UDK621.3:(63+54+621+66), ISSN0352-9045 Informacije MIDEM 33(2003)4, Ljubljana

HIGH-LEVEL SYNTHESIS BASED UPON DEPENDENCE
GRAPH FOR MULTI-FPGA

Mohamed Akil
Laboratoire A2SI, Groupe ESIEE, Cité Descartes, Noisy Le Grand cedex, France

INVITED PAPER
MIDEM 2003 CONFERENCE
01.10.2003 - 03.10.2003, Grad Ptuj

Abstract: The increasing complexity of signal, image and control processing algorithms in real-time embedded applications requires efficient system-
level design methodology to help the designer to solve the specification, validation and synthesis problems. Indeed the real-time and embedded
constraints may be so strong that the available high performant processors are not so enough. That leads to use, in complement of processor, the specific
component like ASIC or FPGA. Several projects have developed high-level design flow that translates high-level algorithm specification to an efficient
implementation for mapping onto multi-component architecture. In this paper, we present: 1. a unified model for hardware/software codesign, based on
the AAA methodology (Algorithm-Architecture Adequation). In order to exhibit the potential parallelism of algorithm to be implemented, the AAA methodol-
ogy is based on conditioned (conditional execution of computations) factorized (loop) data dependence graph, 2.Some simple rules that allow synthesiz-
ing both the data path and the control path of a circuit corresponding to an algorithm specified as a Conditioned and Factorized Data Dependence Graph
(CFDDG), 3. the optimized implementation of CFDDG algorithm onto FPGA circuit and Multi-FPGA (partionning), by using simulated annealing approach,
4. the resources and time delay estimation method. This method allows us to have a performance analysis for the implementation. The obtained results:
resource (gates, 10) and latency estimation are used by the optimization step to decide which implementation respects the constraints (real-time
implementation which minimises the resource utilisation), 5. the results of the implementation of the matrix-vector product algorithm onto a Xilinx Multi
FPGA and the software tool SynDEx which implements the AAA methodology.

Visokonivojska sinteza FPGA vezij na osnovi odvisnih grafov

lzvie€ek: Narascajoca zapletenost algoritmov za obdelavo signaloy, slike in opravijanje nadzora v vgrajenih sistemih v realnem ¢asu zahteva ucinkovite
metodologije nadrtovanja na nivoju sistema z namenom pomagati nadrtovalcu resevati probleme pri specifikaciji, validaciji in sintezi sistema. V resnici se
lahko zgodi, da so omenjene zahteve tako zahtevne, da omejijo uporabo obstojecih zmogliivih procesorjev. To navede na uporabo dodatnih specificnin
komponent, kot so ASIC vezja ali FPGA vezja. Pri nekaj projektih se je Ze zgodilo, da smo uspeli zahteve algoritmov na visokem nivoju prevesti na
implementacijo arhitekture zasnovane na sistemu z ve&imi komponentami. V tem prispevku predstavimo : 1. poenoten model za soCasno nadrtovanje
programske in strojne opreme zasnovane na metodologiji AAA (Algorithm-Architecture-Adequation), ki je zasnovana na pogojnem podatkovno odvisnem
grafu s dimer lahko izkoristimo potencialno paralelno izvajanje algoritma. 2. nekaj osnovnih pravil, ki omogocajo sintezo podatkovnih in kontrolnih poti za
vezie, ki odgovarja algoritmu definiranemu kot CFODG graf. 3. optimizirano implementacijo CFDDG algoritma z enim ali ve¢ FPGA vezji z uporabo metode
simuliranega ohlajanja. 4. sredstva in metodo za oceno dasovnih zakasnitev. Ta metoda omogocéa analizo delovanja za doloceno implementacijo. Dobljeni
rezultat : sredstva (vrata, 10} in oceno latentnosti uporabimo pri koraku optimizacije za odlo¢anje, katera implementacija spostuje omejitve (implementacija
v realnem €asu, ki minimizira uporabo sredstev). 5. rezultate implementacije algoritma matri¢nega produkta na Xilinx Multi FPGA vezje in programsko
orodje SynDex s katerim je izvedena AAA metodologija.

To fulfill the ever increasing requirements of embedded
real-time applications, system designers usually require
mixed implementation that blends different types of pro-
grammable components (RISC or CISC processors,

1. Introduction

As the size and complexity of high performance signat, im-
age and control processing algorithms is increasing con-

tinuously, the implementations cost of such algorithms is
becoming an important factor. This paper addresses this
issue and presents an efficient rapid prototyping method-
ology to implement such complex algorithms using recon-
figurable hardware. The proposed methodology is based
on an unified model of conditioned factorized data depend-
ence graphs where both data and control flow are repre-
sented as well to specify the application algorithm, than to
deduce the possible implementations onto reconfigurable
hardware, in terms of graphs transformations. This work is
part of the AAA methodology and has been implemented
in SynDEx (CAD software tool that support AAA, a system
level CAD software tool.

DSP,..Jcorresponding to software implementation, with
specific non-programmable components (ASIC, FPGA,...)
corresponding to hardware implementation.

This makes the implementation task a complicated and
challenging problem, which implies a strong need for so-
phisticated CAD tools based on efficient system-level de-
sign methodologies to cope with these difficulties and so
to simplify the implementation task from the specification
to the final prototype.

Inthis field, several system-level design methodologies and
their associated tools have been suggested during the last
years. SPADE /1/ methodology enables modelling and

267

Informagije MIDEM 33(2003)4, str. 267-275

M. Akil:

Hligh-level Synthesis Based Upon Dependence Graph for Multi-FPGA

exploration of signal heterogeneous processing systems.
The result is the definition of a heterogeneous architec-
ture able to execute these applications with respect real-
time constraints. SPARK /2/ is high-level synthesis frame-
work that provides a number of code transformations tech-
nigues. The back-end of the SPARK system generates
synthesizable RTL VHDL (control synthesis is a finite sate
machine controller). GRAPE-II /3/ is a system-level devel-
opment environment for specifying, compiling, debugging,
simulating and emulating digital-signal processing applica-
tions on heterogeneous target platforms consisting of DSPs
and FPGAs. After specification, resources requirement,
mapping architecture, the last phase generates C or VHDL
code for each of the processing devices. POLIS /4/ sys-

tem implements a HW/SW codesign using the CFSM (the -

Codesign Finite State Machine formal model). A complete
codesign environment, based on POLIS system, which
combines automatic partitioning and reuse of a module
database is presented in polis. The SPARCS design sys-
tem /5/ is an integrated design environment for automat-
ically partitioning and synthesizing behavioural specifica-
tions (in the form of task graphs) on multi-FPGA architec-
ture. The SPARCS contains a temporal partitioning tool to
temporally divide and schedute the tasks on the architec-
ture and high-level synthesis tool to synthesize
register_transfer level designs for each set of tasks.

Each of the above tools has its own features (for example
several models can be used for application and architec-~
ture specification) and innovative aspects but none of them
support the entire implementation process onto mixed ar-
chitecture using an unified model as well to specify the
application algorithm, as to deduce the possible implemen-
tation onto multicomponent architecture.

To achieve this goal, we have developed, in the one hand,
the AAA (Algorithm-Architecture Adequation) rapid proto-
typing methodology /6/ which helps the real-time applica-
tion designer to obtain rapidly an efficient implementation
of his application algorithm onto his heterogeneous multi-
processor architecture and to generate automatically the
corresponding distributed executive /7/. This methodolo-
gy uses an unified model of graphs as well to modelize the
application algorithm, the available architecture as to de-
duce the implementation which is formalized in terms of
transformations applied on the previous graphs. In the other
hand we aim to extend our AAA methodology to the hard-
ware implementation onto specific integrated circuits in
orderto finally provide a methodology allowing to automate
the implementation of complex application onto multicom-
ponent architecture using an unified approach.

This paper presents the design methodology based upon
graph transformation from algorithm specification to hard-
ware implementation. This methodology automates the hard-
ware implementation of an application algorithm specified
as a Conditioned Factorized Data Dependence graph in the
case of reconfigurable integrated circuits (FPGA). This meth-
odology is illustrated through all the sections with a condi-

268

tioned matrix-vector product case study that involve a mod-
erately complex control flow involving both conditioning and
loops. We first present the conditioned factorized data de-
pendence graph model proposed to specify the application
algorithm in section 2. In section 3 we present the imple-
mentation model describing the result obtained by applying
a set of rules that allows to automate the synthesis of data
and control paths from the algorithm specification. Follow-
ing that, the principles of optimization by defactorization are
described in section 4. In this section we present the using
of the simulated annealing technigue to obtain an optimized
implementation on mono and multi circuit architecture. The
proposed algorithms guided by the cost functions find the
best solution that respects the real time constraint while
minimizing the resources consumption.

2. AAA methodology: Algorithm
model

According to the AAA methodology, the algorithm model is
an extension of the directed data dependence graph,
where each node models an operation {(more or less com-
plex, e.g. an addition or a filter), and each oriented hyper-
edge models a data dependence, where the data produced
as output of a node is used as input of an other node or
several other nodes (data diffusion). The set of data de-
pendences defines a partial order relation on the execu-
tion of the operations, which may be interpreted as a “po-
tential parallelism’.

This extended data dependence graph, called Conditioned
Factorized Data Dependence Graph (CFDDG) allows to
specify loops through factorization nodes, and conditioned
operations (operation executed, or not, depending on its
conditioning input) through conditioning edge. In this CFD-
DG graph, each oriented dependence edge is either a data
dependence or a conditioning dependence, and each node
is either a computation operation, an input-output opera-
tion, a factorization operation or a selection operation.

This algorithm graph may be specified directly by the user us-
ing the graphical or textual interface of the SynDEx software /
7/ oritmay be generated by the compiler from high level spec-
ification languages, such as the synchronous languages, which
perform formal verifications in terms of events ordering in order
to reject specifications including deadlocks /8/.

2.1 Conditioned Factorized Data
Dependence Graph

Typically an algorithm specification based on data depend-
ence contains regular parts (repetitive subgraph) and non-
regular parts. As described in /9/, these spatial repeti-
tions of operation patterns (identical operations that oper-
ate on different data) are usually reduced by a factorization
process to reduce the size of the specification and to high-
light its regular parts. Graph factorization consists in re-
placing a repeated pattern, i.e. a subgraph, by only one

M. Akil:

High-level Synthesis Based Upon Dependence Graph for Multi-FPGA

Informacije MIDEM 33(2003)4, str. 267-275

instance of the pattern, and in marking each edge cross-
ing the pattern frontier with a special “factorization” node,
and the factorization frontier itself by a doted line crossing
these nodes. The type of factorization nodes depends on
the way the data are managed when crossing a factoriza-
tion frontier; 1. A Fork F node factorizes array partition in
as many subarrays as repetitions of the pattern. 2. AJoin J
node factorizes array composition from results of each rep-
etition of the pattern. 3. A Diffusion D node factorizes dif-
fusion of a data to all repetitions of the pattern. 4. An lter-
ate | node factorizes inter-pattern data dependence be-
tween iterations of the pattern.

Moreover, the user may want to specify that some opera-
tions will be executed depending on some condition. In
our CFDDG model, we provide a conditioning process such
that the execution of operations of the algorithm graph
may be conditioned by a conditioning dependence, which
is represented on the algorithm graph by a dashed edge.
In this case, the conditioned operation is executed only if
its inputs data are present and its condition of activation is
satisfied. In order to indicate the end of the conditioned
sub-graph in the algorithm graph that corresponds to the
‘Endlf’ of the typical control primitive IF-THEN-ELSE, we
need a specific node ‘select’. It allows to select among the
data it receive the one that will be sent to its output. The
input data of a select node correspond to the data pro-
duced by the conditioned operations with their condition
of activation satisfied. As the parallel execution of these
conditioned operations, that are not necessarily exclusive,
can lead to simultaneous presence of several input data at
the select node, we introduced priorities between its data
which will be specified in an explicit way with labels on the
input edges (p+, P2, ...,Pn). The input data having the high-
est priority pi will be selected and sent to its output.

2.2 Specification of Conditioned Matrix-
Vector by using Conditioned
Factorized Data Dependence Graph

Figure 1 represents use a Conditioned Matrix-Vector Prod-
uct example (C-MVP) specifying by CFDDG model: de-

pending on the value of the input data C, this algorithm will
compute either the product of the matrix Me R™ x R by
the vector Ve R and will return the resulting vector or will
directly return the input vector V. The computation of the
product of the matrix M (composed of m vectors M;: M=
(M ,),ic,n Y the vector V can be decomposed into m sca-
lar products PS =(M iV)i<i<w (loop for i) each PS can then
be decomposed into a sum of n products
MV =MuoVi+....+MuV: (|OOD for J)

This decomposition process generates repetitions of op-
erations patterns; that we often prefer to specify in a fac-
torized form as described in Fig.1. Therefore, the final con-
ditioned Factorized Data Dependence Graph (CFDDG) will
include the two imbricated frontiers FF2 and FF3 corre-
sponding to the two imbricated for loops, in addition to the
factorization frontier FF1 which correspond to the factori-
zation of the infinitely repeated pattern of the graph since
we deal with reactive applications that interact infinitely with
the physical environment.

3. AAA methodology: Implementation
model

Implementing applications onto specific integrated circuits
requires system designers to generate the data path re-
sponsible for the core of the computation as well as the
control path to provide the appropriate control signals for
the computations. The resulting RTL design containing both
data and control paths is then characterized in order to
estimate time and area performance. This allows the ex-
ploration of different hardware implementations, seeking
for an ideal compromise between the area and the re-
sponse time of the circuit.

Then, we propose a seamless flow based on graph trans-
formation to transform the algorithm graph into an imple-
mentation graph containing both data-path graph and con-
trol-path graph. As will see, data-path transformations are
quite simple, but control-path transformations are not triv-
ial and require to build first a neighborhood graph.

Figure 1:

Conditioned and Factorized Data Dependence Graph of C-MVP

269

Informacije MIDEM 33(2003)4, str. 267-275

M. Akil:

Hlgh-level Synthesis Based Upon Dependence Graph for Multi-FPGA

3.1 Neighborhood graph

Every factorization frontier may be a consumer (located
downstream) or/and a producer (located upstream) rela-
tively to another frontier according to the data dependenc-
es relating them. Two frontiers are neighbors if there is at
least one relation of direct dependence that does not cross
a third frontier. Based on these neighborhood relations,
we build a neighborhood graph. The nodes of such graph
represent the factorization frontiers and the oriented edg-
es represent the data flow between factorization frontiers.

The edge orientation describes the consumption/produc-
tion relation: an edge starts at a producer and ends at a
consumer. As producing/consuming frontiers may be them
selves conditioned (e.g. FF2 on Fig.1), data production/
consumption between frontiers are consequently condi-
tioned. To take into account such conditioned data flow,
we will represent conditioned consumption/production by
dashed edges.

In the case of a sequential implementation of factorization
nodes, every factorization frontier, called FF, separates two
regions, the first one called “fast” (f), being repeated rela-
tively to the second one, called "slow” (s). These slow and
fast sides of a frontier are due to the difference of the data
transfer rate on each side of the frontier. Every node of the
neighborhood graph is then subdivided in four parts (slow-
downstream, fast-upstream, fast-downstream and slow-
upstream) /10/. The neighborhood graph is deduced au-
tomatically from the CFDDG and it is used during the im-
plementation in order to establish the control relationships
between frontiers leading to a part of the control-path.

The neighborhood graph built from the CFDDG specifying
the C-MVP algorithm (Fig.1) comprises three nodes corre-
sponding to the three factorization frontiers FF1, FF2, FF3.
The factorization frontier FF1 is infinite, it does not have
neighbors on its “slow” side which corresponds to the
physical environment. FF1 is, either a producer compared
to the conditioned frontier FF2 or a producer to itself and
a consumer compared either to itself or to the conditioned
frontier FF2. FF2 is also a producer and a consumer com-
pared to FF3. FF3 is a producer and a consumer, com-
pared to itself through the arithmetic operations mul and
add.

3.2 Data-path graph generation

The hardware implementation of the Conditioned Factor-
ized Data Dependence Graph consists in providing a
matching operator for every node, and a matching con-
nection between operators for each data dependence
edge relating the corresponding operations. The resulting
graph of operators and their interconnections compose
the data path of the circuit. This hardware translation proc-
ess defines then a graph isomorphism between Condi-
tioned Factorized Data Dependence Graph and the data
path graph.

270

The matching operator node is a logic function in the case
of a computation operation node, or it is composed of a
muitiplexer and/or registers in the case of a factorization
node (i.e: F, I and J nodes) or it is composed of a priority
encoder and a multiplexer for the select node to encode
priority and to select data.

3.3 Control-path graph generation

The control path corresponds to the logic functions that
must be added to the datapath, in order to control the
multiplexers and the transitions of the registers compos-
ing the operators. It is then obtained by data transfer syn-
chronization between registers. However, two conditions
must be satisfied to allow a register to change state: the
new upstream data to the register must be stable, and all
downstream consumers of the register must have finished
the utilization of previous data. Moreover, if upstream data
of a circuit comes from various producers with different
propagation time, it is necessary to use a synchronized
data transfer process. This synchronization is possible
through the use of a request/acknowledge communica-
tion protocol. Consequently, the synchronization of the cir-
cuit implementing the whole algorithm is reduced to the
synchronization of the request/acknowledge signals of the
set of factorization operators.

These operators are gathered in factorization frontier and
their data consumption and production are done in a syn-
chronous way at the level of the frontier. We propose then
a local control system where each factorization frontier will
have its own control unit.

This delocalized control approach allows the CAD tools
used for the synthesis to place the control units closer to
the operators to control rather then a centralized control
approach,

Control units and their interconnections: As mentioned
above (section 3.1), each factorization frontier has upstream
and downstream relations on both sides, “slow” and “fast”.
The relations between upstream/downstream and request/
acknowledge signals on both sides of a frontier are imple-
mented by the "control unit” of the factorization frontier. This
control unit contains a counter C with d states (correspond-
ing to the d factorized repetitions) and an additional logic
function in order to generate, in the one hand the communi-
cation protocol between frontiers (the slow/fast, request/
acknowledge signals at the upstream and downstream
sides), and in the other hand the counter value (cpt) and the
enable signal (en), that control the frontier operators.

Thus, the control path will mainly be composed of the set
of control units associated to the corresponding frontiers
nodes of the neighborhood graph. These control units are
then inter-connected in a systematic way as follows: for
each oriented dependence edge, we generate a request
signal transmitted between the corresponding control units.
And for each generated request signal, the associated
acknowledge signal is transmitted, in the opposite direc-

M. Akil:

High-level Synthesis Based Upon Dependence Graph for Multi-FPGA

Informacije MIDEM 33(2003)4, str. 267-275

Figure 2:

tion. When several signals occur at the same input of a
control unit, the conjunction of these signals is performed
by a logical AND gate. Note that, the generated request
signals associated to conditioned dependences must first
be send to a multiplexer controlled by a priority encoder
which will send in turn the request signal with the highest
priority to its output /11/.

4. AAA methodology: Implementation
optimization

4.1 Optimization principle based upon
defactorization process

If the implementation of the factorized specification onto
an application specific integrated circuit or an FPGA does
not meet the real time constraints, we need to defactorize
the implementation graph corresponding to the specifica-
tion. The defactorization process is the reverse transfor-
mation of the factorization and therefore it does not change
the operational semantic of the data dependence graph.
The goal is to obtain a more parallel implementation in or-
der to reduce the latency and improve the temporal per-
formances in spite of increasing hardware resources. Thus
the optimized implementation of a conditioned factorized
algorithm graph onto the target architecture is formalized
in terms of graph defactorization transformation.

Figure 3 represents a defactorized by a factor 2 of C-MVP
graph. Defactorized solution allows to reduce the latency
of the implementation, but increase the number of required
hardware resources. FF2 is defactorized in two frontiers
FF2a and FF2b, and FF3 is then duplicated in FF3a and
FF3b.

The implementation space which must be explored in or-
der to find the best solution is then composed of all the
possible defactorizations of a factorized graph specifying
the algorithm. For instance, for a given algorithm graph
with n frontiers, we have at least 2" defactorized imple-
mentations. Moreover, each frontier can be partially de-
factorized: a factorization frontier of r repetitions can be
decomposed in f factorization frontiers of r/f repetitions.
Consequently, for a given algorithm graph, there is a farge,

Neighborhood graph of defactorized C-MVP (see paragraph 2.2)

but finite, number of possible implementations which are
more or less defactorized, and among which we need to
select the most efficient one, i.e. which satisfies the real-
time constraints (upper bound on latency), and which uses
as less as possible the hardware resources, logic gates
for ASIC and number of Configurable Logic Blocks CLB
for FPGA. This optimization problem is known to be NP-
hard, and its size is usually huge for realistic applications.
This is why we use heuristic guided by a cost function, in
order to compare the performances of different defactori-
zations of the specification. This heuristic allows us to ex-
plore only a small subset of all the possible defactoriza-
tions into the implementation space. The heuristic needs
to define a cost function based on the critical path length
metric of the implementation graph: it takes into account
both the latency and the resources consumption of the
implementation which are obtained by a preliminary step
of characterization.

4.2 Architecture characterization: area
and latency estimation
To estimate the total area we use the neighborhood graph

to calculate the data path area and control path area. This
total area used by the implementation is given by:

SI(FF,FG)ZZDP:IM(ﬁ)"‘ESCpalh(fi) (1)
i=1

i=1
Where f; designs the frontier i.

The total area is calculated in term of FF (Flip Flop) and FG
(Function Generator). One can use equation 2 to deduce
the area in terms of CLB (Control Logic Block):

max(S:(FF),S5:(FG)
2

For the calculation of latency, one deduces from neigh-
bourhood graph the various relations between the fron-
tiers (frontiers in series, parallel, inclusive). These rela-
tions enable us to determine the number of cycles, thus
the number of cycles multiplied by the time cycle gives the
execution time of the algorithm.

S(CLB)= 2)

271

Informacije MIDEM 33(2003)4, str. 267-275

M. Akil:

High-level Synthesis Based Upon Dependence Graph for Multi-FPGA

Figure 3:

4.3 Algorithm of the proposed Simulated
annealing heuristic for mono-FPGA
architecture

4.3.1 Simulated annealing principle

This is a technique /12/ for solving combinatorial optimi-
sation problems such as minimising functions of many var-
iables. The conventional ANNEALING algorithm operates
by starting with an initial solution to the combinatorial opti-
mization problem and improving the solution through a se-
ries of changes. This involves finding some configuration
of parameters that minimises some objective function. It is
based on a modification of iterative improvement, which
involves starting with some existing suboptimal configura-
tion and perturbing it in some small way. If this new config-
uration is better than the old one the new configuration is
accepted and we start again. Unlike a greedy algorithm
which only accepts system configuration resulting from
better changes, annealing probabilistically accepts inferi-
or changes.

272

A defactorized implementation graph of C-MVP

4.3.2 Application the simulated annealing technique
in the AAA methodology

The application of simulated annealing consists in finding
the global minimum (i.e. the optimized implementation
graph) of an objective function by avoiding its local minima
(metastable states of the system). This function has two
variables: resources used for the hardware implementa-
tion and execution time of the algorithm.

Letavector containing a set of variables, each one of these
variables indicates the state of each component of the sys-
tem. In our case the system is represented by the CFGDD
of the algorithm to be implemented, each frontier of this
graph defines a component of the system and a variable X
defines the defactorization factor. The defactorization proc-
ess implies a change of the system. For example: if the V1
vector = {X1=3, X2=1, X=3,X4=2) changes into in V1 =
{X1=3, X2=2, X3=3, X4=2), the new state of V1 means
that the frontier which is defined by X2 was defactorized
by 2. As we described in paragraph 4.1, this defactoriza-
tion process generates an increasing/diminution of the

M. Akil:

High-leve! Synthesis Based Upon Dependence Graph for Multi-FPGA

informacije MIDEM 33(2003)4, str. 267-275

execution time of the algorithm (i.e. latency of the circuit)
and thus a diminution/increasing of the surface of the cir-
cuit. We defined a cost function F(X) for a given state X of
the system. This function estimates the variations of the
system for a given state X. It permits to choose the defac-
torization which satisfies the time constraint while minimiz-
ing the resources consumption (i.e. CLB in case FPGA):

_ S if ¢<T
F(X)= lS+/c(t—T) if T ©)

Where:

- T indicates the time constraint,

- tis the execution time for a given defactorization,

- S is the surface of the hardware implementation for a
given defactorization,

- k defines the penalty factor.

Based on the technigue of simulated annealing, the algo-
rithm that we propose starts with the calculation of the
control parameter Co, then one starts by gradually decreas-
ing his value and for each one of these values one carries
out a certain number of changes of states of the system
(defactorization). With each reduction of the control pa-
rameter of control, one increases the number of changes
of states of the system by a factor 3.

In the algorithm below:

- Xo presents the initial solution of the system,

- Lo is the initial value of a number of changes of sys-
tem state,

- iter defines the number of change of a control pa-
rameter,

- Ly is the modification number of system state for a
given control parameter ¢y,

- X; is a given solution or given state vector of the sys-
tem,

- X; is state vector after a defactorization process, it is
a solution close to X;,

- cx isindicates the value of a control parameter during
the kth iteration, is the initial value of a control param-
eter,

- F(X) indicates the cost function for a system state X.

S, 110, if

S+ 0, Akt ~T.0) if

S, +e !0, -110,,)+kt, ~T,.) if

IS, =S)+ 110, vk, —T,.) if

FX) =S, ~S,,,)+gd/10,-1/0,)+k, -T,.) i
WS, =S,)+gd/0.-110,,.) if

(S, =S, m)t 110, if

S, +gll/0,-1/0,,,) if

2T

Algorithm: simulated annealing for mono circuit architecture

1. initialize (co,Lo,Xo)
2. foriter =1 to num_iter do
3. for n-modif to Lx do

4, X=V(Xi)

5. if (FOXi)<F(X) then Xi=X;

6. else

7. if(exp(-(FOG)-FOX)/
c)>-Random.float(0,1)) then X=X

8. endif

9. endif

10. endfor

11. Cxn=Cx*Q

12, Len=Lc*[}

13. endfor

The simulated annealing algorithm returns the optimized
implementation graph which satisfies real-time constraints
and uses as less as possible the hardware resources. The
algorithm begins by performing the initial value of Xo, Lo
and co(co is equal to 2*n, where n defines the number of
defactorizable frontiers) and then decreases gradually a
control parameter. For each control parameter, the state
system is modified and for each control parameter reduc-
tion, the number of the system change is increased by B
One chooses B equal to the edges number of the CFD-
DG. The algorithm must find and accepts the solution close
to X; if itis not possible another solution is accepted with
certain probability.

4.4 Algorithm of the proposed Simulated
annealing heuristic for Multi-FPGA
architecture

Let the number of frontiers composing the graph algo-
rithm CFGDD, each frontier border of this graph contains
a set of edge and has a factor of factorization.

A X vector defines the different states of the frontier defac-
torization. Let FF2 frontier which is defined by X2 variable.
If FF2 frontier has a factor defactorization equal to 3 then
X2 contains three elements: X21, X22 and X23. Each of
these elements corresponds to a defactorization state. For

o and NS <S o and VI/0.<I/0,,,
2T, and VS <S.. and NIIO <I/0,,
e and NS <S. . and 310,21/0,,,

‘o and 38,28, and N[0 .<I/0,k,,)
t,, 2T, and 3S2S. . and 31/0,z21/0,,
. and 3828 and 31/021/0,,
T, and 3S2S_ . and NIJO,<I/0,,

and VS <S§ and 3110,21/0

contr contr contr

273

Informacije MIDEM 33(2003)4, str. 267-275

M. Akil:

High-level Synthesis Based Upon Dependence Graph for Multi-FPGA

example, if one defactorises FF2 by 2 then X22 is equal to
2 and X21 and X23 are equal to 0. X22 contains a set of
frontiers which their edges.

To each frontier, one associates in random way a given
circuit of the architecture by applying the simulated anneal-

We applied this algorithm to an example which describes
a five Conditioned Product Matrix Vector calculation (the
CFDD graph contains 60 edges). The hardware implemen-
tation uses two circuits: Xilinx XC4013E/X2. The parame-
ters bellow defines the main characteristics of XC 4012 £/
X2 circuit:

Device Logic |Max |Max Typical Gate CLB Total Number | Max User
Cells Logic | RAM | Range Matrix | CLBs of Flip -|I/O
Gates | bits Flops
XC4013E/X2 1,368 13,000 | 18,432 | 10,000 - 30,000 |24x24 |576 1,536 192

ing method. In order to estimate the partionning we de-
fined a cost function:

Where :

- tior is the execution time of the algorithm after apply-
ing defactorization,

- Siot is the area occupied by all the circuits after the
defactorization process

- Si defines the area used in the circuit i,

- k,l,g are the penalty coefficients (varying from 10 to
100) used if respectively the time, area and 1/0
constraint are not respected,

= Teontr isthe time constraint,

- Scontr and [/ Ocontr define respectively the time and
I/0 constraints for every implementation,

- I/ Ot is the total number of the 1/0 used for all the
circuits used by a given implementation,

- 1/0; is the I/O number for the circuit /.

The proposed algorithm is similar than the mono circuit
case, we only change the cost function. This algorithm
takes the neighbourhood graph as an input and returns
the partionning graph. This partinoning graph corresponds
to muli-circuit implementation which respects the real time
constraints and uses as less possible the hardware resourc-
es (i.e. area and 1/0).

To compare the optimisation results, we applied the simu-
lated annealing algorithm for 5 different time constraints:
1000, 1500, 2000, 2500 and 3000 ns. The table below
presents the results for each time constraint. The hard-
ware implementation needs two circuits: circuit 1 and cir-
cuit 2. For each circuit table 1 gives the CLB and I/0 used
at different time constraint.

5. Conclusion

We showed that from an application algorithm specified
with a conditioned factorized data dependence graph it
is possible to obtain a hardware implementation onto a
reconfigurable integrated circuit following a set of graphs
transformations, leading to a seamless design flow. These
transformations allow to automatically generate the data-
path and the control-path for designs with moderately
complex control flow involving both conditioning and
loops. The proposed delocalized control approach allows
the CAD tools used for the synthesis to place the control
units closer to the operators to control, We have present-
ed an optimization heuristic based upon simulated an-
nealing and we applied this technique for Conditioned
and factorized Data Dependence Graph by using a de-
factorization process guided by cost function. We defined
two cost functions for mono and multi Circuit architec-
tures. We used these two algorithms to obtain automati-

TIME Constraint 1000 1500 2000 2500 3000
[ns]
circuit 1 60 433 298 202 306
CLB used
Circuit 2 458 114 210 317 172
CLB used
circuit 1 34 30 41 35 43
1/0 used
Circuit 2 37 27 39 30 47
1/0 used
Total latency 397 1231 985 1280 1231
[ns]
Total CLB 518 547 508 519 478
Total I/O 71 57 80 65 90

Table 1: number of circuit, CLB and I/O used at different time constraint.

274

M. Akil:

High-level Synthesis Based Upon Dependence Graph for Multi-FPGA

Informacije MIDEM 33(2003)4, str. 267-275

cally the best solution at the given time constraint. The
optimization heuristics will address both defactorization
and partitioning issues. Moreover, this extension of the
AAA methodology to the hardware implementation of al-
gorithm onto integrated circuit, provides a global meth-
odology in order to tackle complex hardware/software
co-design problems involved by multicomponent archi-

tecture.
6. References
/1/ P. Lieverse, P. van detr Wolf, Ed Deprettere, K. Vissers, "A Meth-

12/

/3/

/4/

/5/

/6/

/77

odology for architecture exploration of heterogeneous signal
processing systems”, Proc. 1999 IEEE Workshop on Signal
Processing Systems.

S. Gupta, N. Dutt, R. Gupta, A. Nicolau, "SPARK, High-Level
Synthesis Framework For Applying Parallelizing Compiler Trans-
formations”, 7th Intl.Conference on VLS| design, January 5-9,
2004, Mumbai, India.

R. lauwereins, M. Engels, M. Adé, J. Peperstraete, “Grape-Il : A
system-level Prototyping Environment For DSP applications”,
|EEE Computer, Vol. 28,No 2, pp. 35-43, Feb. 1995.

S, Edwards, L. Lavagno, E.A. Lee, A. Sangiovanni-Vincentell,
"Design of embedded systems: formal models, validation, and
synthesis”, Proc. of IEEE, v.85, n.3, March 1997.

M. Kaul , R. Venuri, “Optimal Temporal Partitioning and Synthe-
sis for Reconfigurable Architectures”, Design, Automation and
Test in Europe, February 1988.

T. Grandpierre, C. Lavarenne, Y. Sorel, “Optimized rapid proto-
typing for real-time embedded heterogeneous multiprocessors”,
CODES'99 7 Intl. Workshop on Hardware/Software Co-De-
sign, Rome, May 1989.

T. Grandpierre, Y. Sorel, "From algorithm and architecture spec-
ifications to automatic generation of distributed real-time execu-
tives: a seamiess flow of graphs transformations”, MEMOCO-
DEO3, Intl. Conference on Formal Methods and Models for Code-
sign, Mont Saint-Michel, France, June 2003.

/8/

/9/

/10/

/11/

/12/

Prispelo (Arrived): 15.08.2003

N. Halbwachs, "Synchronous programing of reactive systems”,
Kiuwer Academic Publishers}, Dordrecht Boston, 1993.

L.Kaouane, M. AKkil, Y. Sorel, T. Grandpierre, “From algorithm
graph specification to automatic synthesis of FPGA circuit: a
seamless flow of graphs transformations”, FPLO3, Intl.Confrence
on Field Programmable Logic and Applications}, Lisbon, Portu-
gal, September 1-3, 2003.

L.Kaouane, M. Akil, Y. Sorel, T. Grandpierre, “A methodology to
implement real-time applications on reconfigurable circuits”,
ERSA'03, Intl. Conference on Engineering of Reconfigurable
Systems and Algorithms}, Las vegas, USA, June 2003.

R. Vodisek, M. Akil, S.Gaithard, A.Zemva, "Automatic Genera-
tion of VHDL code for SynDEx v6 software”, Electro technical
and Computer Science conference}, Portoroz, Slovenia, Sep-
tember 2001.

S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, ,,Optimization by Sim-
ulated Annealing”, Science, 220(4598): 671-680, May 1983.

Mohamed AKkil

Laboratoire A2SI, Groupe ESIEE

Cité Descartes, 2 Bld Blaise Pascal - BP 99
93162 Noisy Le Grand cedex, France
akilm@esiee.fr

Sprefeto (Accepted). 03.10.2003

275

