ORD (ver. 5) (McCune & Mefford 1999). Detrended Correspondence Analysis (DCA; Hill & Gauch 1980) was used for ordination with CANOCO (ver. 4.5) (ter Braak & Smilauer 2002). Species abundances were squared-root transformed prior to DCA analysis. In order to facilitate the interpretation of the DCA diagram, passive explanatory variables were used. These variables concern altitude, inclination, geographical coordinates, potential annual direct incident radiation and heat load, and the Ellenberg indicator values for the relevés. Geographical coordinates were transformed to X and Y coordinates from a zero point. Potential annual direct incident radiation and heat load were calculated using the third equation from McCune & Keon (2002). Ellenberg indicator values (IVs) of the taxa concern light, temperature, continentality, moisture, reaction, nitrogen and salinity. The indicator values were taken from the list referring to the flora of Italy (Pignatti et al. 2005, extended by Pignatti during the 16th Workshop of the European Vegetation Survey in 2006). In total, 212 out of the 265 taxa of the data set were present in the extended list of Pignatti et al. (2005). For the 52 taxa not present, new indicator values were calculated in JUICE (Tichy 2002) using the phi coefficient (Chytry et al. 2002). Taxa with a phi coefficient higher or equal to 0.2 were identified for each of the 52 taxa with missing values, and the mean of their indicator values was taken as the new indicator value. The calculation of the indicator values was not possible for one taxon, because there were no taxa with a phi coefficient higher or equal to 0.2 with regard to this taxon. The indicator values of the relevés were calculated as a weighted mean of the indicator values of taxa occurring in them. The weighting was calculated based on the cover values of each taxon, which were transformed into percentage values and then power transformed, using as power the value 0.2. In this way, the abundance of taxa was taken into account, but sufficiently downweighted to reduce the effect of species dominance on the indicator values of the relevés. Correlations between DCA relevé scores and explanatory variables were calculated using the non-parametric Kendall coefficient. Differential taxa combinations for the distinguished plant communities were determined using the algorithm proposed by Tsiripidis et al. (2009). Furthermore, in order to quantify the fidelity values of taxa, the phi-coefficient was calculated between the groups differentiated positively and those differentiated negatively, positive-negatively or not-differentiated at all. As fidelity threshold to accept a taxon as differential for a group or a combination of groups, the value 0.45 was chosen. The nomenclature of the taxa in the phytoso-ciological tables and the text follows Dimopoulos et al. (2013). 3. RESULTS AND DISCUSSION 3.1 Classification and syntaxonomy The cluster analysis of the relevés revealed four groups corresponding to ecologically interpretable plant communities (Table 1): 1. The first group, the Artemisia campestris-Dasypyrum villosum community (Table 6), includes all relevés sampled at the bottom of hills, on gravelly soil formed by the erosion of the calcareous bedrock uphill. The soils are relatively nutrient-rich, especially on sites of former arable fields and near roads, where human impact affects the species composition of the vegetation. Vegetation dominated by Artemisia campestris is found in dry, base-rich grasslands throughout much of Central and Southern Europe and is commonly classified within Festuco-Brometea (Horvat et al. 1974, Ellenberg 1988, Sykora et al. 2003, Davies et al. 2004). Annual-dominated subnitrophilous Dasypyrum villosum grasslands of the Campagna Romana, Central Italy, have been studied by Fanelli (1998) who included them in the order Thero-Brometalia. The Artemisia campes-tris-Dasypyrum villosum community of our study area is similar to those Dasypyrum-dominated grasslands in their slightly nitrophytic character, reflecting a certain degree of former or current disturbance. However, in the Dasypyrum grasslands short-lived, mostly annual, plants prevail and Dasypyrum villosum is dominant, while our community comprises grasslands dominated by perennials, chiefly Artemisia campestris, with Dasypyrum villosum and other tall annuals being frequent but with very low cover. 2. The second group corresponds to the Chrys-opogon gryllus-Bothriochloa ischaemum community (Table 5). This plant community appears in patches, in small depressions and along small rills of moderate inclination, where the soil is deeper, with higher silt content and thus a higher water holding capacity. Similar plant communities were described elsewhere in the Balkans and have been interpreted as the result of secondary succession on sites of former deciduous forests (Szollât & Standovâr 2005, Matevski et al. 2008). The absence or low abundance of Stipa species and their replacement by sub-Mediterranean grazing-toler-ant grasses of the tribe Andropogoneae, Chrysopo-gon gryllus and Bothriochloa ischaemum, has been attributed mainly to the grazing pressure of domestic animals (Tzonev et al. 2006). 3. The third group, the Satureja montana-Artemisia alba community (Table 4), is represented by relevés sampled on stony ground at the highest elevations of the study area. It develops on steep eroded slopes, covered with marl slates or stones of different size. Its species composition resembles that of the Artemisia alba community described by Bergmeier et al. (2009) from Mt. Falakro. This community has been termed Greek-Balkan steppes with Satureja montana (Matevski et al. 2008). Under this name, Matevski et al. (2008) classified steppe-like grasslands of perennial species occurring "in the sub-Mediterranean and sub-Pannonian region of the Balkans in the Quercion frainetto and Fagion moesiacae zones, from Greece to Serbia and west Bulgaria". Al- legrezza et al. (1997) used these two species as indicators of the alliance Artemisio albae-Saturejion montanae (Rosmarinetea officinalis), which occurs in the micro-garrigues of the hilly, submontane and lower montane belts of the central Apennines. 4. The fourth group corresponds to the Stipa capillata-Koeleria macrantha community (Table 7), and includes the majority of relevés sampled in the study area. It occurs mainly on the hill slopes of low to moderate inclination and on soil that is less gravelly or rocky than the other vegetation units. This community is relatively heterogeneous, as it is differentiated floristically according to the soil properties. In sites with very shallow lithic lepto-sols, the vegetation is rich in stress-tolerant chas-mophytes and other drought-resistant species (e.g. Inula verbascifolia subsp. aschersoniana, Stachys iva). At sites with better soil conditions, shrubby species occur sporadically (e.g. Juniperus oxycedrus, Paliurus spina-christi, Prunus webbii). Similar communities, in which Stipa capillata and Festuca valesi-aca dominate while Chrysopogon gryllus is less abundant or absent, have been described from Central Europe and the Balkan Peninsula (Michâlkovâ 2007, Sopotlieva 2009, Tzonev et al. 2009). All communities described here were classified within the phytosociological class of Festuco-Brometea. In Central Europe this class includes the dry and semi-dry grasslands on base-rich soils (lowland steppes, rocky and sandy secondary and primary calcareous grasslands) of low to (sub) montane altitudes (Ellenberg 1988, Mucina 1997, Rodwell et al. 2002) while in southern Europe it includes also the rocky limestone grasslands of the montane belt (Biondi et al. 1995, Di Pietro 2011). Vegetation differentiation within Festuco-Brometea in Europe shows a geographic pattern from more mesophytic swards in the Atlantic zone to continental steppic grasslands and steppes in the southeast (Rodwell et al. 2007). In the Balkan Peninsula, Festuco-Brometea is represented by Scorzonero-Chrys-opogonetalia, which includes the sub-Mediterranean grasslands of the north-western sector of the Dinarids (Horvatic 1973, 1975, Feoli-Chiapella & Poldini 1993, Poldini 1995, Terzi 2011), by Festuc-etalia valesiacae extending from eastern Central Europe through the eastern and south-eastern Balkans, and by Astragalo-Potentilletalia, which includes the sub-Mediterranean/sub-continental lowland to montane grasslands of the south-central Balkans (Bergmeier et al. 2009, Redzic 2010). Table 1: Synoptic relative constancy table of the communities of steppe-like grassland vegetation in the surroundings of the Lakes of Vegoritida and Petron. 1: Artemisia campestris-Dasypyrum villosum community, 2: Chrysopogon gryllus-Bothriochloa ischaemum community, 3: Satureja montana-Artemisia alba community, 4: Stipa capillata-Koeleria macrantha community. Vegetation layer h: herb, s: shrub, t: tree. Differential taxa of the distinguished communities are shown with bold typescript. Tabela 1: Sinoptična tabela stanovitnosti združb stepi podobne traviščne vegetacije v okolici jezer Vegoritida in Petron. 1: združba Artemisia campestris-Dasypyrum villosum, 2: združba Chrysopogon gryllus-Bothriochloa ischaemum, 3: združba Satureja montana-Artemisia alba, 4: združba Stipa capillata-Koeleria macrantha. Plast vegetacije h: zeliščna, s: grmiščna, t: drevesna. Razlikovalne vrste posameznih združb so prikazane s krepko pisavo. Number of cluster (plant community) Number of relevés Average species number Vegetation layer Absolute constancy 1 48 27 2 26 24 3 30 25 4 141 27 Differential taxa Erysimum crassistylum h 60 81 31 7 8 Avena sterilis h 30 48 15 2 Bromus tectorum h 29 46 15 2 Micromeria cremnophila h 71 42 23 17 28 Marrubium peregrinum h 19 35 8 Cynodon dactylon h 18 33 4 1 Anthemis arvensis ssp. incrassata h 20 33 4 2 Vulpia ciliate h 15 29 4 Stipa cf. endotricha h 32 67 9 Bromus cappadocicus h 50 6 19 53 18 Fumana scoparia h 30 19 43 9 Number of cluster (plant community) Number of relevés Average species number Vegetation layer Absolute constancy 1 48 27 2 26 24 3 30 25 4 141 27 Anthericum liliago h 22 37 8 Petrorhagia thessala h 57 8 12 17 32 Differential taxa of more than one cluster Artemisia alba h 88 29 23 70 33 Teucrium capitatum h 193 85 69 73 79 Koeleria macrantha h 168 65 54 53 76 Euphorbia myrsinites h 141 50 42 30 69 Thymus sibthorpii h 177 65 85 87 70 Chrysopogon gryllus h 137 21 58 70 65 Satureja montana ssp. macedonica h 79 21 42 87 23 Fumana procumbens h 100 8 23 53 52 Hypericum rumeliacum h 57 10 27 23 27 Number of relevés 48 26 30 141 Number of relevés 48 26 30 141 Stachys iva h 94 15 15 87 40 Phanerophytes of Quercetea pubescentis, Rhamno-Prunetea and Asperula purpurea ssp. purpurea h 99 29 23 77 40 Quercetea ilicis Asperula aristata h 114 13 4 63 62 Paliurus spina-christi s 7 2 4 4 Astragalus sericophyllus h 71 10 15 60 31 Hippocrepis emerus ssp. emeroides s 3 3 1 Scabiosa webbiana h 90 8 15 60 45 Carpinus orientalis s 2 1 Inula verbascifolia ssp. aschersoniana h 73 6 40 41 Prunus spinosa s 5 4 3 Helianthemum salicifolium h 129 48 58 10 62 Rubus sanctus s 1 1 Eryngium campestre h 120 90 62 10 41 Rosa agrestis s 1 1 Crupina crupinastrum h 114 67 73 10 43 Juniperus oxycedrus s 45 2 13 28 Helichrysum luteoalbum h 67 48 31 10 23 Prunus webbii s 9 2 6 Bothriochloa ischaemum h 103 38 77 20 42 Asparagus acutifolius s 6 4 Stipa capillata h 131 25 35 17 74 Rhamnus alaternus ssp. alaternus s 5 4 Differential taxa of Festuco-Brometea Phillyrea latifolia s 3 2 Melica ciliata h 114 35 19 30 59 Pistacia terebinthus ssp. terebinthus s 1 1 Festuca valesiaca h 92 4 47 54 Differential taxa of Asplenietea trichomanis Ononis pusilla h 66 27 19 27 28 Aurinia saxatilis ssp. orientalis h 16 23 4 3 Eryngium amethystinum h 55 2 23 33 Iris reichenbachii h 10 7 Lomelosia argentea h 54 27 23 7 23 Campanula lingulata h 6 4 Linum tenuifolium h 49 2 12 37 24 Asplenium ceterach h 1 3 Sedum urvillei h 43 10 12 10 23 Differential taxa of Thlaspietea rotundifolii Sanguisorba minor h 40 2 4 7 26 Linaria simplex h 35 27 15 20 9 Minuartia glomerata ssp. macedonica h 36 17 8 20 14 Aethionema saxatile ssp. graecum h 4 4 3 1 Helianthemum nummularium ssp. Differential taxa of Stellarietea mediae nummularium h 32 4 4 10 18 Bromus squarrosus h 30 6 23 15 Sedum ochroleucum h 31 4 3 21 Euphorbia helioscopia h 19 6 23 17 4 Carex liparocarpos h 31 13 19 Geranium rotundifolium h 13 4 15 3 4 Helianthemum oelandicum ssp. canum h 30 23 16 Consolida regalis h 12 17 12 1 Onobrychis arenaria ssp. lasiostachya h 29 15 12 3 13 Coronilla scorpioides h 11 4 23 2 Jurinea mollis ssp. mollis h 28 10 18 Lathyrus cicera h 7 13 4 Convolvulus cantabrica h 23 4 15 3 11 Ajuga chamaepitys ssp. chia h 3 2 1 Alyssum montanum ssp. montanum h 16 13 8 3 5 Fumaria officinalis ssp. officinalis h 3 4 4 Allium sphaerocephalon ssp. Caucalis platycarpos h 3 4 1 sphaerocephalon h 15 6 4 8 Heliotropium europaeum h 2 4 Chondrilla juncea h 15 27 8 Veronica arvensis h 2 4 Pilosella hoppeana h 15 2 10 Hordeum murinum h 1 2 Thesium linophyllon h 14 13 17 2 Viola arvensis h 1 1 Astragalus onobrychis h 13 4 8 10 4 Differential taxa of Artemisietea vulgaris Herniaria incana h 11 17 2 Echinops sphaerocephalus ssp. albidus h 24 17 15 9 Inula oculus-christi h 11 3 7 Carthamus lanatus h 7 15 Cytisus procumbens h 9 20 2 Cichorium intybus h 6 10 1 Teucrium chamaedrys h 9 15 1 Reseda lutea h 5 2 3 2 Thalictrum minus ssp. saxatile h 6 20 Picnomon acarna h 1 2 Muscari neglectum h 6 4 Tragopogon dubius h 1 2 Galium verum h 6 2 4 Companion taxa Trinia glauca h 6 7 3 Leontodon crispus h 111 33 19 73 48 Allium moschatum h 6 4 Acinos suaveolens h 101 38 42 53 40 Teucrium montanum h 6 17 1 Centaurea grisebachii h 99 15 31 20 55 Allium paniculatum h 4 3 Minuartia verna ssp. collina h 97 6 23 37 55 Hippocrepis comosa h 4 3 Xeranthemum inapertum h 75 31 46 3 33 Onosma visianii h 4 10 1 Poa bulbosa h 71 19 19 7 39 Seseli pallasii h 3 2 Thesium humile h 67 17 27 33 30 Hypericum perforatum h 3 2 Silene radicosa h 62 6 23 10 35 Phelipanche purpurea h 3 3 1 Bromus intermedius h 57 35 23 10 22 Bromus erectus h 2 1 Silene conica h 56 40 31 3 20 Lactuca viminea h 1 2 Medicago minima h 53 63 38 7 8 Securigera varia h 1 2 Hippocrepis ciliata h 52 19 27 7 24 Number of relevés 48 26 30 141 Verbascum leucophyllum h 45 56 31 7 Echinops microcephalus h 42 6 23 7 22 Allium guicciardii h 41 4 10 26 Valerianella rimosa h 36 27 35 10 8 Dianthus gracilis ssp. gracilis h 35 2 17 21 Potentilla recta h 35 8 19 13 16 Paronychia macedonica h 32 2 4 10 19 Linum bienne h 32 10 19 Arenaria serpyllifolia h 31 35 31 10 2 Sideritis montana ssp. montana h 31 2 12 19 Scorzonera mollis ssp. mollis h 29 12 3 18 Asyneuma limonifolium ssp. limonifolium h 28 13 17 Ornithogalum divergens h 23 4 3 15 Carlina corymbosa h 21 25 15 4 Petrorhagia illyrica ssp. illyrica h 21 15 4 9 Brachypodium distachyon h 20 15 19 6 Orlaya daucoides h 19 27 8 7 1 Onosma heterophylla h 19 2 7 11 Cruciata pedemontana h 19 10 15 10 5 Arrhenatherum palaestinum h 19 17 15 13 2 Crepis sancta h 18 23 19 1 Prospero autumnale h 18 2 19 9 Avena barbata ssp. barbata h 17 15 23 3 Erodium absinthoides h 16 11 Calamintha nepeta h 14 19 4 3 2 Asphodeline liburnica h 14 10 Alyssum sibiricum h 14 4 9 Medicago monspeliaca h 14 17 4 4 Medicago tuberculata h 13 25 4 Trifolium scabrum h 13 4 8 6 Centaurea graeca h 12 2 7 6 Centaurea salonitana h 11 6 4 5 Goniolimon heldreichii h 9 19 3 Thesium macedonicum h 9 4 3 5 Crucianella graeca h 9 10 15 Bromus benekenii h 9 6 Psilurus incurvus h 9 10 8 1 Ranunculus sprunerianus h 9 4 3 5 Lens nigricans h 8 13 8 Bupleurum praealtum h 8 8 7 3 Achillea fraasii h 8 17 2 Petrorhagia prolifera h 7 15 Achillea chrysocoma h 7 13 1 Trifolium campestre h 7 15 Pilosella bauhini h 7 2 4 3 3 Polygala supina ssp. rhodopaea h 7 2 7 3 Number of relevés 48 26 30 141 Pterocephalus plumosus h 7 4 4 Verbascum graecum h 7 4 4 Lappula patula h 7 10 3 Potentilla detommasii h 7 4 4 Catapodium rigidum h 7 6 4 2 Erodium cicutarium h 7 10 4 1 Alyssum corymbosoides h 6 2 7 2 Taraxacum spec. h 6 10 4 Quercus trojana ssp. trojana s 6 4 Quercus trojana ssp. trojana t 6 3 4 Thymus boissieri h 6 10 2 Festuca jeanpertii h 6 2 4 Pyrus spinosa s 6 4 Medicago orbicularis h 6 10 4 Cerastium brachypetalum ssp. roeseri h 6 4 Minuartia hamata h 6 4 8 1 Phleum exaratum h 5 6 1 Achnatherum bromoides h 5 2 3 2 Haplophyllum coronatum h 5 13 1 Hieracium pannosum h 5 7 2 Clypeola jonthlaspi ssp. jonthlaspi h 5 2 8 3 1 Podospermum laciniatum h 5 4 Silene graeca h 5 12 3 1 Hypochaeris cretensis h 4 6 4 Papaver rhoeas h 4 8 Lathyrus saxatilis h 4 4 4 1 Tragopogon porrifolius h 4 2 4 1 Plantago lanceolata h 4 3 Onobrychis gracilis h 4 3 Bellardia latifolia h 4 3 Coronilla valentina ssp. glauca h 4 2 2 Betónica officinalis h 4 6 3 Asterolinon linum-stellatum h 4 2 3 1 Cynosurus echinatus h 3 4 1 Achillea holosericea h 3 2 1 Geranium purpureum h 3 2 4 3 Ziziphora capitata h 3 12 Valerianella carinata h 3 4 1 Medicago coronata h 3 2 8 Medicago medicaginoides h 3 4 1 Scandix australis h 3 2 8 Dactylis glomerata h 3 2 Hornungia petraea h 3 2 Origanum vulgare h 2 2 1 Lotus corniculatus h 1 4 Campanula patula h 1 1 Taxa occurring in two or one relevés (within brackets the community they occur is given): Cionura erecta (2), Polygonum aviculare ssp. neglectum (2), Micropus erectus (2), Scabiosa triniifolia (2), Linariapeloponnesiaca var. parnassica (2), Crepis neglecta (2), Nigella arvensis ssp. arvensis (2), Cuscuta epithymum (2), Nigella damascena (2), Lomelosia brachiata (2), Carex extensa (1), Genista sessilifolia (1), Echium arenarium (1), Salvia officinalis (1), Cistus creticus (1), Linum nodi-florum (1), Astragalus monspessulanus ssp. monspessulanus (1), Myosotis incrassata (1). We classified all four communities distinguished in our study in the latter order. Our communities, as well as the entire order Astragalo-Po-tentilletalia, shows an intermediate geographical and floristic position between the more western sub-Mediterranean Scorzonero-Chrysopogonetalia, the more eastern Festucetalia valesiacae, and the Mediterranean pasturelands of the Thero-Brachy-podietea further south. With the Scorzonero-Chrys-opogonetalia, the Astragalo-Potentilletalia shares sub-Mediterranean species such as Fumana procumbens, Chrysopogon gryllus, Euphorbia myrsin-ites, Helianthemum nummularium and H. oelandi-cum subsp. canum; with the Festucetalia valesiacae, it shares species of continental distribution such as Stipa capillata and Festuca valesiaca; and with the Mediterranean grasslands, it shares many annuals as well as the chamaephytes Artemisia alba, Teucrium capitatum and Thymus sibthorpii. The Satureja montana-Artemisia alba community and the Stipa capillata-Koeleria macrantha community can be furthermore assigned to the alliance Saturejion montanae (Saturejo-Thymion). This assignment is supported by a lot of differential species of this alliance, such as Satureja montana, Artemisia alba, Vincetoxicum hirundinaria subsp. nivale, Sedum ochroleucum, Leontodon crispus, Cytisus procumbens, Alyssum montanum subsp. montanum, Anthyl-lis vulneraria subsp. scardica, Helianthemum oelan-dicum subsp. canum, Teucrium montanum, Minu-artia verna subsp. collina and Trinia glauca (based on the table provided by Horvat et al. 1974). 3.2 Ordination The results of the DCA analysis are presented in Table 2. In the DCA diagram (Fig. 2) the four vegetation units are clearly distinct. Table 2: Eigenvalues, length of gradient and total inertia of the DCA. Tabela 2: Lastne vrednosti, dolžina gradienta in variabilnost vseh DCA ordinacijskih osi. Axis 1 2 Total inertia Eigenvalues 0.431 0.269 7.639 Lengths of gradient 3.532 2.910 Cumulative percentage variance of species-environment relation 25.1 38.8 ^^^^^^^^^^ SAMPLES «v* Group-No = 1 [] Group-No = 2 A Group-No = 3 O Group-No = 4 Figure 2: DCA diagram of the relevés along the first two axes. Slika 2: DCA diagram popisov vzdolž prvih dveh osi. The first DCA axis was positively correlated with continentality and soil reaction and negatively correlated with the nutrient content of the soil (Figure 3, Table 3). Furthermore, the first axis is significantly, but less strongly correlated with light intensity, temperature, moisture, alti- tude, inclination, annual radiation, heat load and longitude (Figure 3, Table 3). According to the correlations of the first axis with the explanatory variables, we may say that it represents a gradient related to soil properties (pH and nutrient content) and to climatic conditions. However, as the study area is too small to expect a large-scale climatic differentiation, the increase of continen-tality along the first DCA axis probably reflects the occurrence of more cold-tolerant species with higher continentality IVs in the right part of the diagram. The cooler micro-climate in the relevés of the third and fourth groups, which appear in the right-hand part of the DCA diagram, may be attributed to the fact that these groups occur at higher elevations in the study area and on windexposed slopes. The very shallow soil in the sites of the third and fourth groups, and hence the more direct effect of the calcareous substrate, may also be responsible for the higher soil reaction values as well as for the lower moisture and nutrient content (on shallower soils the available water and nutrient content is reduced). The second DCA axis is significantly positively correlated with temperature and salinity, and negatively correlated with moisture, altitude and inclination. It may thus represent an altitu-dinal and drought gradient, separating mainly the more xerophilous Satureja montana-Artemisia alba community occurring on steeper slopes from the Stipa capillata-Koeleria macrantha community occurring at lower altitudes and on less steep slopes. Furthermore, the second DCA axis is relatively strongly related to geographical coordinates, simply because the hilly landscape is confined to the northern part of the study area. 3.3 Relict vegetation or secondary grassland? Temperate grasslands of Eurasia are either natural climax, as steppe and around rock outcrops, or secondary semi-natural sward as a result of forest degradation (Coupland 1993, Poschlod & WallisDe Vries 2002, Rodwell et al. 2007). Lowland climax grasslands in the western and central Mediterranean are restricted to the most arid parts of North Africa, SE Spain, SE Italy and S Greece (Grove & Rackham 2001, Maestre & Cortina 2002, Forte et al. 2005, Terzi et al. 2010). Do our studied steppe-like grasslands represent a relict of true steppe communities, or are Table 3: Kendall's correletion coefficients between the explanatory variables and DCA relevé scores. **, *: significant correlation at a<0.01 and 0.05, respectively. Tabela 3: Kendallov korelacijski koeficient med pojasnjevalnimi spremenljivkami in DCA vrednostmi popisov. **, *: korelacija je statistično značilna pri <0,01 in 0,05. Explanatory Variables Axis 1 Axis 2 Light -0.218** ■ 0.044 ■ Temperature -0.306** 0.212** Continentality 0.506** 0.083 Moisture -0.305** -0.267** soil Reaction 0.497** -0.037 Nutrient -0.421** 0.016 Salinity -0.04 0.154** Altitude 0.276** -0.242** Incination 0.224** -0.231** annual Radiation 0.197** 0.03 Heat load 0.170** 0.042 X coordinates -0.172** -0.451** Y coordinates -0.071 1 -0.257** Figure 3: Environmental variables passively projected onto the DCA diagram of the first two axes. For the abbreviations of explanatory variables see Table 3 (letters with bold typescript). Figure 3: Okoljske spremenljivke, pasivno prikazane na DCA diagramu prvih dveh osi. Okrajšave pojasnjevalnih spremenljivk so enake kot v Tabeli 3 (krepka pisava). they secondary grassland, representing degradation stages of forest vegetation? The number of steppe species in our study area is relatively small, but they may be abundant locally in dry grasslands. Chiefly feather grasses (Stipa spp.) give a steppe-like impression (Price 2002, Apostolova et al. 2008, Matevski et al. 2008). Three Stipa species have been found in the study area (Pirini et al. 2010), namely S. capil-lata, S. balcanica (S. joannis subsp. balcanica), and S. cf. endotricha. Further species in the study area that occur in natural steppes are Bombycilaena erecta, Chondrilla juncea, Festuca valesiaca, Phleum phleoides, Kengia serotina, Melica transsilvanica, Astragalus onobrychis and Jurinea mollis (Gamarra & Montuto 1997, Fekete et al. 2002, Meshinev et al. 2005, Pirini et al. 2010). Steppe plants have been present in the majority of the Balkan region since the Pliocene. They survived and spread during the cold periods and some remained in the Holocene as relicts of the Tertiary flora (Horvat et al. 1974, Schmid 1975, Ellenberg 1988, Matevski et al. 2008). Possible refugia for steppe species - grasslands that remained non-forested throughout the post-glacial period - exist in the Balkan Peninsula. Is the study area therefore a possible steppe species refuge? Although the plant communities described in this study represent open grasslands, woody species of forest and pre-forest do occur, albeit scattered (Table 1). Furthermore, different vegetation types that represent successional stages can be found in the study area. The main woodland-forming tree is Quercus trojana, an east Mediterranean oak species distributed from south Italy through the Balkan Peninsula to west and south Anatolia (Fukarek 1975, Yaltirik 1975, Bianco et al. 1998, Biondi et al. 2004, Zielinski et al. 2006, Misano & Di Pietro 2007, Di Pietro & Misano 2009, Ugurlu et al. 2012). In Greece, this oak species is restricted to the northwestern, sub-mediterranean-subcontinental part, substituting the less hardy Q. coccifera, which prevails further south and south-east. Different degradation stages of forest exist in the study area, from open woodlands with low canopy cover and high abundance of Festuco-Brometea grassland species up to bushland in which Juniperus oxycedrus is the dominant woody species, albeit with low cover. Thus, the heterogeneous vegetation in the study area with open oak woodlands, shrub formations and steppe-like grasslands probably represents a series of successional stages of vegetation. Hence the grasslands in the study area must be considered secondary as a result of forest degradation. However, we advocate an intermediate hy- pothesis, whereby some of the steppe plant populations may have occurred throughout postglacial times in a more or less wooded environment. In the understory of Quercus trojana woodlands, many light-demanding plants occur. Quercus tro-jana, quite like its "Mediterranean counterpart" Q. coccifera, is extremely resilient and tolerant to browsing. It is an essential element of certain shrublands of the shibljak type, a wooded deciduous pastureland of the subcontinental parts of the Balkans and the Black Sea area. Under postglacial and current climatic as well as land use (grazing) conditions in our area, and depending on the degree of their demand for light, steppe species may have occurred either in open oak woodlands or in various kinds of shibljak-type degradation stages. The calcareous substrate and the geomorphology of the area as well as wood pasture and other human disturbance since ancient times (Pavlides & Mountrakis 1987, Kloost-erboer-van Hoeve et al. 2006) have contributed to the expansion of suitable habitats for steppe species. In Apulia, Biondi & Guerra (2008), Di Pietro & Misano (2010) and Terzi et al. (2010) observed various types of successional stages dynamically linked to the potential Quercus trojana forests. The hypothesis needs further vegetation inventories and studies on the dynamics of vegetation, as well as corroboration by findings from the fields of paleobotany, plant geography and population genetics. The steppe-like grasslands around the Lakes of Vegoritida and Petron are clearly secondary steppe grasslands but it is rather likely that populations of steppe species have occurred continuously in deciduous woodlands and shrub-lands, in landscapes that were probably never densely wooded throughout the Holocene. 4. ACKNOWLEDGMENTS Sincere thanks are given to the chair of the guest editors for helpful comments on a draft version of this article and to all reviewers for their constructive suggestions. We also thank Laura Sutcliffe for language improvement of the manuscript. The professional linguistic editing was funded by IAVS via EDGG. 5. REFERENCES Allegrezza, M., Biondi, E., Formica, E. & Ballelli, S. 1997: La vegetazione dei settori rupestri cal-carei dell'Italia centrale. Fitosociologia 32: 91-120. Apostolova, I. & Meshinev, T. 2006: Classification of semi-natural grasslands in north-eastern Bulgaria. Annali di Botanica Nuova Serie 6: 29-52. Apostolova,I., Petrova, A., Meshinev, T. & Dani-helka, J. 2008: Stipa ucrainica (Poaceae): a recently recognized native species of the Bulgarian flora. Phytologia Balcanica 14: 257-262. Bagnouls, F. & Gaussen, H. 1957: Les climats biologiques et leur classification. Annales de Géographie 355: 193-220. Bergmeier, E. 1990: Wälder und Gebüsche des Niederen Olymp (Kato Olimbos, NO-Thessalien). Ein Beitrag zur systematischen und oro-graphischen Vegetationsgliederung Griechenlands. Phytocoenologia 18: 161-342. Bergmeier, E. 2002: The vegetation of the high mountains of Crete - a revision and multivari-ate analysis. Phytocoenologia 32: 205-249. Bergmeier, E., Konstantinou, M., Tsiripidis, I. & Sykora, V. 2009: Plant communities on metalliferous soils in northern Greece. Phytocoenologia 39: 411-438. Bianco, P., Brullo, S., Minissale, P., Signorello, P. & Spampinato, G. 1998: Considerazioni fito-sociologiche sui boschi a Quercus trojana Webb della Puglia (Italia meridionale). Studia Geobotanica 16: 33-38. Biondi, E. & Guerra, V. 2008: Vegetazione e paes-aggio vegetale delle gravine dell'arco jonico. Fitosociologia 45, Suppl. 1: 57-125. Biondi, E., Ballelli, S., Allegrezza, M. & Zucca-rello, V. 1995: La vegetazione dell'ordine Bro-metalia erecti Br.-Bl. 1936 nell'Appennino (Italia). Fitosociologia 30: 3-45. Biondi, E., Casavecchia, S., Guerra, V., Medagli, P., Beccarisi, L. & Zuccarello, V. 2004: A contribution towards the knowledge of semi-deciduous and evergreen woods of Apulia (south-eastern Italy). Fitosociologia 41: 3-28. Braun-Blanquet, J. 1964: Pflanzensoziologie. Grundzüge der Vegetationskunde. 3rd ed. Springer Verlag, Vienna, 865 pp. Bruun, H.H. & Ejrnaes, R. 2000: Classification of dry grassland vegetation in Denmark. Journal of Vegetation Science 11: 585-596. Butaye, J., Adriaens, D. & Honnay, O. 2005: Conservation and restoration of calcareous grass- lands: a concise review of the effects of fragmentation and management on plant species. Biotechnology, Agronomy, Society and Environment 9: 111-118. Chytry, M., Tichy, L., Holt, J. & Botta-Dukât, Z. 2002: Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: 79-90. Coupland, R.T. 1993: Natural grasslands: Eastern hemisphere and résumé. Ecosystems of the World 8B. Elsevier, Amsterdam, 556 pp. Custerevska, R., Matevski, V., Kostadinovski, M. & Carni, A. 2012: Dry grassland communities of Erysimo-Trifolietum in the north-eastern part of the Republic of Macedonia. Hacquetia 11: 91-111. Davies, C.E., Moss, D. & Hill, M.O. 2004: EU-NIS Habitat Classification revised 2004. European Topic Centre on Nature Protection and Biodiversity, Paris. Dengler, J. & Löbel, S. 2006: The basiphilous dry grasslands of shallow, skeletal soils (Alysso-Se-detalia) on the island of Öland (Sweden), in the context of North and Central Europe. Phytocoenologia 36: 343-391. Dengler, J., Rüsina, S., Boch, S., Bruun, H.H., Diekmann, M., Dierßen, K., Dolnik, C., Du-pré, C., Golub, V.B., Grytnes, J.A., Helm, A., Ingerpuu, N., Löbel, S., Pärtel, M., Rasomavicius, V., Tyler, G., Znamenskiy, S.R. & Zobel, M. 2006: Working group on dry grasslands in the Nordic and Baltic region -outline of the project and first results for the class Festuco-Brometea. Annali di Botanica Nuova Serie 6: 1-28. Dengler, J., Bergmeier, E., Willner, W. & Chytry, M. 2013: Towards a consistent classification of European grasslands. Applied Vegetation Sci-ence16:518-520. Dierschke, H. 1994: Pflanzensoziologie - Grundlagen und Methoden. Ulmer, Stuttgart, 683 pp. Dimopoulos, P., Raus, T., Bergmeier, E., Con-stantinidis, T., Iatrou, G., Kokkini, S., Strid, A. & Tzanoudakis, D. 2013: Vascular Plants of Greece: An annotated checklist. Botanischer Garten und Botanisches Museum BerlinDahlem (Berlin) & Hellenic Botanical Society (Athens), 372 pp. Di Pietro, R. 2011: New dry grassland associations from Ausoni-Aurunci mountains (central Italy) - Syntaxonomical updating and discussion on the higher rank syntaxa. Hacquetia 10: 183-231. Di Pietro, R. & Misano, G. 2009: Analisi fitosocio-logica e considerazioni sintassonomiche sulla vegetazione forestale delle Gravine occidenta-li dell'Arco Ionico (Murge pugliesi e lucane, Italia meridionale). Informatore Botanico Italiano 41: 215-246. Di Pietro, R. & Misano, G. 2010: Shrublands and garrigue vegetation in the "Gravine" gorges (Apulia region, south-eastern Italy). Acta Botanica Gallica 157: 195-229. Dring, J., Hoda, P., Mersinllari, M., Mullaj, A., Pignatti, S. & Rodwell, J. 2002: Plant communities of Albania: a preliminary overview. Annali di Botanica Nuova Serie 2: 7-30. Ellenberg, H. 1988: Vegetation ecology of Central Europe. 4th ed. Cambridge University Press, Cambridge. Emberger, L.C. 1955: Une classification bioge-ographique des climats. Recueil des Travaux du Laboratoire de Botanique de la Faculté des Sciences de Montpellier. Série Botanique 7: 3-43. Fanelli, G. 1998: Dasypyrum villosum vegetation in the territory of Rome. Rendiconti Lincei 9: 149-170. Fekete, G., Molnar, Z., Kun, A. & Botta-Dukat, Z. 2002: On the structure of the Pannonian forest steppe: Grasslands on sand. Acta Zoologica Ac-ademiae Scientiarum Hungaricae 48: 137-150. Feoli-Chiapella, L. & Poldini, L. 1993: Prati e pas-coli del Friuli (NE Italia) su substrati basici. Studia Geobotanica 13: 3-140. Forte, L., Perrino, E.V. & Terzi, M. 2005: Le prat-erie a Stipa austroitalica Martinovsky ssp. aus-troitalica dell'Alta Murgia (Puglia) e della Murgia Materana (Basilicata). Fitosociologia 42: 83-103. Fukarek, P. 1975: Unterschiede in der Dendroflo-ra der westlichen und östlichen Gebiete der Balkanhalbinsel. Problems of Balkan Flora and Vegetation, Sofia, pp. 146-161. Gamarra, R. & Montuto, O. 1997: Approach to the study of steppic plants in the western Mediterranean, a project. Lagascalia 19: 663-666. Goldsworthy, M. & Jackson, J. 2001: Migration of activity within normal fault systems: examples from the Quaternary of mainland Greece. Journal of Structural Geology 23: 489-506. Grove, A. T. & Rackham, O. 2001: The nature of Mediterranean Europe. An ecological history. Yale University Press, New Haven. Hennekens, S. M. & Schaminée, J. H. J. 2001: TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science 12: 589-591. Hill, M. O. & Gauch, H. G. 1980: Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47-58. Horvat, I., Glavač, V. & Ellenberg, H. 1974: Vegetation Südosteuropas. Gustav Fischer Verlag, Stuttgart, 768 pp. Horvatic, S. 1973: Syntaxonomic analysis of the vegetation of dry grassland and stony meadows in Eastern Adriatic coastal Karst district based on the latest phytocoenological research. Fragmenta Herbologica Jugoslavica 32: 1-15. Horvatic, S. 1975: Neuer Beitrag zur Kenntnis der Syntaxonomie der Trocken-Rasen und Steintriften-Gesellschaften des ostadriatisch-en Karstgebietes. In: Jordanov, D., Bondev, I., Kozuharov, S., Kuzmanov, B., Palamarev, E. & Velcev, V. (eds) Problems of Balkan flora and vegetation. Bulgarian Academy of Sciences, Sofia, pp 300-310. Illyes, E., Chytry, M., Botta-Dukat, Z., Jandt, U., Škodova, I., Janišova, M., Willner, W. & Hajek, O. 2007: Semi-dry grasslands along a climatic gradient across Central Europe: vegetation classification with validation. Journal of Vegetation Science 18: 835-846. Karagiannakidou, V., Konstantinou, M. & Papad-emetriou, K. 1995: Floristic and phytogeo-graphical research on the upper montane and the subalpine grassland flora of East Macedonia, Greece. Feddes Repertorium 106: 193-213. Kloosterboer-van Hoeve, M.L., Steenbrink, J., Visscher, H. & Brinkhuis, H. 2006: Millennial-scale climatic cycles in the Early Pliocene pollen record of Ptolemais, northern Greece. Pal-aeogeography, Palaeoclimatology, Palaeoecol-ogy 229: 321-334. Maestre, F.T. & Cortina, J. 2002: Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant and Soil 241: 279-291. Martinovsky, J.O. & Kolbek, J. 1984: ZumBegriff der Waldsteppe in Ost- und Zentraleuropa. Preslia 56: 329-341. Matevski, V., Čarni, A., Kostadinovski, M., Košir, P., Šilc, U. & Zelnik, I. 2008: Flora and vegetation of the Macedonian steppe. Ljubljana, 96 pp. Mavromatis, G. 1980: The bioclimate of Greece, relationship of climate and natural vegetation, bioclimatic maps. Institute of Forest Research of Athens, Athens (in Greek). McCune, B. & Keon, D. 2002: Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603-606. McCune, B. & Mefford, M.J. 1999: PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, Oregon, USA. Meshinev, T., Apostolova, I., Georgiev, V., Dim-itrov, V., Petrova, A. & Veen, P. 2005: Grasslands of Bulgaria. Final report on the National Grasslands Inventory Project. Dragon 2003 Ltd. Publishers, Sofia. Michalkova, D. 2007: Diversity of dry grasslands in the Povazsky Inovec Mts (Slovakia) - A numerical analysis. Hacquetia 6: 61-76. Misano, G. & Di Pietro, R. 2007: L'Habitat 9250 "Boschi a Quercus trojana" in Italia. Fitosocio-logia 44 (2), Ssuppl. 1: 235-238. Mucina, L. 1997: Conspectus of classes of European vegetation. Folia Geobotanica & Phyto-taxonomica 32: 117-172. Oberdorfer, E. & Korneck, D. 1978: Klasse: Festu-co-Brometea Br.-Bl. et Tx. 43. In: Oberdorfer, E. (ed.): Süddeutsche Pflanzengesellschaften, Teil III. 2nd ed. Gustav Fischer Verlag, Jena, pp. 89-179. Papanastasis, V.P., Kyriakakis, S., Kazakis, G., Abid, M. & Doulis, A. 2003: Plant cover as a tool for monitoring desertification in mountain Mediterranean rangelands. Management of Environmental Quality 14: 69-81. Pavlides, S.B. & Mountrakis, D.M. 1987: Exten-sional tectonics of northwestern Macedonia, Greece, since the late Miocene. Journal of Structural Geology 9 (4): 385-392. Pignatti, S., Menegoni, P. & Pietrosanti, S. 2005: Bioindicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d'Italia. Braun-Blanquetia 39: 1-97. Pirini, C.B. 2011: The ecosystem of Lakes Vegoritida and Petron: Flora, Vegetation and Plant Geography. Thesis, Aristotle University of Thessaloniki [In Greek with English summary]. Pirini, C.B. & Babalonas, D. 2002: Flora and vegetation of steppic grasslands around Petron-lake, Macedonia, Greece. In: Proceedings of the 9th scientific conference of the Hellenic Botanical Society, Argostoli-Kefalonia 9-12 May 2002, pp. 280-285 [In Greek with English summary]. Pirini, C.B., Tsiripidis, I., Karagiannakidou, V. & Babalonas, D. 2006: Artemisia campestris inland vegetation type in the "NATURA 2000" network site "Limnes Vegoritida-Petron" (GR 1340004) Pp. 316-322. In: Proceedings of IV Balkan Botanical Congress, Sofia. Pirini, C.B., Tsiripidis, I., Karagiannakidou, V., Raus, Th. & Babalonas, D. 2010: Pseudo-step-pic and aquatic flora of the Natura 2000 network site Limnes Vegoritida-Petron (North-Central Greece). Phytologia Balcanica 16: 109-129. Poldini, L. 1995: La classe Festuco-Brometea nell' Italia nordorientale (The class Festuco-Brome-tea in NE Italy). Fitosociologia 30: 47-50. Poschlod, P. & WallisDe Vries, M.F. 2002: The historical and socioeconomic perspective of calcareous grasslands - lessons from the distant and recent past. Biological Conservation 104: 361-376. Price, E. 2002: Grasslands and heathhland habitats. New York, 208 pp. Redzic, S. 1999: The syntaxonomic differentiation of the Festuco-Brometea Br.-Bl. & R. Tx. 1943 ex Klika & Hadac 1944 in the Balkans. Annali di Botanica 57: 167-180. Redzic, S. 2010: The origin, syndynamics and syntaxonomy of thermophilous vegetation of class Festuco-Brometea Br.-Bl. et R. Tx in Br.-Bl. 1943 at the Dinaric Alps (W. Balkan). 10th Symposium on the Flora of Southeastern Serbia and Neighbouring regions, Vlasina 17 to 20 June 2010. Abstract: 31. Rodwell, J.S., Morgan, V., Jefferson, R.G. & Moss, D. 2007: The European context of British Lowland Grasslands. JNCC Report, No. 394. Rodwell, J.S., Schaminée, J.H.J., Mucina, L., Pignatti, S., Dring, J. & Moss, D. 2002: The diversity of European vegetation. Wageningen: National reference centre for Agriculture, Nature & Fisheries, 168 pp. Royer, J.M. 1991: Synthèse eurosiberiénne, phy-tosociologique et phytogéographique de la classe des Festuco-Brometea. Dissertationes Bo-tanicae 178: 1-296. Schmid, E. 1975: Die Vegetationsgürtel Griechenlands. - In: Dafis, S. & Landolt, E. (eds.): Zur Vegetation und Flora von Griechenland, pp. 37-71. Schreiber, H. J. 1998: Waldgrenznahe Buchenwälder und Grasländer des Falakron und Pangäon in Nordostgriechenland. Syntaxono- mie, Struktur und Dynamik. Arbeiten aus dem Institut für Landschaftsökologie, Westfälische Wilhelms-Universität, 4. Münster. Schroeder, F.-G. 1998: Lehrbuch der Pflanzengeographie. Quelle und Meyer, Wiesbaden. Sopotlieva, D. 2009: Poo bulbosae-Achilleetumpseu-dopectinatae: a new plant association. Phytolo-gia Balcanica 15: 235-244. Sykora, K.V., Babalonas, D. & Papastergiadou, E.S. 2003: Strandline and sand-dune vegetation of coasts of Greece and some other Aegean countries. Phytocoenologia 33: 409-446. Szollat, G., & Standovar, T. 2005: Botanical values of the Öreg-Hegy and Juhasz-Halom near Csomad. Studia Botanica Hungarica 36: 165-183. ter Braak, C.J.F. & Smilauer, P. 2002: CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York. Terzi, M. 2011: Nomenclatural revision for the order Scorzonero-Chrysopogonetalia. Folia Geobotanica 46: 411-444. Terzi, M., Di Pietro, R. & D'Amico, F.S. 2010: Analisi delle Specie Indicatrici applicata alle comunita a Stipa austroitalica Martinovsky e relative problematiche sintassonomiche (Indicator Species Analysis applied to communities with Stipa austroitalica Martinovsky and relevant syntaxonomic problems). Fitosociologia 47: 3-28. Tichy, L. 2002: JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451-453. Todorova, S. & Tzonev, R. 2010: Bromo moesiacae-Stipetum epilosae - a new association from the relict mountain steppe vegetation in southwestern Bulgaria. Hacquetia 9: 185-206. Tsiripidis, I., Bergmeier, E., Fotiadis, G. & Dimo-poulos, P. 2009: A new algorithm for the determination of differential taxa. Journal of Vegetation Science 20: 233-240. Tzonev, R. 2009: Syntaxonomy of the natural and semi-natural vegetation of the middle Danube Plain in Bulgaria. XI Anniversary Scientific Conference, Biotechnology & Biotechnologi-cal Equipment, Special Edition: 354-359. Tzonev, R., Dimitrov, M.A. & Roussakova, V.H. 2009: Syntaxa according to the Braun-Blan-quet approach in Bulgaria. Phytologia Balcanica 15: 209-233. Tzonev, R., Roussakova, V. & Dimitrov, M. 2006: The western-pontic steppe vegetation in Bulgaria. Hacquetia 5: 5-23. Ugurlu, E., Rolecek, J. & Bergmeier, E. 2012: Oak woodland vegetation of Turkey - a first overview based on multivariate statistics. Applied Vegetation Science 15: 590-608. Vassilev, K., Apostolova, I. & Pedashenko, H. 2012: Festuco-Brometea in western Bulgaria with an emphasis on Cirsio-Brachypodion pinnati. Hacquetia 11: 227-248. Walter, H. 1974: Die Vegetation Osteuropas, Nord- und Zentralasiens. Fischer, Stuttgart. Yaltirik, F. 1975: Some notes on the morphological characteristics and the distribution of the Balkan woody species crown in Turkey: Macedonian oak (Quercus trojana Webb.). Pp. 264269 In: Jordanov, D., Bondev, I., Kozuharov, S., Kuzmanov, B., Palamarev, E. & Velcev, V. (eds.), Problems of Balkan flora and vegetation. Proceedings of the first international symposium on Balkan flora and vegetation, Varna, June 7-14, 1973. Sofia. Zgaga, Z. 2005: Biodiversity assessment update for Croatia. U.S. Agency for International Development, Zagreb. Zielinski, J., Petrova, A. & Tomaszewski, D. 2006: Quercus trojana subsp. yaltirikii (Fagaceae), a new subspecies from southern Turkey. Willde-nowia 36: 845-849. Received 28.3.2013 Accepted 19.10.2013 Co-ordinating editor: Romeo Di Pietro Pi W £ w £ w R W o OO OC ^ <= z; R 2 Z W LT Z ^ W LT Z - N N N S z: \D ° s ^ iz ° 2: § z -o (x (x (x (x (x (x c ft 6 CN s- OJ 5-H a > o O C I & b -c -2 ? 3 & 3 3 fr 3 £ -a e 3 3 5= ^ b* ^ cc -S J <2 z <*> C .s !¥ T5 'jr -a 5 § Ço " S -S « -= u -a e G ^ & ^ & o e -ê1 js £ oq CD £ te £ ? •S a 3 e .3 3 ~ 'S I ^ "s ■g C S 3 S S i= a .a e C 3 a £ O S "3 •a § •S- u a C .<3 "13 -C a. « o T5 ;§ § J* ^ s -3 5 c^ £ S3 ^ eq e: J I a 5 .<2 c 13 c 3 "S ^ .s S « O c U 3 "3 a 3 'I 3 S & § n t I .3 -3 lb -c 1 '2 's ~ •Sis 2 y & S? « 3 3 3 ^ 3 s 1 3 „ 3 3 3 a ■is ^ 3 3 ^ £ H 5 f^ 3 ^ - ■oft,'?